
BOUNDS ON THE GROWTH OF HIGH SOBOLEV NORMS OF SOLUTIONS
TO THE 2D DEFOCUSING PERIODIC DEFOCUSING CUBIC NLS

NOTES BY VEDRAN SOHINGER

1. Introduction.

1.1. Statement of the problem and the main result. We study the defocusing cubic Nonlinear
Schrödinger equation on the two-dimensional torus:

(1)

{
iut + ∆u = |u|2u, x ∈ T2

u|t=0 = Φ ∈ Hs(T2), s > 1.

The equation (1) has the following conserved quantities:

M(u(t)) :=
∫
|u(x, t)|2dx, (Mass)

E(u(t)) :=
1
2

∫
|∇u(x, t)|2dx +

1
4

∫
(|u|2)(x, t)|u(x, t)|2dx, (Energy).

By using the periodic variants of Strichartz estimates [3], we can show that the (1) is locally
well-posed in H1. Furthermore, by using the two conservation laws, we can deduce global existence
of (1) in H1 and a priori bounds on the H1 norm of a solution. By persistence of regularity, we
obtain global existence in Hs, for s > 1. Hence, it makes sense to analyze the behavior of ‖u(t)‖Hs .

Given a real number x, we denote by x+ and x− expressions of the form x + ε and x − ε
respectively, where 0 < ε � 1. With this notation, the result that we prove for (??) on T2 is:

Theorem 1.1. (Bound for the defocusing cubic NLS on T2; [45]) Let u be the global solution of (1)
on T2. Then, there exists a function Cs, continuous on H1(T2) such that for all t ∈ R :

(2) ‖u(t)‖Hs(T2) ≤ Cs(Φ)(1 + |t|)s+‖Φ‖Hs(T2).

Remark 1.2. Let us observe that, when s is an integer, or when Φ is smooth, essentially the same
bound as in Theorem 1.1 was proved by using different techniques in the work of Zhong [50]. The
reason why one uses the fact that s is an integer is because one wants to use exact formulae for the
(Fractional) Leibniz Rule for Ds. By using an exact Leibniz Rule, one sees that certain terms which
are difficult to estimate are in fact equal to zero.

Remark 1.3. Let us note that, if we consider the spatial domain to be R2, one can obtain uniform
bounds on ‖u(t)‖Hs for solutions u(t) of the defocusing cubic NLS by the recent scattering result of
Dodson [27].

1.2. Motivation for the problem and previously known results: The growth of high Sobolev
norms has a physical interpretation in the context of the Low-to-High frequency cascade. In other
words, we see that ‖u(t)‖Hs weighs the higher frequencies more as s becomes larger, and hence its
growth gives us a quantitative estimate for how much of the support of |û|2 has transferred from
the low to the high frequencies. This sort of problem also goes under the name weak turbulence
[1, 2, 49].

1



2 NOTES BY VEDRAN SOHINGER

By local well-posedness theory [6, 14, 33, 48], it can be observed that there exist C, τ0 > 0,
depending only on the initial data Φ such that for all t:

(3) ‖u(t + τ0)‖Hs ≤ C‖u(t)‖Hs .

Iterating (3) yields the exponential bound:

(4) ‖u(t)‖Hs ≤ C1e
C2|t|.

Here, C1, C2 > 0 again depend only on Φ.

For a wide class of nonlinear dispersive equations, the analogue of (4) can be improved to a
polynomial bound, as long as we take s ∈ N, or if we consider sufficiently smooth initial data. This
observation was first made in the work of Bourgain [4], and was continued in the work of Staffilani
[46, 47].

The crucial step in the mentioned works was to improve the iteration bound (3) to:

(5) ‖u(t + τ0)‖Hs ≤ ‖u(t)‖Hs + C‖u(t)‖1−r
Hs .

As before, C, τ0 > 0 depend only on Φ. In this bound, r ∈ (0, 1) satisfies r ∼ 1
s . One can show

that (5) implies that for all t ∈ R:

(6) ‖u(t)‖Hs ≤ C(Φ)(1 + |t|) 1
r .

In [4], (5) was obtained by using the Fourier multiplier method. In [46, 47], the iteration bound
was obtained by using multilinear estimates in Xs,b-spaces. Similar estimates were used in the work
of Kenig-Ponce-Vega [40] in the study of well-posedness theory. The key was to use a multilinear
estimate in an Xs,b-space with negative first index. Such a bound was then used as a smoothing
estimate. A slightly different approach, based on the analysis in the work of Burq-Gérard-Tzvetkov
[11], is used to obtain (5) in the context of compact Riemannian manifolds in the work of Catoire-
Wang [13], and Zhong [50].

