18.311 - MIT (Spring 2010)

Rodolfo R. Rosales (MIT, Math. Dept., 2-337, Cambridge, MA 02139).

March 2, 2010.

Problem Set # 04.

Due: Tuesday March 16. Turn it in before 3:30 PM, in the box provided in Room 2-108. IMPORTANT: The Regular and the Special Problems must be stapled in TWO SEPARATE packages, each with your FULL NAME clearly spelled.

Generic HINTS:

- 1. When $q = q(\rho)$ is quadratic, the shock speed is the average of the characteristic speeds immediately to the right and left of the shock. For many problems this simplifies the algebra.
- 2. The general solution of a linear o.d.e. with a forcing term can be written as the sum of a particular solution, plus the general solution to the homogeneous problem.
- 3. When solving the o.d.e. for the shock path, as given by the Rankine-Hugoniot jump conditions, beware of the fact that many of the solutions in the problem sets are given by different formulas in different regions. Hence, as a shock enters a different region, the o.d.e. changes. Keep track of this. Example: a shock starts with constant velocity (states on each side are constant) and switches to variable velocity (enters a region with a rarefaction fan on one side).
- 4. Remember that the characteristics are the curves along which information propagates. A situation where the solution along a characteristic is determined backwards in time is not physically meaningful, as it violates causality. Make sure that your solutions satisfy causality!
- 5. Always: check that your answers are sensible. If it seems as if they predict something that contradicts physical observation, then something is probably wrong!

Contents

L	Reg	Regular Problems.								
	1.1	Statement: Haberman problem 77.01	2							
		Shock velocity is average of characteristic velocities for $u=u(ho)$ linear	2							
	1.2	Statement: Haberman problem 77.04	2							

		Nonlinearity matters.	2											
	1.3	Statement: Haberman problem 77.05	3											
		"Diffusion" effects in traffic flow. Burger's equation	3											
	1.4	Statement: Haberman problem 78.08	3											
	Solve initial-boundary value problem for traffic flow.													
	1.5	Statement: TFPa11. Longest queue through a light	3											
Last car to make green light. Longest queue through a light.														
	1.6	Statement: TFPa17. Shock interaction with a traffic light	4											
	1.7	Statement: TFPa24. Semi-linear first order equation and characteristics	4											
2	\mathbf{Spe}	Special Problems.												
	2.1	Statement: TFPb14. Check if discontinuities are allowed shocks $\ldots \ldots \ldots \ldots$	5											
		Investigate candidate solutions with discontinuities.												
		Check if they actually are solutions	5											
	2.2	Statement: TFPb15. Traffic lights at the ends of a tunnel	6											
		Red lights go on, simultaneously, at both ends of a tunnel	6											

List of Figures

1.1	TFPa17: Shock in traffic density.																					4	5
-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

1 Regular Problems.

1.1 Statement: Haberman problem 77.01.

If $u = u_{\text{max}} (1 - \rho/\rho_{\text{max}})$, then what is the velocity of a traffic shock separating densities ρ_0 and ρ_1 ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_0 and ρ_1 .

1.2 Statement: Haberman problem 77.04..

Show $[\rho^2] \neq [\rho]^2$.

1.3 Statement: Haberman problem 77.05.

Suppose that, instead of $u = U(\rho)$, the car velocity u is

$$u = U(\rho) - \frac{\nu}{\rho} \rho_x, \tag{1.1}$$

where ν is a constant.

- (a) What sign should ν have for this expression to be physically reasonable?
- (b) What equation now describes conservation of cars?
- (c) Assume that $U(\rho) = u_{\max} (1 \rho/\rho_{\max})$. Show that

$$\rho_t + u_{\max} \left(1 - \frac{2\rho}{\rho_{\max}} \right) \rho_x = \nu \,\rho_{xx},\tag{1.2}$$

called **Burger's equation**.

1.4 Statement: Haberman problem 78.08.

Determine the traffic density on a semi-infinity (x > 0) highway for which the density at the entrance is

$$\rho(0, t) = \begin{cases}
\rho_1 & \text{for } 0 < t < \tau, \\
\rho_0 & \text{for } \tau < t,
\end{cases}$$
(1.3)

where $\tau > 0$ is constant, and the initial density is uniform along the highway — assume that $\rho(x, 0) = \rho_0$, for x > 0. Furthermore, assume that ρ_1 is lighter traffic than ρ_0 , and that both are light traffic; in fact assume that $u(\rho) = u_{\max} (1 - \rho/\rho_{\max})$ and that $\rho_1 < \rho_0 < \rho_{\max}/2$. Sketch the density at various values of time.

1.5 Statement: TFPa11. Longest queue through a light.

A traffic signal (at x = 0) is green for $0 \le t \le T$, and red for all other times. If $\rho(x, 0) = \rho_j$ for $x \le 0$, $\rho(x, 0) = 0$ for x > 0, and $q = (4 q_m / \rho_j^2) \rho(\rho_j - \rho)$, determine the trajectory of the last car to make the light. What is the longest traffic queue that can pass through the intersection during the green light?

