
18.311 — MIT (Spring 2013)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

April 5, 2013.

Problem Set # 05. Due: Fri. April 12.
Turn it in before 3:00 PM, in the box provided in Room 2-285.

IMPORTANT: The Regular and the Special Problems must be stapled in TWO

SEPARATE packages, each with your FULL NAME clearly spelled.

Contents

1 Regular Problems. 1

1.1 Statement: Initial value problem with Q quadratic # 01a. . . . . . . . . . . . . . . 1

1.2 Statement: Initial value problem with Q quadratic # 02a. . . . . . . . . . . . . . . 2

2 Special Problems. 3

2.1 Statement: Information loss and traffic flow shocks. . . . . . . . . . . . . . . . . . . 3

1 Regular Problems.

1.1 Statement: Initial value problem with Q quadratic # 01a.

Consider the traffic flow equation

ρt + qx = 0, (1.1)

for a flow q = Q(ρ) that is a quadratic function of ρ. In this case c = dQ/dρ is a conserved quantity,

and the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

ct +
(

1

2
c2
)
x

= 0. (1.2)

1. Consider the initial value problem determined by (1.2) and 1

c(x, 0) = 0 for x ≤ 0 and c(x, 0) = 2
√
x for x ≥ 0. (1.3)

Without actually solving the problem, argue that the solution to this problem must have the

form

c = t f(x/t2) for t > 0, for some function f. (1.4)

1 In a traffic problem, c must satisfy c(ρj) ≤ c ≤ c(0). Ignore the fact that this does not apply for (1.2).
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Hint. Let c = c(x, t) be the solution to the problem. For any constant a > 0, define C = C(x, t) by

C = 1
a
c(a2 x, a t). What problem does C satisfy? Use now the fact that the solution to (1.2–1.3)

is unique to show that (1.4) must apply, by selecting a appropriately at any fixed time t > 0.

2. Use the method of characteristics to solve the problem in (1.2–1.3). Write the solution

explicitly for all t > 0, and verify that it satisfies (1.4). Warning: the solution involves a square

root. Be careful to select the correct sign, and to justify your choice.

3. For the solution obtained in item 2, evaluate cx at x = 0 for t > 0. Note that this derivative

is discontinuous there, so it has two values.

1.2 Statement: Initial value problem with Q quadratic # 02a.

Consider the traffic flow equation

ρt + qx = 0, (1.5)

for a flow q = Q(ρ) that is a quadratic function of ρ. In this case c = dQ/dρ is a conserved quantity,

and the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

ct +
(

1

2
c2
)
x

= 0. (1.6)

1. Consider the initial value problem determined by (1.6) and 2

c(x, 0) = 0 for x ≤ 0 and c(x, 0) = −2
√
x for x ≥ 0. (1.7)

Without actually solving the problem, argue that the solution to this problem must have the

form

c = t f(x/t2) for t > 0, for some function f. (1.8)

Hint. Let c = c(x, t) be the solution to the problem. For any constant a > 0, define C = C(x, t) by

C = 1
a
c(a2 x, a t). What problem does C satisfy? Use now the fact that the solution to (1.6–1.7)

is unique to show that (1.8) must apply, by selecting a appropriately at any fixed time t > 0.

2. Use the method of characteristics to solve the problem in (1.6–1.7). Write the solution

explicitly for all t > 0, and verify that it satisfies (1.8). Explicitly describe the region in

space-time where the solution by characteristics yields multiple-values.

Hint 1: This problem leads to crossings of characteristics. Hence a shock is needed to avoid multiple-

values. In order to correctly visualize the region in space-time where the solution by characteristic

2 In a traffic problem, c must satisfy c(ρj) ≤ c ≤ c(0). Ignore the fact that this does not apply for (1.6).
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yields multiple values, I strongly suggest that you plot (for a typical t > 0 time) the multiple valued

solution c = c(x, t) — see note #1. From this plot it should become evident (i) what the region

in space-time where the solution by characteristics yields multiple-values is. (ii) What the correct

shock equation is (square roots are involved, and you need to pick, and justify the correct sign).

Note #1. For any fixed time t > 0, the solution by characteristics gives the solution curve (x, c)

parametrically, in terms of the characteristic parameter ξ. That is: x = x(ξ, t) and c = c(ξ).

