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1 Regular Problems.

1.1 Statement: problem ExPD40. Normal modes for the heat equation

with mixed boundary conditions.

Consider the problem

Tt = Txx for 0 < x < π, (1.1)

with boundary conditions1 T (0, t) = 0 and Tx(π, t) = 0. Then

1. Find all the normal mode solutions — that is: solutions of the form T = eλ t φ(x).

2. Show that the associated eigenvalue problem2 is self-adjoint. Hence the spectrum is real, and

the eigenfunctions can be used to represent “arbitrary” functions. In this case the spectrum

is a discrete set of eigenvalues {λn}, and the eigenfunctions form an orthogonal basis.

3. Given initial conditions T (x, 0) = T0(x), write the solution to (1.1) as a series involving

the normal modes

T =
∑
n

an e
λn t φn(x). (1.2)

Write explicit expressions3 for the coefficients an.

1.2 Statement: problem ExPD41. Normal modes for the heat equation

with Robin boundary conditions.

Consider the problem

Tt = Txx for 0 < x < π, (1.3)

with boundary conditions4 T (0, t) = 0 and Tx(π, t) = T (π, t). Then

1. Find all the normal mode solutions — that is: solutions of the form T = eλ t φ(x).

1Fixed temperature on the left and no heat flux on the right.
2That is: λφ = φxx, with the appropriate boundary conditions.
3They should be given by integrals involving T0 and the eigenfunctions φn.
4Fixed temperature on the left. The right boundary condition is known as a Robin condition. It arises in situations

where the heat flux at a boundary is proportional to the temperature difference with some cooling fluid flowing by.
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2. Show that the associated eigenvalue problem5 is self-adjoint. Hence the spectrum is real, and

the eigenfunctions can be used to represent “arbitrary” functions. In this case the spectrum

is a discrete set of eigenvalues {λn}, and the eigenfunctions form an orthogonal basis.

3. Given initial conditions T (x, 0) = T0(x), write the solution to (1.3) as a series involving

the normal modes

T =
∑
n

an e
λn t φn(x). (1.4)

Write explicit expressions6 for the coefficients an.

1.3 Statement: Longitudinal vibrations of an elastic rod.

This problem consists of 5 questions that you must answer (see below).

Consider a slender cylindrical rod of same elastic material, lined up with the x axis — i.e.: the axis

of the cylinder lies along the x coordinate axis. Assume now that all the motion occurs along the x

axis.7 In particular, assume that there is neither bending nor torsion of the rod. In this situation,

we can describe the rod, at any any time, by a single function

X = X(x, t) =

{
Position on the x axis, at time t, of the point in the rod

whose position is x when the rod is at equilibrium.
(1.5)

Here by equilibrium we mean that there are no internal (elastic) forces in the rod. Hence we can

write X = x+ u(x, t), where u denotes the displacement of any point in the rod from its equillibrium

position. When the rod is not at equilibrium, forces occur. In the case of an elastic body, these

forces depend on how stretched or compressed the rod is at each point. Before we can write an

expression for the elastic forces, we need a measure of the rod stretching:

Consider what happens with an infinitesimal length dx, under the transformation x→ X. Clearly:

dx = (x+ dx)− x −→ X(x+ dx, t)−X(x, t) = (1 + ux) dx. Thus, at every point, ux measures

how stretched (or compressed, for ux < 0) the material of the rod is, with 1 + ux the ratio of the

5That is: λφ = φxx, with the appropriate boundary conditions.
6They should be given by integrals involving T0 and the eigenfunctions φn.
7This is an approximation. If a rod is stretched, it does (generally) become thinner. Thus motion perpendicular

to the rod axis occurs. However, if the stretching is not too large, it is reasonable to neglect the transversal motion.
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current length relative to the equilibrium length. The (elastic) forces on the rod are then as follows:

At each point on the rod (say, the one that at equilibrium is at x = x∗), the portion

of the rod ahead (i.e.: x > x∗) applies a force F on the portion behind (i.e.: x < x∗).

