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Due: Tuesday March 16. Turn it in before 3:30 PM, in the box provided in Room 2-108.

IMPORTANT: The Regular and the Special Problems must be stapled in TWO SEPARATE pack-

ages, each with your FULL NAME clearly spelled.

Generic HINTS:

1. When q = q(ρ) is quadratic, the shock speed is the average of the characteristic speeds imme-

diately to the right and left of the shock. For many problems this simplifies the algebra.

2. The general solution of a linear o.d.e. with a forcing term can be written as the sum of a

particular solution, plus the general solution to the homogeneous problem.

3. When solving the o.d.e. for the shock path, as given by the Rankine-Hugoniot jump conditions,

beware of the fact that many of the solutions in the problem sets are given by different formulas

in different regions. Hence, as a shock enters a different region, the o.d.e. changes. Keep

track of this. Example: a shock starts with constant velocity (states on each side are constant)

and switches to variable velocity (enters a region with a rarefaction fan on one side).

4. Remember that the characteristics are the curves along which information propagates. A

situation where the solution along a characteristic is determined backwards in time is not

physically meaningful, as it violates causality. Make sure that your solutions satisfy causality!

5. Always: check that your answers are sensible. If it seems as if they predict something that

contradicts physical observation, then something is probably wrong!

Contents

1 Regular Problems. 2

1.1 Statement: Haberman problem 77.01 . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Shock velocity is average of characteristic velocities for u = u(ρ) linear. . . . . . . 2

1.2 Statement: Haberman problem 77.04 . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1



Nonlinearity matters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Statement: Haberman problem 77.05 . . . . . . . . . . . . . . . . . . . . . . . . . . 3

“Diffusion” effects in traffic flow. Burger’s equation. . . . . . . . . . . . . . . . . 3

1.4 Statement: Haberman problem 78.08 . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Solve initial-boundary value problem for traffic flow. . . . . . . . . . . . . . . . . 3

1.5 Statement: TFPa11. Longest queue through a light . . . . . . . . . . . . . . . . . . 3

Last car to make green light. Longest queue through a light. . . . . . . . . . . . 3

1.6 Statement: TFPa17. Shock interaction with a traffic light . . . . . . . . . . . . . . . 4

1.7 Statement: TFPa24. Semi-linear first order equation and characteristics . . . . . . . 4

2 Special Problems. 5

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks . . . . . . . . . . . 5

Investigate candidate solutions with discontinuities.

Check if they actually are solutions. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Statement: TFPb15. Traffic lights at the ends of a tunnel . . . . . . . . . . . . . . . 6

Red lights go on, simultaneously, at both ends of a tunnel. . . . . . . . . . . . . 6

List of Figures

1.1 TFPa17: Shock in traffic density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If u = umax (1− ρ/ρmax), then what is the velocity of a traffic shock separating densities ρ0 and

ρ1? Simplify the expression as much as possible. Show that the shock velocity is the average of the

density wave velocities associated with ρ0 and ρ1.

1.2 Statement: Haberman problem 77.04..

Show [ ρ2 ] 6= [ ρ ]2.
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1.3 Statement: Haberman problem 77.05.

Suppose that, instead of u = U(ρ), the car velocity u is

u = U(ρ)− ν

ρ
ρx, (1.1)

where ν is a constant.

(a) What sign should ν have for this expression to be physically reasonable?

(b) What equation now describes conservation of cars?

(c) Assume that U(ρ) = umax (1− ρ/ρmax). Show that

ρt + umax

(
1− 2 ρ

ρmax

)
ρx = ν ρxx, (1.2)

called Burger’s equation.

1.4 Statement: Haberman problem 78.08.

Determine the traffic density on a semi–infinity (x > 0) highway for which the density at the entrance

is

ρ(0, t) =

 ρ1 for 0 < t < τ,

ρ0 for τ < t,
(1.3)

where τ > 0 is constant, and the initial density is uniform along the highway — assume that

ρ(x, 0) = ρ0, for x > 0. Furthermore, assume that ρ1 is lighter traffic than ρ0, and that both are

light traffic; in fact assume that u(ρ) = umax (1− ρ/ρmax) and that ρ1 < ρ0 < ρmax/2. Sketch the

density at various values of time.

1.5 Statement: TFPa11. Longest queue through a light.

A traffic signal (at x = 0) is green for 0 ≤ t ≤ T , and red for all other times. If ρ(x, 0) = ρj for

x ≤ 0, ρ(x, 0) = 0 for x > 0, and q = (4 qm/ρ
2
j) ρ (ρj − ρ), determine the trajectory of the last car

to make the light. What is the longest traffic queue that can pass through the intersection during

the green light?
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1.6 Statement: TFPa17. Shock interaction with a traffic light.

