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History

The term “random walk” was originally proposed by Karl Pearson in 19051. In a letter to Na-
ture, he gave a simple model to describe a mosquito infestation in a forest. At each time step, a
single mosquito moves a fixed length a, at a randomly chosen angle. Pearson wanted to know the
distribution of the mosquitos after many steps had been taken.

The letter was answered by Lord Rayleigh, who had already solved a more general form of
this problem in 1880, in the context of sound waves in heterogeneous materials. Modeling a sound
wave traveling through the material can be thought of as summing up a sequence of random wave-
vectors k of constant amplitude but random phase: sound waves in the material have roughly
constant wavelength, but their directions are altered at scattering sites within the material.

We wish to find the probability density function of the sound waves after many steps have been
taken. We let PN (R)dR be the probability of traveling a distance between R and R + dR in N
steps. For steps of unit length, Lord Rayleigh showed that as N →∞,

PN (R) ∼ 2R

N
e−R2/N . (1)

This function is shown in figure 1 for several values of N . We see that the expected distance traveled
scales according to the square root of the number of steps,

〈
R2

〉
∼ N , which is typical of “diffusion”

phenomena.
Around the same time, the theory of random walks was also developed by Louis Bachelier in

his truly remarkable doctoral thesis, La Théorie de la Spéculation, published in 1900. Bachelier
proposed the random walk as the fundamental model for financial time series (e.g. stock ticks),
many decades before this idea became the basis for modern theoretical finance. Bachelier also
was apparently the first to see the connection between discrete random walks and the continuous
diffusion (or heat) equation, which is a major theme of this class, reflected in its title.

It is curious that in the same year as Pearson’s letter, Albert Einstein also published his seminal
paper on Brownian motion – the complicated path of a large dust particle in air – which he modeled
as a random walk, driven by collisions with gas molecules. Einstein did not seem to be aware of
the related work of Rayleigh and Bachelier, and he focused on a different issue: the calculation of
the diffusion coefficient in terms of the viscosity and temperature of the gas (which we will study
later in the class). Similar theoretical ideas were also published independently by Smoluchowski

1See B. Hughes, Random Walks and Random Environments, Vol. I, Sec. 2.1 (Oxford, 1995), for excerpts and an
entertaining historical discussion.
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Figure 1: Rayleigh’s asymptotic approximation for PN (r) in Pearson’s random walk for several
large values of N .

in 1906. The random-walk theory of Brownian motion had an enormous impact, because it gave
strong evidence for discrete particles (“atoms”) at a time when most scientists still believed that
matter was a continuum.

As its historical origins demonstrate, the concept of the random walk has incredibly broad
applicability, and today, a century later, it is nearly ubiquitous in science and engineering.

Simple Analysis of Isotropic Random Walks

Computer simulations of Pearson’s random walk, as in Fig. 3, demonstrate that Lord Rayleigh’s
result rather accurate in describing the distribution of walkers at long times, roughly beyond 100
steps. It is impressive how the complicated collection of random walkers tends toward a simple,
smooth distribution, at least in the central region.

We now present a simple derivation of a generalization of Lord Rayleigh’s result, which will be
covered again in more detail in subsequent lectures. Consider a random walker, who initially starts
at the origin in d dimensions. At each step, the walker moves by an amount ∆XN , chosen from a
probability distribution pN (r). For this derivation, which shall consider the case of independent,
identically distributed (IID) steps, so that pN (r) = p(r). Furthermore, we shall assume that the
steps are isotropic, so that p(r) is a function of the radial distance r = |r| only. This condition also
automatically eliminates any drift, so that 〈∆XN 〉 = 0.

Let XN be the position of the walker after N steps, and let PN (R) be the associated probability
density function (PDF). For IID displacements, we have the following recursion for the PDF:

PN+1(R) =
∫

p(r)PN (R− r) ddr. (2)

In one dimension (d = 1), this is Bachelier’s Equation. The key assumption is the independence
of the steps, which allows the probability of a transition from R − r to R in the Nth step to be
factored into the two terms in the integrand.
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Figure 2: The positions of 2000 independent
Pearson random walks released from the ori-
gin, after N = 2000 steps of length a = 0.01.
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Figure 3: A normalized histogram of the dis-
tances from the origin, RN , in Fig. 2 compared
to Rayleigh’s asymptotic result, Eq. (1).

Starting from Eq. (2), we can formally take the continuum limit to quickly arrive at Rayleigh’s
solution (1) to Pearson’s problem. In subsequent lectures we will gain a better understanding of
this approximation, but here we just give simple arguments. As N → ∞, PN (r) varies on length
scales which are much larger than a typical r, and therefore we Taylor expand inside the integral
to obtain

PN+1(R) =
∫

p(r)
[
PN (R)− r · ∇PN (R) +

1
2
r · ∇∇PN · r + . . .

