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1 Regular Problems.

Points: §1.1, 15 points. §1.2, 40 points. §1.3, 50 points. §1.4, 15 points.

1.1 ExPD04 statement:

Complex variables solution of the 2D Laplace equation.

By direct substitution, show that

u = f(x− iy) + g(x+ iy), (1.1)

(where f and g are “arbitrary” functions) is a solution of Laplace’s equation:

uxx + uyy = 0. (1.2)

In fact, it can be shown that all the solutions to the Laplace equation (1.2) have the form in

(1.1) — though you are not asked to do this here.

Note: The functions f and g must make sense for complex arguments, and have derivatives in

terms of these complex arguments. Thus: f and g must be analytic functions.

1.2 ExPD22 statement: Separation of variables for the

Laplace equation in a circle (Dirichlet boundary conditions).

Consider the question of determining the steady state temperature in a thin circular plate such

that: (a) The temperature is prescribed at the edges of the plate, and (b) The facets of the plate

(top and bottom) plate are insulated. This problem can be written, using polar coordinates, in the

form1

1

r2
(r (r Tr)r + Tθθ) = ∆T = 0, for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1, (1.3)

1Here we use non-dimensional variables, selected so that the plate has radius 1.
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with the boundary condition2 T (1, θ) = h(θ), (1.4)

where h = h(θ) is some prescribed function. The solution to (1.3–1.4) can be written as a (possibly

infinite) sum of separation of variables solutions.

Separation of variables solutions to (1.3–1.4) are product solutions of the form

T (r, θ) = φ(r)ψ(θ), (1.5)

where φ and ψ are some functions. In particular, from (1.4), it must be that

h(θ) = φ(1)ψ(θ). (1.6)

However, for the separated solutions, the function h is NOT prescribed: It is whatever the form in

(1.5) allows. The general h is obtained by adding separation of variables solutions.

These are the tasks in this exercise:

1. Find ALL the separation of variables solutions.

2. In exercise ExPD04 we stated that all the solutions to the Laplace equation — i.e.: (1.3) —

must have the form T = f(x− i y) + g(x+ i y), for some functions f and g. Note that

these two functions must make sense for complex arguments, and have derivatives in terms of

these complex arguments. — which means that f and g must be analytic functions.

Show that the result in the paragraph above applies to all the separated solutions

found in item 1. Namely: find the functions f and g that correspond to each separated

solution. Notice that, in polar coordinates: z = x+ i y = r cos θ + i r sin θ = r ei θ and

z̄ = x− i y = r cos θ − i r sin θ = r e−i θ.

1.3 WaEq02 statement:

String with both ends tied, and periodicity.

Consider an elastic (homogeneous) string under tension, tied at both ends, started from some initial

configuration. To simplify the situation, assume that all the motion is restricted to happen in a

plane. After a proper adimensionalization, the situation can be modeled by the mathematical prob-

lem below for the wave equation in 1-D — where u = u(x, t) is the displacement from equilibrium

of the string,3

utt − uxx = 0 for 0 < x < π and t > 0, (1.7)

2Of course, both T and h must be periodic of period 2π in θ.
3This formulation neglects dissipation in the string.
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with boundary conditions u(0, t) = u(π, t) = 0, and initial data4

u(x, 0) = U(x) and ut(x, 0) = V (x) = W ′(x), (1.8)

for some functions U = U(x) and V = V (x), where W (x) =
∫ x

0
V (s) ds.

We will further assume that5

1. U is twice continuously differentiable in 0 ≤ x ≤ π, and U(0) = U(π) = 0.

2. V is continuously differentiable in 0 ≤ x ≤ π, and V (0) = V (π) = 0.

}
(1.9)

A. Show that the solution has the form

u(x, t) = f(t− x)− f(t+ x), (1.10)

for some function f = f(ζ), which must be defined for any ζ > −π.

Hint 1: As shown in the lectures (e.g., using the theory of characteristics), the general solution

to the wave equation (1.7) has the form u = f̃(x− t) + g̃(x+ t), where f̃ and g̃ are “arbitrary”

functions. Introduce another pair of arbitrary functions f and g, related to the older one by

f(s) = f̃(−s) and g(s) = −g̃(s). It follows that you can also write

u = f(t− x)− g(t+ x). (1.11)

Now use the boundary condition at x = 0, and the fact that the solution must be defined for

0 < x < π and t > 0.

B. Show that f is a periodic function (what is the period?), and write an explicit formula for

f in terms of U and W .

