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1 Compute a channel flow rate function #01

1.1 Statement: Compute a channel flow rate function #01

It was shown in the lectures that for a river (or a man-made channel) in the plains, under conditions that are not

changing too rapidly (quasi-equilibrium), the following equation should apply

At + qx = 0, (1.1)

where A = A(x, t) is the cross-sectional filled area of the river bed, x measures length along the river, and q = Q(A)

is a function giving the flow rate at any point.

That the flow rate q should be a function of A only 1 follows from the assumption of quasi-equilibrium. Then q is

determined by a local balance between the friction forces and the force of gravity down the river bed.

Assume now a man-made channel, with uniform triangular cross-section† and a uniform (small) downward slope,

characterized by an angle θ. Assume also that the frictional forces are proportional to the product of the flow velocity

u down the channel, and the wetted perimeter Pw of the channel bed Ff = Cf uPw. Derive the form that the flow

function Q should have. † Isosceles triangle, with bottom angle φ.

Hints: (1) Q = uA, where u is determined by the balance of the frictional forces and gravity. (2) The wetted perimeter

Pw is proportional to some power of A.

1.2 Answer: Compute a channel flow rate function #01

The wetted perimeter is proportional to the square root of the filled cross-sectional area. That is: 2 Pw = Cw
√
A,

where Cw =
√

8/ sin(φ) and φ is the bottom angle of the triangular channel bed. Thus the frictional forces (per

unit length) along the river bed are given by Ff = Cf Pw u = Cf Cw u
√
A — where u is the flow velocity and Cf is

a friction coefficient.

On the other hand, the component of the force of gravity (per unit length) along the channel bed is given by

Fg = ρ g sin(θ)A — where θ is the angle that the channel bed makes with the horizontal, g is the acceleration of

gravity, and ρ is the density of the water in the channel.

From the quasi-equilibrium assumption Ff = Fg. This yields u =
ρ g sin(θ)

Cf Cw

√
A. Hence, since q = uA, it follows

that:

Q =
ρ g sin(θ)

Cf Cw
A

3
2 . (1.2)

1 Possibly also x. That is: q = Q(x, A), to account for non-uniformities along the river.
2 Write the height and base of the water-filled-triangle in terms of the half bottom angle and the wetted side = Pw/2.
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Note that q is a convex function of A.

2 Gas flow through a porous media

2.1 Statement: Gas flow through a porous media

Consider the situation where a gas is flowing through a porous media. If conditions are not varying too rapidly, 3

the gas flow velocity through the media is determined by the balance of the pressure force driving the flow, and the

viscous resistance to the flow

through the pores. This balance is subsumed by Darcy’s law ~u = −κµ ∇ p, (2.1)

where: ~u is the gas flow velocity, κ is the permeability of the

porous media, µ is the dynamic viscosity of the gas, ∇ is the gradient operator, and p is the pressure.

Units: [κ] = length2, [µ] = mass
length×time

, while [p] = force
area .

Consider now a 1D flow of an ideal gas.

— For example: flow down a pipe filled with sand, where the pipe has constant cross-section.

— For an ideal gas p = RT ρ, where R = gas constant, T = temperature, and ρ = gas density.

QUESTIONS:

1. Assume that the flow occurs at constant temperature, and derive an equation for ρ = ρ(x, t).

2. If the flow is adiabatic, instead of isothermal, p = β ργ , where β is a constant and γ is the ratio of specific heats

for the gas. What is the equation for ρ = ρ(x, t) in this case?

2.2 Answer: Gas flow through a porous media

Mass is conserved, thus it should be ρt + qx = 0, (2.2)

where q is the mass flow. However,

q = ρ u, and u is given by (2.1), so that u = −κµ px. (2.3)

Furthermore, in both cases the pressure is a function of the density only, p = p(ρ). Thus we get the equation

ρt = (D(ρ) ρx)x , where D =
κ

µ
ρ
dp

dρ
. (2.4)

For the isothermal flow D =
κRT

µ
ρ. (2.5)

For the adiabatic flow D =
κβ γ

µ
ργ . (2.6)

Equation (2.4) is a nonlinear diffusion equation, where D is the diffusivity — D has units of length square over time.

Furthermore, since ρ ≥ 0 and dp
dρ > 0, D ≥ 0. However, when ρ vanishes, so does D. This leads to sharp diffusion

fronts, unlike those produced by linear diffusion (where there is no clear edge to a diffusing blob).

3 The standard “quasi-equilibrium” assumption used when deriving continuum equations from conservation laws.
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3 Linear 1st order PDE (problem 01)

3.1 Statement: Linear 1st order PDE (problem 01)

Part 1. Find the general solutions to the two 1st order linear scalar PDE

xux + y uy = 0, and y vx − x vy = 0. (3.1)

Hint: The general solutions take a particular simple form in polar coordinates.

Part 2. For u, find the solution such that on the circle x2 + y2 = 2, it satisfies u = x. Where is this solution

determined by the data given?

Part 3. Is there a solution to the equation for v such that v(x, 0) = x, for −∞ < x <∞?

