18.311 - MIT (Spring 2010)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).
March 2, 2010.

Problem Set \# 04.

Due: Tuesday March 16. Turn it in before 3:30 PM, in the box provided in Room 2-108. IMPORTANT: The Regular and the Special Problems must be stapled in TWO SEPARATE packages, each with your FULL NAME clearly spelled.

Generic HINTS:

1. When $q=q(\rho)$ is quadratic, the shock speed is the average of the characteristic speeds immediately to the right and left of the shock. For many problems this simplifies the algebra.
2. The general solution of a linear o.d.e. with a forcing term can be written as the sum of a particular solution, plus the general solution to the homogeneous problem.
3. When solving the o.d.e. for the shock path, as given by the Rankine-Hugoniot jump conditions, beware of the fact that many of the solutions in the problem sets are given by different formulas in different regions. Hence, as a shock enters a different region, the o.d.e. changes. Keep track of this. Example: a shock starts with constant velocity (states on each side are constant) and switches to variable velocity (enters a region with a rarefaction fan on one side).
4. Remember that the characteristics are the curves along which information propagates. A situation where the solution along a characteristic is determined backwards in time is not physically meaningful, as it violates causality. Make sure that your solutions satisfy causality!
5. Always: check that your answers are sensible. If it seems as if they predict something that contradicts physical observation, then something is probably wrong!

Contents

1 Regular Problems. 2

1.1 Statement: Haberman problem 77.01 . 2

Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear. 2
1.2 Statement: Haberman problem 77.04 . 2
Nonlinearity matters. 2
1.3 Statement: Haberman problem 77.05 3
"Diffusion" effects in traffic flow. Burger's equation. 3
1.4 Statement: Haberman problem 78.08 3
Solve initial-boundary value problem for traffic flow. 3
1.5 Statement: TFPa11. Longest queue through a light 3
Last car to make green light. Longest queue through a light. 3
1.6 Statement: TFPa17. Shock interaction with a traffic light 4
1.7 Statement: TFPa24. Semi-linear first order equation and characteristics 4
2 Special Problems. 5
2.1 Statement: TFPb14. Check if discontinuities are allowed shocks 5
Investigate candidate solutions with discontinuities.
Check if they actually are solutions. 5
2.2 Statement: TFPb15. Traffic lights at the ends of a tunnel 6
Red lights go on, simultaneously, at both ends of a tunnel. 6
List of Figures
1.1 TFPa17: Shock in traffic density. 4

1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If $u=u_{\max }\left(1-\rho / \rho_{\max }\right)$, then what is the velocity of a traffic shock separating densities ρ_{0} and
ρ_{1} ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_{0} and ρ_{1}.

1.2 Statement: Haberman problem 77.04..

Show $\left[\rho^{2}\right] \neq[\rho]^{2}$.

1.3 Statement: Haberman problem 77.05.

Suppose that, instead of $u=U(\rho)$, the car velocity u is

$$
\begin{equation*}
u=U(\rho)-\frac{\nu}{\rho} \rho_{x} \tag{1.1}
\end{equation*}
$$

where ν is a constant.
(a) What sign should $\boldsymbol{\nu}$ have for this expression to be physically reasonable?
(b) What equation now describes conservation of cars?
(c) Assume that $U(\rho)=u_{\max }\left(1-\rho / \rho_{\max }\right)$. Show that

$$
\begin{equation*}
\rho_{t}+u_{\max }\left(1-\frac{2 \rho}{\rho_{\max }}\right) \rho_{x}=\nu \rho_{x x} \tag{1.2}
\end{equation*}
$$

called Burger's equation.

1.4 Statement: Haberman problem 78.08.

Determine the traffic density on a semi-infinity $(x>0)$ highway for which the density at the entrance is

$$
\rho(0, t)= \begin{cases}\rho_{1} & \text { for } 0<t<\tau \tag{1.3}\\ \rho_{0} & \text { for } \tau<t\end{cases}
$$

where $\tau>0$ is constant, and the initial density is uniform along the highway - assume that $\rho(x, 0)=\rho_{0}$, for $x>0$. Furthermore, assume that ρ_{1} is lighter traffic than ρ_{0}, and that both are light traffic; in fact assume that $u(\rho)=u_{\max }\left(1-\rho / \rho_{\max }\right)$ and that $\rho_{1}<\rho_{0}<\rho_{\max } / 2$. Sketch the density at various values of time.

1.5 Statement: TFPa11. Longest queue through a light.

A traffic signal (at $x=0$) is green for $0 \leq t \leq T$, and red for all other times. If $\rho(x, 0)=\rho_{j}$ for $x \leq 0, \rho(x, 0)=0$ for $x>0$, and $q=\left(4 q_{m} / \rho_{j}^{2}\right) \rho\left(\rho_{j}-\rho\right)$, determine the trajectory of the last car to make the light. What is the longest traffic queue that can pass through the intersection during the green light?

1.6 Statement: TFPa17. Shock interaction with a traffic light.

At time $t=0$, the traffic pattern on a long highway consists of two sections of constant concentration, joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light at $x=0$ turns (at time $t=0$) and remains red, describe the resultant motion. Let the position of the shock at time $t=0$ be given by $x=-L<0$, and assume that $q=\frac{4 q_{m}}{\rho_{j}^{2}} \rho\left(\rho_{j}-\rho\right)-$ with $0<\rho_{0}<\rho_{1}<(1 / 2) \rho_{j}=\rho_{m}$.

Figure 1.1: TFPa17: Shock in traffic density.

