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Problem Set # 04. Due: Fri. April 5.
Turn it in before 3:00 PM, in the box provided in Room 2-285.

IMPORTANT: The Regular and the Special Problems must be stapled in TWO

SEPARATE packages, each with your FULL NAME clearly spelled.
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1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If u = umax (1− ρ/ρmax), then what is the velocity of a traffic shock separating densities ρ0 and

ρ1? Simplify the expression as much as possible. Show that the shock velocity is the average of the

density wave velocities associated with ρ0 and ρ1.
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1.2 Statement: Haberman problem 77.06.

Consider Burger’s equation, as derived in exercise 77.5:

ρt + umax

(
1− 2 ρ

ρmax

)
ρx = ν ρxx. (1.1)

Suppose that a solution exists as a density wave, moving without change of shape at velocity V

ρ = f(x− V t). (1.2)

(a) What O.D.E. is satisfied by f?

(b) Integrate this differential equation once. By graphical techniques show that a solution exists,

such that ρ→ ρ2 as x→∞ and ρ→ ρ1 as x→ −∞, only if ρ2 > ρ1. Roughly sketch this

solution, and give a physical interpretation of this result.

(c) Show that the velocity of wave propagation, V , is the same as the shock velocity separating

ρ = ρ1 from ρ = ρ2 (occurring if ν = 0).

1.3 Statement: Haberman problem 78.07.

Suppose that a traffic light turned from green to yellow before turning red. How would you mathe-

matically model the yellow light? Note: you do need not solve any problems corresponding to your

model for this exercise.

1.4 Statement: TFPa17. Shock interaction with a traffic light.

At time t = 0, the traffic pattern on a long highway consists of two sections of constant concentration,

joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light

at x = 0 turns (at time t = 0) and remains red, describe the resultant motion. Let the position

of the shock at time t = 0 be given by x = −L < 0, and assume that q =
4 qm
ρ2

j

ρ (ρj − ρ) — with

0 < ρ0 < ρ1 < (1/2) ρj = ρm.

1.5 Statement: TFPb18. Compute breaking times for IV problems.

The solutions to the initial value problems below are smooth for −∞ < x <∞ and 0 ≤ t < tc, where

tc is some constant. For t = tc the partial derivatives of the solution cease to exist at some x = xc

— in fact, they become infinite there. To continue the solution past t = tc, one must introduce a

shock — which forms at x = xc and t = tc.
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Figure 1.1: TFPa17: Shock in traffic density.

In each case compute tc, xc, and ξc — where ξc is the label for the characteristic along which

the first breaking occurs (i.e.: x = ξc at t = 0 for this characteristic.)

A. Let ρ(x, 0) = 1− 1

1 + x2
(for −∞ < x <∞), with

ρt +
(
ρ (1− 1

2
ρ)
)

x
= 0, for −∞ < x <∞ and t > 0. (1.3)

Note that q = q(ρ) = ρ (1− 1

2
ρ) and that c = c(ρ) = 1− ρ.

B. Same as A, but change the initial conditions to ρ(x, 0) = 1− sech(x), for −∞ < x <∞.

NOTE: Exact answers are required. Do not resort to calculators till the very end, when you may

wish (not required) to evaluate expressions involving quantities such as
√

3 or ln(1 +
√

2).

2 Special Problems.

2.1 Statement: TFPB20.

An initial value problem with a simple quadratic flow.

Solve the following initial value problem for all times t ≥ 0, including shocks if necessary:

ut +
(

1

2
u2
)

x
= 0 , where −∞ < x <∞ and t > 0 , (2.4)
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with

u(x, 0) =

 0 for x < 0 and x > 1,

1 for 0 < x < 1.
(2.5)

When computing the shock speed, note that q =
1

2
u2.

Draw a picture of the solution for several representative times, including t = 0 and t very large.

Similarly, draw a picture of the characteristics and the shock(s) in space–time.

2.2 Statement: Secants and tangents for quadratic curves.

Here we consider differentiable curves y = y(x) with the following property:

The slope of any secant line connecting two points in the curve is equal to the

average of the slopes of the curve y = y(x) at the points being connected.
(2.6)

In formulas: for any points x1 < x2,

y(x2)− y(x1)

x2 − x1

=
1

2
(y′(x1) + y′(x2)) . (2.7)

Show that y = y(x) has this property if, and only if, it is a quadratic polynomial.

Hint. Showing that quadratic polynomials have this property is a simple direct calculation. To show

the inverse, write an ode that y must satisfy, and solve it.

THE END.
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