Part 4. How does the general solution for u changes if the equation is modified to

xux + y uy = (x2 + y2) sin(x2 + y2)? (3.2)

3.2 Answer: Linear 1st order PDE (problem 01)

Part 1. In terms of polar coordinates x = r cos(θ) and y = r sin(θ), the equations take the form

r ur = 0 and − vθ = 0 . (3.3)

Hence, the general solutions are u = U(θ) and v = V (r), where U and V are arbitrary functions of their arguments.

Alternatively, the characteristics for the first equation (namely dx
ds

= x and dy
ds

= y, along which du
ds

= 0) are the

straight lines through the origin. Hence u should only be a function of the angle. Similarly, the characteristics for

the second equation are the circles centered at the origin, so that v should depend on the radial variable only.

Remark 3.1 Notice that the origin x = y = 0 is a “bad” point for these p.d.e.’s — where no restriction is applied

on the solutions. Hence, we generally should exclude it from the domain where we seek to solve the equations.

Part 2. Since for x2 + y2 = 2 we have x =
√

2 cos(θ) and y =
√

2 sin(θ), from the general solution in part 1 it follows

that

u =
√

2 cos(θ) . (3.4)

This solution is determined for r > 0 — see remark 3.1. In fact, it is singular and becomes multiple valued for r → 0.

Part 3. From part 1, it should be that v(x, 0) = V (|x|) = v(−x, 0), which the data v(x, 0) = x does not satisfy.

Hence the problem in part 3 does not have a solution. Another way of seeing this is that the characteristics for this

problem (circles centered at the origin) intersect the x-coordinate axis at two points each, where the data given is

not consistent.

Part 4. The characteristic curves are still the same, namely
dx

ds
= x and

dy

ds
= y, but now along then u is no longer

constant and
du

ds
= (x2 + y2) sin(x2 + y2) = −1

2

d

ds
cos(x2 + y2). (3.5)

Hence, the general solution is u = U(θ)− 1

2
cos(r2) = “general solution of the homogeneous problem” + “particular

solution” — since the problem is linear.

Alternatively: in polar coordinates the equation is r ur = r2 sin(r2), which leads to the same answer.
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4 Linear 1st order PDE (problem 03)

4.1 Statement: Linear 1st order PDE (problem 03)

Consider the following problem

ux + 2xuy = y, with u(0, y) = f(y) for −∞ < y <∞, (4.1)

where f = f(y) is an “arbitrary” function.

Part 1. Use the method of characteristics to find the solution. Write, explicitly, u = u(x, y) as a function of x and

y, using f .

Hint. Write the characteristic equations using x as a parameter on them. Then solve these equations using the initial data

(for x = 0) y = τ and u = f(τ) (where −∞ < τ <∞). Finally: eliminate τ , to get u as a function of x and y.

Part 2. In which part of the (x, y) plane is the solution determined?

Hint. Draw in the x-y plane the characteristics computed in part 1.

Part 3. Let f have a continuous derivative. Are then the partial derivatives ux and ux continuous?

4.2 Answer: Linear 1st order PDE (problem 03)

Using x to parametrize the characteristic equations for the problem in (4.1), we obtain

dy/dx = 2x and du/dx = y, (4.2)

with y = τ and u = f(τ) for x = 0 and −∞ < τ <∞. These equations have the solution

y = τ + x2 and u = f(τ) + τ x+
1

3
x3. (4.3)

Part 1. The first expression in (4.3) yields τ = y − x2. Then, from the second expression

u = f(y − x2) + x (y − x2) +
1

3
x3. (4.4)

Part 2. The characteristic curves, as given by (4.3), are parabolas intersecting the y-axis at y = τ — all shifted

versions of the parabola y = x2. Hence they cover the whole plane, with exactly one characteristic through every

point. Thus the solution is uniquely defined over the whole plane.

Part 3. From (4.4) it should be clear that: if f has a continuous derivative, then the partial derivatives of u are also

continuous.

5 Linear 1st order PDE (problem 10)

5.1 Statement: Linear 1st order PDE (problem 10)

Integrating factors. Show that the pde

(a(x, y)µ)y = (b(x, y)µ)x (5.1)

is a necessary and sufficient condition guaranteeing that µ = µ(x, y) 6= 0 is an integrating factor for the ode

a(x, y) dx+ b(x, y) dy = 0, (5.2)
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in any open subset of the plane without holes.

Part II. Assume that a = 3x y + 2 y2 and b = 3x y + 2x2.

Find an integrating factor for (5.2) — i.e.: obtain a nontrivial solution of (5.1). Use it to integrate (5.2), and write

(5.2) in the form

Φ(x, y) = constant, for some function Φ. (5.3)

Hint 5.1 Solving by characteristics (5.1) leads to (5.2), or equivalent (as part of the process — check this!) To get

out of this circular situation, note that: for a and b as above, µ = F (x, y) solves (5.1) iff µ = F (y, x) does. This

suggests that you should look for solutions 4 invariant under this symmetry; that is: µ(x, y) = µ(y, x). Hence write

µ = µ(u, v), with u = x+ y and v = x y, since solutions that satisfy µ(x, y) = µ(y, x) must have this form —

see remark 5.1.

