Problem Set Number 04, 18.306 MIT (Winter-Spring 2021)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

May 10, 2021
Last day of Lectures, Spring 2021.
Turn it in via the canvas site website.

Contents

1 Fundamental solution for the Laplace operator 1
Solution in \boldsymbol{R}^{d}, for $\boldsymbol{d} \geq \mathbf{3}$ 1
2 Green's functions \#11 2
Heat equation in 1-D (half line, signaling with Dirichlet BC) 2
3 Laplace equation in a circle \#01 3
Green's function for Dirichlet BC. Obtain by summing the separation of variables solution 3
4 Laplace equation in a circle \#02 3
Green's function for Neumann BC. Obtain by summing the separation of variables solution 3
5 Normal modes \#02 4
Normal modes do not always work (an example) 4

1 Fundamental solution for the Laplace operator

Statement: Fundamental solution for the Laplace operator

Let Δ be the Laplace operator in \mathcal{R}^{d}

$$
\begin{equation*}
\Delta=\sum_{n=1}^{d} \partial_{x_{n}}^{2} \tag{1.1}
\end{equation*}
$$

where $d \geq 3$. Further, let G be defined by

$$
\begin{equation*}
G=\frac{1}{(d-2) \alpha_{d} r^{d-2}}, \quad \text { where } \quad r=\sqrt{\sum_{n=1}^{d} x_{n}^{2}} \tag{1.2}
\end{equation*}
$$

and $\boldsymbol{\alpha}_{\boldsymbol{d}}$ is the "area" of the unit sphere $S^{d}(1)$ in d-dimensions. Show that

$$
\begin{equation*}
\Delta G=-\delta(\vec{x}) \tag{1.3}
\end{equation*}
$$

where δ is Dirac's delta in \mathcal{R}^{d}. That is: show that for any test function ${ }^{1} \psi$ in \mathcal{R}^{d}

$$
\begin{equation*}
\psi(0)+\int_{\mathcal{R}^{d}} G \Delta \psi d V=0 \tag{1.4}
\end{equation*}
$$

where $d V=d x_{1} \ldots d x_{d}$ is the "volume" element in \mathcal{R}^{d}. Proceed as follows

1. For any function f in R^{d}, define the radial function $\bar{f}=\bar{f}(r)$ by averaging over the angular variables:

$$
\begin{equation*}
\bar{f}=\frac{1}{\alpha_{d}} \int_{S^{d}(1)} f(r, \vec{\sigma}) d S=\frac{1}{\alpha_{d} r^{d-1}} \int_{S^{d}(r)} f d \tilde{S} \tag{1.5}
\end{equation*}
$$

where: (i) $\vec{\sigma}$ are the angular variables in R^{d}; (ii) $d S$ is the surface element in $S^{d}(1)-d S$ involves only the angular variables; and (iii) $d \tilde{S}=r^{d-1} d S$ is the area element in $S^{d}(r)$ (sphere of radius r).
2. Use Gauss theorem to express $\bar{\psi}_{r}$ in terms of the integral of $\Delta \psi$ over a ball of radius r. That is, in terms of:

[^0]3. Use 2 to show that
\[

$$
\begin{equation*}
\Delta \bar{\psi}=\overline{\Delta \psi} \tag{1.6}
\end{equation*}
$$

\]

Note: $\Delta g=r^{1-d}\left(r^{d-1} g_{r}\right)_{r}$ for radial functions.
4. Use the fact that $d V=r^{d-1} d r d S$ to re-write the integral in (1.4). You are now a small step away from being able to show (1.4) applies.

Important: You do not need explicit expressions for the angular variables.
This problem involves very few grungy calculation.

2 Green's functions \#11

Statement: Green's functions \#11

The Green's function for the heat equation half line Dirichlet ${ }^{2}$ signaling problem is defined by

$$
\begin{equation*}
G_{t}=G_{x x}, \quad \text { for } \quad-\infty<t<\infty \quad \text { and } \quad x>0 \tag{2.1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
G(0, t)=\delta(t) \tag{2.2}
\end{equation*}
$$

where $\delta(\cdot)$ denotes Dirac's delta function. In addition: G is bounded away from the origin $(0,0)$ and satisfies causality $\boldsymbol{G}=\mathbf{0}$ for $t<\mathbf{0}$.
Thus we only need to find G for $t \geq 0$ only.
For any constant $\nu \neq 0, \boldsymbol{\nu}^{\mathbf{2}} \boldsymbol{\delta}\left(\boldsymbol{\nu}^{\mathbf{2}} \boldsymbol{t}\right)=\boldsymbol{\delta}(\boldsymbol{t})$. Thus: If G is a solution, $\nu^{2} G\left(\nu x, \nu^{2} t\right)$ is a solution.
Hence, from uniqueness, for any $\nu \neq 0$,

$$
\begin{align*}
G(x, t)= & \nu^{2} G\left(\nu x, \nu^{2} t\right) \tag{2.3}\\
G(x, t) & =\frac{1}{t} g\left(\frac{x^{2}}{t}\right) \tag{2.4}
\end{align*}
$$

