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Problem Set # 03. Due: Mon. March 18.
Turn it in before 3:00 PM, in the box provided in Room 2-285.

IMPORTANT: The Regular and the Special Problems must be stapled in TWO

SEPARATE packages, each with your FULL NAME clearly spelled.
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1 Regular Problems.

1.1 Statement: Haberman problem 63.07.

Consider exercise 61.3. Suppose that the drivers accelerate in such a fashion that

α = ut + uux = −a
2

ρ
ρx, where a > 0 is a constant. (1.1)

(a) Physically interpret this situation.

(b) If u only depends on ρ, and the equation for conservation of cars is valid, show that

du

dρ
= − a

ρ
. (1.2)

(c) Solve the differential equation in part (b), subject to the condition that u(ρmax) = 0. The

resulting flow–density curve fits quite well to the Lincoln Tunnel data.

(d) Show that a is the velocity that corresponds to the road’s capacity.

(e) Discuss objections to the theory for small densities.

1.2 Statement: Haberman problem 71.01.

Experiments in the Lincoln Tunnel (combined with theoretical work discussed in exercise 63.7)

suggests that the traffic flow function is, approximately,

q(ρ) = a ρ (ln(ρmax)− ln(ρ)) , (1.3)

where a and ρmax are known constants. Suppose that the initial density ρ(x, 0) varies linearly

from bumper-to-bumper traffic (behind x = −x0 < 0) to no traffic (ahead of x = 0), as sketched in

figure 71-6. Two hours later, where does ρ =
1

2
ρmax?

1.3 Statement: Haberman problem 73.09.

At which velocity does the information that the traffic light changed from red to green travels?

1.4 Statement: Haberman problem 72.02.

If u = umax (1− ρ2/ρ2
max), then what is the velocity of a traffic shock separating densities ρ0 and

ρ1? Simplify the expression as much as possible. Show that the shock velocity is not (see note

below) the average of the density wave velocities associated with ρ0 and ρ1.

Note: In fact, show that the only case where the shock velocity is the average of the density wave

velocities associated with ρ0 and ρ1 is when ρ0 = ρ1 — and then (of course) there is no shock.
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1.5 Statement: Haberman problem 77.05.

Suppose that, instead of u = U(ρ), the car velocity u is

u = U(ρ)− ν

ρ
ρx, (1.4)

where ν is a constant.
(a) What sign should ν have for this expression to be physically reasonable?

(b) What equation now describes conservation of cars?

(c) Assume that U(ρ) = umax (1− ρ/ρmax). Show that

ρt + umax

(
1− 2 ρ

ρmax

)
ρx = ν ρxx, (1.5)

called Burger’s equation.

1.6 Statement: Haberman problem 78.01.

Suppose that the initial traffic density is

ρ(x, 0) =

 ρ0 for x < 0,

ρ1 for x > 0,
(1.6)

where ρ0 and ρ1 are constants. Consider the two cases, ρ0 < ρ1, and ρ0 > ρ1. For which of the

preceding cases is a density shock necessary? Briefly explain.

1.7 Statement: Haberman problem 79.02.

Suppose that

ρ(x, 0) =

 ρ0 for x > 0,

0 for x < 0.
(1.7)

Determine the velocity of the shock. Briefly give a physical explanation of the result. What does

this shock correspond to?

1.8 Statement: Linear 1st order PDE problem 04.

Discuss the two problems

ux + 2xuy = y, with

 (a) u(x, x2) = 1 for − 1 < x < 1,

(b) u(x, x2) = 1
3
x3 + π for − 1 < x < 1.

(1.8)

How many solutions exist in each case?

Note that the data in these problems is prescribed along a characteristic!
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2 Special Problems.

2.1 Statement: Haberman problem 78.08.

Determine the traffic density on a semi–infinity (x > 0) highway for which the density at the entrance

is

ρ(0, t) =

 ρ1 for 0 < t < τ,

ρ0 for τ < t,
(2.9)

where τ > 0 is constant, and the initial density is uniform along the highway — assume that

ρ(x, 0) = ρ0, for x > 0. Furthermore, assume that ρ1 is lighter traffic than ρ0, and that both are

light traffic; in fact assume that u(ρ) = umax (1− ρ/ρmax) and that ρ1 < ρ0 < ρmax/2. Sketch the

density at various values of time.

Hint. Compute the characteristics starting both from the boundary x = 0 and t ≥ 0, as well as those

that start at x ≥ 0 and t = 0. Then draw them and look for gaps as well as crossings. Resolve

the gaps by inserting expansion fans, and the crossings by inserting shocks. Make sure to find the

solution for all times. In particular, in the solution you will find out that there is a shock which

starts interacting with a rarefaction fan at some critical location and time (xc, tc). Compute (xc, tc),

and the shock path beyond t = tc. Draw the characteristics and shock path after you have resolved

all crossings, and filled any gaps by expansion fans. Make sure that the shock satisfies both the

jump and the entropy conditions.

2.2 Statement: TFPa13. Shock formation time.

Let ρ(x, 0) =

 ρ0 for |x| ≥ d ,

ρ0 + (ρ1 − ρ0)(1− (x/d)2) for |x| ≤ d ,


 where 0 < ρ1 < ρ0 < ρj

and d > 0 is a constant.

If q = (4qm/ρ
2
j) ρ (ρj − ρ), find the point (xs, ts) at which a shock first forms in the traffic flow.

THE END.
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