Thus, we need to solve for G_p because it has some paradoxes.

1) $(\partial_t - \partial^2_x) G_p(x,y,t) = 0$

2) PBC \hspace{1cm} G_p(x,y,t) = G_p(-\pi - y, t) \hspace{1cm} \forall t$

3) $\partial_x G_p(x,y,t) = \partial_x G_p(-\pi - y, t)$

4) future evol of pt source at $x=y$ (plus periodically spaced images)

$v)$ symmetry $G_p(x - y, t) = G_p(y - x, t)$

\[G_p(x - y, t) \sim \sum_{m = -\infty}^{\infty} e^{-\left(\frac{(y + (2m + 1)\pi)^2}{4t}\right)} \text{ term with } m \leq 0, 1, 2, \ldots \]

\[G_p(-\pi - y, t) \sim \sum_{m = -\infty}^{\infty} e^{-\left(\frac{(y + (2m + 1)\pi)^2}{4t}\right)} \text{ term with } m \geq 0, 1, 2, \ldots \]

Rate of convergence: \{ best at small t when only a few images term have appreciable size \}

Still reasonable at large t

\underline{Summary:} image change expansion of G_p is correct, and has complementary convergence properties to spectral nexp.

Heat flow on $[0, \pi]^2$: BC: \hspace{1cm} 0 at $x=0$ and $x=\pi$

\[\left\{ \begin{array}{l}
G_{p/n}(x,y,t) = G_p(x,y,t) + G_p(x,y,t) \\
\end{array} \right. \text{ at } x=0 \text{ and } y=\pi
\]

It satisfies \((\partial_t - \partial^2_x) G = 0\)

It satisfies \(\partial_x G = 0\) \hspace{1cm} \text{at } x=0 \hspace{1cm} \text{by construction}

(\text{It is even in } y \hspace{1cm} \text{by inspection. By symmetry})

\[G_{0/n}(x,y,t) = G_p(y,x,t) + G_p(y+x,t) \text{ new odd even in } x \]

What about $x = \pi$

\[G_{p/n}(\pi,y,t) = G_p(\pi - y, t) = G_p(\pi + y, t) \]

\[= G_p(y - \pi, t) + G_p(y + \pi, t) \]

so \(\text{odd} = 0\) \hspace{1cm} \text{by periodicity of } G_p

So we do get a new image change rep for $G_p(x,y,t)$.

Ex: \text{ does } \frac{\partial}{\partial_x} G_{0/n}(x,y,t) \bigg|_{x = \pi} = 0?
Last appic of heat eq: Go back to our
result for whom. Dirichlet problem

\[u(x, t) = - \int_0^\infty d\xi \left[\frac{\partial}{\partial y} G(x, y, t; \xi) \right]_{y=\pi} = B(t) \]

\[- \frac{\partial}{\partial y} G(x, y, t) \bigg|_{y=0} = A(t) \]

Can we simply write a formula of same structure
to solve the corresponding problem in 2 dims.

See p. 96b.

General flow chart for our work on heat flow
in all situations:

- Basic tool
- Separation of variables
- Eigenparameter expansions

Boundary value
- Dirichlet: \(u(\partial, t) = T \)
- Neumann: \(\partial u/\partial n = 0 \)

Initial value problem
- \(u(x, 0) = f(x) \)

Source
- \(Q(x, t) \)

Green's function
- \(G(x, y, t) \)

Spectral representation
Change of topic: Laplace / Poisson eqtn \(\nabla^2 u = \rho(x) \)

1. Review our early work on pp 72 - 79 of notes

2. Green's fn for Laplace / Neumann problem

3. Laplace / Poisson on \(\mathbb{R}^d \) and its Green's fn.

Review:

1. Uniqueness for \(\nabla^2 u = \rho \) on \(\mathbb{R} \)

 - with BC: \(\mathcal{D} \), \(u(x) \big|_{\partial \mathcal{D}} = f(x) \)

 \(\text{on } N \), \(n \cdot \nabla u \big|_{\partial \mathcal{D}} = -\Phi(x) \)

 a. Set of \(\mathcal{D} \), prob in unique (with or w/o. source)

 b. \(N \) prob (w/o. source) has a sol only if

 \[\int_{\mathcal{D}} d\mathcal{S} \Phi(x) = 0 \]

 - sol \(u \) unique up to additive const: \(u_1(x) = u(x) + c \)

 \(N \) prob with source and non-zero BC's

 \(\nabla^2 u = \rho(x) \)

 \(n \cdot \nabla u = -\Phi(x) \)

 \[\int_{\mathcal{D}} d\mathcal{S} \nabla^2 u = \int_{\mathcal{D}} d\mathcal{S} \rho(x) \]

 \[L_0 = \int_{\mathcal{D}} d\mathcal{S} n \cdot \nabla u = -\int_{\mathcal{D}} d\mathcal{S} \Phi(x) \]

 A sol can exist only if the body data + source

 satisfy

 \(\int_{\mathcal{D}} d\mathcal{S} \rho(x) + \int_{\mathcal{D}} d\mathcal{S} \Phi(x) = 0 \)

2. Connection between Laplace eqtn + Laplace eigenvalue prob

\(\nabla^2 \varphi_n = -\lambda_n \varphi_n \)

Green's fn: \(\nabla^2 G_D(x, \tilde{x}) = \delta(x - \tilde{x}) \)

\(G_D(x, \tilde{x}) \big|_{\tilde{x} \in \mathcal{D}} = 0 \)

