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1 Regular Problems.

1.1 Problems from Various lecture notes for 18311 (Isentropic Gas

Dynamics).

Do the following:

Problem: pressure convexity condition equivalence.

Problem: Lagrangian property of σ.

Problem: shock conditions when sources are present.
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1.2 ExPD20b statement:

Frequencies for open and closed ended pipes.

In a first approximation (see note # 1) the sound waves in a pipe (e.g.: an organ pipe) are described

by the wave equation
ut t − c2 uxx = 0 for 0 < x < L, (1.1)

where c > 0 is the speed of sound. Consider now the following alternatives

u(0, t) = 0 and u(L, t) = 0. Both ends of the pipe closed. (1.2)

ux(0, t) = 0 and ux(L, t) = 0. Both ends of the pipe open. (1.3)

u(0, t) = 0 and ux(L, t) = 0. Closed-open pipe. (1.4)

Use separation of variables to find the lowest (fundamental) frequency that each type of pipe

supports. What is the corresponding wavelength?

The speed of sound (at 20 C) in air is c ≈ 344 m/s, while in helium it is c ≈ 928 m/s. Assume a

pipe of length L = 1 m. Compute the fundamental frequencies in both air and helium.

Notes:

1. For (1.1) to apply, the frequency cannot be too high, so that: (i) The motion can be approximated

as essentially along the pipe axis. (ii) The effects of dissipation, mainly from wall effects, can be

neglected. In particular, the pipe diameter has to be much larger than the boundary layer thickness.

2. Separation of variables solutions are solutions of the form u = T (t)X(x).

3. The solutions that you will find are the standing wave modes for the wave equation.

3. In music the frequency of A in middle C is usually set at 440 hz.

2 Special Problems.

2.1 Statement: Ideal gases thermodynamics.

Consider a gas in a container, at equilibrium. The gas can then be described in terms of the thermo-

dynamic variables: ρ (density), v = 1/ρ (specific volume), p (pressure), T (absolute temperature),

e (internal energy per unit mass), S (entropy), etc. These quantities are not independent, in fact:

given any two of them, the others follow via equations of state. In particular, e is a function of T

e = e(T ) (2.5)
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and

T dS = de+ p dv. (2.6)

Note that the second law of thermodynamics states that dS ≥ 0 for any allowed physical process.1

In particular, for an ideal gas

p v = Rs T , (2.7)

where Rs > 0 is the specific gas constant. A polytropic gas is an ideal gas such that

e = cv T , (2.8)

where cv > 0 is a constant — the specific heat at constant volume. In addition, we introduce

cp = Rs + cv and γ =
cp
cv
, (2.9)

where cp is the specific heat at constant pressure and γ is the ratio of specific heats — which generally

satisfies 1 < γ < 2. Note that h = e+ p v (the enthalpy) satisfies 2

T dS = dh− v dp and h = cp T . (2.10)

These are the tasks for this problem: Assume a polytropic gas, and

1. Write the internal energy in terms of the pressure and the specific volume: e = e(p, v).

2. Write the entropy in terms of the pressure and the specific volume: S = S(p, v).

Equation (2.6) determines S up to a constant. Let S0 be the value of the

entropy for p = p0 and v = v0. This determines the constant. Warning:

your answer should not involve things like the logarithm of a volume —

only the log of a number makes sense!

3. Write the pressure in terms of the entropy and the specific volume: p = p(S, v).

4. Write the internal energy in terms of the entropy and the specific volume: e = e(S, v).

5. Write the temperature in terms of the entropy and the specific volume: T = T (S, v).

1 Equation (2.6) indicates that the temperature is an integrating factor for any “work” done on the system

δw = de+ p dv. This generalizes to more complicated systems. For example, in the presence of chemical reactions:

T dS = de+ p dv −
∑
n µn dCn, where the Cn are the concentrations and the µn are the chemical potentials.

2 The names for cv and cp follow because δw
δT = cv if v is kept constant, while δw

δT = cp if p is kept constant.
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3 Short notes on separation of variables.

Imagine that you are trying to solve a problem whose solution is a function of several variables,

e.g.: u = u(x, y z). Finding this solution directly may be very hard, but you may be able to find

other solutions with the simpler structure

u = f(x) g(y)h(z), (3.11)

where f , g, and h are some functions. This is called a separated variables solution.

If the problem that you are trying to solve is linear, and you can find enough solutions of the form in

(3.11), then you may be able to solve the problem using a linear combinations of separated variables

solutions.

The technique described in the paragraph above is called separation of variables. Note that

1. When the problem is a pde and solutions of the form in (3.11) are allowed, the pde reduces to

three ode — one for each of f , g, and h. Thus the solution process is enormously simplified.