]
ddr

= PN (R)− 0 +
1
2

∑
i

∑
j

〈rirj〉
∂2PN

∂Ri∂Rj
+ . . .

= PN (R) +
〈r · r〉

2d
∇2PN (R) + . . . .

We assume that steps are taken at intervals of ∆t, and defining time by t = N∆t we obtain

PN+1(R)− PN (R)
∆t

=

〈
r2

〉
2d∆t

∇2PN + . . . .

As N →∞, the limiting distribution ρ(R, t), defined by PN (R) = ρ(R, N∆t), satisfies

∂ρ

∂t
= D∇2ρ

where D =
〈
r2

〉
/2d∆t, which is the diffusion equation. Since the walker starts from the origin, we

have the initial condition ρ(R, 0) = δ(R). To solve this partial differential equation, we make use
of the Fourier Transform, defined for this class to be

ρ̂(k, t) =
∫

e−ik·xρ(x, t) ddx

ρ(x, t) =
1

(2π)d

∫
eik·xρ̂(k, t) ddk.
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Thus we obtain the ordinary differential equation

∂ρ̂

∂t
= −Dk2ρ̂

which has solution
ρ̂(k, t) = e−Dk2tρ̂(k, 0) = e−Dk2t.

Taking the inverse Fourier Transform gives

ρ(R, t) =
e−R2/4Dt

(4πDt)d/2
.

Thus in the corresponding discrete problem, as N →∞,

PN (R) ∼ e−dR2/2〈r2〉N

(2π 〈r2〉N/d)d/2
. (3)

This is the long time limit of PN (R) for an isotropic random walk in d dimensions. The PDF for the
position tends to a Gaussian (or normal) distribution, whose width depends only on the variance
of the individual displacements. Our derivation predicts the same asymptotic result for any PDF
so long as

〈
r2

〉
exists.

For an isotropic walk, we can easily calculate the PDF of the distance R from the origin via

PN (R) = AdR
d−1PN (R)

where Ad is the surface area of the unit sphere in d dimensions (A1 = 1, A2 = 2π, A3 = 4π,...). For
Pearson’s problem, we have

〈
r2

〉
= a2 and d = 2, so Equation (3) gives the asymptotic result:

PN (R) ∼ e−R2/a2N

πa2N

PN (R) ∼ 2R

a2N
e−R2/a2N

which agrees with Lord Rayleigh’s solution, Eq. (1), for a = 1.

More General Situations

Normal Diffusion

As our simple derivation suggests, the statistical properties of random walks tend toward universal
distributions after large numbers of steps. In the case of the PDF for the final position, our result
for isotropic random walks is a multi-dimensional generalization of the Central Limit Theorem
(CLT) for sums of independent, identically distributed random variables. As long as a finite second
moment

〈
r2

〉
exists for the random displacements, the asymptotic form of PN (R) is given by Eq. (3).

An important question, which we will address in the next lecture, is how quickly the asymptotic
form is approached and for what values of R it is a good approximation.

Note the “square-root scaling” of the width of the PDF, which grows like

R ∝
√
〈r2〉N.
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Figure 4: Two thousand steps of a random
walk based on the Cauchy distribution.
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Figure 5: Two thousand steps of Pearson’s
random walk, with a = 0.01.

which is characteristic of spreading by “normal diffusion”. More generally, we will see that the
variance of the position is given by

Var(RN ) = NVar(~r).

for independent, identically distributed random displacements.

Anomalous Diffusion

When the assumptions of the CLT break down, random walks can exhibit rather different behavior.
For example, the limiting distribution for the position may not be Gaussian, and the scaling of its
width,

R ∝ Nν ,

is generally “anomalous” with ν 6= 1/2. The second part of this class is devoted to various cases of
anomalous diffusion.

One way to violate the CLT with IID displacements is via “fat-tailed” probability distributions,
which assign sufficient probability to very large steps that the variance is infinite. An example is
PDF for a Cauchy random variable,

p(x) =
b

π(b2 + x2)
.

Since the probability density function decays like x−2 as x →∞, the variance is infinite. Figure 4
shows an example of a two dimensional, isotropic random walk, where the distances of the steps are
chosen from a Cauchy distribution. We see that the walk mostly takes small steps, but occasionally
makes very large jumps, comparable to the total displacement. This is rather different from the
case of Pearson’s walk, shown in Figure 5, where the step size is constant and normal diffusion
occurs.
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Other ways to achieve anomalous diffusion include highly non-uniform step distributions, strong
correlations between steps, and interactions between multiple random walkers. In such cases, the
continuum limit is more subtle and leads to various generalizations of the diffusion equation.


