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Approximation of Solutions of the Cubic

Nonlinear Schrödinger Equations by Finite-Dimensional

Equations and Nonsqueezing Properties

Jean Bourgain

We prove a nonsqueezing result for certain nonlinear Schrödinger equations, extending to

the NLSE some recent work of S. Kuksin [Kuk]. The main feature of this situation is that the

flow map is not a compact perturbation of a linear map in the symplectic Hilbert space.

The method consists of a direct reduction of the problem to a finite-dimensional model

where the symplectic capacity preservation holds. This is achieved by elaborating some

of the techniques of [Bo1], [Bo2]. The precise form of the nonlinearity is of importance in

this argument.

Section 1

We will consider for simplicity the cubic NLSE

i ut + uxx + u|u|2 = 0 (1)

u = u(x, t) periodic in x

with initial data

u(x,0) = φ(x). (2)

The same argument applies equally well to equations of the form i ut + uxx + A(x, t)u +
B(x, t)u|u|2 = 0 withA,B real smooth functions in x, t, both periodic in x. (These equations

are Hamiltonian but not integrable.)
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80 Jean Bourgain

We assume φ ∈ L2(T). There is the equivalent integral equation

u(t) = U(t) φ+ i

∫ t
0
U(t− τ) w(τ) dτ (3)

where U(t) is the group ei∂
2
x and w stands for u|u|2.

In [Bo], we studied the wellposedness problem of (1), (2) and we summarize some

facts of relevance in this discussion. Assume t ∈ [0, T ] and define a quasi norm for func-

tions u

|||u||| = inf

{∑
k

∫
dλ (1 + |λ− k2|) |̂u(k, λ)|2

}1/2

(4)

where the infimum is taken over all representations

u(x, t) =
∑
k

∫
dλ û(k, λ) ei(kx+λt) (5)

the equality (5) being valid on T × [0, T ].

Using the norm ||| |||, it is shown in [Bo] that the local Cauchy problem (1), (2) is

well posed for φ ∈ L2(T). This follows from an application of Picard’s fixpoint theorem

applied to (3). Using a Fourier analysis, one establishes the inequalities

|||u||| ≤ ‖φ‖2 + γ(T ) |||u|||3 (6)

and also, for t ∈ [0, T ],

‖u(t)‖2 ≤ ‖φ‖2 + γ(T ) |||u|||3 (7)

where γ(T ) → 0 for T → 0.

Similarly, if u, v are the solutions corresponding to L2-data φ,ψ, one has

|||u− v||| ≤ ‖φ−ψ‖2 + γ(T ) (|||u|||2 + |||v|||2) |||u− v||| (8)

‖u(t) − v(t)‖2 ≤ ‖φ−ψ‖2 + γ(T ) (|||u|||2 + |||v|||2) |||u− v|||. (9)

Thus, letting T be sufficiently small (depending on ‖φ‖2, ‖ψ‖2 size), (8), (9) yield for t ∈ [0, T ]

|||u− v||| ≤ 2 ‖φ−ψ‖2 and ‖u(t) − v(t)‖2 ≤ 2 ‖φ−ψ‖2. (10)
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Cubic Nonlinear Schrödinger Equations 81

Recall also the conservation of the L2-norm

∫
T

|u(t)|2 dx. (11)

This fact permits an iteration of the local result to get global wellposedness. In particular

one gets from (10), for all time t,

‖u(t) − v(t)‖2 ≤ c (‖φ‖2, ‖ψ‖2)|t| ‖φ−ψ‖2. (12)

The key analytical fact used in obtaining inequalities (6)–(9) is the following L2-L4-bound:

∥∥∥∥∥∑
k

∫
dλ û(k, λ) ei(kx+λt)

∥∥∥∥∥
L4(T×[0,1])

≤ c

(∑
k

∫
dλ (1 + |λ− k2|)3/4 |̂u(k, λ)|2

)1/2

(13)

(see [Bo], Proposition 2.6).

In what follows, we will repeat most of this analysis, making certain refinements

of it. Here the specific algebraic structure of the nonlinear term u|u|2 will matter.

