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In this lecture, we continue our discussion of divergent moments associated with a “fat tail”,
i.e. a slow power-law decay of the PDF,

p(x) ∼ A

x1+α
as x→ ∞. (1)

We focus on cases where the Central Limit Theorem holds (α > 2), and yet most (or all) higher
moments than the second diverge. The increased frequency of large rare events in the “tail” of
the step distribution, many standard deviations away from the mean, has dramatic consequences
for the random walk. In previous lectures, we have seen that higher moments (or more precisely,
higher cumulants) when they exist, control corrections to the CLT via Gram-Charlier expansions.
Here, we will derive a different form for the asymptotic correction to the CLT for symmetric step
distributions with fat tails. We will see that the power-law tail amplitude, A, plays the role of a
(divergent) cumulant.

1 Singular Characteristic Functions

The issues which arise with fat tails are well illustrated by the following PDF for IID steps in a
random walk (introduced in lecture 4):

p(x) =
2√

π(1 + x4)
(2)

which has tail of the form (1) with α = 3 and A =
√

2/π. This is a borderline case where the CLT
applies, but the Berry-Esséen Theorem does not, since all “absolute moments” greater than the
third diverge:

m̄β = 〈|x|β〉 = ∞ for β ≥ 3. (3)

All of the correction terms in the Gram-Charlier expansion also diverge and, therefore, must take
a different form, which we will calculate below.

The Fourier transform (or characteristic function) of the PDF in (2) can be obtained by standard
methods of residue calculus:

p̂(k) = e−|k|/
√

2(cos(k/
√

2) + sin(|k|/
√

2)) (4)

which has the following asymptotic expansion near the origin:

p̂(k) ∼ 1 − k2

2
+

|k|3
3
√

2
− 1

24
k4 +O(|k|5) as k → 0 (5)
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Note that this is not a Taylor expansion, since the function is not analytic at the origin, due to the
terms involving odd powers of |k|. We have seen that when all moments exist, the characteristic
function is analytic at the origin, with Taylor coefficients, inmn/n!. Here, the leading singularity
at order α = 3 in the asymptotic expansion as k → 0 is associated with the smallest diverging
moment, m̄3 = ∞.

We have seen this sort of behavior before. Recall that on Problem Set 1, we considered the
Cauchy PDF,

p(x) =
1

π(1 + x2)
(6)

which has a (very) fat tail of the form (1) with A = 1/π and α = 1. In this case, the variance is
infinite, and so is the “absolute mean”, m̄1 = 〈|x|〉. These properties of the fat tail are reflected in
the singular characteristic function,

p̂(k) = e−|k| ∼ 1 − |k| + k2/2 − . . . , as k → 0 (7)

which has a leading singularity at order α = 1. The Cauchy random walk, with IID steps chosen
from this PDF, does not satisfy the CLT due to the infinite variance, but the PDF illustrates the
general relation between a power-law tail and a singular characteristic function as the first example.
(We will study the Cauchy random walk later, as an example of anomalous diffusion in a “Lévy
flight”.)

For random walks with IID steps, it is convenient to work with the logarithm of the characteristic
function. Returning to our example for today, Eq. (2), we have

ψ(k) = log(p̂(k)) ∼ −k2

2
+

|k|3
3
√

2
as k → 0 (8)

With all moments finite, we interpreted ψ(k) as the cumulant generating function, with Taylor
coefficients incn/n!, but now it generates only the finite second cumulant, c2 = 1. The singular
terms, however, also carry useful information, as described by the following result.

Conjecture. p(x) is a symmetric PDF satisfying Eq. (1) for α > 2 (not an even integer) if and
only if

ψ(k) = log p̂(k) ∼ f(k) + g(k), as k → 0, (9)

where f(k) ∼ −c2k2/2 is analytic (10)

and g(k) ∼ c|k|α is singular (11)

with c =
πA

Γ(α+ 1) sin(απ/2)
(12)

If α is an even integer, then logarithmic factors may appear in Eq. (11) at leading order.

