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1 Fundamental solution for the Laplace operator

Statement: Fundamental solution for the Laplace operator

Let ∆ be the Laplace operator in Rd ∆ =

d∑
n=1

∂2xn
, (1.1)

where d ≥ 3. Further, let G be defined by G =
1

(d− 2)αd rd−2
, where r =

√√√√ d∑
n=1

x2n (1.2)

and αd is the “area” of the unit sphere
Sd(1) in d-dimensions. Show that ∆G = −δ(~x), (1.3)

where δ is Dirac’s delta in Rd. That is: show that for any test function 1 ψ in Rd

ψ(0) +

∫
Rd

G∆ψ dV = 0, (1.4)

where dV = dx1 . . . dxd is the “volume” element in Rd. Proceed as follows

1. For any function f in Rd, define the radial function f = f(r) by averaging over the angular variables:

f =
1

αd

∫
Sd(1)

f(r, ~σ) dS =
1

αd rd−1

∫
Sd(r)

f dS̃, (1.5)

where: (i) ~σ are the angular variables in Rd; (ii) dS is the surface element in Sd(1) — dS involves only the
angular variables; and (iii) dS̃ = rd−1 dS is the area element in Sd(r) (sphere of radius r).

2. Use Gauss theorem to express ψr in terms of the integral
of ∆ψ over a ball of radius r. That is, in terms of:

∫
Bd(r)

∆ψ dV , where Bd(r) = {~x ∈ Rd | ‖~x‖ ≤ r}.
1 A smooth function decaying as fast as you need as r → ∞.

1



2

3. Use 2 to show that ∆ψ = ∆ψ. (1.6)

Note: ∆g = r1−d (rd−1 gr)r for radial functions.

4. Use the fact that dV = rd−1 dr dS to re-write the integral in (1.4). You are now a small step away from being
able to show (1.4) applies.

Important: You do not need explicit expressions for the angular variables.
This problem involves very few grungy calculation.

2 Green’s functions #11

Statement: Green’s functions #11

The Green’s function for the heat equation half line Dirichlet 2 signaling problem is defined by

Gt = Gxx, for −∞ < t <∞ and x > 0, (2.1)

with the boundary condition G(0, t) = δ(t), (2.2)
where δ(·) denotes Dirac’s delta function. In addition: G is bounded away from the origin (0, 0) and satisfies causality
G = 0 for t < 0.

Thus we only need to find G for t ≥ 0 only.

For any constant ν 6= 0, ν2 δ(ν2 t) = δ(t). Thus: If G is a solution, ν2G(ν x, ν2 t) is a solution.

Hence, from uniqueness, for any ν 6= 0, G(x, t) = ν2G(ν x, ν2 t). (2.3)

Set ν = x/t to get, for some function g = g(ξ), G(x, t) =
1

t
g

(
x2

t

)
. (2.4)

Notice that

A. g(0) = 0. This follows because, for any t > 0 fixed, G must vanish as x ↓ 0.

B.

∫ ∞

0

g(ξ)
dξ

ξ
= 1. We have

∫ ∞
−∞

G(x, t) dt =

∫ ∞
0

g(ξ)
dξ

ξ
= constant, for any x > 0.

By taking x ↓ 0, and using (2.2), the result follows.

– Task 1: Substitute (2.4) into (2.1), and get an o.d.e. for g.

– Task 2: Solve the o.d.e. for g, and thus find the Green’s function.

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (ii) The general
solution to the o.d.e. in 1 has two constants. These follow from A – B above.

Remark 2.1 For any fixed x > 0, the formula in (2.4) should, as t ↓ 0, smoothly match with the solution G ≡ 0 for
t < 0. This will be guaranteed by the fact that g(ξ) vanishes exponentially as ξ →∞. Hence, G as given by (2.4), as
well as all its derivatives, vanish as t ↓ 0 for any x > 0. ♣

2 Temperature prescribed on the boundary.
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3 Laplace equation in a circle #01

Statement: Laplace equation in a circle #01

Green’s function: Laplace equation in a circle, with Dirichlet BC. Consider the question of determining
the steady state temperature in a thin circular plate such that: (a) The temperature is prescribed at the edges of the
plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using polar
coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

1

r2
(r (r Tr)r + Tθθ) = ∆T = 0, for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1, (3.1)

with the boundary condition † T (1, θ) = h(θ), for some given function h. (3.2)
† T and h are 2π-periodic in θ.

