18.311 - MIT (Spring 2013)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).
March 21, 2013.
Problem Set \# 04. Due: Fri. April 5.Turn it in before 3:00 PM, in the box provided in Room 2-285.IMPORTANT: The Regular and the Special Problems must be stapled in TWOSEPARATE packages, each with your FULL NAME clearly spelled.
Contents
1 Regular Problems. 1
1.1 Statement: Haberman problem 77.01 1
Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear 1
1.2 Statement: Haberman problem 77.06 2
Burger's traveling waves. 2
1.3 Statement: Haberman problem 78.07 2
Yellow light modeling. 2
1.4 Statement: TFPa17. Shock interaction with a traffic light 2
1.5 Statement: TFPb18. Compute breaking times for IV problems 2
2 Special Problems. 3
2.1 Statement: TFPB20. An initial value problem with a simple quadratic flow 3
2.2 Statement: Secants and tangents for quadratic curves. 4

1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If $u=u_{\max }\left(1-\rho / \rho_{\max }\right)$, then what is the velocity of a traffic shock separating densities ρ_{0} and ρ_{1} ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_{0} and ρ_{1}.

1.2 Statement: Haberman problem 77.06.

Consider Burger's equation, as derived in exercise 77.5:

$$
\begin{equation*}
\rho_{t}+u_{\max }\left(1-\frac{2 \rho}{\rho_{\max }}\right) \rho_{x}=\nu \rho_{x x} . \tag{1.1}
\end{equation*}
$$

Suppose that a solution exists as a density wave, moving without change of shape at velocity V

$$
\begin{equation*}
\rho=f(x-V t) \tag{1.2}
\end{equation*}
$$

(a) What O.D.E. is satisfied by f ?
(b) Integrate this differential equation once. By graphical techniques show that a solution exists, such that $\rho \rightarrow \rho_{2}$ as $x \rightarrow \infty$ and $\rho \rightarrow \rho_{1}$ as $x \rightarrow-\infty$, only if $\rho_{2}>\rho_{1}$. Roughly sketch this solution, and give a physical interpretation of this result.
(c) Show that the velocity of wave propagation, V, is the same as the shock velocity separating $\rho=\rho_{1}$ from $\rho=\rho_{2}$ (occurring if $\nu=0$).

1.3 Statement: Haberman problem 78.07.

Suppose that a traffic light turned from green to yellow before turning red. How would you mathematically model the yellow light? Note: you do need not solve any problems corresponding to your model for this exercise.

1.4 Statement: TFPa17. Shock interaction with a traffic light.

At time $t=0$, the traffic pattern on a long highway consists of two sections of constant concentration, joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light at $x=0$ turns (at time $t=0$) and remains red, describe the resultant motion. Let the position of the shock at time $t=0$ be given by $x=-L<0$, and assume that $q=\frac{4 q_{m}}{\rho_{j}^{2}} \rho\left(\rho_{j}-\rho\right)-$ with $0<\rho_{0}<\rho_{1}<(1 / 2) \rho_{j}=\rho_{m}$.

1.5 Statement: TFPb18. Compute breaking times for IV problems.

The solutions to the initial value problems below are smooth for $-\infty<x<\infty$ and $0 \leq t<t_{c}$, where t_{c} is some constant. For $t=t_{c}$ the partial derivatives of the solution cease to exist at some $x=x_{c}$ - in fact, they become infinite there. To continue the solution past $t=t_{c}$, one must introduce a shock - which forms at $x=x_{c}$ and $t=t_{c}$.

Figure 1.1: TFPa17: Shock in traffic density.

In each case compute $\boldsymbol{t}_{\boldsymbol{c}}, \boldsymbol{x}_{\boldsymbol{c}}$, and $\boldsymbol{\xi}_{\boldsymbol{c}}$ - where $\boldsymbol{\xi}_{\boldsymbol{c}}$ is the label for the characteristic along which the first breaking occurs (i.e.: $\boldsymbol{x}=\boldsymbol{\xi}_{\boldsymbol{c}}$ at $\boldsymbol{t}=\mathbf{0}$ for this characteristic.)
A. Let $\rho(x, 0)=1-\frac{1}{1+x^{2}}$ (for $-\infty<x<\infty$), with

$$
\begin{equation*}
\rho_{t}+\left(\rho\left(1-\frac{1}{2} \rho\right)\right)_{x}=0, \quad \text { for }-\infty<x<\infty \text { and } t>0 . \tag{1.3}
\end{equation*}
$$

Note that $q=q(\rho)=\rho\left(1-\frac{1}{2} \rho\right)$ and that $c=c(\rho)=1-\rho$.
B. Same as \mathbf{A}, but change the initial conditions to $\rho(x, 0)=1-\operatorname{sech}(x)$, for $-\infty<x<\infty$.

NOTE: Exact answers are required. Do not resort to calculators till the very end, when you may wish (not required) to evaluate expressions involving quantities such as $\sqrt{3}$ or $\ln (1+\sqrt{2})$.

2 Special Problems.

2.1 Statement: TFPB20.

An initial value problem with a simple quadratic flow.
Solve the following initial value problem for all times $\boldsymbol{t} \geq \mathbf{0}$, including shocks if necessary:

$$
\begin{equation*}
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad \text { where }-\infty<x<\infty \text { and } t>0 \tag{2.4}
\end{equation*}
$$

with

$$
u(x, 0)= \begin{cases}0 & \text { for } x<0 \text { and } x>1 \tag{2.5}\\ 1 & \text { for } 0<x<1\end{cases}
$$

When computing the shock speed, note that $\boldsymbol{q}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{u}^{\mathbf{2}}$.
Draw a picture of the solution for several representative times, including $t=0$ and t very large. Similarly, draw a picture of the characteristics and the shock(s) in space-time.

2.2 Statement: Secants and tangents for quadratic curves.

Here we consider differentiable curves $y=y(x)$ with the following property:
The slope of any secant line connecting two points in the curve is equal to the average of the slopes of the curve $y=y(x)$ at the points being connected.

In formulas: for any points $x_{1}<x_{2}$,

$$
\begin{equation*}
\frac{y\left(x_{2}\right)-y\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{1}{2}\left(y^{\prime}\left(x_{1}\right)+y^{\prime}\left(x_{2}\right)\right) . \tag{2.7}
\end{equation*}
$$

Show that $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$ has this property if, and only if, it is a quadratic polynomial.
Hint. Showing that quadratic polynomials have this property is a simple direct calculation. To show the inverse, write an ode that y must satisfy, and solve it.

THE END.