An alternative iteration bound, based on the use of the upside-down I-method, which was used
in our previous work [43, 44], gave better polynomial bounds for solutions of nonlinear Schrödinger
equations on S1 and R. The main idea was to consider the operator D, related to Ds such that
‖Du‖L2 was slowly varying. This is the technique which we will apply in these notes.

In the case of the linear Schrödinger equation with potential on Td, better results are known. In
[7], Bourgain studies the equation:

(7) iut + ∆u = V u.

The potential V is taken to be jointly smooth in x and t with uniformly bounded partial deriva-
tives with respect to both of the variables. It is shown that solutions to (7) satisfy for all ε > 0 and
all t ∈ R:

(8) ‖u(t)‖Hs .s,Φ,ε (1 + |t|)ε.

The proof of (8) is based on separation properties of the eigenvalues of the Laplace operator on
Td.

Recently, a new proof of (8) was given in the work of Delort [25]. The argument given in this
paper is based on an iterative change of variable. In addition to recovering the result (8) on any
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d-dimensional torus, the same bound is proved for the linear Schrödinger equation on any Zoll
manifold, i.e. on any compact manifold whose geodesic flow is periodic. So far, it is an open
problem to adapt any of these techniques to obtain bounds like (8) for nonlinear equations.

We finally mention that the problem of Sobolev norm growth was also recently studied in [24],
but in the sense of bounding the growth from below. In this paper, the authors exhibit the existence
of smooth solutions of the cubic defocusing nonlinear Schrödinger equation on T2, whose Hs norm
is arbitrarily small at time zero, and is arbitrarily large at some large finite time. One should note
that behavior at infinity is still an open problem. However, it is good to note that the equation (1)
on T2 has non-trivial solutions which have all Sobolev norms uniformly bounded in time. Similarly
as on S1 [43], given α ∈ C and n ∈ Z2, the function:

u(x, t) := αe−i|α|2tei(〈n,x〉−|n|2t)

is a solution to (1) on T2 with initial data Φ = αei〈n,x〉. A similar construction was used in [10] to
prove instability properties in Sobolev spaces of negative index.

1.3. Techniques of the proof. As was mentioned in the previous section, the main idea is to define
D to be an upside-down I-operator. This operator is defined as a Fourier multiplier operator. By
construction, we will be able to relate ‖u(t)‖Hs to ‖Du(t)‖L2 , so we consider the growth of the latter
quantity. Following the ideas of the construction of the standard I-operator, as defined by Colliander,
Keel, Staffilani, Takaoka, and Tao [17, 18, 19], our goal is to show that the quantity ‖Du(t)‖2L2

is slowly varying. This is done by applying a Littlewood-Paley decomposition and summing an
appropriate geometric series. Let us remark that a similar technique was applied in the low-regularity
context in [18].

We will use higher modified energies, i.e. quantities obtained from ‖Du(t)‖2L2 by adding an
appropriate multilinear correction. In this way, we will obtain E2(u(t)) ∼ ‖Du(t)‖2L2 , which is even
more slowly varying. Due to more a more complicated resonance phenomenon in two dimensions,
the construction of E2 is going to be more involved than it was in one dimension. In the periodic
setting, E2 is constructed in Subsection 3.3. In the non-periodic setting, E2 is constructed in
Subsection ??.

We prove Theorem 1.1 for initial data Φ, which we assume lies only in Hs(T2) and Hs(R2),
respectively. We don’t assume any further regularity on the initial data. However, in the course of
the proof, we work with Φ which is smooth, in order to make our formal calculations rigorous. The
fact that we can do this follows from an appropriate Approximation Lemma.

2. Function spaces and techniques from Harmonic analysis.

An important tool in our work will also be Xs,b spaces. We recall that these spaces come from
the norm defined for s, b ∈ R:

‖u‖Xs,b(T2×R) :=
( ∑

n∈Z2

∫
R
|ũ(n, τ)|2〈n〉2s〈τ + |n|2〉2bdτ

) 1
2 .

When there is no confusion, we write these spaces just as Xs,b.