Hint 2: First, use the boundary condition at x = π to show that f must be periodic. Then use

the initial data to determine f . Notice that this step will give you an equation that gives f ′

with two different formulas, valid on two contiguous intervals. Be careful when you integrate

the equation, so that you get formulas that are consistent across the interval ends.

C. Show that u is periodic in time. What is the period?

D. Show that the conditions in (1.9) guarantee that f is twice differentiable. Thus the formula

in (1.10) can be substituted directly into (1.7) to show that u satisfies the equation.

However, note that f ′ ′ is (generally) not continuous. Where can continuity fail for f ′ ′?

Hint 3: compute f ′ ′ for the case in item E to get a feeling for what happens in general.

4We use primes to denote derivatives.
5These conditions admit a more general formulation, but here we stick to this for simplicity.
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E. Compute the function f for the special case when U(x) = x (π − x) and V (x) = 0.

Note that, even if both U and V are smooth (infinite derivatives) for 0 ≤ x ≤ π, the solution u

in (1.10) will (generally) not be smooth. Some lines in space-time (lines of singularity) will exist

along which smoothness fails (some derivatives do not exist).

F. For the example in item E, find the lines of singularity, and describe the situation along

them (e.g., which derivatives fail to exist).

Note: you will find that the lines of singularity are characteristics. This is generic, and not restricted

to this particular example. In fact, this is an important property of the characteristics: they are the

locus in space time where the solutions can be “singular”. This property allows the generalization of the

notion of characteristic to situations where the definition “curves along which equations involving

directional derivatives only can be written” is too restrictive (e.g., pde-s in more than 1-D).

G. Finally, what does the existence of these lines of singularity in the solution to the wave

equation mean for the behavior of an actual string? What are your thoughts on this?

1.4 WaEq03 statement:

String with both ends tied equivalent to periodic and odd.

Consider an elastic (homogeneous) string under tension, tied at both ends, started from some initial

configuration. To simplify the situation, assume that all the motion is restricted to happen in a

plane. After a proper adimensionalization, the situation can be modeled by the mathematical prob-

lem below for the wave equation in 1-D — where u = u(x, t) is the displacement from equilibrium

of the string,6

utt − uxx = 0 for 0 < x < π and t > 0, (1.12)

with boundary conditions u(0, t) = u(π, t) = 0, and initial data

u(x, 0) = U(x) and ut(x, 0) = V (x), (1.13)

for some functions U = U(x) and V = V (x).

6This formulation neglects dissipation in the string.
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In another problem (WaEq02) is is shown that:7 The solution to (1.12 – 1.13) has the form

u(x, t) = f(t− x)− f(t+ x),

for some function f = f(ζ), which is periodic of period 2π.

}
(1.14)

Vice-versa, it should be clear that any function of this form satisfies the problem in (1.12 – 1.13),

with

U(x) = f(−x)− f(x) and V (x) = f ′(−x)− f ′(x), (1.15)

where the primes are used to denote derivatives. Thus (1.12 – 1.13) and (1.14) are equivalent.

Finally, notice that u — as defined by (1.14) — satisfies:

u is a solution to the wave equation in (1.12) which is both

periodic, of period 2π in x, as well as an odd function of x.

}
(1.16)

Show that:
Let u satisfy (1.16). Then u satisfies a problem of the form (1.12 –

1.13).
(1.17)

It then follows that (1.16) and (1.12 – 1.13) are equivalent — note the following chain of

implications given by the above arguments: (1.12 – 1.13) ⇐⇒ (1.14) =⇒ (1.16) =⇒ (1.12 – 1.13).

You are being asked to prove the last one of these — i.e., (1.17).

2 Special Problems.

Points: §2.1, 40 points. §2.2, 30 points.

2.1 ExPD41 statement: Normal modes for the heat equation with

Robin boundary conditions.

Consider the problem

Tt = Txx for 0 < x < π, (2.18)

with boundary conditions8 T (0, t) = 0 and Tx(π, t) = T (π, t). Then

7Notice that, as far as providing a solution to (1.12 – 1.13), f = f(ζ) needs to be defined for ζ > −π only. However,

because of the periodicity, we can assume that it is defined everywhere.
8Fixed temperature on the left. The right boundary condition is known as a Robin condition. It arises in situations

where the heat flux at a boundary is proportional to the temperature difference with some cooling fluid flowing by.
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1. Find all the normal mode solutions — that is: non-trivial solutions of the form T = eλ t φ(x),

where λ is a constant.