1.7 Statement: TFPa24. Semi-linear first order equation and characteristics.

Consider the equation

$$
\begin{equation*}
x^{2} \psi_{x}+x y \psi_{y}=\psi^{2} \tag{1.4}
\end{equation*}
$$

subject to $\boldsymbol{\psi}=\mathbf{1}$ on the curve $\boldsymbol{\Gamma}$ given by $\boldsymbol{x}=\boldsymbol{y}^{2}$. This is a semi-linear problem that can be written in terms of characteristics.
A. Compute the characteristic curves that cross the curve Γ, as follows: (i) Parameterize the curve Γ, say: $\boldsymbol{x}=\boldsymbol{\xi}^{\mathbf{2}}$ and $\boldsymbol{y}=\boldsymbol{\xi}$, for $-\infty<\boldsymbol{\xi}<\infty$. (ii) Write the o.d.e.'s for the characteristic curves, in terms of some parameter (say, s) along each curve. (iii) Solve the o.d.e.'s for the characteristics, with the condition that $\boldsymbol{x}=\boldsymbol{\xi}^{2}$ and $\boldsymbol{y}=\boldsymbol{\xi}$, for $\boldsymbol{s}=\mathbf{0}$.
B. Describe what type of curves, in the $x-y$ plane, are the characteristics. Which region of the plane do these curves cover? What happens with the characteristic corresponding to $\xi=0$?
C. Solve the o.d.e. that ψ satisfies along each characteristic. Eliminate the parameters ξ and s in terms of x and y, and write an explicit formula for the solution $\psi=\psi(x, y)$ to (1.4).
D. Where is the solution ψ defined? Hint: be careful with your answer here!

2 Special Problems.

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks.

Consider the conservation equation $\boldsymbol{\rho}_{\boldsymbol{t}}+\boldsymbol{q}_{\boldsymbol{x}}=\mathbf{0}$ (for the conserved density ρ) with various choices for the flow rate $q=q(\rho)$ - as given below. Assume that the underlying physical processes behind this conservation equation lead to the formation of shocks - as a resolution of the wave-breaking caused by the crossing of the characteristics.

In each case a candidate discontinuous solution is proposed, of the the form:

$$
\rho(x, t)=\left\{\begin{array}{lll}
\rho_{l} & \text { for } x<0 \text { and all } t>0 \tag{2.5}\\
\rho_{r} & \text { for } x>0 & \text { and all } t>0
\end{array}\right.
$$

where $\boldsymbol{\rho}_{l}$ and $\boldsymbol{\rho}_{l}$ are constants. Notation: $q_{l}=q\left(\rho_{l}\right), q_{r}=q\left(\rho_{r}\right), c_{l}=c\left(\rho_{l}\right)$, and $c_{r}=c\left(\rho_{r}\right)$, where $c=c(\rho)=\frac{d q}{d \rho}$ is the characteristic speed.

Check if the given "candidate solution" are actually solutions. Justify your answers: If something is a solution, verify this and, if it is not, say why not.

A. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=0.5, \rho_{r}=1.5, q_{l}=q_{r}=0.75, c_{l}=1$, and $c_{r}=-1$.
B. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=0, \rho_{r}=1, q_{l}=0, q_{r}=1, c_{l}=2$, and $c_{r}=0$.
C. $\boldsymbol{q}=\boldsymbol{\rho}^{\mathbf{2}}$, with $\rho_{l}=-1, \rho_{r}=1, q_{l}=q_{r}=1, c_{l}=-2$, and $c_{r}=2$.
D. $\boldsymbol{q}=1-\boldsymbol{\rho}^{\mathbf{2}}$, with $\rho_{l}=-1, \rho_{r}=1, q_{l}=q_{r}=0, c_{l}=2$, and $c_{r}=-2$.
E. $\boldsymbol{q}=\boldsymbol{\rho}(2-\boldsymbol{\rho})$, with $\rho_{l}=1.25, \rho_{r}=0.75, q_{l}=q_{r}=0.9375, c_{l}=-0.5$, and $c_{r}=0.5$.

2.2 Statement: TFPb15. Traffic lights at the ends of a tunnel.

Consider a tunnel in a road, governed by the traffic flow equation $\boldsymbol{\rho}_{\boldsymbol{t}}+\boldsymbol{q}_{\boldsymbol{x}}=\mathbf{0}$ applies. Assume that the following situation occurs (we use non-dimensional variables)
A. The flux is given by $\boldsymbol{q}=\rho(2-\rho)$. Thus $\boldsymbol{c}=2(1-\rho)$ - wave speed, $\boldsymbol{u}=(2-\rho)$ - flow velocity, $\boldsymbol{\rho}_{J}=\mathbf{2}$ - jamming density, and $\boldsymbol{q}_{M}=\mathbf{1}$ - road capacity, occurring for $\boldsymbol{\rho}_{M}=\mathbf{1}$.
B. The tunnel is located at $\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}$.
C. There are traffic lights at both tunnel ends: one light at $x=0$, and another one at $x=1$.
D. For $t<0$ both lights are green and the flow is uniform, at the road capacity $\rho \equiv \rho_{M}=1$.
E. At time $\boldsymbol{t}=\mathbf{0}$ both traffic lights go simultaneously red, and stay red from then on.

Solve for the traffic flow density ρ inside the tunnel for all times $t \geq 0$. An explicit (very explicit) solution is required. There are two very "special" waves that will arise at the positions of the traffic lights; what are they (i.e.: physically, what do they mean)?

THE END.

