Problem Set Number 04, 18.306
MIT (Winter-Spring 2021)
Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

May 10, 2021
Last day of Lectures, Spring 2021.
Turn it in via the canvas site website.
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1 Fundamental solution for the Laplace operator

Statement: Fundamental solution for the Laplace operator
d
Let A be the Laplace operator in R? A= Z a2, (1.1)
n=1

1
where d > 3. Further, let G be defined by G=-——————, where r=

(d—2)agrd=2’ (12)

and agq is the “area” of the unit sphere
S4(1) in d-dimensions. Show that AG = —§(%), (1.3)

where ¢ is Dirac’s delta in R%. That is: show that for any test function® ¥ in R?
¥(0) +/ G AYdV =0, (1.4)
RA

where dV = dzy ... dzg is the “volume” element in R%. Proceed as follows

1. For any function f in RY, define the radial function f = f(r) by averaging over the angular variables:

1 1 N
_ 1 F)dS = / ds, 1.5
f oy /Sd(l)f(r 7) gt s f (1.5)

where: (i) & are the angular variables in R%, (ii) dS is the surface element in S¢(1) — dS involves only the
angular variables; and (iii) dS = r¢~! dS is the area element in S¢(r) (sphere of radius ).

2. Use Gauss theorem to express 9, in terms of the integral
of A over a ball of radius . That is, in terms of: / A dV, where Be(r) = {# € R*|||Z|| < r}.
Ba(r)

1 A smooth function decaying as fast as you need as r — co.



3. Use 2 to show that A = Aq). (1.6)
Note: Ag =179 (r?~1 g,), for radial functions.

4. Use the fact that dV = %1 drdS to re-write the integral in (1.4). You are now a small step away from being
able to show (1.4) applies.

Important: You do not need explicit expressions for the angular variables.
This problem involves very few grungy calculation.

2 Green’s functions #11

Statement: Green’s functions #11

The Green’s function for the heat equation half line Dirichlet 2 signaling problem is defined by
Gy =Gy, for —oc0<t<oo and z >0, (2.1)

with the boundary condition G(0, t) = 4(t), (2.2)
where 0(+) denotes Dirac’s delta function. In addition: G is bounded away from the origin (0, 0) and satisfies causality
G =0fort <O.

Thus we only need to find G for ¢ > 0 only.

For any constant v # 0, v? §(v?t) = §(t). Thus: If G is a solution, > G(vz, v? t) is a solution.

Hence, from uniqueness, for any v # 0, Gz, t) =1*Gvez, vV’ t). (2.3)

1‘2

1
Set v = x/t to get, for some function g = g(£), Gz, t) = 79 (t) (2.4)

Notice that
A. g(0) = 0. This follows because, for any ¢t > 0 fixed, G must vanish as z | 0.
B. / g(&) ; = 1. We have / G(z, t)dt = / g(&) ?f = constant, for any = > 0.
0 —o0 JO
By taking z | 0, and using (2.2), the result follows.
— Task 1: Substitute (2.4) into (2.1), and get an o.d.e. for g.
— Task 2: Solve the o.d.e. for g, and thus find the Green’s function.

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (ii) The general
solution to the o.d.e. in 1 has two constants. These follow from A — B above.

Remark 2.1 For any fized x > 0, the formula in (2.4) should, ast ] 0, smoothly match with the solution G = 0 for
t < 0. This will be guaranteed by the fact that g(&) vanishes exponentially as & — co. Hence, G as given by (2.4), as
well as all its derivatives, vanish as t | 0 for any x > 0. &

2 Temperature prescribed on the boundary.



3 Laplace equation in a circle #01

Statement: Laplace equation in a circle #01

Green’s function: Laplace equation in a circle, with Dirichlet BC. Consider the question of determining
the steady state temperature in a thin circular plate such that: (a) The temperature is prescribed at the edges of the
plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using polar
coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

r% (r(rTy), +Toee) =AT =0, for 0<0<27r and 0<r <1, (3.1)
with the boundary condition ' T(1, 8) = h(6), for some given function h. (3.2)
171 and h are 2w-periodic in 6.
The solution to this problem, as follows from separation of variables, is?®
T= i horl™ei™?  where h, = 1 /QTrh(Q) e~ m04g. (3.3)
’ 2w

n=—oo

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function)

and thus has a very poorly convergent Fourier series Z h, ¢™?. For example, assume that the sequence {hn} is

bounded. Then, in any disk of radius R < 1: (i) the series for T in (3.3) converges absolutely; and (ii) the series
obtained by term by term differentiation, for any derivative of T', also converges absolutely. It follows that T is
smooth for » < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you
are asked to do below.