Remark 5.1 The transformation (x, y)→ (u, v) is not one to one: it maps the whole xy-plane into the region

v ≤ 1
4 u

2 of the uv-plane, with double valued inverse x = 1
2

(
u±
√
u2 − 4 v

)
and y = 1

2

(
u∓
√
u2 − 4 v

)
. Furthermore:

(a) The two inverses are related by the x↔ y switch. (b) The singular line u2 = 4 v corresponds to the line x = y.

(c) The map is a bijection between the regions x ≤ y and 4 v ≤ u2. (d) The map is a bijection between the regions

x ≥ y and 4 v ≤ u2.

From (c - d) we see that: for any µ = µ(x, y), µ = f(u, v) for x ≤ y and µ = g(u, v) for x ≥ y, for some f and g.

Then, if µ(x, y) = µ(y, x), f = g, so that µ has the form µ = µ(u, v).

Part III. Why is it that this approach cannot be generalized to three variables? That is, to find integrating

factors for equations of the form

a(x, y, z) dx+ b(x, y, z) dy + c(x, y, z) dz = 0. (5.4)

5.2 Answer: Linear 1st order PDE (problem 10)

If (5.1) is satisfied in an open subset without holes, then there exists a function Φ = Φ(x, y) such that

Φx = aµ and Φy = b µ. (5.5)

In fact, pick a fixed point in the set, say Q. Then define

Φ(x, y) =

∫
Γ

µa dx+ µ b dy, (5.6)

where Γ is any curve (in the set) connecting Q to (x, y). The value of this integral does not depend on the curve Γ,

as follows from Green’s theorem and (5.1) — i.e.:
∮

Λ
µa dx + µ b dy = 0 for any closed curve Λ in the set. 5 Hence

(5.6) does define a function — which (obviously) satisfies (5.5).

Given (5.5), equation (5.2) yields

0 = µa dx+ µ b dy = Φx dx+ Φy dy = dΦ ⇐⇒ Φ = constant. (5.7)

Of course, for (5.7) to be of any use, µ must be non-trivial: µ = 0 always works, but it also leads to the useless

function Φ(x, y) ≡ constant.

Vice-versa, if µ is an integrating factor, there is some function Φ such that

µa dx+ µ b dy = dΦ = Φx dx+ Φy dy. (5.8)

4 Note that you only need one nontrivial solution.
5 Here is where having a set without holes matters: if there are holes, then

∮
Λ µa dx+ µ b dy = 0 is not guaranteed, and (5.6) cannot

be used to define a function.
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Hence (5.5) applies, from which (5.1) follows.

Part II. With a = 3x y + 2 y2, and b = 3x y + 2x2, equation (5.1) takes the form

aµy − b µx = (bx − ay)µ = (x− y)µ. (5.9)

In terms of the coordinates u = x+ y and v = x y, a little bit of algebra reduces this equation to

(y − x) (2uµu − v µv + µ) = 0. (5.10)

That is, for x 6= y we have
2uµu − v µv + µ = 0. (5.11)

We only need one non-trivial solution for this equation to find an integrating factor. Nevertheless, next we find

all the solutions, using characteristics.

The characteristic equations for (5.11) can be written in the form

du

2u
= −dv

v
= −dµ

µ
= ds, (5.12)

where s is a parameter along each characteristic. From the first equality it follows that u v2 = ζ, where ζ is a constant

on each characteristic — which we use as a label for the characteristic curve. From the second equality it follows

that µ/v = f , where f is also a constant along each characteristic — hence f = f(ζ) must be some function of the

characteristic label. Thus the general solution to (5.11) has the form

µ = v f(u v2) = x y f
(
(x+ y)x2 y2

)
, (5.13)

where f is some arbitrary function (with, at least, one derivative).

Remark 5.2 The formula in (5.13) follows from solving (5.11), which is equivalent to (5.9) only for x < y, or x > y.

Hence, at this stage, the only thing that we can say about the general solution to (5.9) is that it has the form

µ = x y f
(
(x+ y)x2 y2

)
for x > y, and µ = x y g

(
(x+ y)x2 y2

)
for x < y,

for some arbitrary function f and g. However, evaluating along x = y yields

x2 f
(
2x5

)
= x2 g

(
2x5

)
.

Thus, we conclude that:

All the solutions to (5.9) satisfy µ(x, y) = µ(y, x), and have the form in (5.13),

with the same function f for all x and y. This is rather interesting, since (generally) the fact that a pde. has a symmetry

does not imply that all the solutions have it too. For example: the heat equation Tt = Tx x is invariant under x↔ −x,

but T = 2 + sin(x) e−t is a solution that is not invariant under x↔ −x.