In our proofs, we will frequently have to use Littlewood-Paley decompositions. Given a function
u ∈ L2(T2) and a dyadic integer N , we define by uN the function obtained from u by restricting its
Fourier transform to the dyadic annulus |n| ∼ N . Hence, we have:

u =
∑
N

uN .

We analogously define vN for v ∈ L2(R2).
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2.1. Estimates on T2. Having defined the spaces in which we will be working, let us recall some
estimates which we will use in our analysis. The idea is that we want to estimate appropriate Xs,b

norms by Lq
tL

p
x norms.

A key fact, which is proved in [37], is the following fact

(9) ‖u‖L4
t,x

. ‖u‖
X0+, 1

2 + .

(A similar local-in-time estimate was earlier noted in [3].)

An additional estimate we will use is:

(10) ‖u‖L4
t,x

. ‖u‖
X

1
2 +, 1

4 + .

The estimate (10) is a consequence of the following:

Lemma 2.1. (from [6]) Suppose that Q is a ball in Z2 of radius N , and center n0. Suppose that u
satisfies supp û ⊆ Q. Then, one has:

(11) ‖u‖L4
t,x

. N
1
2 ‖u‖

X0, 1
4 + .

Lemma 2.1 is proved in [6] by using the Hausdorff-Young inequality and Hölder’s inequality. We
omit the details. We can now interpolate between (9) and (10) to deduce:

(12) ‖u‖L4
t,x

. ‖u‖Xs1,b1 ,

whenever 1
4 < b1 < 1

2+, s1 > 1− 2b1.

By using an appropriate change of summation, as in [6], we see that (12) implies:

Lemma 2.2. Suppose that u is as in the assumptions of Lemma 2.1, and suppose that b1, s1 ∈ R
satisfy 1

4 < b1 < 1
2+, s1 > 1− 2b1. Then, one has:

(13) ‖u‖L4
t,x

. Ns1‖u‖X0,b1 .

Let us give some useful notation for multilinear expressions, which can also be found in [17, 21].
Let us first consider the periodic setting. For k ≥ 2, an even integer, we define the hyperplane:

Γk := {(n1, . . . , nk) ∈ (Z2)k : n1 + · · ·+ nk = 0},

endowed with the measure δ(n1 + · · ·+ nk).
Given a function Mk = Mk(n1, . . . , nk) on Γk, i.e. a k-multiplier, one defines the k-linear func-

tional λk(Mk; f1, . . . , fk) by:

λk(Mk; f1, . . . , fk) :=
∫

Γk

Mk(n1, . . . , nk)
k∏

j=1

f̂j(nj).

As in [17], we adopt the notation:

(14) λk(Mk; f) := λk(Mk; f, f̄ , . . . , f, f̄).

We will also sometimes write nij for ni + nj .
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3. Proof of Theorem 1.1.

3.1. Definition of the D-operator. Our proof is based on the definition of an upside-down I
operator. This is idea is similar to that of the standard I operator used by Colliander, Keel,
Staffilani, Takaoka, and Tao [17].

Suppose N > 1 is given. Let θ : Z2 → R be given by:

(15) θ(n) :=

{( |n|
N

)s
, if |n| ≥ N

1, if |n| ≤ N

Then, if f : T2 → C, we define Df by:

(16) D̂f(n) := θ(n)f̂(n).

We observe that:

(17) ‖Df‖L2 .s ‖f‖Hs .s Ns‖Df‖L2 .

Our goal is to then estimate ‖Du(t)‖L2 , from which we can estimate ‖u(t)‖Hs by (17). In order
to do this, we first need to have good local-in-time bounds.

3.2. Local-in-time bounds. Let u denote the global solution to (1) on T2. One then has:

Proposition 3.1. (Local-in-time bounds for the Hartree equation on T2) There exist δ = δ(s,E(Φ),M(Φ)), C =
C(s,E(Φ),M(Φ)) > 0, which are continuous in energy and mass, such that for all t0 ∈ R, there
exists a globally defined function v : T2 × R → C such that:

(18) v|[t0,t0+δ] = u|[t0,t0+δ].

(19) ‖v‖
X1, 1

2 + ≤ C(s,E(Φ),M(Φ)).

(20) ‖Dv‖
X0, 1

2 + ≤ C(s,E(Φ),M(Φ))‖Du(t0)‖L2 .

The proof of Proposition 3.1 is based on a fixed-point argument. We need to use the estimates
in Xs,b spaces mentioned above in order to show that we obtain a contraction.

