Problem Set Number 04, 18.306 MIT (Winter-Spring 2021)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

May 10, 2021

Last day of Lectures, Spring 2021. Turn it in via the canvas site website.

Contents

1	Fundamental solution for the Laplace operator Solution in \mathcal{R}^d , for $d \geq 3$	1 1
2	Green's functions #11 Heat equation in 1-D (half line, signaling with Dirichlet BC)	2 2
3	Laplace equation in a circle #01 Green's function for Dirichlet BC. Obtain by summing the separation of variables solution	3 3
4	Laplace equation in a circle #02 Green's function for Neumann BC. Obtain by summing the separation of variables solution	3 3
5	Normal modes #02 Normal modes do not always work (an example)	4 4

1 Fundamental solution for the Laplace operator

Statement: Fundamental solution for the Laplace operator

Let Δ be the Laplace operator in \mathcal{R}^d

 $\Delta = \sum_{n=1}^{d} \partial_{x_n}^2, \tag{1.1}$

where $d \geq 3$. Further, let G be defined by

$$G = \frac{1}{(d-2)\alpha_d r^{d-2}}, \quad \text{where} \quad r = \sqrt{\sum_{n=1}^d x_n^2}$$
 (1.2)

and α_d is the "area" of the unit sphere

$S^d(1)$ in d-dimensions. Show that

 $\Delta G = -\delta(\vec{x}), \tag{1.3}$

where δ is Dirac's delta in \mathcal{R}^d . That is: show that for any test function ψ in \mathcal{R}^d

$$\psi(0) + \int_{\mathcal{R}^d} G \,\Delta\psi \, dV = 0, \tag{1.4}$$

where $dV = dx_1 \dots dx_d$ is the "volume" element in \mathcal{R}^d . Proceed as follows

1. For any function f in \mathbb{R}^d , define the radial function $\overline{f} = \overline{f}(r)$ by averaging over the angular variables:

$$\overline{f} = \frac{1}{\alpha_d} \int_{S^d(1)} f(r, \vec{\sigma}) \, dS = \frac{1}{\alpha_d \, r^{d-1}} \, \int_{S^d(r)} f \, d\tilde{S},\tag{1.5}$$

where: (i) $\vec{\sigma}$ are the angular variables in R^d ; (ii) dS is the surface element in $S^d(1) - dS$ involves only the angular variables; and (iii) $d\tilde{S} = r^{d-1} dS$ is the area element in $S^d(r)$ (sphere of radius r).

2. Use Gauss theorem to express $\overline{\psi}_r$ in terms of the integral of $\Delta \psi$ over a ball of radius r. That is, in terms of:

 $[\]int_{B^d(r)} \Delta \psi \, dV, \text{ where } B^d(r) = \{ \vec{x} \in R^d \, | \, \|\vec{x}\| \le r \}.$

 $^{^1\,{\}rm A}$ smooth function decaying as fast as you need as $r\to\infty.$

3. Use 2 to show that

$$\Delta \overline{\psi} = \overline{\Delta \psi}.\tag{1.6}$$

Note: $\Delta g = r^{1-d} (r^{d-1} g_r)_r$ for radial functions.

4. Use the fact that $dV = r^{d-1} dr dS$ to re-write the integral in (1.4). You are now a small step away from being able to show (1.4) applies.

Important: You **do not need** explicit expressions for the angular variables. This problem involves very few grungy calculation.

2 Green's functions #11

Statement: Green's functions #11

The Green's function for the heat equation half line Dirichlet² signaling problem is defined by

 $G_t = G_{xx}, \quad \text{for} \quad -\infty < t < \infty \quad \text{and} \quad x > 0,$ (2.1)

with the boundary condition $G(0, t) = \delta(t)$, (2.2) where $\delta(\cdot)$ denotes Dirac's delta function. In addition: G is bounded away from the origin (0, 0) and satisfies **causality** G = 0 for t < 0.

Thus we only need to find G for $t \ge 0$ only.