Viceversa, x < x∗ applies an opposite and equal force −F on x > x∗.

 (1.6)

QUESTION 1. Guive a physical argument for why the two forces must be equal and opposite.

Hint: what would happen with the infinitesimal amount of mass at x∗ if they were not?

Because the rod is elastic, F is a function of ux, namely F = F (ux), (1.7)

where we assume that the rod is homogeneous, so that the

relationship between force and deformation is the same all along the rod.

Note 1. If the rod is stretched (ux > 0) each side should pull on the other (F > 0). Viceversa, a

push (F < 0) should result from compression (ux < 0). In general, we expect that:

F (0) = 0, and
dF

dux
> 0. (1.8)

In particular, for small deformations (ux small), we can approximate F by the first (significant) term

in its Taylor expansion (assuming that F is smooth), and write

F ∼= k ux, where k > 0 is a constant. (1.9)

This is Hooke’s law of elasticity.

Note 2. A uniform displacement of a rod at elastic equilibrium should keep the rod at equilibrium.

This is borne out by the equations above, since a uniform displacement corresponds to u = u(t).

There are very many possible positions where a rod is at elastic equilibrium. In defining X above,

we must select one of them. Of course, it is convenient8 to select one in an inertial frame of reference,

so that no ‘inertial” forces appear when writing the equations for the rod behavior. Assume that

this is the case here.

QUESTION 2. Using the methods introduced in class, derive an equation (a p.d.e.) for the

function u = u(x, t), assuming that the only forces affecting the rod behavior are the elastic

forces described above. Assume that the mass per unit length of the rod at equilibrium is a

constant, ρ.

8Though not required!
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Hints. Note that the velocity of any material point on the rod, characterized by its equilibrium

position x, is given by ut(x, t). Thus the momentum in any piece of the rod, a < x < b, is given

by
∫ b

a
ρ ut dx. Write now an equation for the conservation of the momentum in a < x < b, then use

the fact that a < b are arbitrary to derive a p.d.e. for u.

QUESTION 3. What form does the p.d.e. you just derived have when (1.9) applies?

QUESTION 4. What dimensions does the constant c =
√
k/ρ have?

QUESTION 5. In general, what dimensions does c = c(ux) =

√√√√1

ρ

dF

dux

have? Notice that ux

is dimension-less.

Remark. An elastic rod can exhibit other types of motion, in addition to the longitudinal one

described here. In particular: bending, and torsion (we may come back to these later in the

course). Each of these is associated with a particular type of waves that can propagate along a rod.

For example: P-waves (longitudinal vibrations), and S-waves (transverse vibrations).

2 Special Problems.

2.1 Statement: problem ExPD20.

Separation of variables for the 1D wave equation.

Consider the wave equation

ut t − uxx = 0. (2.10)

Elsewhere it was shown that any solution of this equation can be written in the form:

u = f(x− t) + g(x+ t), (2.11)

where f and g are arbitrary functions. Find ALL the separation of variables solutions to the

wave equation (2.10), for the cases below — the separation of variables solutions are those that

have the form u = T (t)X(x), for some functions T = T (t) and X = X(x).

• Case A. The solution u = u(x, t) = T (t)X(x) is periodic in x, of period 2 π.

• Case B. The solution u = u(x, t) = T (t)X(x) vanishes at x = 0, and at x = π.
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The second case corresponds to the problem of a string of (nondimensional) length π, tied at both

ends. The solutions that you will find are the standing wave modes for the wave equation.

In each case, show that the solutions you have found have the form given in equation (2.11)

above. In particular, this will show you how the standing wave solutions can be written as a

combination of a left and a right moving waves.