We now take the simplest of the solutions in (5.13), µ = v = x y, and plug it into equation (5.5). This yields

Φx = a x y = 3x2 y2 + 2x y3 and Φy = b x y = 3x2 y2 + 2x3 y. (5.14)

Thus Φ = x3 y2 + x2 y3 + Φ0 — where Φ0 is a constant. Hence, from (5.7), it follows that: For the case

a = 3x y + 2 y2 and b = 3x y + 2x2, (5.2) can be integrated to

x3 y2 + x2 y3 = u v2 = constant. (5.15)
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Part III. If µ is a non-trivial integrating factor for (5.4), then

µa dx+ µ b dy + µ c dz = dΦ, (5.16)

for some function Φ = Φ(x, y, z). This is equivalent to

µa = Φx, µ b = Φy, and µ c = Φz. (5.17)

However, this then implies the equations

(µa)y = (µ b)x, (µ c)x = (µa)z, and (µ b)z = (µ c)y. (5.18)

Thus, we get three equations for a single unknown µ. This is an over-determined system that (generally) has only

one solution: µ = 0. In fact, in (5.18), multiply the first equation by c, the second equation by b, the third equation

by a, add, and use the fact that we want µ 6= 0. This then yields

0 = a (bz − cy) + b (cx − az) + c (ay − bx). (5.19)

Equivalently

0 = w · (∇×w) , where w =

 a

b

c

 . (5.20)

Hence, if a, b, and c do not satisfy equation (5.20), (5.4) has no integrating factor.

Task left to the reader: Show that, at least locally, (5.20) is sufficient to guarantee that (5.18) has a non-trivial

solution.

Hint 5.2 If w ≡ 0, then any µ solves (5.18). Hence, in any sufficiently small cube, we can assume that one of the

components of w is never zero. Thus, without loss off generality, assume a ≥ δ > 0 in the cube −ε < x, y, z < ε, where

δ and ε > 0 are constants. Then: I. Use the first equation in (5.18) to construct µ0 = µ0(x, y) for −ε < x, y < ε.

II. Use the second equation in (5.18), with µ(x, y, 0) = µ0(x, y), to define µ in a neighborhood in R3 of the square

−ε < x, y < ε. III. Show that the function µ that you just constructed solves (5.18). To do this:

Define φ = (µa)y − (µ b)x and ψ = (µ c)y − (µ b)z. Then: (i) Use (5.19) to find an algebraic relationship

between φ and ψ. (ii) Use that µ satisfies the middle equation in (5.18), to derive a p.d.e. that φ satisfies. (iii) By

construction φ = 0 for z = 0. Use the pde in (ii) to conclude that φ ≡ 0. (iv) Use (i) and (iii), conclude that ψ ≡ 0.

Since µ satisfies the the middle equation in (5.18) by construction, this ends the proof.

Note: point out where the assumption a > 0 comes into play in your arguments.

Remark 5.3 Of course, once a µ satisfying (5.18) is obtained, a Φ satisfying (5.17) is given by

Φ(x, y, z) =

∫
Γ

µa dx+ µ b dy, (5.21)

where Γ is any curve connecting some fixed point Q with (x, y, z).

Why is it that the integral in (5.21) depends ONLY on the endpoints of the curve Γ?
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6 Semi-Linear 1st order PDE (problem 02)

6.1 Statement: Semi-Linear 1st order PDE (problem 02)

Discuss the problems

ux + 2xuy = 2xu2, with


(a) u(x, x2) = 1 for − 1 < x < 1,

(b) u(x, x2) = −π/(1 + π x2) for − 1 < x < 1,

(c) u(x, x2) = (1− x2/4)−1/4 for − 1 < x < 1.

(6.1)

How many solutions exist in each case? Where are they uniquely defined?

Note that the data in these problems is prescribed along a characteristic!

6.2 Answer: Semi-Linear 1st order PDE (problem 02)

Using x to parametrize the characteristic equations for the problem in (6.1), we obtain

dy/dx = 2x and du/dx = 2xu2. (6.2)

These equations have the general solution

y = τ + x2 and u = µ
(
1− x2 µ

)−1
. (6.3)

where τ and µ are arbitrary constants. For τ = 0 this yields u(x, x2) = µ
(
1− x2 µ

)−1
, which is inconsistent with

(a) in (6.1), consistent with (b) in (6.1) — provided that µ = −π, and consistent with (c) in (6.1) — provided

that µ = 1/4. Thus

Part 1. Problem (a) in (6.1) has no solutions.

Part 2. Problem (b) in (6.1) has infinitely many solutions. These are obtained by first using the first expression in

(6.3) to obtain τ = y − x2, and then taking µ as a function of τ in the second expression (with µ = −π for τ = 0).

In other words

u = f(y − x2)
(
1− x2 f(y − x2)

)−1
, (6.4)

where f is any function such that f(0) = −π. These solutions are uniquely determined along the parabola y = x2,

for −∞ < x <∞, and nowhere else!

Part 3. Problem (c) in (6.1) has infinitely many solutions. Obtained in the same fashion as for problem (b), these

are given by

u = f(y − x2)
(
1− x2 f(y − x2)

)−1
, (6.5)

where f is any function such that f(0) = 1/4. These solutions are uniquely determined along the parabola y = x2,

for −2 < x < 2, and nowhere else!

Note: The reason that x is restricted to the interval −2 < x < 2, is that the solution blows up along the y = x2

characteristic when x reaches ±2. hence it cannot be (uniquely) extended past these points.