2. Show that the associated eigenvalue problem9 is self-adjoint. Hence the spectrum is real, and

the eigenfunctions can be used to represent “arbitrary” functions. In this case the spectrum

is a discrete set of eigenvalues {λn}, and the eigenfunctions form an orthogonal basis.

3. Given initial conditions T (x, 0) = T0(x), write the solution to (2.18) as a series involving

the normal modes

T =
∑
n

an e
λn t φn(x). (2.19)

Write explicit expressions10 for the coefficients an.

2.2 ExPD42 statement:

String with both ends tied equivalent to periodic and odd.

Consider an elastic (homogeneous) string under tension, tied at both ends, started from some initial

configuration. To simplify the situation, assume that all the motion is restricted to happen in a

plane. After a proper adimensionalization, the situation can be modeled by the mathematical prob-

lem below for the wave equation in 1-D — where u = u(x, t) is the displacement from equilibrium

of the string,11

utt − uxx = 0 for 0 < x < π and t > 0, (2.20)

with boundary conditions u(0, t) = u(π, t) = 0, and initial data

u(x, 0) = U(x) and ut(x, 0) = V (x), (2.21)

for some functions U = U(x) and V = V (x).

Using a normal modes expansion12 for the solution, SHOW THAT:

A. The solution to (2.20 – 2.21) can be written in the form

u(x, t) = f(t− x)− f(t+ x),

for some function f = f(ζ), which is periodic of period 2π.

}
(2.22)

9That is: λφ = φxx, with the appropriate boundary conditions.
10They should be given by integrals involving T0 and the eigenfunctions φn.
11This formulation neglects dissipation in the string.
12Do not worry about convergence when manipulating the various Fourier series that will arise in the process.
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Exhibit the appropriate Fourier series that defines f .

Note: it should be clear that any function of this form satisfies the problem in (2.20 – 2.21), with

U(x) = f(−x)− f(x) and V (x) = f ′(−x)− f ′(x), (2.23)

where the primes are used to denote derivatives. Thus (2.20 – 2.21) and (2.22) are equivalent.

B. The solution to (2.20 – 2.21) satisfies:

As a function of x, u is both 2π-periodic, as well as odd. (2.24)

Finally, SHOW THAT:

C. Let u be a solution to the wave equation in (2.20) that satisfies (2.24).

Then u also satisfies the boundary conditions stated below (2.20).

Hints:

1. It is convenient to write the normal mode solutions in the form u = ei ω t φ(x). Then φ satisfies an

eigenvalue problem in which λ = −ω2 is the eigenvalue. Thus for every eigenvalue you get two normal

modes. This is crucial, since there are two initial data functions, U and V , that the solution must satisfy.

2. Recall that ei θ = cos θ + i sin θ, cos θ =
1

2

(
ei θ + e−i θ

)
, and sin θ =

1

2 i

(
ei θ − e−i θ

)
.

With these formulas you do not need to use/remember any trigonometric identities.

3. Any square integrable function, defined for 0 < x < π, can be expanded in a sine-Fourier series:

F (x) =
∞∑
n=1

sn sin(nx), (2.25)

where sn =
2

π

∫ π
0
F (x) sin(nx) dx. Note that (2.25), in particular, defines F as a 2π-periodic,

and odd, function for all values −∞ < x <∞.

4. Any 2π-periodic, square integrable, function can be expanded in a complex Fourier series:

F (x) =
∞∑

n=−∞
cn e

i n x, (2.26)

where cn =
1

2π

∫ 2π

0
F (x) e−i n x dx.
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Supplementary Materiel.

3 Short notes on separation of variables.

Imagine that you are trying to solve a problem whose solution is a function of several variables,

e.g.: u = u(x, y z). Finding this solution directly may be very hard, but you may be able to find

other solutions with the simpler structure

u = f(x) g(y)h(z), (3.1)

where f , g, and h are some functions. This is called a separated variables solution.

If the problem that you are trying to solve is linear, and you can find enough solutions, of the

form in (3.1), then you may be able to solve the problem using a linear combinations of separated

variables solutions.

The technique described in the paragraph above is called separation of variables. Note that

1. When the problem is a pde, and if solutions of the form in (3.1), then the pde will reduce to

three ode — one for each of f , g, and h. Thus the solution process is enormously simplified.