This result has been suggested by Prof. Bazant (without proof), although it may appear in the liter-
ature on “Tauberian theorems”. Later in the class, when we discuss Lévy flights and continuous-time
random walks, we will encounter similar Tauberian theorems for Fourier and Laplace transforms,
respectively, which relate the dominant singular behavior of a transform near the origin (f(k) = 0)
with a power-law tail of the original function via the same relation. Here, the singularity appears
at higher order, g(k) = o(f(k)) where f(k) ∼ −c2k2/2, since some moments exist, at least up to
second order. In the next lecture, we will provide a derivation to motivate this result, and here we
note that it is satisfied by both of our examples.
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2 Generalized Gram-Charlier Expansion for Fat Tails

We now consider the PDF of the position of a random walk with IID steps, whose PDF is symmetric
has a fat tail of the form (1) with α > 2 (so the CLT holds):

PN (x) =

∫ ∞

−∞
eikxeNψ(k) dk

2π
(13)

As N → ∞ in the “central region”, we employ Laplace’s method of asymptotic expansion (which
does not require ψ(k) to be analytic) as before:

PN (x) ∼
∫ ∞

−∞
eikxeN(−k2/2+c|k|3) dk

2π
(14)

where c = 1/3
√

2 for the example in Eq. (2). As in our derivation of the CLT, we introduce the
usual scaling:

w2 = k2N , z = x√
N

and consider the PDF of the rescaled variable, ZN = XN/
√
N ,

φN (z) =
√
NPN (z

√
N) (15)

which satisfies

φN (z) ∼
∫ ∞

−∞
eiwze

−w
2

2
+ c|w|3√

N

dw

2π
. (16)

as N → ∞ with z fixed. As before, the “central region” is defined by zN = xN/
√
N = O(1). In

this limit, we Taylor expand the exponential,

φN (z) ∼
∫ ∞

−∞
eiwze−

w
2

2

(

1 +
c|w|3√
N

+ ...

)

dw

2π
= φ(z) +

∞
∑

m=1

gm(z)

Nm/2
= φ(z) +

g1(z)√
N

+ . . . (17)

where the leading Gaussian term expresses the CLT,

φ(z) =
e−

z
2

2

√
2π

(18)

while the first correction,

g1(z) =
cf3(z)

π
, (19)

is given by the following integral:

f3(z) =

∫ ∞

−∞
eiwze−

w
2

2 |w|3 dw
2
. (20)

The expansion in Eq. (17) looks very similar to the one leading to the Gram-Charlier expansion,
with the crucial difference that the terms wm for odd m are replaced by |w|m.

Taking advantage of symmetry, we express f3(z) as

f3(z) = 2

∫ ∞

0
e−

w
2

2 w3cos(wz)
dw

2
=

(

− ∂3

∂z3

)

I(z) (21)
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where

I(z) =

∫ ∞

0
sin(zw)e−

w
2

2 dw = Im

[
∫ ∞

0
eizw−

w
2

2 dw

]

≡ Im[J(z)]. (22)

In carrying out the expansion in Eq. (17), the mth correction to the CLT, gm(z)/Nm/2, is a sum
of terms of the form, dnI/dzn(z) for n ≤ m, so the only integral we have to do is I(z) to derive the
complete asymptotic expansion of φN (z).

By completing the square for J(z),

J(z) = e−
z
2

2

∫ ∞

0
e−(w−iz)2/2dw (23)

we arrive at an integral, which we can evaluate by contour integration. Consider the integral
∮

e−q
2/2dq = 0 (24)

around the closed rectangular contour from 0 to −iz to R − iz to R and back to 0, for some real
number R > 0. Since e−q

2

is entire, Cauchy’s theorem implies that the integral is zero. The four
contributions to the integral, in the limit R→ ∞, are as follows:

∫ −iz

0
e−q

2/2dq = −i
∫ z

0
et

2/2dt (25)

∫ R−iz

−iz
e−q

2/2dq → ez
2/2J(z) (26)

∫ R

R−iz
e−q

2/2dq = O(e−R
2/2) (27)

∫ 0

R
e−q

2/2dq → −
√

π/2 (28)

Substituting into Eq. (24) and taking the imaginary part yields the desired result,

I(z) =
√

2D(z/
√

2) (29)

where

D(x) = e−x
2

∫ x

0
et

2

dt (30)

is “Dawson’s integral” (see Figure 1).
Therefore, we have obtained all of the following functions involved in the generalized Gram-