7 Simple finite differences for a 1st order PDE

7.1 Statement: Simple finite differences for a 1st order PDE

Consider the linear PDE

ut + (c(x)u)x = 0, where c = 1 +
1

4
cos(x), (7.1)
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and u is periodic of period 2π — i.e.: u(x+ 2π, t) = u(x, t). Assume now that you are asked to calculate the

solution of this p.d.e. for 0 ≤ t ≤ T = 6, with initial condition given by

u(x, 0) = u0(x) = exp(−x2) for − π ≤ x ≤ π, (7.2)

extended periodically outside the interval [−π, π].

You can extract a lot of information from the solution by characteristics of the problem above, but actual numerical

values are not easy to access from it. For this, the best thing to do is to integrate the problem numerically. Here we

will consider a few naive numerical algorithms for this purpose.

First, introduce a numerical grid, as follows:

xn = −π + nh for 1 ≤ n ≤ N, and tm = mk for 0 ≤ n ≤M, (7.3)

where N and M are “large” integers, h = 2π/N , and k = T/M . Let umn be the numerical solution’s grid point

values. The expectation is that these values will be related to the exact solution u(x, t) by umn = u(xn, tm)+

small error, with the error vanishing as N and M grow.

Next, consider the following numerical discretizations of the problem, which arise upon replacing the derivatives in

the equation by finite differences that approximate them up to errors of some positive order in h or k. In all cases

the formulas apply for m ≥ 0, with u0
n = u0(xn).

A. 0 =
1

k
(um+1
n − umn ) +

1

h

(
c(xn)umn − c(xn−1)umn−1

)
.

B. 0 =
1

k
(um+1
n − umn ) +

1

h

(
c(xn+1)umn+1 − c(xn)umn

)
.

C. 0 =
1

k
(um+1
n − umn ) +

1

2h

(
c(xn+1)umn+1 − c(xn−1)umn−1

)
.

In all cases, once umn is known for some m and all n, um+1
n can be explicitly computed, for all n. Note: when a formula

above in A, B or C, calls for a value umn outside the range 1 ≤ n ≤ N , the periodic boundary conditions, which

translate into umn+N = umn , must be used.

The tasks in this problem are:

1. Causality and numerics. Using arguments based solely on how the information propagates in the exact solution

(characteristics), versus how it propagates in the numerical schemes above, argue that: (1.1) One of the schemes

above cannot possibly work. (1.2) A necessary condition for the other two to work is that a restriction of the

form k ≤ λh be imposed on the time step — where λ > 0 is a constant that depends on c = c(x).

2. Implement the schemes and try them out with various space resolutions, 6 and a corresponding time resolution.

Do you see convergence? Do the results agree with your analysis in item 1? Report what you see, and

illustrate it with plots — a few well selected plots should be enough!

7.2 Answer: Simple finite differences for a 1st order PDE

Causality. The key question we have to address first, for both the p.d.e. as well as its discretized versions, is: what

are the domains of dependence? Namely:

Given some arbitrary point P = (x0, t0) in space-time, what is the region with the

property that changes there affect the value of the solution at P?
(7.4)

6 N in the range 20 ≤ N ≤ 200 should be more than enough to see what happens.
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For us here, this is important because what happens outside the domain of dependence of a point P0, has NO

EFFECT at all on the value of the solution there. Hence

A necessary condition for the solution computed by a numerical algorithm to converge

to the solution of a p.d.e. (as the numerical grid is refined), is: The numerical domain

of dependence for any point P should include (as the numerical grid is refined) the

p.d.e. domain of dependence for P .

(7.5)

Proof: how can the numerical algorithm get the correct values for the solution of a p.d.e., without using the data that

determines the p.d.e. solution? Note: restrictions on numerical algorithms that arise in this fashion are called C.F.L.

conditions (C.F.L. = Courant, Friedrichs, and Lewy).

So, given an arbitrary point P = (x0, t0), what are the domains of dependence relevant here?

1. For equation (7.1) the domain of dependence is given by the characteristic through P . Namely, by the curve

determined by the o.d.e. problem:

dx

dt
= c(x), for t < t0, with ”initial condition” x(t0) = x0.

Hence, let cmax = max
|x|≤π

c(x) = 1.25, and cmin = min
|x|≤π

c(x) = 0.75. Then, the p.d.e. domain of depen-

dence is included within the wedge:

x0 + cmax (t− t0) ≤ x ≤ x0 + cmin (t− t0), with t < t0. (7.6)

Note that, for a “generic” c = c(x), and arbitrary P , this wedge is the best one can do.

2. For the scheme in item A the domain of dependence is given by

x0 +
h

k
(t− t0) ≤ x ≤ x0, with t < t0. (7.7)

Note that, for any fixed h and k, the domain is a discrete set of points. However, as the grid is refined, the whole

(7.7) wedge fills up. The same applies to the wedges in (7.8 – 7.9).

3. For the scheme in item B the domain of dependence is given by

x0 ≤ x ≤ x0 −
h

k
(t− t0), with t < t0. (7.8)

4. For the scheme in item C the domain of dependence is given by

x0 +
h

k
(t− t0) ≤ x ≤ x0 −

h

k
(t− t0), with t < t0. (7.9)

Thus, in order for (7.5) to apply, we need:

— Scheme in item A. The wedge in (7.6) will be included within the wedge in (7.7) provided h/k ≥ cmax = 1.25.

