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Chapter One

On Strichartz’s Inequalities and the Nonlinear
Schrödinger Equation on Irrational Tori

J. Bourgain

1.0 INTRODUCTION

Strichartz’s inequalities and the Cauchy problem for the nonlinear Schrödinger equa-
tion are considerably less understood when the spatial domain is a compact manifold
M , compared with the Euclidean situation M = Rd . In the latter case, at least the
theory of Strichartz inequalities (i.e., moment inequalities for the linear evolution, of
the form ‖eit!φ‖L

p
x,t

≤ C‖φ‖L2
x
) is basically completely understood and is closely

related to the theory of oscillatory integral operators. Let M = Td be a flat torus. If
M is the usual torus, i.e.,

(eit!φ)(x) =
∑

n∈Zd

φ̂(n)e2πi(nx+|n|2t) (|n|2 = n2
1 + · · · + n2

d), (1.0.1)

a partial Strichartz theory was developed in [B1], leading to the almost exact counter-
parts of the Euclidean case for d = 1, 2 (the exact analogues of the p = 6 inequality
for d = 1 and p = 4 inequality for d = 2 are false with periodic boundary condi-
tions). Thus, assuming supp φ̂ ⊂ B(0, N),

‖eit!φ‖L6
([0,1]×[0,1])

& Nε‖φ‖2 for d = 1 (1.0.2)

and

‖eit!φ|L4
([0,1]2×[0,1])

& Nε‖φ‖2 for (d = 2). (1.0.3)

For d = 3, we have the inequality

‖eit!φ‖L4([0,1]3×[0,1]) & N
1
4 +ε‖φ‖2 (d = 3), (1.0.4)

but the issue:

Problem. Does one have an inequality

‖eit!φ‖L10/3([0,1]3×[0,1) & Nε‖φ‖2 (d = 3)

for all ε > 0 and supp φ̂ ⊂ B(0, N)?

is still unanswered.
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There are two kinds of techniques involved in [B1]. The first kind are arithmetical,
more specifically the bound

#{(n1, n2) ∈ Z2
∣∣ |n1| + |n2| ≤ N and |n2

1 + n2
2 − A| ≤ 1} & Nε, (1.0.5)

which is a simple consequence of the divisor function bound in the ring of Gaussian
integers. Inequalities (1.0.2), (1.0.3), (1.0.4) are derived from that type of result.

The second technique used in [B1] to prove Strichartz inequalities is a combi-
nation of the Hardy-Littlewood circle method together with the Fourier-analytical
approach from the Euclidean case (a typical example is the proof of the Stein-Tomas
L2-restriction theorem for the sphere). This approach performs better for larger di-
mension d although the known results at this point still leave a significant gap with
the likely truth.

In any event, (1.0.2)–(1.0.4) permit us to recover most of the classical results for
NLS

iut +!u − u|u|p−2 = 0,

with u(0) ∈ H 1(Td), d ≤ 3 and assuming p < 6 (subcriticality) if d = 3.
Instead of considering the usual torus, we may define more generally

!φ(x) =
∑

n∈Zd

Q(n)φ̂(n)e2πin.x, (1.0.6)

with Q(n) = θ1n
2
1 + · · · θdn2

d and, say, 1
C

≤ θi < C (1 ≤ 1 ≤ d) arbitrary (what
we refer to as “(irrational torus).”

In general, we do not have an analogue of (1.0.5), replacing n2
1 + n2

2 by θ1n
2
1 +

θ2n
2
2. It is an interesting question what the optimal bounds are in N for

#{(n1, n2) ∈ Z2| |n1| + |n2| ≤ N and |θ1n
2
1 + θ2n

2
2 − A| ≤ 1} (1.0.7)

and
#{(n1, n2, n3) ∈ Z3

∣∣ |n1| + |n2| + |n3| ≤ N

and |θ1n
2
1 + θ2n

2
2 + θ3n

2
3 − A| ≤ 1} (1.0.8)

valid for all 1
2 <θi < 2 and A.

Nontrivial estimates may be derived from geometric methods such as Jarnick’s
bound (cf. [Ja], [B-P]) for the number of lattice points on a strictly convex curve.
Likely stronger results are true, however, and almost certainly better results may be
obtained in a certain averaged sense when A ranges in a set of values (which is the
relevant situation in the Strichartz problem). Possibly the assumption of specific
diophantine properties (or genericity) for the θi may be of relevance.