2.2 Statement: Solitary wave for the KdV equation.

2.2.1 Introduction.

By introducing a diffusive term of the form νρxx (where ν is small and positive) into the equation

for traffic flow, one can resolve the structure of shocks as traveling waves. That is, the equation

ρt + c(ρ) ρx = ν ρxx, where
dc

dρ
6= 0, (2.12)

has smooth traveling wave solutions, that become discontinuous shock transitions as ν ↓ 0. To be

precise, equation (2.12) has solutions of the form

ρ = f
(
x− V t− x0

ν

)
, (2.13)

where V and x0 are constants, and f = f(ζ) is a smooth function with the properties:

A. f(ζ)→ ρ0 as ζ → −∞.

B. f(ζ)→ ρ1 as ζ →∞.

Thus, as ν ↓ 0, the solution above in (2.13) becomes a discontinuity (shock), traveling along the

line x = x0 + V t, and connecting the state ρ0 behind with the state ρ1 ahead. For ν > 0 small, but

finite, the discontinuity is resolved by this solution into a smooth transition (over a length scale

proportional to ν) connecting the two sides of the shock jump. Furthermore: the Entropy and

Rankine Hugoniot jump conditions also follow from these solutions, since a function f with the

properties above exists if and only if

c(ρ0) > c(ρ1) and V =
[ q ]

[ ρ ]
. (2.14)

In the particular case when c is a linear function of ρ (quadratic flow function q = q(ρ)), it is easy

to see that equation (2.12) reduces to the Burgers equation for the characteristic speed c. Namely:

ct + ccx = ν cxx. (2.15)
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This follows upon multiplying (2.12) by
dc

dρ
(a constant in this case) and using the chain rule.

The Burgers equation has smooth traveling waves c = f
(
x− V t− x0

ν

)
, that can be written ex-

plicitly in terms of elementary functions:

c =
c0 + c1

2
− c0 − c1

2
tanh

(
c0 − c1

4
ζ
)
, where ζ =

x− V t− x0

ν
and c0 > c1. (2.16)

These connect the states c0 as x→ −∞ with c1 as x→∞. The speed V is given by the appropriate

shock relation V =
1

2
(c0 + c1), and x0 is arbitrary.

There are many conservative processes in nature where (at leading order) a nonlinear kinematic first

order equation applies (i.e.: the same equation as in traffic flow, with some flow function q = q(ρ),

that depends on the details of the processes involved). In all these cases the leading order equations

lead to wave steepening and breaking, that generally is stopped by the presence of physical processes

that become important only when the gradients become large. However, it is not generally true

that these higher order effects are dominated by dissipation — many other possibilities can occur.

Below we consider one such alternative situation, which happens to be quite common

Remark 2.1 The point made in the prior paragraph is very important, since shocks (as a reso-

lution of the wave breaking caused by the kinematic wave steepening) are the answer only when the

higher order effects are of a dissipative nature. One should be very careful about not introducing

shocks into mathematical models of physical processes just because the models exhibit wave distortion

and breaking. Many other behaviors are possible, some rather poorly understood. The answer to a

mathematical breakdown in a model is almost never to be found purely by mathematical arguments;

a careful look at the physical processes the equations attempt to model is a must when this happens.

A possible, and quite frequent, alternative to dissipation is dispersion: namely, the wave speed is

a non-trivial function of the wave number. The simplest instance of dispersion introduces a term

proportional to the third space derivative of the solution in the equations. When coupled with the

simplest kind of nonlinearity (quadratic), this gives rise to the Korteweg-de Vries (KdV) equation.

The nondimensional form of the KdV equation is:

ut + uux = ε2uxxx, (2.17)
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where ε > 0 is a parameter expressing the ratio of dispersion (different wavelengths moving at

different speeds) to nonlinearity.

Remark 2.2 The KdV equation describes (for example) the propagation of long, small (but

finite) amplitude, waves in shallow water channels. The KdV equation is a “canonical” equation

that arises in very many dispersive situations. That this should be so is relatively simple to see:

First. Consider a wave situation where the wave phase speed depends on the wave number in a

nontrivial way: cp = cp(k). Clearly, cp should be an even function of k, since both k and −k
correspond to the same wavelength. Thus, for long waves (k small) one should be able to expand cp in

the form cp = α + β k2 + . . . (where α and β are constants). Furthermore, by changing coordinates

into a moving frame, we can always assume α = 0.

