18.311 - MIT (Spring 2011)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).
March 15, 2011.

Problem Set \# 03.

Due: Monday March 28.

Turn it in before 3:30 PM, in the box provided in Room 2-108.
IMPORTANT: The Regular the Special Problems must be stapled in TWO SEPARATE packages, each with your FULL NAME clearly spelled.

Contents

1 Regular Problems. 1
1.1 Statement: TFPa22. Two space D and time characteristics1

Check characteristics for simplest nonlinear scalar equation. 1
1.2 Statement: TFPa24. Semi-linear first order equation and characteristics 2

2 Special Problems. 2
2.1 Statement: TFPb14. Check if discontinuities are allowed shocks 2

Investigate proposed solutions with discontinuities.
Check if they actually are solutions.

1 Regular Problems.

1.1 Statement: TFPa22. Two space D and time characteristics.

If $\psi=\psi(x, y, t)$ solves the equation

$$
\begin{equation*}
\psi_{t}+u \psi_{x}+v \psi_{y}=0 \tag{1.1}
\end{equation*}
$$

show that ψ is constant on the lines

$$
\begin{equation*}
\frac{d x}{d t}=u, \quad \text { and } \quad \frac{d y}{d t}=v \tag{1.2}
\end{equation*}
$$

1.2 Statement: TFPa24.
 Semi-linear first order equation and characteristics.

Consider the equation

$$
\begin{equation*}
x^{2} \psi_{x}+x y \psi_{y}=\psi^{2} \tag{1.3}
\end{equation*}
$$

subject to $\boldsymbol{\psi}=\mathbf{1}$ on the curve $\boldsymbol{\Gamma}$ given by $\boldsymbol{x}=\boldsymbol{y}^{2}$. This is a semi-linear problem that can be written in terms of characteristics.
A. Compute the characteristic curves that cross the curve Γ, as follows: (i) Parameterize the curve Γ, say: $\boldsymbol{x}=\boldsymbol{\xi}^{\mathbf{2}}$ and $\boldsymbol{y}=\boldsymbol{\xi}$, for $-\infty<\boldsymbol{\xi}<\infty$. (ii) Write the o.d.e.'s for the characteristic curves, in terms of some parameter (say, s) along each curve. (iii) Solve the o.d.e.'s for the characteristics, with the condition that $\boldsymbol{x}=\boldsymbol{\xi}^{2}$ and $\boldsymbol{y}=\boldsymbol{\xi}$, for $\boldsymbol{s}=\mathbf{0}$.
B. Describe what type of curves, in the $x-y$ plane, are the characteristics. Which region of the plane do these curves cover? What happens with the characteristic corresponding to $\xi=0$?
C. Solve the o.d.e. that ψ satisfies along each characteristic. Eliminate the parameters ξ and s in terms of x and y, and write an explicit formula for the solution $\psi=\psi(x, y)$ to (1.3).
D. Where is the solution ψ defined? Hint: be careful with your answer here!

2 Special Problems.

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks.

Consider the conservation equation $\boldsymbol{\rho}_{\boldsymbol{t}}+\boldsymbol{q}_{\boldsymbol{x}}=\mathbf{0}$ (for the conserved density ${ }^{1} \rho$) with various choices for the flow rate $q=q(\rho)$ - as given below. Assume that the underlying physical processes behind this conservation equation lead to the formation of shocks - as a resolution of the wave-breaking caused by the crossing of the characteristics. In each case the following discontinuous solution is proposed

$$
\rho(x, t)=\left\{\begin{array}{lll}
\rho_{l} & \text { for } x<0 & \text { and all } t>0 \tag{2.4}\\
\rho_{r} & \text { for } x>0 & \text { and all } t>0
\end{array}\right.
$$

[^0]where ρ_{l} and ρ_{l} are constants.
In each case, check if the given proposed solution is actually a solution. You must justify your answers: If the proposed solution is actually a solution, verify this and, if it is not, say why not. Further: explain what you are doing, in words. A bunch of calculations, without an explanation of what they mean, or why you are doing them, is not an acceptable answer.
A. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=0.5, \rho_{r}=1.5, q_{l}=q_{r}=0.75, c_{l}=1$, and $c_{r}=-1$.
B. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=0, \rho_{r}=1, q_{l}=0, q_{r}=1, c_{l}=2$, and $c_{r}=0$.
C. $\boldsymbol{q}=\boldsymbol{\rho}^{2}$, with $\rho_{l}=-1, \rho_{r}=1, q_{l}=q_{r}=1, c_{l}=-2$, and $c_{r}=2$.
D. $\boldsymbol{q}=1-\boldsymbol{\rho}^{\mathbf{2}}$, with $\rho_{l}=-1, \rho_{r}=1, q_{l}=q_{r}=0, c_{l}=2$, and $c_{r}=-2$.
E. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=1.25, \rho_{r}=0.75, q_{l}=q_{r}=0.9375, c_{l}=-0.5$, and $c_{r}=0.5$.

Remark 2.1 The following notation is used above: $\boldsymbol{q}_{l}=\boldsymbol{q}\left(\boldsymbol{\rho}_{l}\right), \boldsymbol{q}_{r}=\boldsymbol{q}\left(\rho_{r}\right), \quad \boldsymbol{c}_{l}=\boldsymbol{c}\left(\boldsymbol{\rho}_{l}\right)$, and $c_{r}=c\left(\rho_{r}\right)-$ where $c=c(\rho)=\frac{d q}{d \rho}$ is the characteristic speed.
By the way: you can trust that whatever values I tell you q_{l}, q_{r}, c_{l}, and c_{r} have (for the given flux q and densities ρ_{l} and ρ_{r}) is correct. This problem is definitely not about verifying arithmetic!

THE END.

[^0]: ${ }^{1}$ As far as this problem is concerned, what stuff ρ is the density for is not important. All you need to know is that the stuff is conserved. In fact, ρ need not even be the "absolute" density, it can just be the deviation from some reference density of stuff.