Charlier expansion:

fm(z) =

∫ ∞

0
wmcos(wz)e−w

2/2dw = (−1)m
dmI

dzm
(z) =

(−1)m

2(m−1)/2

dmD

dzm

(

z√
2

)

(31)

The first three derivatives of Dawson’s integral are:

D′(x) = 1 − 2xD(x)

D′′(x) = −2x+ (4x2 − 2)D(x)

D′′′(x) = 4(x2 − 1) + (12x − 8x3)D(x)

(32)

so the first two terms in the expansion for our original example, where α = 3, are given by

φN (z) ∼ φ(z) − cD′′′(z/
√

2)

2π
√
N

(33)

which is quite different from the standard Gram-Charlier expansion for finite moments.



M. Z. Bazant – 18.366 Random Walks and Diffusion – Lecture 5 5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

x

D
(x

)

D
D1
D2
D3

Figure 1: Dawson’s integral and first three derivatives.

3 Edge of the Central Region

The difference becomes most apparent at the edge of the central region, as z → ∞. Note that
Dawson’s integral has the following asymptotic expansion as x→ ∞:

D(x) ∼ 1

2x

(

1 +
1

2x2
+

3

4x4
+

∞
∑

m=3

(2m− 1)!!

2mx2m

)

(34)

Therefore, D′′′(x) ∼ −3/x4, and

f3(z) = −1

2
D′′′

(

z√
2

)

∼ 6

z4
as z → ∞ (35)

The first correction in Eq. (17) thus behaves like

g1(z)√
N

=
cf3(z)

π
√
N

∼ 6c

πN1/2z4
=

6cN3/2

πx4
(36)

as one leaves the central region, z → ∞.
The “edge” of the central region is found when this correction term becomes as large as the

leading Gaussian term, φ(z) = e−z
2/2/

√
2π. This occurs when

zmax ≈
√

logN or xmax ≈
√

N logN (37)

which is not much wider than the minimum required by the CLT, z = O(1) and x = O(
√
N). In

contrast, we saw in the previous lecture that the central region is much wider when higher cumulants
are finite: xmax = O(N2/3) for c3 6= 0 or xmax = O(N3/4) for c3 = 0 and c4 > 0. The collapse of
the central region is due to the fat tail.
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4 Additivity of Power-Law Tails

Returning to our example, Eq. (2), we have c = 1/3
√

2 and A = 2/
√
π, in which case the correction

term takes the form
g1(z)√
N

∼
√

2

π
√
Nz4

(38)

If this term were to persist outside the central region, where it dominates the Gaussian term, then
we would have

PN (x) =
1√
N

ΦN

(

x√
N

)

∼ N
√

2

πx4
=
NA

x4
(39)

which, curiously, is a fat tail of the same power-law exponent (α = 3) and N times the tail amplitude
(A) as the PDF for the steps, p(x).

Could it be that power-law tail amplitudes are additive, just like cumulants? Our analysis does
not apply outside the central region, so this is only a conjecture, but it is consistent with our exact
result for the Cauchy random walk from Problem Set 1:

p(x) =
1

π(1 + x2)
∼ 1

πx2
for x→ ∞ (40)

and

PN (x) =
N

π(N2 + x2)
∼ N

πx2
for x/N → ∞. (41)

Therefore, it appears that

p(x) ∼ A

|x|1+α ⇒ PN (x) ∼ NA

|x|1+α as |x| → ∞. (42)

Indeed, the additivity of power-law tails for sums of IID random variables follows from our
Conjecture about singular characteristic functions, ψ(k) = log p̂(k) ∼ −c2k

2/2 + . . .+ c|k|α, where
c ∝ A:

PN (x) =

∫ ∞

−∞
eikxeNψ(k) dk

2π

∼
∫ ∞

−∞
eikxe−c2Nk

2/2+...+cN |k|α+... dk

2π

(43)

Clearly, all coefficients in the asymptotic expansion of ψ(k) near the origin are additive, not only the
cumulants (coefficients of analytic terms, kn), but also the power-law tail amplitudes (coefficients
of singular terms, |k|β).

In the next lecture, we will study the Conjecture in more detail and give intuition regarding the
additivity of power-law tails.