Section 2

For a given positive integer N, consider the modified equation

i vt + vxx + PN(v|v|2) = 0 (14)

with data

v(x,0) = φ(x), φ = PN φ (15)

where PN is the Dirichlet projection with respect to the x-variable, i.e.,

PN φ =
∑

|n|≤N
φ̂(n) einx.

Thus v = ∑
|n|≤N vn(t) einx, and considering the Hamiltonian formulation

dv

dt
= i

∂H

∂v
(16)

H(φ) = 1

2

∫
T

|φ′|2 − 1

4

∫
T

|φ|4 (17)

one gets a finite-dimensional phase space (Reφ, Imφ).
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82 Jean Bourgain

The purpose of this article is to prove following result.

Proposition 1. Consider the solutions u, v to the Cauchy problems

{
i ut + uxx + u|u|2 = 0

u(x,0) = φ(x)
(18)

{
i vt + vxx + PN(v|v|2) = 0

v(x,0) = φ(x)
(19)

where φ = PN φ. Fix a positive integer N′ and a time t. Then one has an approximation

‖PN′ (u(t) − v(t))‖2 < ε (20)

provided N > N(N′, |t|, ε, ‖φ‖2).

The main application is to extend the nonsqueezing results discussed in [Kuk] to

the flow of equation (1) (which has a noncompact nonlinearity). Using the notations from

[Kuk], denote by (p, q) the canonical coordinates and

B(r) = {(p, q) | |p|2 + |q|2 < r2} (ball)

T(r) = {(p, q) | p2
1 + q2

1 < r2} (cylinder).

Gromov’s (finite-dimensional) squeezing theorem asserts that there is no sym-

plectic embedding of B(r) into T(R) unless R ≥ r. In the context of equation (14), this fact

has following consequence. Let Br be some ball in L2(T) of radius r and T(k)
r some cylinder

in L2(T) defined with respect to the kth coordinate (|k| ≤ N)1. If SN(t) is the flow map

associated to (14), then

SN(t) (Br) ⊂ T(k)
R (21)

implies R ≥ r.

Denote by S(t) the flow map corresponding to the cubic NLSE (1). Proposition 1

yields an estimate

‖Pk S(t) PN − Pk SN(t) PN‖ < ε (22)

1not necessarily centered at the origin
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Cubic Nonlinear Schrödinger Equations 83

provided N > N(k, |t|, ε, B), where ‖ ‖ refers to the sup L2-norm on the ball B. From (22),

one has

Pk SN(t) (PN Br)
N→∞−−−→ Pk S(t) (PN Br) (23)

and hence, by (21), the following proposition.

Proposition 2. Denote by S(t) the flow map of the NLSE (1). Then (with previous nota-

tions) S(t) (Br) ⊂ T(k)
R implies R ≥ r.

Remark. If balls and cylinders are centered at the origin, the previous statement is

obvious from the L2-conservation. Otherwise the result seems nontrivial.

Going back to Proposition 1, we show the following lemmas.

Lemma 3. Consider the solutions u, v to the Cauchy problems

{
i ut + uxx + u|u|2 = 0

u(x,0) = φ(x)
(24)

{
i vt + vxx + v|v|2 = 0

v(x,0) = ψ(x)
(25)

and assume ‖φ‖2 = ‖ψ‖2. Then for |t| < T (‖φ‖2) one has

‖PN0 (u(t) − v(t))‖2 ≤ ‖PN1 (φ−ψ)‖2 + ε (26)

provided N1 −N0 > C1 ε
−C1 (C1 numerical).

Lemma 4. Consider the solutions u, v to the Cauchy problems

{
i ut + uxx + u|u|2 = 0

u(x,0) = φ(x)
(27)

{
i vt + vxx + PN (v|v|2) = 0

v(x,0) = φ(x)
(28)
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where φ = PN φ. Then for |t| < T (‖φ‖2) one has

‖PN0 (u(t) − v(t))‖2 ≤ ε (29)

provided N−N0 > C1 ε
−C1 .