2. In (3.1) all the three variables are separated. But it is also possible to seek for partially

separated solutions. For example

u = f(x) v(y, z). (3.2)

This is what happens when you look for normal mode solutions to time evolution equations

of the

ut = Lu, (3.3)

where L is some linear operator acting on the space variables ~r = (x, y, . . .) only — for example:

L = ∂2
x + ∂2

y + . . .. The normal mode solutions have time separated

u = eλ tφ(~r), where λ = constant, (3.4)

and reduce the equation to an eigenvalue problem in space only

λφ = Lφ. (3.5)
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3. Separation of variables does not always work. In fact, it rarely works if you just think of

random problems. But it works for many problems of physical interest. For example: it

works for the heat equation, but only for a few very symmetrical domains (rectangles, circles,

cylinders, ellipses). But these are enough to build intuition as to how the equation works.

Many properties valid for generic domains can be gleaned from the solutions in these domains.

4. Even if you cannot find enough separated solutions to write all the solutions as linear combi-

nations of them, or if the problem is nonlinear and you can get just a few separated solutions,

sometimes this is enough to discover interesting physical effects, or gain intuition as to the

system behavior.

3.1 Example:

heat equation in a square, with zero boundary conditions.

Consider the problem

Tt = ∆T = Txx + Tyy, (3.6)

in the square domain 0 < x, y < π, with T vanishing along the boundary, and with some initial data

T (x, y, 0) = W (x, y). To solve this problem by separation of variables, we first look for solutions

of the form

T = f(t) g(x)h(y), (3.7)

which satisfy the boundary conditions, but not the initial data. Why this? This is important!:

A. We would like to solve the problem for generic initial data, while solutions of the form (3.7)

can only achieve initial data for which W = f(0) g(x)h(y). This is very restrictive, even more

so because (as we will soon see) the functions g and h will be very special. To get generic

initial data, we have no hope unless we use arbitrary linear combinations of solutions like (3.7).

B. Arbitrary linear combinations of solutions like (3.7) will satisfy the boundary conditions if an

only if each of them satisfies them.

Substituting (3.7) into (3.6) yields

f ′ g h = f g′ ′ h+ f g h′ ′, (3.8)
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where the primes indicate derivatives with respect to the respective variables. Dividing this through

by u now yields
f ′

f
=
g′ ′

g
+
h′ ′

h
. (3.9)

Since each of the terms in this last equation is a function of a different independent variable, the

equation can be satisfied only if each term is a constant. Thus

g′ ′

g
= c1,

h′ ′

h
= c2, and

f ′

f
= c1 + c2, (3.10)

where c1 and c2 are constants. Now the problem has been reduced to a set of three simple ode.

Furthermore, for (3.7) to satisfy the boundary conditions in (3.6), we need:

g(0) = g(π) = h(0) = h(π) = 0, (3.11)

which restricts the possible choices for the constants c1 and c2. The equations in (3.10 – 3.11) are

easily solved, and yield13

g = sin(nx), with c1 = −n2, (3.12)

h = sin(mx), with c2 = −m2, (3.13)

f = e−(n2+m2) t, (3.14)

where n = 1, 2, 3, . . . and m = 1, 2, 3, . . . are natural numbers. The solution to the problem in

(3.6) can then be written in the form

T =
∞∑

n,m=1

wnm sin(nx) sin(n y) e−(n2+m2) t, (3.15)

where the coefficients wnm follow from the double sine-Fourier series expansion (of the initial data)

W =
∞∑

n,m=1

wnm sin(nx) sin(n y). (3.16)

That is

wnm =
4

π2

∫ π

0
dx
∫ π

0
dy W (x, y) sin(nx) sin(n y). (3.17)

13We set the arbitrary multiplicative constants in each of these solutions to one. Given (3.15 – 3.16), there is no

loss of generality in this.
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3.2 Example:

Heat equation in a circle, with zero boundary conditions.

We now, again, consider the heat equation with zero boundary conditions, but on a circle instead

of a square. That is, using polar coordinates, we want to solve the problem

Tt = ∆T =
1

r2
(r(r Tr)r + Tθθ) , (3.18)

for 0 ≤ r < 1, with T (1, θ, t) = 0, and some initial data T (r, θ, 0) = W (r, θ). To solve the problem

using separation of variables, we look for solutions of the form

T = f(t) g(r)h(θ), (3.19)

which satisfy the boundary conditions, but not the initial data. The reasons for this are the same

as in items A and B above — see § 3.1. In addition, note that

C. We must use polar coordinates, otherwise solutions of the form (3.19) cannot satisfy the bound-

ary conditions. This exemplifies an important feature of the separation of variables method:

The separation must be done in a coordinate system where the boundaries are coordinate surfaces.

