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The general method of steepest-descent asymptotics was described in Lecture 6 and applied to
obtain a globally valid approximation the PDF of the position of a random walk. In this lecture, we
will illustrate the method for the case of a symmetric Bernoulli random walk on the integers, where
each step displacement is ±1 with probability 1/2. First, we will derive the necessary transform.
Then, we will use the saddle point method (a special case of steepest-descent asymptotics) to obtain
a globally valid asymptotic expansion as N , the number of steps taken by the walker, goes to infinity.
Finally, we will compare this result with our previous result from the Gram-Charlier expansion, as
well as provide numerical results to justify our conclusions.

1 The Bernoulli Random Walk - Integral Representation

(The following derivation of the integral representation of the Bernoulli random walk was given in 2003 and

scribed by Kevin Chu. It provides a natural starting point for saddle-point asymptotics. See also Hughes

Ch. 2.)

In the Bernoulli random walk, the individual steps are i.i.d. with probability density function
given by

p(m) =
1

2
(δm,1 + δm,−1) , (1)

where δi,j is the Kronecker delta and m ∈ Z. The probability density function after N steps can
be written using Bachelier’s equation in its discrete form:

PN (m) =

∞
∑

j=−∞
p(j)PN−1(m − j). (2)

Because this problem is discrete, we proceed with the analysis by using Fourier series (or equiva-
lently, the z-transform) instead of Fourier transforms:

p̂(k) =

∞
∑

m=−∞
eikmp(m) (3)

p(m) =

∫ π

−π
e−ikmp̂(k)

dk

2π
, (4)

where k is a continuous variable and m is discrete. For convenience, we will continue to refer to
p̂(k) as the transform of p(m).

1
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For the Bernoulli random walk, the characteristic function, p̂(k), is given by

p̂(k) = cos(k). (5)

As in the continuous case, the transform of a convolution (in this case discrete) is the product of
the transforms. Applying this result, we arrive at the usual expression for P̂N (k):

P̂N (k) = cosN (k), (6)

which immediately leads to the result

PN (m) =

∫ π

−π
e−ikm cosN (k)

dk

2π
. (7)

This integral can be evaluated exactly using contour integration (see Supplementary Note on
Lecture 16 in the course reader, 2003) to obtain

PN (m) =
[

1 + (−1)N+m
]

2−N−1 N !

Γ
(

1 + N−|m|
2

)

Γ
(

1 + N+|m|
2

) , |m| < N. (8)

While it is possible to examine the large n limit by using Stirling’s formula to approximate the
factorial and gamma functions in equation (8), it is instructive to apply the saddle-point method
directly to the integral (7) to find the asymptotic limit for PN (m).

We begin the analysis by making a few observations about the integrand, f(k) = e−ikm cosN (k),
in equation (7):

• f(k) is 2π-periodic

• f(k + π) = (−1)N+mf(k).

Using these observations, we can manipulate the integral for PN (m) into an integral over the interval
(−π/2, π/2):

∫ π

−π
e−ikm cosN (k)

dk

2π
=

∫ 3π/2

−π/2
e−ikm cosN (k)

dk

2π

=

(

∫ π/2

−π/2
+

∫ 3π/2

π/2

)

e−ikm cosN (k)
dk

2π

=
[

1 + (−1)N+m
]

∫ π/2

−π/2
e−ikm cosN (k)

dk

2π
,

where we used the 2π-periodicity of f(k) in the first step to shift the domain of integration and
the behavior of f(k) under a shift of π to change the integral over (π/2, 3π/2) into an integral over
(−π/2, π/2). Thus, we find that

PN (m) =
[

1 + (−1)N+m
]

∫ π/2

−π/2
e−ikm cosN (k)

dk

2π
. (9)

We are now ready to use the saddle-point method. For convenience, we write PN (m) as

PN (m) =

[

1 + (−1)N+m
]

2π
IN (m), (10)
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where IN (m) is defined by

IN (m) =

∫ π/2

−π/2
e−ikm cosN (k)

dk

2π
. (11)

In order to evaluate this integral for large N , we will invoke the method of steepest descent, also
known as saddle point asymptotics.