Second. cp ≈ β k2 corresponds to a relationship between the wave number and the wave frequency

of the form ω = k cp(k) ≈ β k3, which corresponds to the equation ut = βuxxx. Thus we see how a

third order derivative arises as the simplest example of dispersive behavior for long waves.

2.2.2 The problem to do.

Show that: for the KdV equation above in (2.17), no shocks are possible. To be precise, con-

sider the non-trivial (i.e. u 6= constant) traveling wave solutions of (2.17):

u = F (ζ), where ζ =
x− V t− x0

ε
, (2.18)

F = F (ζ) is some smooth function, V is a constant (the wave speed), and x0 is some arbitrary

constant. Study all the solutions of this form such that (for some constants u0 and u1)

(a) F (ζ)→ u0 as ζ → −∞, F (ζ)→ u1 as ζ →∞, and F is not identically constant.

(b) The first and all the higher order derivatives of F = F (ζ) vanish as ζ → ±∞.

Then

Show that the conditions: V < u0 = u1, must apply. (2.19)

These solutions cannot represent shock transitions, since the states at ±∞ are equal (therefore,

no jump occurs). In fact, it is possible to write these solutions explicitly in terms of elementary

functions (hyperbolic secant), but finding this explicit form is optional.
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Remark 2.3 The traveling waves described above (that you are supposed to analyze) are called

solitary waves, because they consist of a single isolated disturbance that vanishes very quickly as

x→ ±∞. Such waves are easy to see in shallow water situations, where disturbances of a wavelength

much bigger than the depth are generated. For example, in early summer many lakes develop a thin

layer (a few feet thick) of warm water over the colder (heavier) rest of the water. Waves on this

top layer, with wavelengths much longer than its thickness, obey an equation similar to the KdV

equation, also supporting solitary waves. These are easy to see (when they are generated by boats) as

traveling bumps on the surface of the lake — these are “one-dimensional” bumps, that is: they decay

only in the direction of propagation; the surface elevation is (basically) independent of the direction

normal to the propagation direction (thus they look like “rolls”, moving on the lake surface).

Note that the solitary waves for (2.17) are actually ”dips”, not bumps. In order to obtain “bumps”,

the sign of the dispersive term in (2.17) must be reversed. Namely, one must consider the equation

vt + v vx = −ε2vxxx.

The traveling waves for this equation, and those for (2.17), are related. In fact: u = f(x− V t) is a

traveling wave for (2.17), if and only if v = −f(x+ V t) is a traveling wave for the equation above.

Hint 2.1 First: substitute (2.18) into the KdV equation (2.17). This will yield a third order

O.D.E. for the function F = F (ζ). Notice that the parameter ε is used in (2.18) to scale the

wavelength of the traveling wave, precisely in the form needed to eliminate ε from the O.D.E. that

F satisfies.

Second: you should be able to integrate the third order O.D.E just obtained once, and reduce it to a

second order O.D.E. — with some arbitrary integration constant. If you multiply this second order

O.D.E. by
dF

dζ
, the result can again be integrated, so that you will end up with a first order O.D.E.

for F — with two integration constants in it.

What does “to integrate an O.D.E.” mean?

To integrate an O.D.E., you must first write it in the form derivative (something) = 0,

from which you can conclude that something = constant — you have just “integrated”

the O.D.E. once. Sometimes an O.D.E. cannot be written directly as the derivative of

something, but it is still possible to do so by multiplying the equation by an appropriate

integrating factor. This is what the multiplication by dF/dζ in this hint will accomplish.
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Finally, consider the limits as ζ → ±∞ of the O.D.E. you obtained in the previous steps. Using

the assumed properties for F , you should now be able to obtain that u0 = u1. Showing that you also

need V < u0 = u1 for a solution to exists is a bit trickier, and will require you to do some analysis

of the equation — similar to the one used to study the traveling wave solutions of (2.12).

