18.311 - MIT (Spring 2012)Problem Set # 02

March 16, 2012

Due: Friday, March 23.

Turn it in before 3:00pm, in the box provided in Room 2-108

IMPORTANT: The Regular and the Special Problems must be stapled in **TWO SEPARATE packages**, each with your **FULL NAME** clearly spelled.

Contents

1	Regular problems:	1
	1.1 Statement: Traffic flow, method of characteristics, shocks, and rarefections	1
	1.2 Statement: Envelopes and caustics	2
2	Special problems	3
	2.1 Statement: Eikonal equation	3

1 Regular problems:

1.1 Statement: Traffic flow, method of characteristics, shocks, and rarefections

Given the conservation law for cars

$$\rho_t + q_x = 0,$$

where q is the flux of cars, and ρ is the density of cars, and a particular form of the flux

$$q = u_{max}\rho(1 - \rho/\rho_{max}).$$

Assignment: Find the solution to the traffic flow problems, for which the initial conditions are stated below. The steps in solution that must be displayed are:

- Find the equation on characteristic and characteristic speeds
- Find the parametric form of the solution
- Plot the characteristics
- If there are shocks:
 - find the first time the shock forms
 - what is the speed of the shock?
 - is the Lax entropy condition satisfied?
 - plot the car density at the initial time, before the shock forms, and after the shock forms.
- Discuss if the problem physically in therms of car dynamics: traffic jam, green light, red light, heavy traffic (characteristic speed < 0), light traffic (char speed > 0), etc.

Traffic flow problems:

1. State the general facts

- (a) What is the formula for characteristic speed? What is characteristic speed graphically?
- (b) If there is a shock with ρ_1 behind the shock and ρ_2 ahead of the shock, what is the speed of propagation of the shock for the traffic flow with the given form of the flux?
- (c) State the entropy condition for this problem.
- 2. $\rho(x,0) = \rho_{max}/2$ for x < -L, $\rho(x,0) = \rho_{max}$ for -L < x < 0, $\rho(x,0) = 0$ for x > 0

3.
$$\rho(x,0) = \rho_{max}$$
 for $x > 0, \rho = 0$ for $x < 0$

- 4. $\rho(x,0) = \rho_{max}$ for x > 0, $\rho = \rho_0 > 0$ for x < 0
- 5. $\rho(x,0) = \rho_0$, such that $0 < \rho_0 < \rho_{max}$, for x < 0, $\rho(x,0) = \rho_0 + (\rho_{max} - \rho_0)x/L$ for 0 < x < L, and $\rho(x,0) = \rho_{max}$ for x > L.

What is the difference between the two solutions, if $\rho_{max} = 5$, $u_{max} = 1$ and in the first case $\rho_0 = 1$, while in the second $\rho_0 = 3$?

- 6. Determine the traffic density that results after an infinite line of stopped cars is started by a red traffic light turning green.
- 7. At what velocity does the information that the traffic light changed from red to green travel?
- 8. Calculate the maximum acceleration of a car that starts approximately one car-length behind a traffic light (i.e. $x(0) = -1/\rho_{max}$).
- 9. Uniform traffic with $\rho(x,0) = \rho_0 < \rho_{max}$, was suddenly stopped with a red light at x = 0 and t = 0. (Attn: there will be two shocks).

1.2 Statement: Envelopes and caustics

If you were not allowing the shocks to form, there would be regions of multivalued solutions.

For this problem consider inviscid Burger's equation

$$u_t + uu_x = 0$$

with initial data $u = 2 + \sin(x)$ at time t = 0.

The characteristics look as follows:

Assignment:

- 1. Find the characteristic curves analytically.
- 2. When and where does the shock form? What is the speed of the shocks?
- 3. Plot the characteristics in Matlab, obtain the same picture as above.
- 4. Find the two envelopes of characteristics analytically. Plot them in MATLAB (here they are the blue and the red curves, and they form a "cusp"). A similar phenomenon in optics, when the rays are rays of light, is called a *caustic* (which is the envelope of the light rays). Below is a picture of a caustic in a cup and produced by a glass of water (images from wiki).
- 5. Compute analytically the slope **between** the two branches of the envelope at the point where they start (i.e. at the time when a shock would form). The slope that you will obtain is the same for all problems.

Example of a caustic in a cup and a caustic produced by a glass of water:

2 Special problems

2.1 Statement: Eikonal equation

The Eikonal equation (from German *eikonal*, from Greek *image*) is a non-linear PDE encountered in problems of wave propagation, geometric optics, etc.

$$|\nabla u| = f(\mathbf{x}), \quad i.e. \quad in \quad 2D \quad \sqrt{u_x^2 + u_y^2} = f(x,y)$$

The solution for f(x, y) = 1 gives a signed distance function from the given initial profile $u(x_0, y_0) = 0$ profile.

Assignment:

- 1. Find the position of the front of the wave at time t = R, which starts at $(x_0, y_0) = (x_0, x_0^2)$ by finding an envelope of circles located at (x_0, y_0) with radius R. Plot it in Matlab.
- 2. Use the method of characteristics for a generic first order PDE to solve this problem with the given initial profile u(x, y) = 0 on the curve $y = x^2$. The first steps are:
 - Introduce the new variables $u_x = p$ and $u_y = q$
 - introduce a function $H = p^2 + q^2 1 = 0$.
 - differentiating this equation with respect to x and y, you get a "system" of two equations
 - in the new system introduce characteristic speed (in 2D!) with components dx/dt and dy/dt
 - proceed to solve the problem
- 3. How should you scale the time along the characteristics so that at time t the distance to the initial front was t? In other words, how does t of your choice relate to R?
- 4. Use Matlab to plot on the same graph the solution at the rescaled times t = 0, 0.1, and 0.3. When does the swallow tail first form?