To deduce Proposition 1, one breaks up [0, t] in time intervals [ti, ti+1] of size

T (‖φ‖2). For fixed i, compare on [ti, ti+1] the solutions to the initial value problems

{
i ut + uxx + u|u|2 = 0

u(x, ti) = u(ti) (x)
(30)

{
i ũt + ũxx + ũ|̃u|2 = 0

ũ(x, ti) = v(ti) (x)
(31)

{
i vt + vxx + PN (v|v|2) = 0

v(x, ti) = v(ti) (x).
(32)

Observe that ‖u(ti)‖2 = ‖v(ti)‖2 = ‖φ‖2. Denoting by {Ni} a decreasing sequence of positive

integers < N, Lemma 3 implies that
∥∥PNi+1 (u(ti+1) − ũ(ti+1))

∥∥
2 ≤ ∥∥PNi

(u(ti) − v(ti))
∥∥

2 + (Ni −
Ni+1)−c2 for some c2 > 0 and Lemma 4 yields

∥∥PNi+1 (̃u(ti+1) − v(ti+1))
∥∥

2 ≤ (N − Ni+1)−c2 .

Hence

∥∥PNi+1 (u(ti+1) − v(ti+1))
∥∥

2 ≤ ∥∥PNi
(u(ti) − v(ti))

∥∥
2 + (Ni −Ni+1)−c2 (33)

and (33) implies ‖PN′ (u(t) − v(t))‖2 ≤ ∑
(Ni − Ni+1)−c2 . Since the number of steps is con-

trolled by ‖φ‖2, Proposition 1 follows.

Section 3

We now come to the main analysis needed in Lemmas 3 and 4. Consider the nonlinear

expression w = u |u|2 = u u u ≡ w(u, u, u) appearing in (3) and rewrite it using (5). We get

w(u, u, u) =
∑

k=k1−k2+k3

∫
λ=λ1−λ2+λ3

ei(kx+λt) û(k1, λ1) û(k2, λ2) û(k3, λ3), (34)

and splitting the
∑

k=k1−k2+k3
summation as

∑
k=k1−k2+k3
k2 �=k1,k3

−
∑

k=k1−k2+k3
k1=k2=k3

+
∑

k=k1−k2+k3
k1=k2

+
∑

k=k1−k2+k3
k3=k2
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(34) clearly yields, since
∫ |u(t)|2 = ∫ |φ|2,

∑
k=k1−k2+k3
k2 �=k1,k3

∫
λ=λ1−λ2+λ3

ei(kx+λt) û(k1, λ1) û(k2, λ2) û(k3, λ3) (35)

−
∑
k

eikx
∫
λ=λ1−λ2+λ3

eiλt û(k, λ1) û(k, λ2) û(k, λ3) (36)

+ 2
(∫

|φ|2
)

·
∑
k

∫
dλ ei(kx+λt) û(k, λ). (37)

The corresponding contributions to the integral term in (3) are

∑
k=k1−k2+k3
k2 �=k1,k3

∫
λ=λ1−λ2+λ3

eikx
eiλt − eik

2t

λ− k2
û(k1, λ1) û(k2, λ2) û(k3, λ3) (38)

−
∑
k

eikx
∫
λ=λ1−λ2+λ3

eiλt − eik
2t

λ− k2
û(k, λ1) û(k, λ2) û(k, λ3) (39)

+
∫

|φ|2 ·
∑
k

eikx
∫
dλ

eiλt − eik
2t

λ− k2
û(k, λ). (40)

Fix positive integers K,∆ and denote PL u by uL. It is clear from (38)–(40) that

∫ t
0
U(t− τ) (PK w) (τ) dτ (41)

−
∫ t

0
U(t− τ)

[
PK w(uK+∆, uK+∆, uK+∆) + 2

(∫
(|φ|2 − |uK+∆|2) dx

)
uK

]
(τ) dτ

is obtained by considering the following subsum of (38):

∑
k=k1−k2+k3;k2 �=k1,k3

|k|≤K;max |ki|>K+∆

∫
λ=λ1−λ2+λ3

eikx
eiλt − eik

2t

λ− k2
û(k1, λ1) û(k2, λ2) û(k3, λ3). (42)

Define

c(k, λ) = (1 + |λ− k2|1/2) |̂u(k, λ)| (43)
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so that

|||u||| = ‖c‖(2
k
L2
λ
. (44)