1.6 Statement: TFPa17. Shock interaction with a traffic light.

At time t = 0, the traffic pattern on a long highway consists of two sections of constant concentration, joined by a shock which moves in the positive x direction, as shown in figure 1.1. If a traffic light at x = 0 turns (at time t = 0) and remains red, describe the resultant motion. Let the position of the shock at time t = 0 be given by x = -L < 0, and assume that $q = \frac{4 q_m}{\rho_j^2} \rho (\rho_j - \rho)$ — with $0 < \rho_0 < \rho_1 < (1/2) \rho_j = \rho_m$.

Figure 1.1: TFPa17: Shock in traffic density.

1.7 Statement: TFPa24.

Semi-linear first order equation and characteristics.

Consider the equation

$$x^2 \psi_x + x \, y \, \psi_y = \psi^2 \,, \tag{1.4}$$

subject to $\psi = 1$ on the curve Γ given by $x = y^2$. This is a semi-linear problem that can be written in terms of characteristics.

A. Compute the characteristic curves that cross the curve Γ, as follows: (i) Parameterize the curve Γ, say: x = ξ² and y = ξ, for -∞ < ξ < ∞. (ii) Write the o.d.e.'s for the characteristic curves, in terms of some parameter (say, s) along each curve. (iii) Solve the o.d.e.'s for the characteristics, with the condition that x = ξ² and y = ξ, for s = 0.

- **B.** Describe what type of curves, in the *x-y* plane, are the characteristics. Which region of the plane do these curves cover? What happens with the characteristic corresponding to $\xi = 0$?
- **C.** Solve the o.d.e. that ψ satisfies along each characteristic. Eliminate the parameters ξ and s in terms of x and y, and write an explicit formula for the solution $\psi = \psi(x, y)$ to (1.4).
- **D.** Where is the solution ψ defined? **Hint:** be careful with your answer here!

2 Special Problems.

2.1 Statement: TFPb14. Check if discontinuities are allowed shocks.

Consider the conservation equation $\rho_t + q_x = 0$ (for the conserved density ρ) with various choices for the flow rate $q = q(\rho)$ — as given below. Assume that the underlying physical processes behind this conservation equation lead to the formation of shocks — as a resolution of the wave-breaking caused by the crossing of the characteristics.

In each case a *candidate discontinuous solution* is proposed, of the the form:

$$\rho(x,t) = \begin{cases}
\rho_l & \text{for } x < 0 \text{ and all } t > 0, \\
\rho_r & \text{for } x > 0 \text{ and all } t > 0,
\end{cases}$$
(2.5)

where ρ_l and ρ_l are constants. Notation: $q_l = q(\rho_l)$, $q_r = q(\rho_r)$, $c_l = c(\rho_l)$, and $c_r = c(\rho_r)$, where $c = c(\rho) = \frac{dq}{d\rho}$ is the characteristic speed.

Check if the given "candidate solution" are actually solutions. Justify your answers: If something is a solution, verify this and, if it is not, say why not.

A.
$$q = \rho(2 - \rho)$$
, with $\rho_l = 0.5$, $\rho_r = 1.5$, $q_l = q_r = 0.75$, $c_l = 1$, and $c_r = -1$.

B.
$$q = \rho(2 - \rho)$$
, with $\rho_l = 0$, $\rho_r = 1$, $q_l = 0$, $q_r = 1$, $c_l = 2$, and $c_r = 0$.

C.
$$q = \rho^2$$
, with $\rho_l = -1$, $\rho_r = 1$, $q_l = q_r = 1$, $c_l = -2$, and $c_r = 2$.

D.
$$q = 1 - \rho^2$$
, with $\rho_l = -1$, $\rho_r = 1$, $q_l = q_r = 0$, $c_l = 2$, and $c_r = -2$.

E. $q = \rho(2 - \rho)$, with $\rho_l = 1.25$, $\rho_r = 0.75$, $q_l = q_r = 0.9375$, $c_l = -0.5$, and $c_r = 0.5$.

2.2 Statement: TFPb15. Traffic lights at the ends of a tunnel.

Consider a tunnel in a road, governed by the traffic flow equation $\rho_t + q_x = 0$ applies. Assume that the following situation occurs (we use non-dimensional variables)

- A. The flux is given by $q = \rho (2 \rho)$. Thus $c = 2 (1 \rho)$ wave speed, $u = (2 \rho)$ flow velocity, $\rho_J = 2$ jamming density, and $q_M = 1$ road capacity, occurring for $\rho_M = 1$.
- **B.** The tunnel is located at $0 \le x \le 1$.
- **C.** There are traffic lights at both tunnel ends: one light at x = 0, and another one at x = 1.
- **D.** For t < 0 both lights are green and the flow is uniform, at the road capacity $\rho \equiv \rho_M = 1$.
- **E.** At time t = 0 both traffic lights go simultaneously red, and stay red from then on.

Solve for the traffic flow density ρ inside the tunnel for all times $t \ge 0$. An explicit (very explicit) solution is required. There are two very "special" waves that will arise at the positions of the traffic lights; what are they (i.e.: physically, what do they mean)?

THE END.