Although our statements concern functions which are only assumed to belong to Hs(T2), we can
work with smooth functions and deduce the general result from the following:

Proposition 3.2. (Approximation Lemma for the cubic NLS on T2)
If Φ satisfies:

(21)

{
iut + ∆u = |u|2u,

u(x, 0) = Φ(x).

and if the sequence (u(n)) satisfies:

(22)

{
iu

(n)
t + ∆u(n) = |u(n)|2u(n),

u(n)(x, 0) = Φn(x).

where Φn ∈ C∞(T2) and Φn
Hs

−→ Φ, then, one has for all t:



6 NOTES BY VEDRAN SOHINGER

u(n)(t) Hs

−→ u(t).

We remark that it is crucial that none of our estimates depend on higher Sobolev norms than
Hs, which allows us to argue by density.

3.3. A higher modified energy and an iteration bound. We define the following modified
energy :

E1(u(t)) := ‖Du(t)‖2L2 .

By a calculation, we obtain that for some c ∈ R, one has:

d

dt
E1(u(t)) = ic

∑
n1+n2+n3+n4=0

(
(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − ((θ(n4))2

)
(23) û(n1)̂̄u(n2)û(n3)̂̄u(n4)

One then considers the higher modified energy :

(24) E2(u) := E1(u) + λ4(M4;u)

The quantity M4 will be determined soon.
The modified energy E2 is obtained by adding a “multilinear correction” to the modified energy

E1 we considered earlier. In order to find d
dtE

2(u), we need to find d
dtλ4(M4;u). If we fix a multiplier

M4, we obtain:

d

dt
λ4(M4;u) =

−iλ4(M4(|n1|2 − |n2|2 + |n3|2 − |n4|2);u)

−i
∑

n1+n2+n3+n4+n5+n6=0

[
M4(n123, n4, n5, n6)

−M4(n1, n234, n5, n6) + M4(n1, n2, n345, n6)

(25) −M4(n1, n2, n3, n456)
]
û(n1)̂̄u(n2)û(n3)̂̄u(n4)û(n5)̂̄u(n6).

We can compute that for (n1, n2, n3, n4) ∈ Γ4, one has:

(26) |n1|2 − |n2|2 + |n3|2 − |n4|2 = 2n12 · n14.

We notice that the numerator vanishes not only when n12 = n14 = 0, but also when n12 and
n14 are orthogonal. Hence, on Γ4, it is possible for |n1|2 − |n2|2 + |n3|2 − |n4|2 to vanish, but for
(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2 to be non-zero. Consequently, unlike in the 1D setting
[43, 44], we can’t cancel the whole quadrilinear term in (23). We remedy this by canceling the
non-resonant part of the quadrilinear term. A similar technique was used in [22]. There, it was
given the name resonant decomposition. More precisely, given β0 � 1, which we determine later,
we decompose:

Γ4 = Ωnr t Ωr.

Here, the set Ωnr of non-resonant frequencies is defined by:

(27) Ωnr := {(n1, n2, n3, n4) ∈ Γ4;n12, n14 6= 0, |cos∠(n12, n14)| > β0}
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and the set Ωr of resonant frequencies Ωr is defined to be its complement in Γ4.

We now define the multiplier M4 by:

(28) M4(n1, n2, n3, n4) :=

{
c ((θ(n1))

2−(θ(n2))
2+(θ(n3))

2−(θ(n4))
2)

|n1|2−|n2|2+|n3|2−|n4|2 , if (n1, n2, n3, n4) ∈ Ωnr

0, if (n1, n2, n3, n4) ∈ Ωr.

Let us now define the multiplier M6 on Γ6 by:

M6(n1, n2, n3, n4, n5, n6) := M4(n123, n4, n5, n6)−M4(n1, n234, n5, n6)+

(29) +M4(n1, n2, n345, n6)−M4(n1, n2, n3, n456).

We now use (23) and (25), and the construction of M4 and M6 to deduce that:

d

dt
E2(u) =∑

n1+n2+n3+n4=0,|cos∠(n12,n14)|≤β0

(
(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2

)
û(n1)̂̄u(n2)û(n3)̂̄u(n4)+

+
∑

n1+n2+n3+n4+n5+n6=0

M6(n1, n2, n3, n4, n5, n6)û(n1)̂̄u(n2)û(n3)̂̄u(n4)û(n5)̂̄u(n6)

(30) =: I + II.