2 Saddle Point Asymptotics of the Bernoulli Random Walk

As an illustration of the steepest-descent method given in the previous lecture, we will proceed
to deform the contour of integration in Equation 11 in such a way to account for the dominant
contributions of the integrand. This will allow us to find a globally valid asymptotic expansion as
the number of random steps goes to infinity. First, we write

IN (m) =

∫ π
2

−π
2

e−Nf(k,ξ)dk (12)

where f(k, ξ) = ikξ − log(cos(k)) and ξ = m
N = O(1), (ξ fixed). This scaling will therefore give a

valid result for m = O(N), which means the approximation, once found, will be valid for all m1.
To evaluate the above integral as N → ∞, we must find its dominant contributions. These will

occur at either the endpoints of the integral, at saddle points of the modulus of the integrand (if
any exist), or near singularities, such as branch cuts, where the integrand is not analytic. In our
case, the endpoints do not contribute as f(k = ± π

2 , ξ) → ∞ and thus the integrand approaches zero
exponentially quickly near the endpoints2. The saddle points, denoted ks, are found where f(k, ξ)
achieves its minimum, where

f ′ = iξ + tan(ks) = 0 (13)

or equivalently,
ks(ξ) = − tan−1(iξ). (14)

This form however, will not allow us to easily determine the saddle point contribution. Instead,
write

tan(ks) =
sin(ks)

cos(ks)
=

eiks − e−iks

eiks + e−iks

(

1

i

)

= −iξ (15)

and substitute q = eiks to find q = ±
√

1+ξ
1−ξ and hence

ks = −i log q = − i

2
log

1 + ξ

1 − ξ
+ πl (16)

where l is an integer3. Also, since | ξ |≤ 1, the principal branch of the logarithm will be bounded

for all ξ except | ξ |= 1. However, when | ξ |= 1, PN (N) = 1
2

N
. Therefore, we can handle this case

separately and consider only when | ξ |< 1.

1Recall that the position, m, can never be greater than the total number of steps taken, N .
2For this reason, it is much easier to evaluate IN (m) than PN (m) using the saddle point method.
3For z = re

iθ = re
i(θ+2π), log(z) is defined as log(r) + i(θ + 2π).



M. Z. Bazant – 18.366 Random Walks and Diffusion – Lecture 7 4

Figure 1: The real part of f(k, ξ) showing the saddle points (which are also saddle points of

|ef(k,ξ)| = eRef(k,ξ)).

Finally, we require the value of f(ks, ξ) as well as f ′′(ks, ξ) along the principal branch. Plugging
ks into the definition of f(k, ξ), we obtain

f(ks, ξ) = iξks − log (cos ks)

= iξks − log

(

eiks + e−iks

2

)

=
−i2ξ

2
log

(

1 − ξ

1 + ξ

)

− log

√

1

1 − ξ2

=
ξ

2
log

(

1 + ξ

1 − ξ

)

+
1

2
log
(

1 − ξ2
)

(17)

and

f ′′(ks, ξ) = − sec2 ks =
−1

cos2(ks)
= 1 − ξ2. (18)

Near ks, what does f look like? Taylor expanding f at ks and recalling that f ′(ks, ξ) = 0 yields

f(k, ξ) ∼ f(ks, ξ) +
f ′′(ks, ξ)

2
(k − ks)

2. (19)

The direction of steepest descent will be where the real part of the integral is growing. Therefore,
this path will be along the real direction.

We now have everything needed to use the results from last lecture, where we found that the
saddle point contribution is

e−Nf(ks,ξ)

√

2π

N | f ′′(ks, ξ) |
. (20)

Therefore, combining equations 10, 17, 18, and 20 gives

PN (m) = PN (Nξ) ∼ 1 + (−1)N+m

√

2πN(1 − ξ2)

(

1 + ξ

1 − ξ

)−Nξ
2

(21)

which is a globally valid solution with ξ = m
N for | ξ |< 1.
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3 Performance of the Saddle Point Approximation

The exact solution for the position of the Bernoulli random walk can be expressed combinatorially
as the following:

PN (m) =

(

1

2

)N ( N
N+m

2

)

(22)

for (N + m) even, otherwise PN (m) = 0. In addition, we found previously that the Gram-Charlier
expansion for the Bernoulli random walk was the following:

φN (z) =
e

−z2

2√
2π

(

1 − H4(z)

12N
+ ...