One may then estimate |||(42)||| considering the expressions

∑
k=k1−k2+k3;k2 �=k1,k3

|k|≤K;max |ki|>K+∆

∫
λ=λ1−λ2+λ3

c(k1, λ1)

|λ1 − k2
1|1/2

c(k2, λ2)

|λ2 − k2
2|1/2

c(k3, λ3)

|λ3 − k2
3|1/2

a(k, λ)

|λ− k2|1/2
(45)

and

∑
k=k1−k2+k3;k2 �=k1,k3

|k|≤K;max |ki|>K+∆

∫
λ=λ1−λ2+λ3

c(k1, λ1)

|λ1 − k2
1|1/2

c(k2, λ2)

|λ2 − k2
2|1/2

c(k3, λ3)

|λ3 − k2
3|1/2

b(k)

|λ− k2| (46)

where
∑

k

∫
dλ |a(k, λ)|2 ≤ 1,

∑
k |b(k)|2 ≤ 1, and | · | stands for | · | + 1 in the denominators.

Here, we distinguish in (42) the cases |λ − k2| > 1 and |λ − k2| < 1. The technicalities

involved here may be found in [Bo] (see also [Bo2]) and are inessential in this discussion.

Also the estimates performed next on (45) will apply to (46), defining a(k, λ) = (b(k))/(|λ−
k2|1/2+ε).

The main point is the observation

−k2 + k2
1 − k2

2 + k2
3 = −2k2

2 + 2k1k2 + 2k3k2 − 2k1k3 = 2(k1 − k2)(k2 − k3)

and hence

max
(|λ1 − k2

1| , |λ2 − k2
2| , |λ3 − k2

3| , |λ− k2|) ≥ 2|k2 − k1| |k2 − k3|. (47)

None of the factors in the right side of (47) vanishes, since we assume k2 �= k1, k3. Also

for i = 1,2,3 one has

|k− ki| ≤ |k1 − k2| + |k3 − k2| (48)

so that, by (47), (48) and the assumption |k| ≤ K, max |ki| > K+ ∆, one finds that

max
(|λ1 − k2

1|, |λ2 − k2
2|, |λ3 − k2

3|, |λ− k2|) ≥ ∆. (49)

Now, essentially speaking (cf. [Bo]), the estimate on (45) is obtained by considering∫ ∫
dx dt F3

1F2 where F̂1(k, λ) = (c(k, λ))/(1 + |λ − k2|3/8), F̂2(k, λ) = (a(k, λ))/(1 + |λ − k2|3/8),
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bounding the integral by ‖F1‖3
4 ‖F2‖4 ≤ c · ‖c‖3

(2
k
L2
λ

= c|||u|||3, invoking inequality (13). Tak-

ing an exponent 3/8 + ε instead of 3/8, there is an extra gain of a factor |T |ε′ , ε′ = ε′(ε),

considering a small time interval [0, T ]. The preceding discussion and the presence of the

(1/2)-exponents for the different denominator factors in (45), (49) permit one to estimate

(45), (46) by (c3 > 0 = some constant)

(45), (46) ≤ Tc3 ∆−c3 |||u|||3, (50)

the main point being the saving of a∆−c3-factor for this restricted summation in k1, k2, k3.

Thus also

|||(42)||| ≤ Tc3 ∆−c3 |||u|||3 (51)

and since the second term in (41) is bounded in ||| |||-norm by Tc3 |||uK+∆||| (|||uK+∆|||2 + ‖φ‖2
2

)
it follows from the integral equation (3) that

uK(t) = U(t) φK + i

∫ t
0
U(t− τ) (PK w) (τ) dτ

|||uK||| ≤ ‖φK‖2 + Tc3
(|||u|||2 + ‖φ‖2

2

) |||uK+∆||| + Tc3 ∆−c3 |||u|||3. (52)

Choosing T sufficiently small, depending on |||u|||, ‖φ‖2, and hence ‖φ‖2, we get

|||uK||| ≤ c4 ‖φK‖2 + δ |||uK+∆||| + ∆−c3 (53)

where δ > 0 is a sufficiently small constant. A straightforward iteration of (53) r times

yields

|||uK||| ≤ ‖φK+r∆‖2 + δr ‖φ‖2 + ∆−c3 (54)

and hence, for an appropriate choice of r, ∆, assuming N1 > N0,

|||uN0 ||| ≤ ‖φN1‖2 + (N1 −N0)−c5 (55)

and also

‖uN0 (t)‖2 ≤ ‖φN1‖2 + (N1 −N0)−c5 . (56)
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Section 4 Proofs of the lemmas

The proofs are a variant on previous estimates in Section III. Consider first Lemma 3.

