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18.311, Principles of Applied Mathematics, Spring 2005, Bazant

Final Exam – Monday, May 16, 2005

Instructions: Please write your name on every page. This closed-book exam will last three
hours. Point totals are given for each problem (out of 100). Graded exams, solutions, and final
grades will be available after May 18. I hope you enjoyed the class. –MZB

1. (20 POINTS) Consider the initial traffic density for a red light turning green,

ρ(x, 0) =

{
ρj if x < 0
0 if x ≥ 0

and assume a parabolic velocity-density relationship,

u(ρ) = umax

1−
(

ρ

ρj

)2


in the Lighthill-Whitham theory of traffic flow.

(a) Derive a PDE for ρ(x, t) expressing the conservation of cars.

(b) What is the density cars at the traffic light, ρ(0, t), after it turns green (t > 0)?
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(c) Determine the boundaries of an expansion fan, x−(t) < x < x+(t), such that ρ = ρj

for x < x−(t) and ρ = 0 for x > x+(t).

(d) Solve for ρ(x, t) inside the expansion fan, and plot the solution for t > 0.



18.311 Final Exam, May 16, 2005. Name

2. (15 POINTS) Solve the following (dimensionless) river-flow equation for x > 0 and t > 0,

At +
√

AAx = −A, A(x, 0) = x2.

Plot A(x, t) at some times t > 0, and sketch some characteristics in the (x, t) plane.
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3. (20 POINTS) Sketch the solution, ρ(x, t), to each of the following PDEs for several times
t > 0 for the initial condition, ρ(x, 0) = e−x2

. DO NOT SOLVE ANALYTICALLY.

(a) ρt + ρx = 0

(b) ρt + (1− ρ)ρx = 0

(c) ρt = ρxx

(d) ρt + ρρx = ρxx
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4. (10 POINTS) Use a Green function to solve the linear diffusion equation, ρt = Dρxx,
subject to the initial condition,

ρ(x, 0) =

{
ρo if |x| < `
0 if |x| ≥ `

Express your answer in terms of the error function,

erf(z) =
2√
π

∫ z

0
e−y2

dy,

and sketch the solution at several times t > 0.
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5. (10 POINTS) Consider the dispersive wave equation

ρtt = c2
0(ρxx + a2ρxxxx)

(a) Derive the dispersion relation, ω(k).

(b) Show that in the limit |k| � a−1 there is no dispersion (phase velocity=group velocity),
and u(x, t) approximately satisfies d’Alembert’s wave equation.



18.311 Final Exam, May 16, 2005. Name

6. (10 POINTS) Consider the Klein-Gordon equation,

utt = c2
0uxx + g(u)

for some nonlinear function g(u). Show that a nontrivial solitary wave, u(x, t) = f(x− ct),
cannot travel at the linear wave speed (c 6= c0), and derive an ODE for f(z).
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7. (15 POINTS) Consider the porous medium equation,

ρt = a(ρ2)xx

where a is a (constant) nonlinear permeability and ρ(x, t) is the concentration of a fluid
spreading from a point source: ρ(x, 0) = qδ(x), ρ(±∞) = 0.

(a) Use dimensional analysis to show that there exists a similarity solution of the form,

ρ(x, t) =
A

(Bt)ν
F

(
x

(Bt)ν

)

What are A, B, and ν?

(b) Show that the scaling function F (z) satisfies the ODE

3(F 2)′′ + zF ′ + F = 0

subject to F (±∞) = 0 and
∫∞
−∞ F (z)dz = 1.
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(c) Solve for F (z).