Hint 2. In the process of solving this problem you will get an ode that the shock path x = σ(t) must

satisfy. Note that you do not need the general solution for this equation, just the one that gives you

the shock path. You should be able to extract the form of this particular solution from (1.8), which

will then reduce the ode to an easy to solve algebraic equation.

2 Special Problems.

2.1 Statement: Information loss and traffic flow shocks.

In this problem we will show that shocks in traffic flow are associated with information loss, and will

derive a formula that quantifies this loss. For simplicity, consider periodic solutions to the traffic

flow equation

ρt + qx = 0, periodic of period T > 0, (2.9)

where the traffic flux is given by q = Q(ρ). Assume that there is a single shock per period, at

x = σ(t). The shock velocity, s, is given by the Rankine-Hugoniot jump condition

dσ

dt
= s =

qR − qL
ρR − ρL

, (2.10)

where ρR (resp.: ρL) is the value of ρ immediately to the right (resp.: the left) of the shock

discontinuity, qR = Q(ρR), and qL = Q(ρL). In addition, the shock satisfies the entropy condition

cL > s > cR, (2.11)

where c =
dQ

dρ
is the characteristic speed, cR = c(ρR), and cL = c(ρL). Now, let

I = I(t) =
∫
period

1

2
ρ2(x, t) dx. (2.12)

1. Show that:
dI
dt

=
1

2
(qL − qR) (ρL + ρR) +

∫ ρR

ρL

ρ c(ρ) dρ. (2.13)
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Hint. For any short enough time period, a constant “a” exists such that a < σ(t) < a+ T

during the time interval. Given this, write I in the form I =
∫ σ

a

1

2
ρ2 dx+

∫ a+T

σ

1

2
ρ2 dx,

before taking the time derivative. Then use the fact that, in each of the two intervals ρ

satisfies

ρt = −c(ρ) ρx = −1

ρ
fx where f =

∫ ρ

0
s c(s) ds. (2.14)

In addition, use (2.10) to eliminate σ̇ from the resulting formulas.

2. Show that:
dI
dt

< 0 (2.15)

by interpreting the right hand side in (2.13) geometrically, as (the negative of) the area

between two curves — such area known to be positive. Hint. Use ρ c =
d

dρ
(ρ q)− q and

(2.17).

Remark 2.1 Recall that, in traffic flow, q = Q(ρ) is a concave function,3 vanishing at both ρ = 0

and the jamming density ρj > 0, positive for 0 < ρ < ρj, with a maximum (the road capacity qm) at

some value 0 < ρm < ρj. Because of this, the conditions (2.10–2.11) are equivalent to:4

The shock velocity is given by the slope of the secant

line joining (ρL, qL) to (ρR, qR). Further ρL < ρR.
(2.16)

Note that For ρL < ρ < ρR, the curve q = Q(ρ) is above the secant line, (2.17)

because Q is concave.

Remark 2.2 How does I in (2.12) related to “information”? Basically, we argue that a function

contains the least amount of information when it is a constant, and that the more “oscillations” it

has, the more information it carries. A (rough) measure of this is given by

J =
∫
period

1

2
(ρ− ρ)2 dx, (2.18)

where ρ is the average value of ρ (note that conservation guarantees that ρ is a constant in time).

Alternatively, write ρ the Fourier series ρ =
∑
n ρn(t) ei n 2π x/T for ρ. Then the amount of “os-

cillation” in ρ can be characterized by
∑
n6=0

1
2
|ρn|2, which is the same as (2.18). It is easy to see

that

J = I − T ρ2. (2.19)

Hence J̇ = İ, so that (2.15) indicates that the shock is driving ρ towards a constant value.

3 Concave means that
d2Q

dρ2
< 0. Note also that only solutions satisfying 0 ≤ ρ ≤ ρj are acceptable.

4 Thus shocks move slower than cars, and the density a driver sees increases as the car goes through a shock.
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The notion of “information” that we use here is not the same as that in “information theory” (which

requires a stochastic process of some kind). Neither is it the same as the related notion of “entropy”

of statistical mechanics (for this we would need a statistical theory 5 for traffic flow). Nevertheless,

S = −J plays the same role for (2.9) that entropy plays for gas dynamics.

Finally, we point out that it can be shown that: for any convex function h = h(ρ) (i.e.: h′ ′ > 0)

d

dt

∫
period

h(ρ) dx < 0 when shocks are present,

though showing this is a bit more complicated than for the special case h = 1
2
ρ2.

THE END.

5 Such theories exist.
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