2.2.3 First order O.D.E. review.

Here we review some facts about real valued solutions to O.D.E.’s of the form(
dy

dx

)2

= R(y) , (2.20)

where R is a real valued, smooth function. We consider the case R = (y − a)(y − b)2 only, where

a and b are constants. However, the same type of analysis can be used for R of general form, by

considering the zeros of R — i.e.: the points y∗ at which R(y∗) = 0. In particular, note that the case

R = c(y − a)(y − b)2, where c > 0 is a constant, can be reduced to this one by the simple scaling

x→
√
c x. We will also assume that a 6= b, since a = b =⇒ y = a+

4δ

(x− x0)2
(where x0 is a

constant and δ = 0 or δ = 1) and there is not much to analyze.

The process below is based in the following idea, useful for any R: once we know

the behavior of the solutions of (2.20) near the zeros of R, and for |y| large, the overall

qualitative behavior is easy to ascertain. This is because the sign of
dy

dx
can change only

at the zeros of R, so that y = y(x) must be monotone between zeros.

Imagine the solutions plotted in the (x, y)–plane — where we draw the horizontal lines

y = y∗, for every zero of R. Now consider a solution in any horizontal strip between two

such zeros: it will have to be monotone (increasing or decreasing) till it reaches one of

the zeros. The key question is: can a zero be reached at a finite value of x? If not, then

the solution will reach the zero only as either x→∞, or x→ −∞. If yes, then we need

to know what happens when the zero is reached, to continue the solution beyond it.

It turns out that only first order zeros can be reached at a finite value of x, and there the

solution “bounces” back from the zero, turning from monotone increasing to monotone

decreasing (or vice versa), with a sign change in
dy

dx
. Thus first order zeros of R are

associated with local maximums (or minimums) of the solutions.
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We must also study the solutions in the half planes between the largest (smallest) zero

of R and ∞ (resp. −∞). For this we need to know the solutions’ behavior for |y| large.

FIRST: It is clear that we need y ≥ a. Else the right hand side in (2.20) is negative and the solution

cannot be real valued — except, possibly, for the trivial solution y ≡ b (if b < a.)

SECOND: Consider the behavior of the non-trivial solutions near the zeros of R (i.e.: exclude the

solutions y ≡ a and y ≡ b.)

• For y ≈ a, write y = a+ z(x), with z > 0 small. Then (dz/dx)2 = (a− b)2 z approximates

the equation. This has the solutions z =
1

4
(a− b)2(x− x0)

2, where x0 is a constant. Thus it

is clear that the solutions of (2.20) will reach local minimums when y approaches a.

• For y ≈ b, write y = b+ z(x), with z small. Then (dz/dx)2 = (b− a) z2 approximates the

equation. This has real solutions only if b > a, with z = c eκx, c a constant and κ = ±
√
b− a.

Thus the solutions of (2.20) can approach b in the limits x→ ±∞, but only if b > a.

THIRD: Use these results to analyze the real valued solutions of (2.20) in the two possible cases.

Case a > b. The solutions are real only if y ≥ a (except for the trivial solution y ≡ b). Then

either y ≡ a or y > a somewhere. In this second case the solution has a minimum at some x = x0

with (dy/dx) > 0 for x > x0 and (dy/dx) < 0 for x < x0. Away from x0, the solution grows without

bound. Eventually y becomes very large, (dy/dx)2 ≈ y3, and the solutions blow up like 4/(x− x∗)2.

Thus the only bounded real solutions are the trivial ones y ≡ a and y ≡ b.

Case b > a. If y > b anywhere, the solution decays to y = b as either x→ ±∞, with a singularity

like 4/(x− x∗)2 at a finite x = x∗. This follows because either (dy/dx) > 0 or (dy/dx) < 0 and there

is no way for the sign to change. On the other hand, if a < y < b, the solution decreases from y = b

at x = −∞, to a minimum at some x = x0 (where y = a) and then increases back to y = b at x =∞.

In this case nontrivial bounded solutions exist in the range a ≤ y < b. These have limits y = b

at x = ±∞ and a single minimum (where y = a) at some finite x = x0.