)

(23)

where φN (z) is locally valid for z = m√
N

= O(1). In comparison, Equation 21 is valid for z = m
N =

O(1). Indeed, there arise times when one needs to know what is happening in the tail regions of
the Bernoulli random walk, and thus the Gram-Charlier expansion will not be sufficient4.

The central region is well approximated by φN (z) given by the Gram-Charlier expansion. How
well does the saddle point expansion perform in the central region as ξ → 0? This question can be
answered by Taylor expanding the components of Equation 21 near ξ = 0 which gives

f(ks, ξ) ∼
ξ2

2
+

ξ4

12
(24)

and

(1 − ξ2)−
1
2 ∼ 1 +

ξ2

2
+

3ξ4

8
. (25)

Therefore, the saddle point approximation from Equation 21 gives

PN (m) ∼ 1 + (−1)N+m

√
2πN

e−N ξ2

2 e−N ξ4

12

(

1 +
ξ2

2
+

3ξ4

8

)

(26)

Let z = ξ
√

N . Then we find

PN (m) ∼ e
−z2

2

√
2πN

(

1 − 1

12N
(z4 − 6z2) + O

(

1

N2

))

(27)

which can be written in terms of the fourth Hermite Polynomial (with weight function e
−z2

2 ) as

PN (m) ∼ e
−z2

2√
2πN

(

1 − 1

12N
(H4(z) − 3) + O

(

1

N2

))

. (28)

For small N , this is nearly the Gram-Charlier result with a shift of 3 at the origin. This shift is
needed because the saddle-point approximation coincides with the leading-order CLT approximation
exactly at z = 0, while the Gram-Charlier correction terms improve the approximation in the central
region. This helps us understand the poor approximation by the saddle-point method for small N .
The figures in the Section 4 will illustrate this result, as well as provide a qualitative comparison
between the various approximations.

4For example, see the percentile order statistics question on Problem Set 2, 2005.
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4 The Bernoulli Random Walk - Numerical Results

(The figures and first draft of this section were provided by C. H. Rycroft.)

Up to this point we have considered several approximations to the Bernoulli walk, as well as the
exact solution. In this section, we will present numerical results which illustrate their advantages
and disadvantages. First, let us summarize our analytic results, in terms of the appropriately scaled
variable, z:

• The Exact Probability Distribution after N steps is given by

PN (X = x) =

(

1

2

)N ( N
N+x

2

)

(for x = −N,−N + 2, . . . , N .)

• The Central Limit Theorem tells us that in the central region z = O(1), φN (z) tends to
the Gaussian distribution

φN (z) ∼ e−
z2

2√
2π

.

• The first order Gram-Charlier correction is given by

φN (z) ∼ e−
z2

2

√
2π

(

1 − 2

4!N
H4(z)

)

,

where the fourth Hermite polynomial is H4(z) = z4 − 6z2 + 3. As described in the lectures,
we expect this correction to become important for |z| > (24/ |λ4|)1/4N1/4 = 1.86N 1/4.

• The globally valid asymptotic approximation to φN (z), that is valid for any z in the
limit N → ∞, can be expressed as

φN (z) ∼ 1
√

2π
(

1 − z2

N

)

exp

(

−z
√

N

2
log

(√
N + z√
N − z

)

− N

2
log

(

1 − z2

N

)

)

.

The following four figures illustrate the numerical results for a given number of steps N .
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Figure 1: Even at N = 2, the CLT approximation is quite reasonable, while the Gram-Charlier
expansion with only two terms is remarkably accurate, and by far the best. The saddle-point
approximation is uniformly poor for this small value of N : It blows up in the tails and does not even
describe the central region very well. Note that it also always coincides with the CLT approximation
for z = 0, which is shifted from the exact result in a way corrected by the Gram-Charlier expansion.
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Figure 2: At N = 4, all three distributions match the exact solution, with the Gram-Charlier
approximation being again the most accurate. The globally valid approximation blows up at x =
±N .
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Figure 3: At N = 100 the three curves are indistinguishable from the exact solution in the whole
of the central region.
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Figure 4: A logarithmic plot of the tails of the distribution for N = 100 highlights the difference
between the approximations. The CLT matches the exact solution in the central region but signifi-
cantly deviates for large z. The globally valid approximation, however, matches the exact solution
very accurately for the entire range. The Gram-Charlier approximation becomes negative in the
tails and cannot even be plotted there.