Before we proceed, we need to prove pointwise bounds on the multiplier M4. In order to do this,
let (n1, n2, n3, n4) ∈ Γ4 be given. We dyadically localize the frequencies, i.e, we find dyadic integers
Nj s.t. |nj | ∼ Nj . We then order the Nj ’s to obtain: N∗

1 ≥ N∗
2 ≥ N∗

3 ≥ N∗
4 . We slightly abuse

notation by writing θ(N∗
j ) for θ(N∗

j , 0).

Lemma 3.3. With notation as above, the following bound holds:

(31) M4 = O
( 1
β0

1
(N∗

1 )2
θ(N∗

1 )θ(N∗
2 )

)
.

Proof. By construction of the set Ωnr, we note that:

(32) |M4| .
|(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2|

|n12||n14|β0
.

Let us assume, without loss of generality, that:

(33) |n1| ≥ |n2|, |n3|, |n4|, and |n12| ≥ |n14|.
We now have to consider three cases:

Case 1: |n1| ∼ |n12| ∼ |n14|

In this Case, one has:

M4 = O
( 1
β0

(θ(n1))2

|n1|2
)

= O
( 1
β0

1
(N∗

1 )2
θ(N∗

1 )θ(N∗
2 )

)
.

Case 2: |n1| ∼ |n12| � |n14|

We use the Mean Value Theorem, and monotonicity properties of the function (θ(n))2

|n| to deduce:

(34) (θ(n1))2 − (θ(n4))2 = (θ(n1))2 − (θ(n1 − n14))2 = O
(
|n14|

(θ(n1))2

|n1|
)
.
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(θ(n2))2 − (θ(n3))2 = (θ(n3 + n14))2 − (θ(n3))2 =

(35) O
(
|n14| sup

N≤|z|.|n1|

(θ(z))2

|z|
)

= O
(
|n14|

(θ(n1))2

|n1|
)
.

Using (32), (34), (35), and the fact that |n12| ∼ |n1|, it follows that:

M4 = O
( (θ(n1))2

|n1|2β0

)
= O

( 1
β0

1
(N∗

1 )2
θ(N∗

1 )θ(N∗
2 )

)
.

Case 3: |n1| � |n12|, |n14|

We write:

(θ(n1))2−(θ(n2))2+(θ(n3))2−(θ(n4))2 = (θ(n1))2−(θ(n1−n12))2+(θ(n1−n12−n14))2−(θ(n1−n14))2.

By using the Double Mean-Value Theorem, it follows that this expression is O
( (θ(n1))

2

|n1|2 |n12||n14|
)
.

Consequently:

M4 = O
( 1
β0

1
(N∗

1 )2
θ(N∗

1 )θ(N∗
2 )

)
.

The Lemma now follows.
�

Let us choose:

(36) β0 ∼
1
N

.

The reason why we choose such a β0 will become clear later. For details, see Remark 3.6.
Hence Lemma 3.3 implies:

(37) M4 = O
( N

(N∗
1 )2

θ(N∗
1 )θ(N∗

2 )
)
.

The bound from (37) allows us to deduce the equivalence of E1 and E2. We have the following
bound:

Proposition 3.4. For each fixed time t, one has:

(38) E1(u(t)) ∼ E2(u(t)).

Here, the constant is independent of t and N , as long as N is sufficiently large.

This claim is proved by dyadically decomposing the factors of u in frequency space and summing
the appropriate components. We omit the details.

3.3.1. The iteration bound: Let δ > 0, v be as in Proposition 3.1. For t0 ∈ R, we are interested in
estimating:

E2(u(t0 + δ))− E2(u(t0)) =
∫ t0+δ

t0

d

dt
E2(u(t))dt =

∫ t0+δ

t0

d

dt
E2(v(t))dt.

The iteration bound that we will show is:

Lemma 3.5. For all t0 ∈ R, one has:∣∣E2(u(t0 + δ))− E2(u(t0))
∣∣ .

1
N1−E2(u(t0)).
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Arguing similarly as in [43, 44], Theorem 1.1 will follow from Lemma 3.5. We recall the proof
for completeness.

