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1 Bender and Orszag Problem 3.4 (d) (e) (f)

Classify the points at 0 and ∞ of the following differential equations:

(d) x2y′′ =e1/xy.

(e) (tanx) y′ = y.

(f) y′′ = y ln x.
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Solution Recall that for the differential equations of the form

y′′ + p1 (x) y′ + p0 (x) y = 0, (1.1)

a point x0 is called

• Ordinary: if and only if both p1 and p0 are analytic in a neighborhood of x0.

• Regular singular: if and only if either of p1 or p0 fails to be analytic at x0, but both

(x− x0) p1 (x) and (x− x0)
2 p0 (x) are analytic in a neighborhood of x0.

• Irregular singular: if and only if it is neither an ordinary nor a regular singular point.

(d) For this differential equation, x = 0 is an irregular singular point because e1/x/x2 has an

essential singularity at x = 0.

Using the transformation t = 1/x we get

t2ÿ + 2tẏ = ety ⇒ ÿ +
2

t
ẏ −

et

t
y = 0, (1.2)

from which we conclude that x = ∞ is a regular singular point.

(e) Here we have

y′ =
y

tan x
= y

(
1

x
−

1

3
x−

1

45
x3 + O

(

x5
))

. (1.3)

Hence x = 0 is a regular singular point. The transformation t = 1/x gives

dy

dt
= −

y

t2 tan (1/t)
, (1.4)

which has an essential singularity at t = 0. Hence x = ∞ is an irregular singular point.

(f) We can immediately see that x = 0 is an irregular singular point, because of the presence

of the logarithm (with a branch point there). The same applies for ∞, because under

the transformation t = 1/x the original differential equation becomes

ÿ +
2

t
ẏ + y

ln t

t4
= 0, (1.5)

which also has 0 as an irregular singular point.
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2 Bender and Orszag Problem 3.6

Find the Taylor series valid near x = 0 for the solution to the initial-value problem

y′′ − 2xy′ + 8y = 0, with y (0) = 4 and y′ (0) = 0. (2.1)

Note: write ALL the coefficients in the Taylor expansion explicitly.

Solution The Taylor series valid near x = 0 has the form

y =
∞∑

n=0

anx
n, (2.2)

where a0 = 4 and a1 = 0, as required by the initial conditions. Substituting this series in the

equation and equating equal powers of x yields

(n + 2) (n+ 1) an+2 − 2 (n− 4) an = 0. (2.3)

Since a1 = 0, we must have an = 0 for n odd. For even n = 2m− 2 (m ≥ 1) we obtain:

a2m =
2 (m− 3)

m (2m− 1)
a2(m−1). (2.4)

Hence

a2 = −16, a4 =
16

3
, and a2m = 0 for m ≥ 3. (2.5)

The solution is thus

y = 4 − 16x2 + 16
3
x4. (2.6)

3 Bender and Orszag Problem 3.22

Given the following differential equation

x3y′′ = y. (3.1)
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(a) Produce a solution in terms of a Taylor series at infinity of the form

y =
∑

n

anx
−n. (3.2)

Compute the coefficients an explicitly. There is only ONE linearly independent

solution of this form.

(b) A second linearly independent solution of this equation has a leading order be-

havior y ∼ x when x → +∞. What is the next term in the expansion for x large

and positive?

(c) Place your answers to (a) and (b) in terms of the classification of singular points.

Solution (a) A Taylor expansion at x = ∞ for the solution has the form

y =
∞∑

n=0

anx
−n, (3.3)

Substituting into the equation yields

(n + 1) (n+ 2) an+1 = an for n ≥ 0, (3.4)

with a0 arbitrary. From this we obtain the convergent series for the solution given by:

y = a0

∞∑

n=0

x−n

n! (n+ 1)!
. (3.5)

This expansion has only one free parameter, hence there must be another solution which

does not have a Taylor expansion series at ∞.