Notice that
A. $\boldsymbol{g}(\mathbf{0})=\mathbf{0}$. This follows because, for any $t>0$ fixed, G must vanish as $x \downarrow 0$.
B. $\int_{0}^{\infty} \boldsymbol{g}(\boldsymbol{\xi}) \frac{\boldsymbol{d} \boldsymbol{\xi}}{\boldsymbol{\xi}}=\mathbf{1}$. We have $\int_{-\infty}^{\infty} G(x, t) d t=\int_{0}^{\infty} g(\xi) \frac{d \xi}{\xi}=$ constant, for any $x>0$.

By taking $x \downarrow 0$, and using (2.2), the result follows.

- Task 1: Substitute (2.4) into (2.1), and get an o.d.e. for g.
- Task 2: Solve the o.d.e. for g, and thus find the Green's function.

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (ii) The general solution to the o.d.e. in $\mathbf{1}$ has two constants. These follow from $\mathbf{A}-\mathbf{B}$ above.

Remark 2.1 For any fixed $x>0$, the formula in (2.4) should, as $t \downarrow 0$, smoothly match with the solution $G \equiv 0$ for $t<0$. This will be guaranteed by the fact that $g(\xi)$ vanishes exponentially as $\xi \rightarrow \infty$. Hence, G as given by (2.4), as well as all its derivatives, vanish as $t \downarrow 0$ for any $x>0$.

[^1]
3 Laplace equation in a circle \#01

Statement: Laplace equation in a circle \#01

Green's function: Laplace equation in a circle, with Dirichlet BC. Consider the question of determining the steady state temperature in a thin circular plate such that: (a) The temperature is prescribed at the edges of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written - using polar coordinates and non-dimensional variables (selected so that the plate has radius 1) - in the form

$$
\begin{equation*}
\frac{1}{r^{2}}\left(r\left(r T_{r}\right)_{r}+T_{\theta \theta}\right)=\Delta T=0, \quad \text { for } \quad 0 \leq \theta \leq 2 \pi \quad \text { and } 0 \leq r \leq 1 \tag{3.1}
\end{equation*}
$$

with the boundary condition ${ }^{\dagger}$

$$
\begin{equation*}
T(1, \theta)=h(\theta), \quad \text { for some given function } h \tag{3.2}
\end{equation*}
$$

$\dagger T$ and h are 2π-periodic in θ.
The solution to this problem, as follows from separation of variables, is ${ }^{3}$

$$
\begin{equation*}
T=\sum_{n=-\infty}^{\infty} h_{n} r^{|n|} e^{i n \theta}, \quad \text { where } \quad h_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(\theta) e^{-i n \theta} d \theta \tag{3.3}
\end{equation*}
$$

For $r<1$ this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function) and thus has a very poorly convergent Fourier series $\sum h_{n} e^{i n \theta}$. For example, assume that the sequence $\left\{h_{n}\right\}$ is bounded. Then, in any disk of radius $R<1$: (i) the series for T in (3.3) converges absolutely; and (ii) the series obtained by term by term differentiation, for any derivative of T, also converges absolutely. It follows that T is smooth for $r<1$. In a similar fashion, one can justify exchanging the order of integration and summation - as you are asked to do below.

1. Assume that $h=\delta(\theta)$, and write an explicit formula for the solution \boldsymbol{T}.
2. In (3.3), substitute the formula for h_{n} into the series for T, exchange the summation and integration order, and
derive an equation of the form

$$
\begin{equation*}
T=\int_{0}^{2 \pi} G(r, \theta-\phi) h(\phi) d \phi \tag{3.4}
\end{equation*}
$$

3. Show that:
(a) $G>0$ for $r<1$.
(b) $G(r, \theta) \rightarrow 0$ as $r \rightarrow 1$, if $\theta \neq 0$.
(c) $\int_{0}^{2 \pi} G(r, \theta) d \theta=1$ for $r<1$.

Hint. Add the positive and negative indexes n separately. Then use that $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ for $|z|<1$.