Equivalently:

k ≤ 1

cmax
h =

1

1.25
h ⇐⇒ M ≥ 1.25

2π
T N. (7.10)

— Scheme in item B. The wedge in (7.6) cannot be included within the wedge in (7.8) for any choice of h > 0

and k > 0. This scheme cannot/will not work.

— Scheme in item C. The wedge in (7.6) will be included within the wedge in (7.9) provided h/k ≥ cmax = 1.25.

Equivalently: (7.10) must apply.

Condition (7.10) is necessary only. It DOES NOT guarantee that either scheme (A or C) works, nor does it

tell us how the scheme in item B fails. To check what happens, I implemented the schemes. The results (which

do not contradict the theoretical conclusions above) follow.
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Implementation of the scheme in item A.

As long as the calculation is performed satisfying the constraint in (7.10) — C.F.L. condition — the scheme appears

to perform properly, with convergence as the grid is refined — see figure 7.1.
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Figure 7.1: Calculations with the scheme in item A, to solve (7.1 – 7.2). Left to write, and top to bottom: Numerical

solutions as the grid is refined, enforcing the C.F.L. condition (7.10) — specifically, take M = ceil

(
1.1

1.25

2π
T N

)
.

Convergence appears to be occurring.

Remark 7.1 Without an exact solution to compare the answer with, one cannot (solely from numerical cal-

culations) be sure that the observed convergence is to the actual solution — it is not hard to produce reasonable

looking numerical schemes that converge to the wrong answer. But, there exist many tests (using solely numerical

results) to increase the confidence level beyond “it looks right”. In the specific case of the scheme in item A, one can

prove that: as h→ 0, with k restricted by (7.10), the numerical solution converges to the solution to (7.1 – 7.2).

Implementation of the scheme in item B.

Grid scale oscillations (dominant wavelength is 2h), growing exponentially in time (they reach huge amplitudes very

quickly) appear. The oscillations’ growth rate increases as the grid is refined, with catastrophic results. This scheme is

not content with simply failing to work, it fails spectacularly (which is nice: makes it easy to tell it is not working).

This is illustrated by the pictures in figure 7.2.
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Figure 7.2: Calculations with the scheme in item B, to solve (7.1 – 7.2). Left to write, and top to bottom: Numerical

solutions, as the grid is refined. M is substantially above the value in (7.10). Larger M ’s do not help — see top right

picture. The spurious oscillations are very large. Hence, we do not plot the numerical solution directly: The plots
are for sign(u) ln(1 + |u|)!

Implementation of the scheme in item C.

This scheme does not work either, though it does not fail as spectacularly as the scheme in item B — the grid scale

oscillations have (comparatively) slower growth ratios. Nevertheless: grid scale oscillations are generated, which grow

exponentially with time. Furthermore, the growth rate of these oscillations becomes larger as the grid is refined. See

figure 7.3.

Remark 7.2 If the scheme in item A is used under conditions that violate the C.F.L. condition in (7.10), then

behavior similar to the one observed for the schemes in items B and C appears. Namely: grid scale oscillations that

grow exponentially, with growth rates becoming larger as h→ 0.

Note: if the C.F.L. violation is “small”, then the growth rate of the oscillations is small when N is moderate. Hence,

the grid scale oscillations will be hard to see, unless N is large enough, or the interval of computation (i.e.: T ) is

long enough.

Remark 7.3 Not only is it possible to prove that the scheme in item A converges if the C.F.L. condition is enforced

— see remark 7.1. It is also possible to explain, theoretically, why and when grid scale oscillations will appear, and



18.306 MIT, (Rosales) The flux for a conserved quantity must be a vector. 14

-2 0 2 0

5-5

0

5

 t

 Scheme C.  N = 10  and  M = 15.

 x

 u

-2 0 2 0

5-20

0

20

 t

 Scheme C.  N = 20  and  M = 30.

 x

 u

-2 0 2 0

5
-100

0

100

 t

 Scheme C.  N = 40  and  M = 60.

 x

 u

-2 0 2 0

5-2000

0

2000

 t

 Scheme C.  N = 126  and  M = 189.

 x

 u

Figure 7.3: Calculations with the scheme in item C, to solve (7.1 – 7.2). Left to write, and top to bottom: Numerical

solutions, as the grid is refined. M is substantially above the value in (7.10). Larger M ’s do not help.

to estimate their growth rate.

8 The flux for a conserved quantity must be a vector

8.1 Statement: The flux for a conserved quantity must be a vector

Note: Below (for simplicity) we present many arguments/questions in 2D. However they apply just as well in nD; n = 3, 4, . . .

Consider some conserved quantity, with density ρ = ρ(~x, t) and flux vector ~q = ~q(~x, t) in 2D. Then, in the absence of

sources or sinks, we made the argument that conservation leads to the (integral) equation

d

dt

∫
Ω

ρdx1dx2 = −
∫
∂Ω

~q · n̂ds, (8.1)

for any region Ω in the domain where the conserved “stuff” resides, where ∂Ω is the boundary of Ω, s is the arc-length

along ∂Ω, and n̂ is the outside unit normal to ∂Ω.



