Lecture 13,2021 Gpul8, Th
$C=\frac{d \Phi}{d e}$

$$
\frac{d c}{d e} \neq 0
$$

Slu,
$p=$ fieaurise smooth
with discoutinuetion along $x=\sigma(t)$ shocks
shocks sotish $\frac{d \sigma}{d t}=\frac{[9]}{[e]}$ Rankerve laksomest
 each ude

Examples

$(\sqrt{T} \sqrt{T \pi})$ at $x=0, t=0$ int ital doth
swed (ch. $\quad x=u t \quad 1 \leq u \leq \varepsilon$
$\therefore u=\frac{x}{t} \quad \begin{aligned} & \text { Expanusin Fan } \\ & \text { fell gap }\end{aligned}$
Expanse cos for conks if
at descontinenty with dar P_{1} on the left
P_{2} on the molt
and $\quad C\left(P_{1}\right)<C\left(P_{2}\right)$
also nd $C(P)$ monotone between

$$
P_{1} \text { and } P_{2} \text { so } c(e)=\frac{x}{t}
$$

can be merited

$$
\begin{aligned}
& \text { Example } \\
& u_{t}+u u_{x}=0 \\
& 0<x<00, t>0 \\
& u(x, 0)=3 \text { for } x>0 \\
& u(0, t)=2 \text { for } 0<t<1 \\
& u(0, t)=\frac{1}{u=2} \quad \text { for } 1<t<0 \\
& u=1 q^{+k} \quad u=2 \quad u=2 \\
& 4=3 \quad x=3 t
\end{aligned}
$$

$$
\iint_{x=2 t}, x=2(t-1) \quad x=(t-1)
$$

Gap $2 t<x<3 t$ Fill ere with ch. that
stant at $x=0, t=0$, with all $2<u<3$

$$
x=u t
$$

$$
\therefore \quad u=\frac{x}{t}
$$

Gay $(t-1)<x<2(t-1)$ Fill en wi th ch. start at $x=0, t=1$ with all $1<u s^{2}$

$$
x=u(t-1) \quad u=\frac{x}{t-1}
$$

Fere solution

$$
U=\left\{\begin{array}{lll}
1 & \text { for } 0<x<t-1 \\
\frac{x}{t-1} & \text { for } t-1<x<2(t-1) \\
2 & \text { for } 2(t-1)<x<2 t \\
\frac{x}{t} & \text { for } 2 t<x<3 t \\
3 & \text { for } x>3 t
\end{array}\right]
$$

Quentions whe es a "liman" in the fons:
Rewns fans ause from solving $C(\rho)=\frac{x-x_{0}}{t-t_{0}}$ un general where $\left(x_{0}, t_{0}\right)$ es where the datc ka a jeump
Now for $u_{t}+u u_{x}=0 \quad C=u$

$$
u=\frac{x-x_{0}}{t-t_{0}}
$$

lunt if $C(u)$ is not liner tha do port ausure
Excyles same pable hut

ii gat1 $u=\log \left(\frac{x}{x}\right) u=\log \left(\frac{x}{t-1}\right)$
Exampe 4

$$
u_{t}+u u_{x}=1
$$

Ch.ferees

$$
\frac{d x}{d t}=u, \frac{d u}{d t}=1
$$

$C h$.that starts
$u=2+t$

$$
\begin{aligned}
& u=2+6 \\
& x=\xi+2 t+\frac{1}{2} t^{2}
\end{aligned}
$$

Ch. foon $x=r, t=0,3<0$

$$
\begin{aligned}
& u=1+t \\
& x=\xi+t+\frac{1}{2} t^{2}
\end{aligned}
$$

Exauple 5 Why Lax eutrony mations
Red leght tavins green publen done "uquoring" q
 then lest

Hownve suppose I"deade"to erclude a shock

where is et colmis foom?
Condreun: Core waquenes?!! froblen becons ell-posed

Anpument to juentify Lox Eutrovy 11
(\#1) Une slock onl where weeded, to stop characterstia from corrxing. "do se mplest fax to mulbige volme"
(12) Waut a well posed pable

know she fois $t<$ to
want to corperte et at $t_{0}+d t$ at mast ties need to know slen. and wheneshock mor to
then we R.A. loget shock speed and you ave doue

If ck. docust wanceps you hove cpoth
(\#3) plyucel apunet shock anses from conpetition between
nouleneorts and some "defferne" effect [Hegher onder]
Exigh Freflac fho $p+q(e)_{x}=8 p_{x}$ (preventive druag)
"Somethye that "wounts" to spred things"

$$
\leftrightarrow
$$

Exyes
 effect opencts
This repion will remaes thin onl of nouliveopt keeps namonirset
\qquad
Excple of coutrony "where" a shock bets wath procmetas

It flownote hudranke muy

Gevenate steady shodk me treffec fow with in comine dencuth ρ_{1} by using a "lecky" ned leght that produces p_{2} be hind (rost P_{j}). Au exagle of a "leoky" ned laght is toll booths.