4 Laplace equation in a circle \#02

Statement: Laplace equation in a circle \#02

Green's function: Laplace equation in a circle, with Neumann BC. Consider the question of determining the steady state temperature in a thin circular plate such that: (a) The temperature flux is prescribed at the edges of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written - using polar coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

$$
\begin{equation*}
\frac{1}{r^{2}}\left(r\left(r T_{r}\right)_{r}+T_{\theta \theta}\right)=\Delta T=0, \quad \text { for } \quad 0 \leq \theta \leq 2 \pi \quad \text { and } 0 \leq r \leq 1 \tag{4.1}
\end{equation*}
$$

[^2]with the boundary condition ${ }^{\dagger}$
\[

$$
\begin{equation*}
T_{r}(1, \theta)=h(\theta), \quad \text { for some given function } h . \tag{4.2}
\end{equation*}
$$

\]

$\dagger T$ and h are 2π-periodic in θ.
In addition, the function $h=h(\theta)$ must satisfy

$$
\begin{equation*}
\int_{0}^{2 \pi} h(\theta) d \theta=0 \tag{4.3}
\end{equation*}
$$

Equation (4.3) follows because, unless the net heat flux through the boundary vanishes, no steady state temperature is possible. Equivalently: (4.1-4.2) does not have a solution unless (4.3) applies.
The solution to this problem, as follows from separation of variables, is ${ }^{4}$

$$
\begin{equation*}
T=\sum_{-\infty<n<\infty} \frac{1}{n \neq 0} \frac{|n|}{} h_{n} r^{|n|} e^{i n \theta}, \quad \text { where } \quad h_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(\theta) e^{-i n \theta} d \theta \tag{4.4}
\end{equation*}
$$

where, to make the solution unique, ${ }^{5}$ we have added the condition: $\boldsymbol{T}=\mathbf{0}$ at the origin.
For $r<1$ this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function) and thus has a very poorly convergent Fourier series $\sum h_{n} e^{i n \theta}$. For example, assume that the sequence $\left\{h_{n}\right\}$ is bounded. Then, in any disk of radius $R<1$: (i) the series for T in (4.4) converges absolutely; and (ii) the series obtained by term by term differentiation, for any derivative of T, also converges absolutely. It follows that T is smooth for $r<1$. In a similar fashion, one can justify exchanging the order of integration and summation - as you are asked to do below.

1. Assume that $h=\delta(\theta)-\frac{1}{2 \pi}$, and write an explicit formula for the solution \boldsymbol{T}.
2. In (4.4), substitute the formula for h_{n} into the series for T, exchange the summation and integration order, and

derive an equation of the form

$$
\begin{equation*}
T=\int_{0}^{2 \pi} G(r, \theta-\phi) h(\phi) d \phi \tag{4.5}
\end{equation*}
$$

3. Let $H=G_{r}+\frac{1}{2 \pi}$. Show that:
(a) $H(r, \theta) \rightarrow 0$ as $r \rightarrow 1$, if $\theta \neq 0$.
(b) $\int_{0}^{2 \pi} H(r, \theta) d \theta=1$ for $r<1$.

Hint. Add the positive and negative indexes n separately. Then use $\sum_{n=1}^{\infty} \frac{1}{n} z^{n}=-\ln (\mathbf{1}-\boldsymbol{z})$ for $|z|<1-$ note that, for $|z|<1$ the argument for the log stays within a circle of radius 1 centered at 1, so that no problem arises because of the branch point of the log at the origin.

5 Normal modes \#02

Statement: Normal modes \#02

Normal mode expansions are not guaranteed to work when the associated eigenvalue problem is not self adjoint (more generally, not normal). ${ }^{6}$ Here is an example: consider the problem

$$
\begin{equation*}
u_{t}+u_{x}=0 \quad \text { for } 0<x<1 \quad \text { and } \quad t>0, \quad \text { with } u(x, 0)=U(x) \tag{5.1}
\end{equation*}
$$

and boundary condition $\boldsymbol{u}(\mathbf{0}, \boldsymbol{t})=\mathbf{0}$. Find all the normal mode solutions to this problem, ${ }^{7}$ and show that the solution to (5.1) cannot be written as a linear combination of these modes. What is the solution to (5.1)?

THE END

[^3]
[^0]: ${ }^{1} \mathrm{~A}$ smooth function decaying as fast as you need as $r \rightarrow \infty$.

[^1]: ${ }^{2}$ Temperature prescribed on the boundary.

[^2]: ${ }^{3}$ Check, by direct substitution, that this is indeed the solution. That (3.2) is satisfied should be "obvious".

[^3]: ${ }^{4}$ Check, by direct substitution, that this is indeed the solution. That (4.2) is satisfied should be "obvious".
 ${ }^{5} \mathrm{~A}$ constant can be added to any solution of (4.1-4.2).
 ${ }^{6}$ An operator A is normal if it commutes with its adjoint: $A A^{\dagger}=A^{\dagger} A$.
 ${ }^{7}$ That is: non-trivial solutions of the form $u=e^{\lambda t} \phi(x)$, where λ is a constant.