Substituting (3.19) into (3.18) yields

f ′ g h =
1

r2
(f r (r g′)′ h+ f g h′ ′) , (3.20)

where, as before, the primes indicate derivatives. Dividing this through by u yields

f ′

f
=

(r g′)′

r g
+

h′ ′

r2 h
. (3.21)

Since the left side in this equation is a function of time only, while the right side is a function of

space only, the two sides must be equal to the same constant. Thus

f ′ = −λ f (3.22)

and
r (r g′)′

g
+ λ r2 +

h′ ′

h
= 0, (3.23)

where λ is a constant. Here, again, we have a situation involving two functions of different variables

being equal. Hence

h′ ′ = µh, (3.24)
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and
1

r
(r g′)′ +

(
λ+

µ

r2

)
g = 0, (3.25)

where µ is another constant. The problem has now been reduced to a set of three ode. Furthermore,

from the boundary conditions and the fact that θ is the polar angle, we need:

g(1) = 0 and h is periodic of period 2π. (3.26)

In addition, g must be non-singular at r = 0 — the singularity that appears for r = 0 in equation

(3.25) is due to the coordinate system singularity, equation (3.18) is perfectly fine there.

It follows that it should be µ = −n2 and

h = ei n θ, where n is an integer. (3.27)

Notes:

– As in § 3.1, here and below, we set the arbitrary multiplicative constants in each of the ode

solutions to one. As before, there is no loss of generality in this.

– Instead of complex exponentials, the solutions to (3.24) could be written in terms of sine and

cosines. But complex exponentials provide a more compact notation.

Then (3.25) takes the form
1

r
(r g′)′ +

(
λ− n2

r2

)
g = 0. (3.28)

This is a Bessel equation of integer order. The non-singular (at r = 0) solutions of this equation

are proportional to the Bessel function of the first kind J|n|. Thus we can write

g = J|n|(κ|n|m r), and λ = κ2
|n|m, (3.29)

where m = 1, 2, 3, . . ., and κ|n|m > 0 is the m-th zero of J|n|.

Remark 3.1 That (3.28) turns out to be a well known equation should not be a surprise. Bessel

functions, and many other special functions, were first introduced in the context of problems like the

one here — i.e., solving pde (such as the heat or Laplace equations) using separation of variables.

Putting it all together, we see that the solution to the problem in (3.18) can be written in the form

T =
∞∑

n=−∞

∞∑
m=1

wnm J|n|(κ|n|m r) exp
(
i n θ − κ2

|n|m t
)
, (3.30)
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where the coefficients wnm follow from the double (Complex Fourier) – (Fourier – Bessel) expansion

W =
∞∑

n=−∞

∞∑
m=1

wnm J|n|(κ|n|m r) e
i n θ. (3.31)

That is:

wnm =
1

π J2
|n|+1(κ|n|m)

∫ 2π

0
dθ

∫ 1

0
r dr W (r, θ) J|n|(κ|n|m r) e

−i n θ. (3.32)

Remark 3.2 You may wonder how (3.32) arises. Here is a sketch:

(i) For θ we use a Complex-Fourier series expansion. For any 2 π-periodic function

G(θ) =
∞∑

n=−∞
an e

i n θ, where an =
1

2 π

∫ 2π

0
G(θ) e−i n θ dθ. (3.33)

(ii) For r we use the Fourier-Bessel series expansion explained in item (iii).

(iii) Note that (3.28), for any fixed n, is an eigenvalue problem in 0 < r < 1. Namely

L g = λ g, where L g = −1

r
(r g′)′ +

n2

r2
g, (3.34)

g is regular for r = 0, and g(1) = 0. Without loss of generality, assume that n ≥ 0, and

consider the set of all the (real valued) functions such that
∫ 1

0
g̃2(r) r dr <∞. Then define

the scalar product

< f̃, g̃ >=
∫ 1

0
f̃(r) g̃(r) r dr. (3.35)

With this scalar product L is self-adjoint, and it yields a complete set of orthonormal eigen-

functions

φm = Jn(κnm r) and λm = κ2
nm, where m = 1, 2, 3, . . . (3.36)

Thus one can expand

F (r) =
∞∑
m=1

bm φm(r), where bm =
1∫ 1

0 r φ2
m(r) dr

∫ 1

0
F (r)φm(r) r dr. (3.37)

Finally, note that∫ 1

0
r φ2

m(r) dr follows from
∫ 1

0
r J2

n(κnm r) dr =
1

2
J2
n+1(κnm). (3.38)

We will not prove this identity here.
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3.3 Example: Laplace equation in a circle sector, with Dirichlet

boundary conditions, non-zero on one side.