Proof. (of Theorem 1.1 assuming Lemma 3.5)
The point is that we can iterate the following bound (obtained from Lemma 3.5):

E2(u(t0 + δ)) ≤ (1 +
C

N1− )E2(u(t0))

∼ N1− times with a uniform time step, and the size of E2(t) will grow by at most a constant factor
(and not as an exponential function in t). We hence obtain that for T ∼ N1−, one has:

‖Du(T )‖L2 . ‖DΦ‖L2 .

By recalling (17), it follows that:

‖u(T )‖Hs . Ns‖Φ‖Hs

and hence:
‖u(T )‖Hs . T s+‖Φ‖Hs . (1 + T )s+‖Φ‖Hs .

This proves Theorem 1.1 for times t ≥ 1. The claim for times t ∈ [0, 1] follows by local well-
posedness theory. The claim for negative times holds by time-reversibility.

�

We now have to prove Lemma 3.5.

Proof. (of Lemma 3.5)
Let us without loss of generality consider t0 = 0. The general claim will follow by time translation,

and the fact that all of the implied constants are uniform in time. Let v be the function constructed
in Proposition 3.1, corresponding to t0 = 0.

By (30), and with notation as in this equation, we need to estimate:

∫ δ

0

( ∑
n1+n2+n3+n4=0,|cos∠(n12,n14)|≤β0

(
(θ(n1))2−(θ(n2))2+(θ(n3))2−(θ(n4))2

)
v̂(n1)̂̄v(n2)v̂(n3)̂̄v(n4)+

+
∑

n1+n2+n3+n4+n5+n6=0

M6(n1, n2, n3, n4, n5, n6)v̂(n1)̂̄v(n2)v̂(n3)̂̄v(n4)v̂(n5)̂̄v(n6)
)
dt =

=
∫ δ

0

Idt +
∫ δ

0

IIdt =: A + B.

We now have to estimate A and B separately. Throughout our calculations, let us denote by
χ = χ(t) = χ[0,δ](t).

3.3.2. Estimate of A (Quadrilinear Terms). By symmetry, we can consider without loss of generality
the contribution when:

|n1| ≥ |n2|, |n3|, |n4|, and |n2| ≥ |n4|.
We note that when all |nj | ≤ N , one has: (θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2 = 0. Hence, we
need to consider the contribution in which one has:

|n1| > N, |cos∠(n12, n14)| ≤ β0.

We dyadically localize the frequencies: |nj | ∼ Nj ; j = 1, . . . , 4. We order the Nj to obtain N∗
j ≥

N∗
2 ≥ N∗

3 ≥ N∗
4 . Since n1 + n2 + n3 + n4 = 0, we know that:

(39) N∗
1 ∼ N∗

2 & N.
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Let us note that N1 ∼ N2. Namely, if it were the case that: N1 � N2, then, one would also
have: N1 � N4, and the vectors n12 and n14 would form a very small angle. Hence, cos∠(n12, n14)
would be close to 1, which would be a contradiction to the assumption that |cos∠(n12, n14)| ≤ β0.
Consequently:

(40) N1 ∼ N2 ∼ N∗
1 & N.

We denote the corresponding contribution to A by AN1,N2,N3,N4 . In other words:

AN1,N2,N3,N4 :=∫ δ

0

∑
n1+n2+n3+n4=0,|cos∠(n12,n14)|≤β0

(
(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2

)
v̂N1(n1)̂̄vN2(n2)v̂N3(n3)̂̄vN4(n4)dt.

Arguing analogously as in the proof of Lemma 3.3, it follows that for the nj that occur in the above
sum, one has:

(41)
(
(θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2

)
= O

(
|n12||n14|

θ(N∗
1 )θ(N∗

2 )
(N∗

1 )2
)
.

By (40), it follows that |n3|, |n4| . N∗
3 . Consequently:

|n12| = |n34| ≤ |n3|+ |n4| . N∗
3 .

One also knows that:

|n14| ≤ |n1|+ |n4| . N∗
1 .

Substituting the last two inequalities into the multiplier bound (41), and using Parseval’s identity
in time, it follows that:

|AN1,N2,N3,N4 | .
∑

n1+n2+n3+n4=0,|cos∠(n12,n14)|≤β0

∫
τ1+τ2+τ3+τ4=0

N∗
3 N∗

1

θ(N∗
1 )θ(N∗

2 )
(N∗

1 )2

|ṽN1(n1, τ1)||˜̄vN2(n2, τ2)||ṽN3(n3, τ3)||(χv̄)̃ N4(n4, τ4)|dτj .

