
18.311 — MIT (Spring 2013)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

April 26, 2013.

Problem Set # 07.0 - Due: never.
IMPORTANT: These are practice problems, which I strongly encourage

you to do, before the lecture on Tuesday April 30.

Contents

1 Introduction. Experimenting with Numerical Schemes. 1

1.1 Statement: GBNS01 Scheme A. Forward differences for ut + ux = 0 2

1.2 Statement: GBNS02 Scheme B. Backward differences for ut + ux = 0 2

1 Introduction. Experimenting with Numerical Schemes.

Consider the numerical schemes that follow after this introduction, for the specified equations.

YOUR TASK here is to experiment (numerically) with them so as to answer the question: Are

they sensible? Specifically:

(i 1) Which schemes give rise to the type of behavior illustrated by the “bad” scheme in the

GBNS lecture script1 in the 18.311 MatLab Toolkit?

(i 2) Which ones behave properly as ∆x and ∆t vanish?

SHOW THAT they all arise from some approximation of the derivatives in the equations (i.e.:

the schemes are CONSISTENT), similar to the approximations used to derive the “good” and

“bad” schemes used in the GBNS lecture script2 in the 18.311 MatLab Toolkit.

I recommend that you read the Stability of Numerical Schemes for PDE’s notes in the course WEB

page before you do these problems.

Remark 1.1 Some of these schemes are “good” and some are not. For the “good” schemes you

will find that — as ∆x gets small — restrictions are needed on ∆t to avoid bad behavior (i.e.: fast

growth of grid–scale oscillations).

Specifically: in all the schemes a parameter appears, the parameter being λ = ∆t/∆x in some cases

and ν = ∆t/(∆x)2 in others. You will need to keep this parameter smaller than some constant to get

1Alternatively: check the Stability of Numerical Schemes for PDE’s notes in the course WEB page.
2Alternatively: check the Stability of Numerical Schemes for PDE’s notes in the course WEB page.

1

18.311 MIT, (Rosales) Experimenting with Numerical Schemes. Introduction. 2

the “good” schemes to behave. That is: λ < λc, or ν < νc. For the “bad” schemes, it will not matter

how small λ (or ν) is. Figuring out these constants is ALSO PART OF THE PROBLEM. For

the assigned schemes the constants, when they exist (“good” schemes), are simple O(1) numbers,

somewhere between 1/4 and 2. That is, stuff like 1/2, 2/3, 1, 3/2, etc., not things like λc = π/4 or

νc =
√
e. You should be able to, easily, find them by careful numerical experimentation!

Remark 1.2 In order to do these problems you may need to write your own programs. If you

choose to use MatLab for this purpose, there are several scripts in the 18.311 MatLab Toolkit that

can easily be adapted for this. The relevant scripts are:

• The schemes used by the GBNS lecture MatLab script are implemented in the script InitGBNS.

• The two series of scripts PS311 Scheme A, PS311 Scheme B, . . . and PS311 SchemeDIC A,

PS311 SchemeDIC B, . . . , have several examples of schemes already setup in an easy to use

format. Most of the algorithms here are already implemented in these scripts. The scripts

are written so that modifying them to use with a different scheme involves editing only a few

(clearly indicated) lines of the code.

• Note that the scripts in the 18.311 MatLab Toolkit are written avoiding the use of “for” loops

and making use of the vector forms MatLab allows — things run a lot faster this way. Do

your programs this way too, it is good practice.

Remark 1.3 Do not put lots of graphs and numerical output in your answers. Explain what you

did and how you arrived at your conclusions, and illustrate your points with a few selected graphs.

We use the notation: xn = x0 + n∆x, tk = t0 + k∆t, and uk
n = u(xn, tk).

1.1 Statement: GBNS01 Scheme A. Forward differences for ut + ux = 0.

Equation: ut + ux = 0. Scheme: uk+1
n = uk

n − λ (uk
n+1 − uk

n), where λ =
∆t

∆x
.

1.2 Statement: GBNS02 Scheme B.

Backward differences for ut + ux = 0.

Equation: ut + ux = 0. Scheme: uk+1
n = uk

n − λ (uk
n − uk

n−1), where λ =
∆t

∆x
.

THE END.