1. Assume that h = §(#), and write an explicit formula for the solution T

2. In (3.3), substitute the formula for h,, into the series for T', exchange the summation and integration order,

and
27
derive an equation of the form T= G(r, 0 — ¢) h(o) do. (3.4)
0
3. Show that: )
(a) G >0 forr<1. (b) G(r,0) > 0asr—1,if 6 £0. (c) G(r,0)df =1 forr < 1.
0

o0
1
Hint. Add the positive and negative indexes n separately. Then use that E 2" = 1 for |z] < 1.
—z

n=0

4 Laplace equation in a circle #02

Statement: Laplace equation in a circle #02

Green’s function: Laplace equation in a circle, with Neumann BC. Consider the question of determining
the steady state temperature in a thin circular plate such that: (a) The temperature flux is prescribed at the edges
of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using
polar coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

i(7"(7“T,,)T—1—Teg):AT:07 for 0<§<2r and 0<r <1, (4.1)

r2

3 Check, by direct substitution, that this is indeed the solution. That (3.2) is satisfied should be “obvious”.



with the boundary condition f T.(1, 8) = h(6), for some given function h. (4.2)
17T and h are 2 w-periodic in 6.

2m
In addition, the function h = h(#) must satisfy / h(6)do = 0. (4.3)
0

Equation (4.3) follows because, unless the net heat flux through the boundary vanishes, no steady state temperature
is possible. Equivalently: (4.1—4.2) does not have a solution unless (4.3) applies.

The solution to this problem, as follows from separation of variables, is*
T = > L g, plnl gine where B, = — ZW h(B) e "0do (4.4)
|n| n b n 2 T o bl .

—oco<n<oo n#0

where, to make the solution unique,® we have added the condition: T = 0 at the origin.

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function)
and thus has a very poorly convergent Fourier series Zhn ¢'™?. For example, assume that the sequence {h,} is
bounded. Then, in any disk of radius R < 1: (i) the series for T in (4.4) converges absolutely; and (ii) the series
obtained by term by term differentiation, for any derivative of T', also converges absolutely. It follows that T is
smooth for 7 < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you
are asked to do below.

1
1. Assume that h = §(0) — Py and write an explicit formula for the solution T'.
™

2. In (4.4), substitute the formula for h, into the series for T, exchange the summation and integration order,

and
derive an equation of the form T= Oh G(r, 0 — @) h(o) de. (4.5)
3. Let H =G, + % Show that:
(a) H(r,0) = 0asr —1,if 8 £0. (b) OQWH(T7 0)df =1 forr < 1.
Hint. Add the positive and negative indexzes n separately. Then use Y oo | %= 2z"™ = —In(1 — 2z) for [2| <1 — note

that, for |z| < 1 the argument for the log stays within a circle of radius 1 centered at 1, so that no problem arises
because of the branch point of the log at the origin.

5 Normal modes #02

Statement: Normal modes #02

Normal mode expansions are not guaranteed to work when the associated eigenvalue problem is not self adjoint
(more generally, not normal). % Here is an example: consider the problem

u+u, =0 for 0<az<1l and ¢t>0, with w(z, 0) = U(x) (5.1)

and boundary condition u(0, ) = 0. Find all the normal mode solutions to this problem,” and show that the
solution to (5.1) cannot be written as a linear combination of these modes. What is the solution to (5.1)?

THE END

4 Check, by direct substitution, that this is indeed the solution. That (4.2) is satisfied should be “obvious”.
5 A constant can be added to any solution of (4.1-4.2).

6 An operator A is normal if it commutes with its adjoint: AAT = At A

7 That is: non-trivial solutions of the form u = e** ¢(z), where X is a constant.