We showed that \(G_D \) has universal spectral map

\[G_D(x, \tilde{x}) = \sum_{n=1}^{\infty} \frac{\varphi_n(x) \varphi_n(\tilde{x})}{-\lambda_n N_n^2} \quad \text{for } \lambda_n > 0 \]

\(\ast \)
Then \(\nabla_x^2 G_D (\vec{x}, \vec{y}) = \sum_{n} \left(\frac{\phi_n(x) \phi_n(y)}{N_n^2} \right) = \delta (\vec{x} - \vec{y}) \),

Using \(G_D \), we can write the unique solution of Dirichlet problem with both source and body data

\[
u (\vec{x}) = \int d^2 y \, G_D (\vec{x}, \vec{y}) \rho (\vec{y}) + \int d y \, \hat{n} \cdot \nabla \, G_D (\vec{x}, \vec{y}) f (\vec{y})
\]

We would like to find \(G_N \) for Neumann problem, but there is trouble due to zero mode: \(\rho_0 (\vec{x}) \equiv 1/A \).

We might try \(G_N (\vec{x}, \vec{y}) = \sum_{n=0}^{\infty} \frac{\phi_n(x) \phi_n(y)}{-\lambda_n N_n^2} \),

where \(\phi_n(x) \) are Neumann eigenfunctions, \(\nabla^2 \phi_n = -\lambda_n \phi_n \),

\[
\frac{\partial}{\partial \vec{n}} \phi_n |_{\vec{n} \cdot \nabla \phi_n = 0} = 0
\]

BUT zero mode term \(n = \infty \) is excluded so sum is well defined.

There are several ways to define a modified Green's function to avoid this problem. One way is to define the Neumann for \(G_N \).

\[
G_N (\vec{x}, \vec{y}) = \sum_{n=1}^{\infty} \frac{\phi_n(x) \phi_n(y)}{-\lambda_n N_n^2}
\]

\[
\nabla_x^2 G_N = \sum_{n=1}^{\infty} \frac{\phi_n(x) \phi_n(y)}{N_n^2} = \delta (\vec{x} - \vec{y}) - \frac{1}{A}
\]

Connection to rhs, etc. completeness sum includes \(\phi_0 = \frac{1}{\sqrt{A}} \).

We now show that it still \(G_N \) allows us to solve Neumann/Poisson problem \(\nabla^2 \nu = \rho (x) \times \hat{n} \), \(\nabla \cdot \nu |_{\partial \Omega} = 0 \).

We would try:

\[
u (\vec{x}) = \int d^2 y \, G_N (\vec{x}, \vec{y}) \rho (\vec{y})
\]

\[
\nabla^2 \nu = \int d^2 y \left[\delta (\vec{x} - \vec{y}) - \frac{1}{A} \right] \rho (\vec{y}) = \rho (x) - \frac{1}{A} \int d^2 y \, \rho (\vec{y}) = 0
\]

and term vanishes because of solvability condition, on previous page so are sol with modified Green's fn works!
Poisson's Eqtn in \(\mathbb{R}^3 \): \(\nabla^2 u(x) = \rho(x) \)

(The body canis in finite \(\mathbb{R} \) replaced by a point cond.

we won't be explicit about this.)

We expect Green soln of form \(u(x) = \int d^3y \, G(x-y) \rho(y) \)

For \(G \) we will write a spherical rep and also go to \(x \rightarrow 0 \), but using complete set of plane waves:

\[
G(x-y) = -\frac{1}{(2\pi)^3} \int d^3k \frac{e^{ik \cdot x} - e^{ik \cdot y}}{k^2} \]

\(c) \) \(G \) n a fn of \(x-y \) because of trans sym\(s \) of \(\mathbb{R}^2 \)

\(d) \) we will see that integral will well defined despite \(\frac{1}{k^2} \rightarrow \infty \) as \(k \rightarrow 0 \)

\(e) \) formal check of PDE

\[
\nabla^2 G(x-y) = -\frac{1}{(2\pi)^3} \int d^3k \frac{-k^2 e^{ik \cdot x} - e^{ik \cdot y}}{k^2} = \delta(x-y)
\]

Calculate \(\delta \) explicitly -- no loss of generality if we take \(y = 0 \)

\(G(x) = \frac{1}{(2\pi)^3} \int d^3k \frac{e^{ik \cdot x}}{k^2} \)

The integral is best done in sph. coords in \(k \)-space:

\[
k_3 = k \cos \theta \\
k_1 = k \sin \theta \cos \phi \\
k_2 = k \sin \theta \sin \phi \\
\frac{k \cdot x}{r} = \frac{k_1 x_1 + k_2 x_2 + k_3 x_3}{r}
\]

Choose coords so that geom. angle \(u \) \(k \cdot x \) is equal to \(\cos \theta \) of sph. coords.

We then get:

\[
G(x) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \frac{d\theta}{k} \sin \theta \int_0^{\pi} d\phi \int_0^{2\pi} d\alpha \, e^{i k \cdot x} \cos \theta
\]

\[a) \] \(\int_0^{2\pi} d\phi = 2\pi \)

\[b) \] \(\frac{1}{2\pi} \int_0^{2\pi} d\alpha \, e^{i k_1 x_1 + i k_2 x_2 + i k_3 x_3} = \frac{1}{2\pi} (e^{ik_1 x_1} - e^{-ik_1 x_1}) = \cos k_1 x_1 \]