.
1

N∗
1

∑
n1+n2+n3+n4=0

∫
τ1+τ2+τ3+τ4=0

|(Dv)̃ N1(n1, τ1)||(Dv̄)̃ N2(n2, τ2)||(∇v)̃ N3(n3, τ3)||(χv̄)̃ N4(n4, τ4)|dτj .

Let us define Fj ; j = 1, . . . , 4 by:

F̃1 := |(Dv)̃ N1 |, F̃2 := |(Dv)̃ N2 |, F̃3 := |(∇v)̃ N3 |, F̃4 := |(χv)̃ N4 |.
Consequently, by Parseval’s identity:

|AN1,N2,N3,N4 | .
1

N∗
1

∫
R

∫
T2

F1F2F3F4dxdt

By using an L4
t,x, L4

t,x, L4
t,x, L4

t,x Hölder inequality, the corresponding term is: 1

.
1

N∗
1

‖F1‖L4
t,x
‖F2‖L4

t,x
‖F3‖L4

t,x
‖F4‖L4

t,x

By using (9), and the fact that taking absolute values in the spacetime Fourier transforms doesn’t
change the Xs,b norm, it follows that this term is:

1Strictly speaking, we are using an L4
t,x, L4

t,x, L4+
t,x, L4−

t,x Hölder inequality, as well as estimates similar to (9) to

estimate the L4+
t,x, and L4−

t,x norm and appropriate time-localization properties of the Xs,b spaces. We omit the details.
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.
1

N∗
1

‖DvN1‖X0+, 1
2 +‖DvN2‖X0+, 1

2 +‖vN3‖X1, 1
2 +‖vN4‖X0+, 1

2 +

By using frequency localization, this expression is:

.
1

(N∗
1 )1−

‖Dv‖2
X0, 1

2 +‖v‖2X1, 1
2 + .

1
(N∗

1 )1−
E1(Φ).

In the last inequality, we used Proposition 3.1. By using the previous inequality, and by recalling
(38), it follows that:

(42) |AN1,N2,N3,N4 | .
1

(N∗
1 )1−

E2(Φ).

Using (42), summing in the Nj , and using (39) to deduce that:

(43) |A| . 1
N1−E2(Φ).

3.3.3. Estimate of B (Sextilinear Terms). Let us consider just the first term in B coming from the
summand M4(n123, n4, n5, n6) in the definition of M6. The other terms are bounded analogously.
In other words, we want to estimate:

B(1) :=
∫ δ

0

∑
n1+n2+n3+n4+n5+n6=0

M4(n123, n4, n5, n6)(̂vv̄v)(n1 + n2 + n3)̂̄v(n4)v̂(n5)̂̄v(n6)dt

We now dyadically localize n123, n4, n5, n6, i.e., we find Nj ; j = 1, . . . , 4 such that:

|n123| ∼ N1, |n4| ∼ N2, |n5| ∼ N3, |n6| ∼ N4.

Let us define:

B
(1)
N1,N2,N3,N4

:=
∫ δ

0

∑
n1+n2+n3+n4+n5+n6=0

M4(n123, n4, n5, n6)(̂vv̄v)N1
(n1+n2+n3)̂̄vN2(n4)v̂N3(n5)̂̄vN4(n6)dt

We now order the Nj to obtain: N∗
1 ≥ N∗

2 ≥ N∗
3 ≥ N∗

4 . As before, we know the following localization
bound:

(44) N∗
1 ∼ N∗

2 & N.

In order to obtain a bound on the wanted term, we have to consider two cases, depending on
whether N1 is among the two larger frequencies or not. An argument similar to the estimate of the
quadrilinear terms gives:

(45) |BN1,N2,N3,N4 | .
N

(N∗
1 )2−

E2(Φ).

We now use (45), sum in the Nj , and recall (44) to deduce that:

(46) |B| . 1
N1−E2(Φ).

The Lemma now follows from (43) and (46).
�
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3.4. Further remarks on the equation.

Remark 3.6. The quantity β0 was chosen as in (36) in order to get the same decay factor in the
quantities A and B. We note that the quantity β0 only occurred in the bound for B, whereas in the
bound for A, we only used the fact that the terms corresponding to the largest two frequencies in the
multiplier (θ(n1))2 − (θ(n2))2 + (θ(n3))2 − (θ(n4))2 appear with an opposite sign.
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