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IMPORTANT: The Regular and the Special Problems must be stapled in TWO SEPARATE pack-
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Generic Hints:

1. When q = q(ρ) is quadratic, the shock speed is the average of the characteristic speeds imme-

diately to the right and left of the shock. For some of the problems this simplifies the algebra.

This will be shown in the lectures, though note that problem 77.03 below is as instance of this.

2. The general solution of a linear o.d.e. with a forcing term can be written as the sum of a

particular solution, plus the general solution to the homogeneous problem.

3. When solving the o.d.e. for the shock path, as given by the Rankine-Hugoniot jump conditions,

beware of the fact that many of the solutions in the problem sets will be given by different

formulas in different regions. Hence you have to consider that, as the shock enters a different

region, the o.d.e. changes. Be careful to keep track of this. A shock may start with constant

velocity (if the states on each side are constant) and then switch to variable velocity (say, it

enters a region where it has a rarefaction fan on one side).

4. Remember that the characteristics are the curves along which information propagates. Hence,

a situation where the solution along a characteristic is determined backwards in time is not

physically meaningful, as it violates causality. Make sure that your solutions satisfy causality!

5. Always: check that your answers are sensible. If they seem as if they predict something that

contradicts physical observation, then something is probably wrong!
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1 Regular Problems.

1.1 Statement: Haberman problem 70.03.

Assuming nearly uniform, but heavy, traffic, show that in general it is impossible to prescribe the

traffic flow at the entrance to a semi–infinite highway. In this situation, what might happen to cars

waiting to enter the highway?
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1.2 Statement: Haberman problem 72.01.

Show that if u = u(ρ) is determined by braking distance theory (see exercise 61.2), then the waiting

time per car after a traffic light turns green is the same as the human reaction time for braking.

1.3 Statement: Haberman problem 73.01.

Assume that the traffic density is

initially given by ρ(x, 0) =


ρmax for x < 0,

1
2
ρmax for 0 < x < a,

0 for a < x,

(1.1)

where a > 0 is some fixed length, and that the car flow velocity is related to the car density by

u = umax

(
1− ρ

ρmax

)
=⇒ q = umax

(
1− ρ

ρmax

)
ρ =⇒ c = umax

(
1− 2

ρ

ρmax

)
. (1.2)

Sketch the initial density. Determine and sketch the density at all later times.

1.4 Statement: Haberman problem 73.02 and 03.

Assume that the car flow velocity is related to the car density by:

u = um

(
1− ρ

ρj

)
=⇒ q = um

(
1− ρ

ρj

)
ρ =⇒ c = um

(
1− 2

ρ

ρj

)
, (1.3)

where ρj is the jamming density and um is the car speed limit. Consider now the red light turns

green problem and:

First: Calculate the maximum acceleration of a car which starts approximately one car length

behind a traffic light (i.e. x(0) = −1/ρj).

Second: Calculate the velocity of a car at the moment it starts moving behind a light.

1.5 Statement: Haberman problem 74.01.

Assume that u(ρ) = um (1− ρ/ρj), where um is the speed limit and ρj is the jamming density. For

the initial conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 ≤ x ≤ L,

0 for L < x,

(1.4)
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where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).

1.6 Statement: Haberman problem 74.02.

Assume that u(ρ) = um (1− ρ2/ρ2
j), where um is the speed limit and ρj is the jamming density. For

the initial conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 < x < L,

0 for L < x,

(1.5)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).

1.7 Statement: Haberman problem 74.03.

Consider the (non-dimensionalized) partial differential equation

ρt − ρ2 ρx = 0 , −∞ < x <∞ and t > 0. (1.6)

(a) Why can’t this equation model a traffic flow problem?

(b) Solve this P.D.E. by the method of characteristics, subject to the initial conditions:

ρ(x, 0) =


1 for x < 0,

1− x for 0 ≤ x ≤ 1,

0 for 1 < x.

(1.7)

1.8 Statement: Haberman problem 77.03.

A weak shock is a shock in which the shock strength (the difference in densities) is small. For a

weak shock, show that the shock velocity is approximately the average of the density wave velocities

associated with the two densities. [Hint: Use Taylor series methods.]

1.9 Statement: Haberman problem 78.01.

Suppose that the initial traffic density is

ρ(x, 0) =

 ρ0 for x < 0,

ρ1 for x > 0,
(1.8)
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where ρ0 and ρ1 are constants. Consider the two cases, ρ0 < ρ1, and ρ0 > ρ1. For which of the

preceding cases is a density shock necessary? Briefly explain.

1.10 Statement: Haberman problem 78.03.

Assume that u = umax (1− ρ/ρmax) and at t = 0 the traffic density is

ρ(x, 0) =

 (1/3) ρmax for x < 0,

(2/3) ρmax for x > 0.
(1.9)

Why does the density not change in time?

2 Special Problems.

No special problems with this set.

THE END.
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