2. In (3.11) all the three variables are separated. But it is also possible to seek for partially

separated solutions. For example

u = f(x) v(y, z). (3.12)

This is what happens when you look for normal mode solutions to time evolution equations

of the form

ut = Lu, (3.13)

where L is a linear operator acting on the space variables ~r = (x, y, . . .) only — for example:

L = ∂2
x + ∂2

y + . . .. The normal mode solutions have time separated

u = eλ tφ(~r), where λ = constant, (3.14)

and reduce the equation to an eigenvalue problem in space only

λφ = Lφ. (3.15)

3. Separation of variables does not always work. In fact, it rarely works if you just think of

random problems. But it works for many problems of physical interest. For example: it

works for the heat equation, but only for a few very symmetrical domains (rectangles, circles,

cylinders, ellipses). But these are enough to build intuition as to how the equation works.

Many properties valid for generic domains can be gleaned from the solutions in these domains.
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4. Even if you cannot find enough separated solutions to write all the solutions as linear combi-

nations of them, or if the problem is nonlinear and you can get just a few separated solutions,

sometimes this is enough to discover interesting physical effects, or gain intuition as to the

system behavior.

3.1 Example:

heat equation in a square, with zero boundary conditions.

Consider the problem

Tt = ∆T = Txx + Tyy, (3.16)

in the square domain 0 < x, y < π, with T vanishing along the boundary, and with some initial data

T (x, y, 0) = W (x, y). To solve this problem by separation of variables, we first look for solutions

of the form

T = f(t) g(x)h(y), (3.17)

which satisfy the boundary conditions, but not the initial data. Why this? This is important!:

A. We would like to solve the problem for generic initial data, while solutions of the form (3.17)

can only achieve initial data for which W = f(0) g(x)h(y). This is very restrictive, even more

so because (as we will soon see) the functions g and h will be very special. To get generic

initial data, we have no hope unless we use arbitrary linear combinations of solutions like (3.17).

B. Arbitrary linear combinations of solutions like (3.17) will satisfy the boundary conditions if

an only if each of them satisfies them.

Substituting (3.17) into (3.16) yields

f ′ g h = f g′ ′ h+ f g h′ ′, (3.18)

where the primes indicate derivatives with respect to the respective variables. Dividing this through

by u now yields
f ′

f
=
g′ ′

g
+
h′ ′

h
. (3.19)

Since each of the terms in this last equation is a function of a different independent variable, the

equation can be satisfied only if each term is a constant. Thus

g′ ′

g
= c1,

h′ ′

h
= c2, and

f ′

f
= c1 + c2, (3.20)
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where c1 and c2 are constants. Now the problem has been reduced to a set of three simple ode.

Furthermore, for (3.17) to satisfy the boundary conditions in (3.16), we need:

g(0) = g(π) = h(0) = h(π) = 0, (3.21)

which restricts the possible choices for the constants c1 and c2. The equations in (3.20 – 3.21) are

easily solved, and yield3

g = sin(nx), with c1 = −n2, (3.22)

h = sin(my), with c2 = −m2, (3.23)

f = e−(n2+m2) t, (3.24)

where n = 1, 2, 3, . . . and m = 1, 2, 3, . . . are natural numbers. The solution to the problem in

(3.16) can then be written in the form

T =
∞∑

n,m=1

wnm sin(nx) sin(my) e−(n2+m2) t, (3.25)

where the coefficients wnm follow from the double sine-Fourier series expansion (of the initial data)

W =
∞∑

n,m=1

wnm sin(nx) sin(my). (3.26)

That is

wnm =
4

π2

∫ π

0
dx
∫ π

0
dy W (x, y) sin(nx) sin(my). (3.27)

3.2 Example:

Heat equation in a circle, with zero boundary conditions.

We now, again, consider the heat equation with zero boundary conditions, but on a circle instead

of a square. That is, using polar coordinates, we want to solve the problem

Tt = ∆T =
1

r2
(r(r Tr)r + Tθθ) , (3.28)

for 0 ≤ r < 1, with T (1, θ, t) = 0, and some initial data T (r, θ, 0) = W (r, θ). To solve the problem

using separation of variables, we look for solutions of the form

T = f(t) g(r)h(θ), (3.29)

which satisfy the boundary conditions, but not the initial data. The reasons for this are the same

as in items A and B above — see § 3.1. In addition, note that

3We set the arbitrary multiplicative constants in each of these solutions to one. Given (3.25 – 3.26), there is no
loss of generality in this.
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C. We must use polar coordinates, otherwise solutions of the form (3.29) cannot satisfy the bound-

ary conditions. This exemplifies an important feature of the separation of variables method:

The separation must be done in a coordinate system where the boundaries are coordinate surfaces.

