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Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

March 11, 2011.

Problem Set # 02.

Due: Friday March 18.

Turn it in before 3:30 PM, in the box provided in Room 2-108.

IMPORTANT: The Regular the Special Problems must be stapled in TWO SEPARATE packages,

each with your FULL NAME clearly spelled.
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1 Regular Problems.

1.1 Statement: Haberman problem 71.07.

Consider two moving observers (possibly far apart), both moving at the same velocity V , such

that the number of cars the first observer passes is the same as the number passed by the second

observer.

(a) Show that V =
∆q

∆ρ
.

(b) Show that the average density between the two observers stays a constant.

1.2 Statement: Haberman problem 73.02 and 03.

Assume that the car flow velocity is related to the car density by:

u = um

(
1− ρ

ρj

)
=⇒ q = um

(
1− ρ

ρj

)
ρ =⇒ c = um

(
1− 2

ρ

ρj

)
, (1.1)

where ρj is the jamming density and um is the car speed limit. Consider now the red light turns

green problem and:

First: Calculate the maximum acceleration of a car which starts approximately one car length

behind a traffic light (i.e. x(0) = −1/ρj).

Second: Calculate the velocity of a car at the moment it starts moving behind a light.

1.3 Statement: Haberman problem 74.01.

Assume that u(ρ) = um (1− ρ/ρj), where um is the speed limit and ρj is the jamming density. For

the initial conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 ≤ x ≤ L,

0 for L < x,

(1.2)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).
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1.4 Statement: Haberman problem 77.03.

A weak shock is a shock in which the shock strength (the difference in densities) is small. For a

weak shock, show that the shock velocity is approximately the average of the density wave velocities

associated with the two densities. [Hint: Use Taylor series methods.]

1.5 Statement: Haberman problem 77.04..

Show [ ρ2 ] 6= [ ρ ]2.

2 Special Problems.

2.1 Statement: Haberman problem 78.03.

Assume that u = umax (1− ρ/ρmax) and at t = 0 the traffic density is

ρ(x, 0) =

 (1/3) ρmax for x < 0,

(2/3) ρmax for x > 0.
(2.3)

Why does the density not change in time?

2.2 Statement: TFPa23. Traffic flow initial-boundary value problem.

Consider a semi–infinite (x̃ > 0) highway for which the density at the entrance is

ρ̃(0, t̃) =

 ρ̃1 for 0 < t̃ < τ,

ρ̃0 for τ < t̃,
(2.4)

where τ > 0 is constant, and such that the initial density is uniform along the highway: ρ̃(x̃, 0) = ρ̃0,

for x̃ > 0. Furthermore, assume that ρ̃0 is lighter traffic than ρ̃1, and that both are light traffic; in

fact assume that ũ(ρ̃) = umax (1− ρ̃/ρmax) and that 0 < ρ̃0 < ρ̃1 < ρmax/2.

Part 1. Show that a-dimensional variables can be found in which the situation takes the form

ρt + qx = 0, with ρ(x, 0) = ρ0 for x > 0 and ρ(0, t) =

 ρ1 for 0 < t < 1,

ρ0 for 1 < t,
(2.5)
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where 0 < ρ0 < ρ1 < 1/2, q = ρ u, and u(ρ) = (1− ρ). In other words, find (dimensional) constants

x∗, t∗, ρ∗, u∗, . . . such that x̃ = x∗ x, t̃ = t∗ t, ρ̃ = ρ∗ ρ ũ = u∗ u, . . . reduces (2.4) to (2.5).

Part 2. Solve the problem in (2.5), and determine the density ρ = ρ(x, t) for all x > 0 and t > 0.

In particular:

a) Solve and display the equations for all the characteristics.

b) Solve and display the equations for all shocks (explicitly).

c) Sketch the characteristics and shock paths in space-time.

d) Find explicit expressions for ρ = ρ(x, t).

e) Sketch ρ as a function of x for selected values of time (illustrate all possible cases).

THE END.
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