The analysis above depends only on the nature of the zeros of R. For R = (y − a)(y − b)2 we

can solve the equation explicitly and verify the results: Introduce z = z(x) by z2 = y − a and

write ν2 = b− a. Equation (2.20) — i.e.: (y′)2 = (y − a)(y − b)2 — then becomes

4z2(z′)2 = z2(z2 − ν2)2 ⇐⇒ 2z′ = ±(z2 − ν2) ⇐⇒ ln
(
z − ν
z + ν

)
= ±νx+ α,
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where the prime denotes differentiation with respect to x and α is an arbitrary constant. Here we

do not make any assumptions on the signs of y − a and b− a: thus z, ν and α need not be real.

With some further manipulation this yields, in terms of λ (defined by λ2 = − exp(±νx+ α)),

z = ν
1− λ2

1 + λ2
⇐⇒ ν2 − z2 = ν2

(
2

λ+ λ−1

)2

⇐⇒ y = b− ν2
(

2

λ+ λ−1

)2

.

Finally we can write, being now careful with keeping things real:

Case a > b. Let µ > 0 be defined by µ2 = a− b. Then the nontrivial real solutions are

y = b+ µ2 sec2
(

1

2
µ (x− x0)

)
, (2.21)

where x0 is a constant (the trivial solutions are y ≡ a and y ≡ b.) The relationship with the constants

defined earlier is ν = ±iµ and α± νx0 = iπ. See the left frame in figure 2.1.

Case b > a. Let µ > 0 be defined by µ2 = b− a. Then the nontrivial real solutions are

y = b− µ2 sech2
(

1

2
µ (x− x0)

)
and y = b+ µ2 cosech2

(
1

2
µ (x− x0)

)
, (2.22)

where x0 is a constant (the trivial solutions are y ≡ a and y ≡ b.) The relationship with the constants

defined earlier is ν = ±µ and either α± νx0 = iπ or α± νx0 = 0. See the right frame in figure 2.1.

Next we briefly summarize the situation for more general forms of R — which can be analyzed

with the same techniques we used here. For non-trivial real valued solutions:

1. At a first order zero of R, the solutions will either achieve a local minimum — if dR/dy > 0

there, or a local maximum — if dR/dy < 0 there. In other words, solutions can achieve values

that correspond to simple zeros of R at some finite value of x, where they will have a local

maximum or a local minimum. But these values cannot occur in the limits x→ ±∞.

2. By contrast, solutions cannot achieve values that correspond to higher (bigger than one)

order zeros of R, at any finite value of x. Such values can be achieved only in the limits where

x→ ±∞. For double zeros of R, the approach to the value (as x→ ±∞) is exponential. For

zeros of order higher than two, the approach is algebraic .

3. Periodic oscillatory solutions occur in the regions between simple zeros, where R > 0. This

situation does not occur in the example treated earlier, which has a single simple zero.
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 y
 Real valued solutions: a > b.

 General
 solution.

 a
 b

 x

 y
 Real valued solutions: a < b.

 General
 solution for b < y.

 General
 solution
 for a < y < b.

Figure 2.1: Real valued solutions of equation (2.20), with R = (y − a)(y − b)2.

• Left frame: case a > b. The non-trivial solutions are periodic, with period T = 2π/
√
a− b.

• Right frame: case a < b. All the solutions satisfy y → b as |x| → ∞.

4. Single bump (or dip) solutions occur in the regions, comprised between a simple and a double

(or higher) order zero, where R > 0. The right frame in figure 2.1 shows an example of this.

5. The behavior of the solutions in regions where R > 0, comprised between a zero of R and

±∞, depends on the behavior of R(y) for large values of y. If this leads to the formation of

singularities (e.g.: R = R(y) grows faster than linear as y → ±∞), then the solutions are as

in figure 2.1: either a periodic array of singularities (for a simple zero, left frame) or a single

singularity — with decay to the value of y at the zero of R — as x→ ±∞ (for a double or

higher order zero, right frame.)

THE END.
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