Substituting (3.29) into (3.28) yields

f ′ g h =
1

r2
(f r (r g′)′ h+ f g h′ ′) , (3.30)

where, as before, the primes indicate derivatives. Dividing this through by u yields

f ′

f
=

(r g′)′

r g
+

h′ ′

r2 h
. (3.31)

Since the left side in this equation is a function of time only, while the right side is a function of

space only, the two sides must be equal to the same constant. Thus

f ′ = −λ f (3.32)

and
r (r g′)′

g
+ λ r2 +

h′ ′

h
= 0, (3.33)

where λ is a constant. Here, again, we have a situation involving two functions of different variables

being equal. Hence

h′ ′ = µh, (3.34)

and
1

r
(r g′)′ +

(
λ+

µ

r2

)
g = 0, (3.35)

where µ is another constant. The problem has now been reduced to a set of three ode. Furthermore,

from the boundary conditions and the fact that θ is the polar angle, we need:

g(1) = 0 and h is periodic of period 2π. (3.36)

In addition, g must be non-singular at r = 0 — the singularity that appears for r = 0 in equation

(3.35) is due to the coordinate system singularity, equation (3.28) is perfectly fine there.

It follows that it should be µ = −n2 and

h = ei n θ, where n is an integer. (3.37)

Notes:
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– As in § 3.1, here and below, we set the arbitrary multiplicative constants in each of the ode

solutions to one. As before, there is no loss of generality in this.

– Instead of complex exponentials, the solutions to (3.34) could be written in terms of sine and

cosines. But complex exponentials provide a more compact notation.

Then (3.35) takes the form
1

r
(r g′)′ +

(
λ− n2

r2

)
g = 0. (3.38)

This is a Bessel equation of integer order. The non-singular (at r = 0) solutions of this equation

are proportional to the Bessel function of the first kind J|n|. Thus we can write

g = J|n|(κ|n|m r), and λ = κ2
|n|m, (3.39)

where m = 1, 2, 3, . . ., and κ|n|m > 0 is the m-th zero of J|n|.

Remark 3.1 That (3.38) turns out to be a well known equation should not be a surprise. Bessel

functions, and many other special functions, were first introduced in the context of problems like the

one here — i.e., solving pde (such as the heat or Laplace equations) using separation of variables.

Putting it all together, we see that the solution to the problem in (3.28) can be written in the form

T =
∞∑

n=−∞

∞∑
m=1

wnm J|n|(κ|n|m r) exp
(
i n θ − κ2

|n|m t
)
, (3.40)

where the coefficients wnm follow from the double (Complex Fourier) – (Fourier – Bessel) expansion

W =
∞∑

n=−∞

∞∑
m=1

wnm J|n|(κ|n|m r) e
i n θ. (3.41)

That is:

wnm =
1

π J2
|n|+1(κ|n|m)

∫ 2π

0
dθ

∫ 1

0
r dr W (r, θ) J|n|(κ|n|m r) e

−i n θ. (3.42)

Remark 3.2 You may wonder how (3.42) arises. Here is a sketch:

(i) For θ we use a Complex-Fourier series expansion. For any 2 π-periodic function

G(θ) =
∞∑

n=−∞
an e

i n θ, where an =
1

2 π

∫ 2π

0
G(θ) e−i n θ dθ. (3.43)

(ii) For r we use the Fourier-Bessel series expansion explained in item (iii).
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(iii) Note that (3.38), for any fixed n, is an eigenvalue problem in 0 < r < 1. Namely

L g = λ g, where L g = −1

r
(r g′)′ +

n2

r2
g, (3.44)

g is regular for r = 0, and g(1) = 0. Without loss of generality, assume that n ≥ 0, and

consider the set of all the (real valued) functions such that
∫ 1

0
g̃2(r) r dr <∞. Then define

the scalar product

< f̃, g̃ >=
∫ 1

0
f̃(r) g̃(r) r dr. (3.45)

With this scalar product L is self-adjoint, and it yields a complete set of orthonormal eigen-

functions

φm = Jn(κnm r) and λm = κ2
nm, where m = 1, 2, 3, . . . (3.46)

Thus one can expand

F (r) =
∞∑
m=1

bm φm(r), where bm =
1∫ 1

0 r φ2
m(r) dr

∫ 1

0
F (r)φm(r) r dr. (3.47)

Finally, note that∫ 1

0
r φ2

m(r) dr follows from
∫ 1

0
r J2

n(κnm r) dr =
1

2
J2
n+1(κnm). (3.48)

We will not prove this identity here.