From the integral equation (3), one gets

(u− v)(t) = U(t) (φ−ψ) + i

∫ t
0
U(t− τ)

[
w(u, u, u) −w(v, v, v)

]
(τ) dτ. (57)

The difference expressions (41) written for u and v are both bounded by Tc3 ∆−c3 (|||u|||3
+|||v|||3). Consider the second term in (41) and subtract these expressions for u and v. Since

∫
|φ|2 dx =

∫
|ψ|2 dx (58)

we obtain

∫ t
0
U(t− τ)

[
PK w(uK+∆, uK+∆, uK+∆) − PK w(vK+∆, vK+∆, vK+∆) (59)

+ 2
(∫

|φ|2
)

(uK − vK) −
(∫

|uK+∆|2 dx
)
uK +

(∫
|vK+∆|2 dx

)
vK

]
(τ) dτ.

The ||| |||-norm of this expression is bounded by

Tc3
(|||uK+∆|||2 + |||vK+∆|||2 + ‖φ‖2

2

) |||uK+∆ − vK+∆||| (60)

because the differences of the trilinear expressions yield a factor uK − vK or uK+∆ − vK+∆.

Thus for sufficiently small T one gets instead of (53)

|||uK − vK||| ≤ ‖φK −ψK‖2 + δ |||uK+∆ − vK+∆||| + ∆−c3 (61)

and also

‖uK(t) − vK(t)‖2 ≤ ‖φK −ψK‖2 + δ |||uK+∆ − vK+∆||| + ∆−c3 . (62)

One again iterates (61) and gets for N1 > N0 the estimates

|||uN0 − vN0 ||| ≤ ‖φN1 −ψN1‖2 + (N1 −N0)−c5 (63)

and

‖uN0 (t) − vN0 (t)‖2 ≤ ‖φN1 −ψN1‖2 + (N1 −N0)−c5 . (64)
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This proves Lemma 3.

Next consider Lemma 4. The integral equation (3) gives now

(u− v)(t) = i

∫ t
0
U(t− τ)

[
w(u, u, u) − PN w(v, v, v)

]
(τ) dτ. (65)

Hence

(uK − vK)(t) = i

∫ t
0
U(t− τ)

[
PK w(u, u, u) − PK w(v, v, v)

]
(τ) dτ (66)

provided K is kept less than N. As above in the proof of Lemma 3, one obtains

|||uK − vK||| ≤ δ |||uK+∆ − vK+∆||| + ∆−c3 (67)

‖uK(t) − vK(t)‖2 ≤ δ |||uK+∆ − vK+∆||| + ∆−c3 . (68)

Iterating (67) and keeping K+ r∆ < N yields

|||uK − vK||| ≤ δr
(|||u||| + |||v|||) + ∆−c3 . (69)

Hence for N0 < N1

|||uN0 − vN0 ||| ≤ (N−N0)−c5; ‖uN0 (t) − vN0 (t)‖2 ≤ (N−N0)−c5 .

This proves Lemma 4.

Section 5 Further comments

Due to some specific structures used in the argument (see (47)–(49)) of an arithmetical

nature, it is not clear how to replace u|u|2 in (1) by other nonlinearities (with comparable

growth properties). The previous method applies however to NLSE of the form

i ut + uxx +A(x, t) u+ B(x, t) u|u|2 = 0 (70)

where A,B are real sufficiently smooth functions of x, t, both periodic in x. (We do not

intend to work out refinements here under weaker assumptions.) It is indeed clear that for

smooth A,B there are no significant problems to carry out the harmonic analysis above

when replacing the term u|u|2 by A u + B u|u|2. Moreover, the L2-norm is a conserved

quantity.

Considering a more general Hamiltonian NLS with nonlinearity (∂/∂ū)G(u, ū; t, x),

G of degree ≤ 4 in u, ū, it may be proved that bounded solutions are not uniformly

asymptotically stable as t → ∞ (see [Bo3]).
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