18.311 - MIT (Spring 2013)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

March 21, 2013.

Problem Set # 04. Due: Fri. April 5.

Turn it in before 3:00 PM, in the box provided in Room 2-285.

IMPORTANT: The Regular and the Special Problems must be **stapled in TWO SEPARATE packages,** each with your **FULL NAME** clearly spelled.

Contents

1	Regular Problems.		1
	1.1	Statement: Haberman problem 77.01	1
		Shock velocity is average of characteristic velocities for $u=u(ho)$ linear	1
	1.2	Statement: Haberman problem 77.06	2
		Burger's traveling waves.	2
	1.3	Statement: Haberman problem 78.07	2
		Yellow light modeling	2
	1.4	Statement: TFPa17. Shock interaction with a traffic light	2
	1.5	Statement: TFPb18. Compute breaking times for IV problems	2
2	Special Problems.		3
	2.1	Statement: TFPB20. An initial value problem with a simple quadratic flow	3
	2.2	Statement: Secants and tangents for quadratic curves	4

1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If $u = u_{\text{max}} (1 - \rho/\rho_{\text{max}})$, then what is the velocity of a traffic shock separating densities ρ_0 and ρ_1 ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_0 and ρ_1 .

1.2 Statement: Haberman problem 77.06.

Consider Burger's equation, as derived in exercise 77.5:

$$\rho_t + u_{\max} \left(1 - \frac{2\rho}{\rho_{\max}} \right) \rho_x = \nu \rho_{xx}.$$
(1.1)

Suppose that a solution exists as a density wave, moving without change of shape at velocity V

$$\rho = f(x - Vt). \tag{1.2}$$

- (a) What O.D.E. is satisfied by f?
- (b) Integrate this differential equation once. By graphical techniques show that a solution exists, such that $\rho \to \rho_2$ as $x \to \infty$ and $\rho \to \rho_1$ as $x \to -\infty$, only if $\rho_2 > \rho_1$. Roughly sketch this solution, and give a physical interpretation of this result.
- (c) Show that the velocity of wave propagation, V, is the same as the shock velocity separating $\rho = \rho_1$ from $\rho = \rho_2$ (occurring if $\nu = 0$).

1.3 Statement: Haberman problem 78.07.

Suppose that a traffic light turned from green to yellow before turning red. How would you mathematically model the yellow light? Note: you do need not solve any problems corresponding to your model for this exercise.

1.4 Statement: TFPa17. Shock interaction with a traffic light.

At time t = 0, the traffic pattern on a long highway consists of two sections of constant concentration, joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light at x = 0 turns (at time t = 0) and remains red, describe the resultant motion. Let the position of the shock at time t = 0 be given by x = -L < 0, and assume that $q = \frac{4 q_m}{\rho_j^2} \rho (\rho_j - \rho)$ — with $0 < \rho_0 < \rho_1 < (1/2) \rho_j = \rho_m$.

1.5 Statement: TFPb18. Compute breaking times for IV problems.

The solutions to the initial value problems below are smooth for $-\infty < x < \infty$ and $0 \le t < t_c$, where t_c is some constant. For $t = t_c$ the partial derivatives of the solution cease to exist at some $x = x_c$ — in fact, they become infinite there. To continue the solution past $t = t_c$, one must introduce a shock— which forms at $x = x_c$ and $t = t_c$.

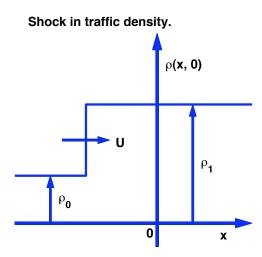


Figure 1.1: TFPa17: Shock in traffic density.

In each case compute t_c , x_c , and ξ_c — where ξ_c is the label for the characteristic along which the first breaking occurs (i.e.: $x = \xi_c$ at t = 0 for this characteristic.)

A. Let
$$\rho(x, 0) = 1 - \frac{1}{1+x^2}$$
 (for $-\infty < x < \infty$), with
 $\rho_t + \left(\rho \left(1 - \frac{1}{2}\rho\right)\right)_x = 0$, for $-\infty < x < \infty$ and $t > 0$. (1.3)

Note that $q = q(\rho) = \rho \left(1 - \frac{1}{2}\rho\right)$ and that $c = c(\rho) = 1 - \rho$.

B. Same as **A**, but change the initial conditions to $\rho(x, 0) = 1 - \operatorname{sech}(x)$, for $-\infty < x < \infty$.

NOTE: Exact answers are required. Do not resort to calculators till the very end, when you may wish (not required) to evaluate expressions involving quantities such as $\sqrt{3}$ or $\ln(1 + \sqrt{2})$.

2 Special Problems.

2.1 Statement: TFPB20.

An initial value problem with a simple quadratic flow.

Solve the following initial value problem for all times $t \ge 0$, including shocks if necessary:

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \quad \text{where} \quad -\infty < x < \infty \quad \text{and} \quad t > 0, \qquad (2.4)$$

with

$$u(x, 0) = \begin{cases} 0 & \text{for } x < 0 \text{ and } x > 1, \\ 1 & \text{for } 0 < x < 1. \end{cases}$$
(2.5)

When computing the shock speed, note that $q = \frac{1}{2} u^2$.

Draw a picture of the solution for several representative times, including t = 0 and t very large. Similarly, draw a picture of the characteristics and the shock(s) in space-time.

2.2 Statement: Secants and tangents for quadratic curves.

Here we consider differentiable curves y = y(x) with the following property:

The slope of any secant line connecting two points in the curve is equal to the average of the slopes of the curve y = y(x) at the points being connected. (2.6)

In formulas: for any points $x_1 < x_2$,

$$\frac{y(x_2) - y(x_1)}{x_2 - x_1} = \frac{1}{2} \left(y'(x_1) + y'(x_2) \right).$$
(2.7)

Show that y = y(x) has this property if, and only if, it is a quadratic polynomial. Hint. Showing that quadratic polynomials have this property is a simple direct calculation. To show the inverse, write an ode that y must satisfy, and solve it.

THE END.