3.3 Example: Laplace equation in a circle sector, with Dirichlet

boundary conditions, non-zero on one side.

Consider the problem

0 = ∆u =
1

r2
(r(r ur)r + uθθ) , 0 < r < 1 and 0 < θ < α, (3.49)

where α is a constant, with 0 < α < 2π. The boundary conditions are

u(1, θ) = 0, u(r, 0) = 0, and u(r, α) = w(r), (3.50)

for some given function w. To solve the problem using separation of variables, we look for solutions

of the form

u = g(r)h(θ), (3.51)
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which satisfy the boundary conditions at r = 1 and θ = 0, but not the boundary condition at θ = α.

The reasons are as before: we aim to obtain the solution for general w using linear combinations of

solutions of the form (3.51) — see items A and B in § 3.1, as well as item C in § 3.2.

Substituting (3.51) into (3.49) yields, after a bit of manipulation

r (r g′)′

g
+
h′ ′

h
= 0. (3.52)

Using the same argument as in the prior examples, we conclude that

r (r g′)′ − µ g = 0 and h′ ′ + µh = 0, (3.53)

where µ is some constant, g(1) = 0, and h(0) = 0. Again: the problem is reduced to solving ode.

In fact, it is easy to see that it should be4

h =
1

s
sinh(s θ) and g =

ri s − r−is

s
, where µ = −s2, (3.54)

and as yet we know nothing about s, other than it is some (possibly complex) constant.

In § 3.2, we argued that g should be non-singular at r = 0, since the origin was no different from

any other point inside the circle for the problem in (3.28) — the singularity in the equation for g

in (3.35) is merely a consequence of the coordinate system singularity at r = 0. We cannot make

this argument here, since the origin is on the boundary for the problem in (3.49 – 3.50) — there

is no reason why the solutions should be differentiable across the boundary! We can only state that

g should be bounded ⇐⇒ s 6= 0 is real. (3.55)

Furthermore, exchanging s by −s does not change the answer in (3.54). Thus

0 < s <∞. (3.56)

In this example we end up with a continuum of separated solutions,
as opposed to the two prior examples, where discrete sets occurred.

Putting it all together, we now write the solution to the problem in (3.49 – 3.50) as follows

u =
∫ ∞
0

sinh(s θ)

sinh(s α)

(
ri s − r−i s

)
W (s) ds, (3.57)

where W is computed in (3.60) below.

4The multiplicative constant in these solutions is selected so that the correct solution is obtained for s = 0.
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Remark 3.3 Start with the complex Fourier Transform

f(ζ) =
∫ ∞
−∞

f̂(s) ei s ζ ds, where f̂(s) =
1

2 π

∫ ∞
−∞

f(ζ) e−i s ζ dζ. (3.58)

Apply it to an odd function. The answer can then be manipulated into the sine Fourier Transform

f(ζ) =
∫ ∞
0

F (s) sin(s ζ) ds, where F (s) =
2

π

∫ ∞
0

f(ζ) sin(s ζ) dζ, (3.59)

and 0 < ζ, s <∞. Change variables, so that 0 < r = e−ζ < 1. Then, with w(r) = f(ζ) and

W (s) = − 1

2 i
F (s), this yields

w(r) =
∫ ∞
0

W (s)
(
ri s − r−i s

)
ds, where

W (s) =
1

2π

∫ 1

0

(
r−i s − ri s

r

)
w(r) dr, (3.60)

which is another example of a transform pair associated with the spectrum of an operator (see below).

Finally: What is behind (3.60)? Why should we expect something like this? Note that the problem

for g can be written in the form

L g = µ g, where L g = r (r g′)′, (3.61)

g(1) = 0 and g is bounded (more accurately: the inequality in (3.62) applies). This is an eigenvalue

problem in 0 < r < 1. Further, consider consider the set of all the functions such that∫ 1

0
|g̃|2(r) dr

r
<∞, (3.62)

and define the scalar product

< f̃, g̃ >=
∫ 1

0
f̃ ∗(r) g̃(r)

dr

r
. (3.63)

With this scalar product L is self-adjoint. However, it does not have any discrete spectrum,5

only continuum spectrum — with the pseudo-eigenfunctions given in (3.54), for 0 < s <∞. This

continuum spectrum is what is associated with the formulas in (3.60). In particular, note the

presence of the scalar product (3.63) in the formula for W .

THE END.

5No solutions that satisfy g(1) = 0 and (3.62).
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