(b) From the problem statement we know that we can write the solution in the form

y = x+ ϕ (x) , (3.6)

where |ϕ (x) | � x when x is large. The equation for ϕ is thus

x3ϕ′′ = x+ ϕ. (3.7)
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In the limit of large x this can be approximated to

x3ϕ′′ ∼ x. (3.8)

This equation can be solved to give

ϕ ∼ − ln x+ c0 + c1x, (3.9)

where c0 and c1 are constants. However, we must take c1 = 0, since otherwise |ϕ| � x

for x large fails. We can also take c0 = 0, since we can always subtract from this solution

a multiple of the solution in (3.3 – 3.5), to set c0 = 0.

What is the next term? To answer this question we write

y = x− ln x+ ψ (x) (3.10)

with |ψ| � | lnx| for x� 1. Then

x3ψ′′ = − ln x+ ψ ∼ − ln x, (3.11)

from which we obtain the leading order approximation

ψ ∼ −
ln x

2x
. (3.12)

In solving for ψ, the same argument as above was used to set the constants to zero.

Continuing in this way, it is easy to see that an expansion for the solution involving terms

of the form x−n (for n ≥ −1) and (ln x)x−m (for m ≥ 0) can be obtained.

(c) We use the transformation x = 1/t to classify the point at ∞. This gives the differential

equation

tÿ + 2ẏ = y, (3.13)

from which it follows that t = 0, or equivalently x = ∞, is a regular singular point. Thus

a solution should be provided by a Frobenius series of the form

y = ts
∞∑

n=0

ant
n. (3.14)
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Substituting this series into the differential equation (3.13) we get

∞∑

n=0

(n + s) (n+ s− 1) ant
n+s−1 + 2

∞∑

n=0

(s + n) ant
n+s−1 =

∞∑

n=1

an−1t
n+s−1. (3.15)

Therefore we must have

s (s+ 1) a0 = 0. (3.16)

(n+ s) (n+ s+ 1) an = an−1, for n ≥ 1. (3.17)

From this we can get only one solution (case s = 0), which will be the same as the one

obtained in part (a). In order to get a second solution we follow the procedure outlined

in Bender and Orszag, and seek a solution with an expansion of the form

t−1
∑

n

tnbn − ln t
∑

n

tncn = x
∑

n

bn
xn

+ ln x
∑

n

cn
xn
. (3.18)

To sum up, ∞ is a regular singular point for the differential equation and therefore

admits a Frobenius series expansion for at least one of the solutions. Series expansions

can be found for the second solution as well, involving lnx. The logarithm appears in

the second solution, because the solutions to the indicial equation in (3.16) differ by an

integer (s = 0 and s = −1).

4 Bender and Orszag Problem 3.32

The differential equation y′′ + x−2e1/x sin
(

e1/x
)

y = 0 has an irregular singular point at

x = 0. Show that if we make the exponential substitution y = eS, it is not correct to

assume S ′′ << (S ′)2 as x→ 0 + . What is the leading behavior of y (x)?

NOTE: This problem shows that dominant balance in the usual way does not always work.

EXPLAIN why not.

However: a different dominant balance in the equation for S that results from the substitution

y = eS gives an appropriate expansion for the solutions. SHOW this.
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Solution Let y = eS and φ = S ′. Then

φ′ + φ2 + x−2e1/x sin e1/x
︸ ︷︷ ︸

(cos e1/x)
′

= 0. (4.1)

As x → 0+ the S-independent term oscillates extremely fast, with a very large amplitude.

Assuming φ′ << φ2, φ can be found approximately by solving:

φ2 ∼ −
(

cos e1/x
)
′

(4.2)

This implies that φ switches back and forth from real to imaginary very fast, with a large

amplitude — completely nonsense, not even consistent with the assumption that φ′ � φ2.

If, on the other hand, we assume that φ2 � φ′, then we get a consistent expansion

φ = φ0 + φ1 + φ2 + ... (4.3)

where φn = O (xn) as x→ 0+. In fact

φ0 = c− cos e1/x, (4.4)

where c is a constant. The next few terms satisfy the differential equations

φ′

1 = −φ2
0, (4.5)

φ′

2 = −2φ0φ1, (4.6)

φ′

3 = −
(

φ2
1 + 2φ0φ2

)

, (4.7)

...