Hence, from uniqueness, for any $\nu \neq 0$,

For any constant $\nu \neq 0$, $\nu^2 \delta(\nu^2 t) = \delta(t)$. Thus: If G is a solution, $\nu^2 G(\nu x, \nu^2 t)$ is a solution.

$$G(x, t) = \nu^2 G(\nu x, \nu^2 t).$$
(2.3)

Set
$$\nu = x/t$$
 to get, for some function $g = g(\xi)$, $G(x, t) = \frac{1}{t}g\left(\frac{x^2}{t}\right)$. (2.4)

Notice that

A. g(0) = 0. This follows because, for any t > 0 fixed, G must vanish as $x \downarrow 0$.

B.
$$\int_0^\infty g(\xi) \frac{d\xi}{\xi} = 1$$
. We have $\int_{-\infty}^\infty G(x, t) dt = \int_0^\infty g(\xi) \frac{d\xi}{\xi} = \text{constant}$, for any $x > 0$.

By taking $x \downarrow 0$, and using (2.2), the result follows.

- Task 1: Substitute (2.4) into (2.1), and get an o.d.e. for g.
- Task 2: Solve the o.d.e. for g, and thus find the Green's function.

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (ii) The general solution to the o.d.e. in $\mathbf{1}$ has two constants. These follow from $\mathbf{A} - \mathbf{B}$ above.

Remark 2.1 For any fixed x > 0, the formula in (2.4) should, as $t \downarrow 0$, smoothly match with the solution $G \equiv 0$ for t < 0. This will be guaranteed by the fact that $g(\xi)$ vanishes exponentially as $\xi \to \infty$. Hence, G as given by (2.4), as well as all its derivatives, vanish as $t \downarrow 0$ for any x > 0.

 $^{^{2}\}ensuremath{\,{\rm Temperature}}\xspace$ prescribed on the boundary.

3 Laplace equation in a circle #01

Statement: Laplace equation in a circle #01

Green's function: Laplace equation in a circle, with Dirichlet BC. Consider the question of determining the steady state temperature in a thin circular plate such that: (a) The temperature is prescribed at the edges of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using polar coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

$$\frac{1}{r^2} \left(r \left(r \, T_r \right)_r + T_{\theta \theta} \right) = \Delta T = 0, \quad \text{for } 0 \le \theta \le 2\pi \quad \text{and } 0 \le r \le 1,$$
(3.1)

condition[†]
$$T(1, \theta) = h(\theta)$$
, for some given function h . (3.2)

 $\dagger T$ and h are 2π -periodic in θ .

with the boundary

The solution to this problem, as follows from separation of variables, is ³

$$T = \sum_{n=-\infty}^{\infty} h_n r^{|n|} e^{i n \theta}, \quad \text{where} \quad h_n = \frac{1}{2\pi} \int_0^{2\pi} h(\theta) e^{-i n \theta} d\theta.$$
(3.3)

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function) and thus has a very poorly convergent Fourier series $\sum h_n e^{i n \theta}$. For example, assume that the sequence $\{h_n\}$ is bounded. Then, in any disk of radius R < 1: (i) the series for T in (3.3) converges absolutely; and (ii) the series obtained by term by term differentiation, for any derivative of T, also converges absolutely. It follows that T is smooth for r < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you are asked to do below.

- **1.** Assume that $h = \delta(\theta)$, and write an explicit formula for the solution T.
- **2.** In (3.3), substitute the formula for h_n into the series for T, exchange the summation and integration order, and

derive an equation of the form

$$T = \int_{0}^{2\pi} G(r, \theta - \phi) h(\phi) d\phi.$$
 (3.4)

3. Show that:

(a)
$$G > 0$$
 for $r < 1$.

(b)
$$G(r, \theta) \to 0$$
 as $r \to 1$, if $\theta \neq 0$. (c) $\int_0^{2\pi} G(r, \theta) d\theta = 1$ for $r < 1$

Hint. Add the positive and negative indexes n separately. Then use that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ for |z| < 1.