The solution to this problem, as follows from separation of variables, is 3

T =

∞∑
n=−∞

hn r
|n| ei n θ, where hn =

1

2π

∫ 2π

0

h(θ) e−i n θdθ. (3.3)

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function)

and thus has a very poorly convergent Fourier series
∑

hn e
i n θ. For example, assume that the sequence {hn} is

bounded. Then, in any disk of radius R < 1: (i) the series for T in (3.3) converges absolutely; and (ii) the series
obtained by term by term differentiation, for any derivative of T , also converges absolutely. It follows that T is
smooth for r < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you
are asked to do below.

1. Assume that h = δ(θ), and write an explicit formula for the solution T .

2. In (3.3), substitute the formula for hn into the series for T , exchange the summation and integration order,
and

derive an equation of the form T =

∫ 2π

0

G(r, θ − φ)h(φ) dφ. (3.4)

3. Show that:

(a) G > 0 for r < 1. (b) G(r, θ)→ 0 as r → 1, if θ 6= 0. (c)

∫ 2π

0

G(r, θ) dθ = 1 for r < 1.

Hint. Add the positive and negative indexes n separately. Then use that

∞∑
n=0

zn =
1

1− z
for |z| < 1.

4 Laplace equation in a circle #02

Statement: Laplace equation in a circle #02

Green’s function: Laplace equation in a circle, with Neumann BC. Consider the question of determining
the steady state temperature in a thin circular plate such that: (a) The temperature flux is prescribed at the edges
of the plate, and (b) The facets of the plate (top and bottom) are insulated. This problem can be written — using
polar coordinates and non-dimensional variables (selected so that the plate has radius 1) — in the form

1

r2
(r (r Tr)r + Tθθ) = ∆T = 0, for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1, (4.1)

3 Check, by direct substitution, that this is indeed the solution. That (3.2) is satisfied should be “obvious”.



4

with the boundary condition † Tr(1, θ) = h(θ), for some given function h. (4.2)
† T and h are 2π-periodic in θ.

In addition, the function h = h(θ) must satisfy

∫ 2π

0

h(θ) dθ = 0. (4.3)

Equation (4.3) follows because, unless the net heat flux through the boundary vanishes, no steady state temperature
is possible. Equivalently: (4.1–4.2) does not have a solution unless (4.3) applies.

The solution to this problem, as follows from separation of variables, is 4

T =
∑

−∞<n<∞ n 6=0

1

|n|
hn r

|n| ei n θ, where hn =
1

2π

∫ 2π

0

h(θ) e−i n θdθ, (4.4)

where, to make the solution unique,5 we have added the condition: T = 0 at the origin.

For r < 1 this formula provides a solution to the equation even if h is not very smooth (or in fact, not even a function)

and thus has a very poorly convergent Fourier series
∑

hn e
i n θ. For example, assume that the sequence {hn} is

bounded. Then, in any disk of radius R < 1: (i) the series for T in (4.4) converges absolutely; and (ii) the series
obtained by term by term differentiation, for any derivative of T , also converges absolutely. It follows that T is
smooth for r < 1. In a similar fashion, one can justify exchanging the order of integration and summation — as you
are asked to do below.

1. Assume that h = δ(θ)− 1

2π
, and write an explicit formula for the solution T .

2. In (4.4), substitute the formula for hn into the series for T , exchange the summation and integration order,
and

derive an equation of the form T =

∫ 2π

0

G(r, θ − φ)h(φ) dφ. (4.5)

3. Let H = Gr +
1

2π
. Show that:

(a) H(r, θ)→ 0 as r → 1, if θ 6= 0. (b)

∫ 2π

0

H(r, θ) dθ = 1 for r < 1.

Hint. Add the positive and negative indexes n separately. Then use
∑∞

n=1
1
n
zn = − ln(1− z) for |z| < 1 — note

that, for |z| < 1 the argument for the log stays within a circle of radius 1 centered at 1, so that no problem arises
because of the branch point of the log at the origin.

5 Normal modes #02

Statement: Normal modes #02

Normal mode expansions are not guaranteed to work when the associated eigenvalue problem is not self adjoint
(more generally, not normal). 6 Here is an example: consider the problem

ut + ux = 0 for 0 < x < 1 and t > 0, with u(x, 0) = U(x) (5.1)

and boundary condition u(0, t) = 0. Find all the normal mode solutions to this problem, 7 and show that the
solution to (5.1) cannot be written as a linear combination of these modes. What is the solution to (5.1)?

THE END
4 Check, by direct substitution, that this is indeed the solution. That (4.2) is satisfied should be “obvious”.
5 A constant can be added to any solution of (4.1–4.2).
6 An operator A is normal if it commutes with its adjoint: AA† = A† A.
7 That is: non-trivial solutions of the form u = eλ t φ(x), where λ is a constant.