At time t = 0, the traffic pattern on a long highway consists of two sections of constant concentration,

joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light

at x = 0 turns (at time t = 0) and remains red, describe the resultant motion. Let the position

of the shock at time t = 0 be given by x = −L < 0, and assume that q =
4 qm
ρ2

j

ρ (ρj − ρ) — with

0 < ρ0 < ρ1 < (1/2) ρj = ρm.

 !0

 !1

 U

 !(x, 0)

 x 0

 Shock in traffic density.

Figure 1.1: TFPa17: Shock in traffic density.

1.7 Statement: TFPa24.

Semi-linear first order equation and characteristics.

Consider the equation

x2 ψx + x y ψy = ψ2 , (1.4)

subject to ψ = 1 on the curve Γ given by x = y2. This is a semi-linear problem that can be

written in terms of characteristics.

A. Compute the characteristic curves that cross the curve Γ, as follows: (i) Parameterize the curve

Γ, say: x = ξ2 and y = ξ, for −∞ < ξ <∞. (ii) Write the o.d.e.’s for the characteristic

curves, in terms of some parameter (say, s) along each curve. (iii) Solve the o.d.e.’s for the

characteristics, with the condition that x = ξ2 and y = ξ, for s = 0.
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B. Describe what type of curves, in the x-y plane, are the characteristics. Which region of the

plane do these curves cover? What happens with the characteristic corresponding to ξ = 0?

C. Solve the o.d.e. that ψ satisfies along each characteristic. Eliminate the parameters ξ and s

in terms of x and y, and write an explicit formula for the solution ψ = ψ(x, y) to (1.4).

D. Where is the solution ψ defined? Hint: be careful with your answer here!

2 Special Problems.

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks.

Consider the conservation equation ρt + qx = 0 (for the conserved density ρ) with various choices

for the flow rate q = q(ρ) — as given below. Assume that the underlying physical processes behind this

conservation equation lead to the formation of shocks — as a resolution of the wave–breaking caused

by the crossing of the characteristics.

In each case a candidate discontinuous solution is proposed, of the the form:

ρ(x, t) =

 ρl for x < 0 and all t > 0,

ρr for x > 0 and all t > 0,
(2.5)

where ρl and ρl are constants. Notation: ql = q(ρl), qr = q(ρr), cl = c(ρl), and cr = c(ρr), where

c = c(ρ) =
dq

dρ
is the characteristic speed.

Check if the given “candidate solution” are actually solutions. Justify your

answers: If something is a solution, verify this and, if it is not, say why not.

A. q = ρ(2− ρ), with ρl = 0.5, ρr = 1.5, ql = qr = 0.75, cl = 1, and cr = −1.

B. q = ρ(2− ρ), with ρl = 0, ρr = 1, ql = 0, qr = 1, cl = 2, and cr = 0.

C. q = ρ2, with ρl = −1, ρr = 1, ql = qr = 1, cl = −2, and cr = 2.

D. q = 1− ρ2, with ρl = −1, ρr = 1, ql = qr = 0, cl = 2, and cr = −2.

E. q = ρ(2− ρ), with ρl = 1.25, ρr = 0.75, ql = qr = 0.9375, cl = −0.5, and cr = 0.5.
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2.2 Statement: TFPb15. Traffic lights at the ends of a tunnel.

Consider a tunnel in a road, governed by the traffic flow equation ρt + qx = 0 applies. Assume

that the following situation occurs (we use non-dimensional variables)

A. The flux is given by q = ρ (2− ρ). Thus c = 2 (1− ρ) — wave speed, u = (2− ρ) — flow

velocity, ρJ = 2 — jamming density, and qM = 1 — road capacity, occurring for ρM = 1.

B. The tunnel is located at 0 ≤ x ≤ 1.

C. There are traffic lights at both tunnel ends: one light at x = 0, and another one at x = 1.

D. For t < 0 both lights are green and the flow is uniform, at the road capacity ρ ≡ ρM = 1.

E. At time t = 0 both traffic lights go simultaneously red, and stay red from then on.

Solve for the traffic flow density ρ inside the tunnel for all times t ≥ 0. An explicit (very

explicit) solution is required. There are two very “special” waves that will arise at the

positions of the traffic lights; what are they (i.e.: physically, what do they mean)?

THE END.
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