18.306 MIT, (Rosales) The flux for a conserved quantity must be a vector. 15

There are two implicit assumptions used above

1. The flux of conserved stuff is local: stuff does not vanish somewhere and re-appears elsewhere (this would

not violate conservation). For most types of physical stuff this is reasonable. But one can think of situations

where this is not true — e.g.: when you wire money, it disappears from your local bank account, and reappears

elsewhere (with some loses due to fees, which go to other accounts).

2. The flux is given by a vector. But: ⇒ Why should this be so? ⇐ (8.2)

The objective of this problem is to answer this question.

Given item 1, the flux can be characterized/defined as follows †

For any surface element d~S (at a point ~x, with unit normal n̂)

the flux indicates how much stuff, per unit time and unit area,

crosses d~S from one side to the other, in the direction of n̂.

 (8.3)

†This is in 3D. For a 2D, change “surface element” to “line element”.

It follows that the flux should be a scalar function of position, time, and

direction. That is:

q = q(~x, t, n̂), (8.4)

where q is the amount of stuff, per unit time and unit length, crossing a curve 7 with unit normal n̂ from one side to

the other (with direction 8 given by n̂). Then (8.1) takes the form

d

dt

∫
Ω

ρ dx1dx2 = −
∫
∂Ω

q(~x, t, n̂) ds. (8.5)

However, in this form we cannot use Gauss’ theorem to transform the integral on the right over ∂Ω, into one over

Ω. This is a serious problem, for this is the crucial step in reducing (8.1) to a pde.

Your task: Show that, provided that ρ and q are “nice enough” functions (e.g.: continuous partial derivatives),

equation (8.5) can be used to show that q has the form

q = n̂ · ~q, (8.6)

for some vector valued function ~q(~x, t).

Hints.

A. It should be obvious that the flux going across any curve (surface in 3D) from one side to the other should be

equal and of opposite sign to the flux in the opposite direction. That is, q in (8.4) satisfies

q(~x, t, −n̂) = −q(~x, t, n̂). (8.7)

Violation of this would result in the conserved “stuff” accumulating (or being depleted) at a finite rate from a

region with zero area (zero volume in 3D), which is not compatible with the assumption that ρt is continuous

and equation (8.5). Note: there are situations where it is reasonable to make models where conserved “stuff” can

have a finite density on curves or surfaces (e.g.: surfactants at the interface between two liquids, surface electric

charge, etc.). Dealing with situations like this requires a slightly generalized version of the ideas behind (8.7).

B. Given an arbitrary small curve segment 9 of length h > 0 and unit normal n̂, realize it as the hypotenuse of a

right triangle where the other sides are parallel to the coordinate axes. Then write (8.5) for the triangle, divide

the result by h, and take the limit h ↓ 0. Note that, if the segment of length h is parallel to one of the coordinate

axis, then one of the sides of the triangle has zero length, and the triangle has zero area — but the argument

still works, albeit trivially (it reduces to the argument in A).

7 In 3D: “... and unit area, crossing a surface ...”
8 A positive q means that the net flow is in the direction of n̂.
9 You can assume it is straight, since a limit h ↓ 0 will occur.
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8.2 Answer: The flux for a conserved quantity must be a vector

Consider a small (straight) segment of length 0 < h � 1, which is not parallel to

the coordinate axes. Let n̂ be the unit normal to the segment with a positive first

component n1 > 0. Assume that n2 > 0. Construct a right triangle Ω, with two

sides parallel to the coordinate axes and hypotenuse the given segment (see figure).

Then ∂Ω has outside unit normals n̂, −ı̂, and −̂ (where ı̂ and ̂ are the coordinate

axes unit vectors), and equation (8.5) yields

O(h2) = −q(~x, t, n̂)h− q(~x, t, −ı̂)hn1 − q(~x, t, −̂)hn2 +O(h2),

= −q(~x, t, n̂)h+ q(~x, t, ı̂)hn1 + q(~x, t, ̂)hn2 +O(h2), (8.8)

where ~x is any point in Ω and we use (8.7) to obtain the second line from the first.

Now divide (8.8) by h, and take the limit h ↓ 0. This yields (8.7) with

~q = q(~x, t, ı̂) ı̂+ q(~x, t, ̂) ̂. (8.9)

To complete the proof we need to consider the cases:

— Case n1 > 0 and n2 < 0. The argument is exactly analogous to the one above.

— Case n1 < 0 and n2 6= 0. Follows from the result in (8.7).

— Case n1 = 0 or n2 = 0. Trivial, given ~q as in (8.9), and (8.7).

9 Traveling waves for KdV and the Airy paradox

9.1 Statement: Traveling waves for KdV and the Airy paradox

Consider the Korteweg de-Vries (KdV) equation

ut + ux + 6uux + uxxx = 0, −∞ < x <∞, (9.1)

where u = u(x, t). Before getting to the problem’s questions, some needed background.

1. It seems reasonable to assume that the small amplitude solutions are well represented by the linearized equation.

In particular, that we can write

u ≈
∫ ∞
−∞

F (k) ei (k x−ω t) dk, where ω = k − k3, (9.2)

and F is the Fourier Transform of the initial data u0(x) = u(x, 0).