In general, φn is given by

φn = −
∫ x

0

(
n−1∑

j=0
φjφn−j−1

)

dx. (4.8)

Using (4.8), we can prove by induction that φn = O (xn) as x→ 0+. This gives one family of

solutions for φ, hence two for S upon integration.
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5 Bender and Orszag Problem 3.1

We have used the transformation x = 1/t to classify x = ∞ as an ordinary, regular

singular or irregular singular point. Would the transformations x = t−n, x = t−α

(α > 0) , x = 1/ sinh t also work? Is there any advantage to x = 1/t?

Solution For the purpose of classifying the point at ∞ as ordinary, regular singular, etc., one needs

a transformation x→ t — in the complex plane — that

(a) sends x = ∞ to some finite point, say t = 0,

(b) is analytic in a neighborhood of x = ∞, and

(c) is single valued and invertible near x = ∞.

From (a-c) the transformation will have a Laurent expansion of the form

t = c0 x
−1 + c1 x

−2 + c2 x
−3 + . . . (5.1)

with c0 6= 0, which converges for |x| > R, for some R ≥ 0. Alternatively, the inverse function

will have a series of the form

x = c0 t
−1 + a1 + a2 t+ . . . (5.2)

converging for 0 < |t| < r, for some r > 0.

Any function with these properties will do (and will give the same answer), but the simplest

one is 1/x. The alternative given in the problem statement x = t−α, α > 0 cannot satisfy

all of (a), (b) and (c) above unless α = 1. The transformation x = 1/ sinh(t) will work, but

choosing x = 1/t is a lot simpler.



18.305 MIT, Fall 2005 (Margetis & Rosales). Answers to Problem Set # 1. 9

6 Bender and Orszag Problem 3.33 (a)

Find the leading behavior, as x → 0+, for the following equation

x4y′′′ = y. (6.1)

Solution Let y = eS and φ = S ′. Then (6.1) becomes

φ′′ + 3φφ′ + φ3 = x−4. (6.2)

Assume that φ3 dominates on the left. Then

φ ∼ σx−4/3 (6.3)

where σ is a cubic root of 1 (σ3 = 1) . This yields 3 solutions as needed. We now check the

solution for consistency

φ′′ = O
(

x−10/3
)

� φ3 = O (x−4) . (6.4)

φφ′ = O
(

x−11/3
)

� φ3 = O (x−4) . (6.5)

The complete expansion for φ is then given in powers of x−1/3 as follows

φ ∼ σx−4/3 + ax−1 + bx−2/3 + ... (6.6)

By substituting the form above and collecting equal powers of x we find

1 = x4
(

φ′′ + 3φφ′ + φ3
)

= σ3 + σ2 (3a− 4)x1/3 + σ
(

3bσ + 3a2 +
28

9
− 7a

)

x2/3 + ... (6.7)

From this we conclude that

a = 4/3, (6.8)

b = 8σ−1/27, (6.9)

and so on. Therefore, for some constant c0,

S ∼ −3σx−1/3 +
4

3
lnx+ c0

︸ ︷︷ ︸

dominant terms

+
8

9σ
x1/3 + . . .

︸ ︷︷ ︸

small

(6.10)
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It follows that the leading behavior of y as x→ 0+ is given by

y ∼ c x4/3 e−3σx−1/3
, (6.11)

where c is some constant.

Note: To obtain the form for φ in equation (6.6), we proceed in the usual way. First write

φ = σ x−4/3 + w1 (x) , (6.12)

where w1 = o(x−4/3) as x → 0+. Then substitute this into equation (6.2), to obtain an

equation for w1. A dominant balance analysis then shows that w1 ∼ 4/(3 x). Hence write

φ = σ x−4/3 +
4

3 x
+ w2 (x) , (6.13)

where w2 = o(x−1) as x→ 0+. Then we substitute this into the equation for φ, to obtain an

equation for w2, and (again) do a dominant balance analysis. And so on and so forth.

Of course, after you have some experience with doing expansions (meaning: you have done gazil-

lions of them), you will be able to guess the form in equation (6.6) — hence short-cutting the

painful process sketched above.

THE END.