Consider the problem

0 = ∆u =
1

r2
(r(r ur)r + uθθ) , 0 < r < 1 and 0 < θ < α, (3.39)

where α is a constant, with 0 < α < 2π. The boundary conditions are

u(1, θ) = 0, u(r, 0) = 0, and u(r, α) = w(r), (3.40)

for some given function w. To solve the problem using separation of variables, we look for solutions

of the form

u = g(r)h(θ), (3.41)

which satisfy the boundary conditions at r = 1 and θ = 0, but not the boundary condition at θ = α.

The reasons are as before: we aim to obtain the solution for general w using linear combinations of

solutions of the form (3.41) — see items A and B in § 3.1, as well as item C in § 3.2.

Substituting (3.41) into (3.39) yields, after a bit of manipulation

r (r g′)′

g
+
h′ ′

h
= 0. (3.42)

Using the same argument as in the prior examples, we conclude that

r (r g′)′ − µ g = 0 and h′ ′ + µh = 0, (3.43)

where µ is some constant, g(1) = 0, and h(0) = 0. Again: the problem is reduced to solving ode.

In fact, it is easy to see that it should be14

h =
1

s
sinh(s θ) and g =

ri s − r−is

s
, where µ = −s2, (3.44)

and as yet we know nothing about s, other than it is some (possibly complex) constant.

In § 3.2, we argued that g should be non-singular at r = 0, since the origin was no different from

any other point inside the circle for the problem in (3.18) — the singularity in the equation for g

in (3.25) is merely a consequence of the coordinate system singularity at r = 0. We cannot make

14The multiplicative constant in these solutions is selected so that the correct solution is obtained for s = 0.
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this argument here, since the origin is on the boundary for the problem in (3.39 – 3.40) — there

is no reason why the solutions should be differentiable across the boundary! We can only state that

g should be bounded ⇐⇒ s 6= 0 is real. (3.45)

Furthermore, exchanging s by −s does not change the answer in (3.44). Thus

0 < s <∞. (3.46)

In this example we end up with a continuum of separated solutions,

as opposed to the two prior examples, where discrete sets occurred.

Putting it all together, we now write the solution to the problem in (3.39 – 3.40) as follows

u =
∫ ∞
0

sinh(s θ)

sinh(s α)

(
ri s − r−i s

)
W (s) ds, (3.47)

where W is computed in (3.50) below.

Remark 3.3 Start with the complex Fourier Transform

f(ζ) =
∫ ∞
−∞

f̂(s) ei s ζ ds, where f̂(s) =
1

2 π

∫ ∞
−∞

f(ζ) e−i s ζ dζ. (3.48)

Apply it to an odd function. The answer can then be manipulated into the sine Fourier Transform

f(ζ) =
∫ ∞
0

F (s) sin(s ζ) ds, where F (s) =
2

π

∫ ∞
0

f(ζ) sin(s ζ) dζ, (3.49)

and 0 < ζ, s <∞. Change variables, so that 0 < r = e−ζ < 1. Then, with w(r) = f(ζ) and

W (s) = − 1

2 i
F (s), this yields

w(r) =
∫ ∞
0

W (s)
(
ri s − r−i s

)
ds, where

W (s) =
1

2π

∫ 1

0

(
r−i s − ri s

r

)
w(r) dr, (3.50)

which is another example of a transform pair associated with the spectrum of an operator (see below).

Finally: What is behind (3.50)? Why should we expect something like this? Note that the problem

for g can be written in the form

L g = µ g, where L g = r (r g′)′, (3.51)
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g(1) = 0 and g is bounded (more accurately: the inequality in (3.52) applies). This is an eigenvalue

problem in 0 < r < 1. Further, consider consider the set of all the functions such that∫ 1

0
|g̃|2(r) dr

r
<∞, (3.52)

and define the scalar product

< f̃, g̃ >=
∫ 1

0
f̃ ∗(r) g̃(r)

dr

r
. (3.53)

With this scalar product L is self-adjoint. However, it does not have any discrete spectrum,15

only continuum spectrum — with the pseudo-eigenfunctions given in (3.44), for 0 < s <∞. This

continuum spectrum is what is associated with the formulas in (3.50). In particular, note the

presence of the scalar product (3.53) in the formula for W .

THE END.

15No solutions that satisfy g(1) = 0 and (3.52).


