18.311 — MIT (Spring 2011)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

March 15, 2011.

Problem Set # 03.

Due: Monday March 28.

Turn it in before 3:30 PM, in the box provided in Room 2-108.

IMPORTANT: The Regular the Special Problems must be **stapled in TWO SEPARATE packages**, each with your **FULL NAME** clearly spelled.

Contents

1	Regular Problems.		1
	1.1	Statement: TFPa22. Two space D and time characteristics \ldots \ldots \ldots \ldots \ldots	1
		Check characteristics for simplest nonlinear scalar equation.	1
	1.2	Statement: TFPa24. Semi-linear first order equation and characteristics	2
2 Special Problems.		ecial Problems.	2
	2.1	Statement: TFPb14. Check if discontinuities are allowed shocks	2
		Investigate proposed solutions with discontinuities.	
		Check if they actually are solutions	2

1 Regular Problems.

1.1 Statement: TFPa22. Two space D and time characteristics.

If $\psi = \psi(x, y, t)$ solves the equation

$$\psi_t + u\,\psi_x + v\,\psi_y = 0\,,\,(1.1)$$

show that ψ is constant on the lines

$$\frac{dx}{dt} = u$$
, and $\frac{dy}{dt} = v$. (1.2)

1.2 Statement: TFPa24.

Semi-linear first order equation and characteristics.

Consider the equation

$$x^2 \psi_x + x \, y \, \psi_y = \psi^2 \,, \tag{1.3}$$

subject to $\psi = 1$ on the curve Γ given by $x = y^2$. This is a semi-linear problem that can be written in terms of characteristics.

- A. Compute the characteristic curves that cross the curve Γ, as follows: (i) Parameterize the curve Γ, say: x = ξ² and y = ξ, for -∞ < ξ < ∞. (ii) Write the o.d.e.'s for the characteristic curves, in terms of some parameter (say, s) along each curve. (iii) Solve the o.d.e.'s for the characteristics, with the condition that x = ξ² and y = ξ, for s = 0.
- **B.** Describe what type of curves, in the x-y plane, are the characteristics. Which region of the plane do these curves cover? What happens with the characteristic corresponding to $\xi = 0$?
- **C.** Solve the o.d.e. that ψ satisfies along each characteristic. Eliminate the parameters ξ and s in terms of x and y, and write an explicit formula for the solution $\psi = \psi(x, y)$ to (1.3).
- **D.** Where is the solution ψ defined? **Hint:** be careful with your answer here!

2 Special Problems.

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks.

Consider the conservation equation $\rho_t + q_x = 0$ (for the conserved density¹ ρ) with various choices for the flow rate $q = q(\rho)$ — as given below. Assume that the underlying physical processes behind this conservation equation lead to the formation of shocks — as a resolution of the wave-breaking caused by the crossing of the characteristics. In each case the following *discontinuous solution is proposed*

$$\rho(x,t) = \begin{cases}
\rho_l & \text{for } x < 0 \text{ and all } t > 0, \\
\rho_r & \text{for } x > 0 \text{ and all } t > 0,
\end{cases}$$
(2.4)

¹As far as this problem is concerned, what stuff ρ is the density for is not important. All you need to know is that the stuff is conserved. In fact, ρ need not even be the "absolute" density, it can just be the deviation from some reference density of stuff.

where ρ_l and ρ_l are constants.

In each case, check if the given proposed solution is actually a solution. You must justify your answers: If the proposed solution is actually a solution, verify this and, if it is not, say why not. Further: explain what you are doing, in words. A bunch of calculations, without an explanation of what they mean, or why you are doing them, is not an acceptable answer.

A.
$$q = \rho(2 - \rho)$$
, with $\rho_l = 0.5$, $\rho_r = 1.5$, $q_l = q_r = 0.75$, $c_l = 1$, and $c_r = -1$.
B. $q = \rho(2 - \rho)$, with $\rho_l = 0$, $\rho_r = 1$, $q_l = 0$, $q_r = 1$, $c_l = 2$, and $c_r = 0$.
C. $q = \rho^2$, with $\rho_l = -1$, $\rho_r = 1$, $q_l = q_r = 1$, $c_l = -2$, and $c_r = 2$.
D. $q = 1 - \rho^2$, with $\rho_l = -1$, $\rho_r = 1$, $q_l = q_r = 0$, $c_l = 2$, and $c_r = -2$.
E. $q = \rho(2 - \rho)$, with $\rho_l = 1.25$, $\rho_r = 0.75$, $q_l = q_r = 0.9375$, $c_l = -0.5$, and $c_r = 0.5$.

Remark 2.1 The following notation is used above: $q_l = q(\rho_l)$, $q_r = q(\rho_r)$, $c_l = c(\rho_l)$, and $c_r = c(\rho_r)$ — where $c = c(\rho) = \frac{dq}{d\rho}$ is the characteristic speed. By the way: you can trust that whatever values I tell you q_l , q_r , c_l , and c_r have (for the given flux q and densities ρ_l and ρ_r) is correct. This problem is definitely **not** about verifying arithmetic!

THE END.