4 Laplace equation in a circle #02

Statement: Laplace equation in a circle #02

Green's function: Laplace equation in a circle, with Neumann BC. Consider the question of determining the steady state temperature in a thin circular plate such that: (a) The temperature flux is prescribed at the edges of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using polar coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

$$\frac{1}{r^2} \left(r \left(r \, T_r \right)_r + T_{\theta \theta} \right) = \Delta T = 0, \quad \text{for } 0 \le \theta \le 2\pi \quad \text{and } 0 \le r \le 1,$$

$$(4.1)$$

 $^{^{3}}$ Check, by direct substitution, that this is indeed the solution. That (3.2) is satisfied should be "obvious".

(4.3)

 $T_r(1, \theta) = h(\theta)$, for some given function h. (4.2)

with the boundary condition [†] † T and h are 2π -periodic in θ .

In addition, the function $h = h(\theta)$ must satisfy $\int_{0}^{2\pi} h(\theta) d\theta = 0.$

Equation (4.3) follows because, unless the net heat flux through the boundary vanishes, no steady state temperature is possible. Equivalently: (4.1-4.2) does not have a solution unless (4.3) applies. The solution to this problem, as follows from separation of variables, is ⁴

$$T = \sum_{-\infty < n < \infty} \frac{1}{|n|} h_n r^{|n|} e^{i n \theta}, \quad \text{where} \quad h_n = \frac{1}{2\pi} \int_0^{2\pi} h(\theta) e^{-i n \theta} d\theta, \quad (4.4)$$

where, to make the solution unique,⁵ we have added the condition: T = 0 at the origin.

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function) and thus has a very poorly convergent Fourier series $\sum h_n e^{i n \theta}$. For example, assume that the sequence $\{h_n\}$ is bounded. Then, in any disk of radius R < 1: (i) the series for T in (4.4) converges absolutely; and (ii) the series obtained by term by term differentiation, for any derivative of T, also converges absolutely. It follows that T is smooth for r < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you are asked to do below.

- 1. Assume that $h = \delta(\theta) \frac{1}{2\pi}$, and write an explicit formula for the solution T.
- **2.** In (4.4), substitute the formula for h_n into the series for T, exchange the summation and integration order, and

derive an equation of the form

$$T = \int_0^{2\pi} G(r, \theta - \phi) h(\phi) d\phi.$$
 (4.5)

3. Let $H = G_r + \frac{1}{2\pi}$. Show that: (a) $H(r, \theta) \to 0$ as $r \to 1$, if $\theta \neq 0$. (b) $\int_{0}^{2\pi} H(r, \theta) d\theta = 1$ for r < 1.

Hint. Add the positive and negative indexes n separately. Then use $\sum_{n=1}^{\infty} \frac{1}{n} z^n = -\ln(1-z)$ for |z| < 1 — note that, for |z| < 1 the argument for the log stays within a circle of radius 1 centered at 1, so that no problem arises because of the branch point of the log at the origin.

5 Normal modes #02

Statement: Normal modes #02

Normal mode expansions are not guaranteed to work when the associated eigenvalue problem is not self adjoint (more generally, not normal).⁶ Here is an example: consider the problem

$$u_t + u_x = 0$$
 for $0 < x < 1$ and $t > 0$, with $u(x, 0) = U(x)$ (5.1)

and boundary condition u(0, t) = 0. Find all the normal mode solutions to this problem,⁷ and show that the solution to (5.1) cannot be written as a linear combination of these modes. What is the solution to (5.1)?

THE END

 $^{^4}$ Check, by direct substitution, that this is indeed the solution. That (4.2) is satisfied should be "obvious".

 $^{^{5}}$ A constant can be added to any solution of (4.1–4.2).

⁶ An operator A is normal if it commutes with its adjoint: $AA^{\dagger} = A^{\dagger}A$.

⁷ That is: non-trivial solutions of the form $u = e^{\lambda t} \phi(x)$, where λ is a constant.