Imagine now that u0 is a localized bump 10, write F in polar form 11 F = f ei φ0 , and rewrite (9.2) as

u ≈
∫ ∞
−∞

f(k) ei φ+i k x dk, where φ = φ0 − ω t. (9.3)

In particular

u0 =

∫ ∞
−∞

f(k) ei φ0+i k x dk. (9.4)

10 In particular, u0 decays very fast as |x| → ∞. Say, exponentially.
11 Here both f and φ0 are real valued.
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The way a Fourier Transform can represent a localized function is through destructive interference. This

requires a careful balance between the amplitude f and the angle φ0. However

d2φ0

dk2
− d2φ

dk2
=
d2ω

dk2
t, where

d2ω

dk2
6= 0. (9.5)

Thus the required balance is destroyed by the time evolution (see note below). It follows that

The solution in (9.3), ceases to be localized in space as time increases. Oscillations appear,

which spread over an ever larger region (growing linearly with time). The bump ”disperses”.
(9.6)

Note. The reason that we need to look at the second derivative in (9.5) is that linear changes in the angle

merely cause a shift in space of the transform. A wave system for which d2ω
dk2 6= 0 is called dispersive, for the

reasons explained above.

2. Yet equation (9.1) has steady traveling wave solutions (with constant speed s)

u = U(x− s t), where u vanishes exponentially as |x− s t| → ∞. (9.7)

Furthermore, these solutions satisfy 0 < U ≤ a, where the parameter a = max(U) can be any positive number

— in particular, as small as you care it to be.

This is in clear contradiction with (9.6)! ←− The Airy “paradox”.

It is hard to argue with (9.7), which means that something is wrong with the argument leading to (9.6) — not

too surprising since this argument is not “rigorous”. Yet, there is no question that∫ ∞
−∞

F (k) ei (k x−ω t) dk (9.8)

exhibits the behavior in (9.6) — this is rigorous. Thus the problem must be with ≈ in (9.2). The question

is what, and is it something with a clean intuitive interpretation, or is this a problem with a subtle and very

technical, but not intuitive, mathematical reason behind it?

PROBLEM TASKS:

A. Write the solutions in (9.7), parameterized by a. This involves elementary functions only.

B. Study the way U scales with a, and provide an intuitive explanation for the Airy paradox.

Hint. What happens with the dispersive effects as a vanishes?

9.2 Answer: Traveling waves for KdV and the Airy paradox

Upon substitution of (9.7) into (9.1), the equation becomes an third order ode for U . Using the fact that U vanishes

very fast at infinity, this ode can be integrated twice, to obtain

(U ′)2 + (1− s)U2 + 2U3 = 0, (9.9)

where the prime indicates a derivative with respect to x− s t. This equation is separable, and can be solved using

elementary functions. After a bit of algebra, this yields the solutions

u = a sech2
{√

a [x− (1 + 4 a) t]
}
, (9.10)

where a > 0 is an arbitrary constant. As advertised, these solutions decay exponentially at infinity, and remain “a

bump” for all times — no matter how small a is taken.

Next we use the solution above to motivate an intuitive explanation for the paradox.
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a. Notice that, as the amplitude of (9.10) decreases, the “wavelength” O(1/
√
a) correspondingly increases. Since

the term responsible for the dispersion in (9.1) is uxxx, we see that for (9.10) dispersion effects vanish as the

nonlinearity decreases. In fact, a quick calculation shows that

”size” of the nonlinear effects = ”size” of uux = a
5
2 . (9.11)

”size” of the dispersive effects = ”size” of uxxx = a
5
2 . (9.12)

It is thus
not valid to neglect the nonlinear effects when going from (9.1) to (9.2),

while keeping the dispersive ones — if the wavelength is sufficiently large.
(9.13)

The moral here is that, to linearize an equation (particularly one with dispersion) we not only need to assume that

the amplitudes are small, but we need to watch the wavelengths as the amplitude vanishes — unforeseen errors

can occur if we do not.

b. A more “mathematical” way to see this is to observe that (9.1) has the following symmetry

If u = u(x, t) solves (9.1), then so does ũ = m2 u
(
m (x− t) +m3 t,m3 t

)
, (9.14)

where m is any constant. 12 Thus it is possible to generate solutions with arbitrarily small amplitudes such

that the nonlinear term in (9.1) cannot be neglected.

Finally, we point out that the Airy paradox did not arise in the context of the KdV equation, but for the full water

waves equations. These equations do not have a simple invariance such as (9.14), and quantifying the “size” of the

nonlinear and the dispersive effects is not as easy. Hence, it took quite a while for the paradox to be resolved. In fact,

the key ingredient in doing so was the derivation of the KdV equation as applying, for water waves, in a special limit

involving small amplitude and long waves [after nondimensionalizing using the fluid depth]. This limit is precisely

the one in which the amplitude scales as the square of the inverse of the wavelength — thus, it is not surprising that

the KdV equation should be invariant under this scaling, as in (9.14).

THE END.

12 The solutions in (9.10) are generated in this fashion, with a = m2, from the solution corresponding to a = 1.