In this paper, we consider the case of space dimension d = 3 (the techniques used
have a counterpart for d = 2 but are not explored here).

Taking 1
C

< θi < C arbitrary and defining! as in (1.0.6), we establish the follow-
ing:

Proposition 1.1 Let supp φ̂ ⊂ B(0, N). Then for p > 16
3 ,

‖eit!φ‖L
p
t L4

x
≤ CN

3
4− 2

p ‖f ‖2, (1.0.9)

where L
p
t refers to L

p
[0,1](dt).
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Proposition 1.3′. Let supp φ̂ ⊂ B(0, N). Then

‖eit!φ‖L4
x,t

< CεN
1
3 +ε‖φ‖2 for all ε > 0. (1.0.10)

The analytical ingredient involved in the proof of (1.0.9) is the well-known in-
equality for the squares

∥∥∥∥
N∑

j=1

e2πij2θ

∥∥∥∥
Lq(T)

< CN
1− 2

q for q > 4. (1.0.11)

The proof of (1.0.10) is more involved and relies on a geometrical approach to the
lattice point counting problems, in the spirit of Jarnick’s estimate mentioned earlier.
Some of our analysis may be of independent interest. Let us point out that both
(1.0.9), (1.0.10) are weaker than (1.0.4). Thus,

Problem. Does (1.0.4) hold in the context of (1.0.6)?

Using similar methods as in [B1, 2] (in particular Xs,b-spaces), the following
statements for the Cauchy problem for NLS on a 3D irrational torus may be derived.

Proposition 1.2 Let ! be as in (1.0.6). Then the 3D defocusing NLS

iut +!u − u|u|p−2 = 0

is globally wellposed for 4 ≤ p < 6 and H 1-data.

Proposition 1.4′. Let ! be as in (1.0.6). Then the 3D defocusing cubic NLS

iut +!u ± u|u|2 = 0

is locally wellposed for data u(0) ∈ Hs(T3), s > 2
3 .

This work originates from discussion with P. Gerard (March, 04) and some prob-
lems left open in his joint paper [B-G-T] about NLS on general compact manifolds.
The issues in the particular case of irrational tori, explored here for the first time, we
believe, unquestionably deserve to be studied more. Undoubtedly, further progress
can be made on the underlying number theoretic problems.

1.1 AN INEQUALITY IN 3D

Q(n) = θ1n
2
1 + θ2n

2
2 + θ3n

2
3, (1.1.1)

where the θi are arbitrary, θi and θ−1
i assumed bounded. Write

(eit!f )(x) =
∑

n∈Z3

f̂ (n)e2πi(n.x+Q(n)t). (1.1.2)
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Proposition 1.1 For p > 16
3 , we have

‖eit!f ‖L
p
t L4

x
≤ CpN

3
4− 2

p ‖f ‖2 (1.1.3)

assuming suppf̂ ⊂ B(0, N). Here L
p
t denotes L

p
t (loc).

Remark. Taking f (x) = N−3/2 ∑
|n|<N einx , we see that (1.1.3) is optimal.

Proof of Proposition 1.1.

‖eit!f ‖2
L

p
t L4

x
= ‖(eit!f )2‖

L
p/2
t L2

x

=
∥∥∥∥

[ ∑

a∈Z3

∣∣∣∣
∑

n

f̂ (n)f̂ (a − n)ei[Q(n)+Q(a−n)]t
∣∣∣∣
2]1/2∥∥∥∥

L
p/2
t

≤
[ ∑

a∈Z3

∥∥∥∥
∑

n

f̂ (n)f̂ (a − n)ei[Q(n)+Q(a−n)]t
∥∥∥∥

2

L
p/2
t

]1/2

(1.1.4)

since p ≥ 4.
Denote cn = |f̂ (n)|. Applying Hausdorff-Young,

‖ ···‖
L

p/2
t

!
[ ∑

k∈Z

∣∣∣∣
∑

|Q(n)+Q(a−n)−k|≤ 1
2

cnca−n

∣∣∣∣

p
p−2

] p−2
p

. (1.1.5)

Rewrite |Q(n) + Q(a − n) − k| ≤ 1
2 as |Q(2n − a) + Q(a) − 2k| ≤ 1 and hence

2n ∈ a + S&,

where

& = 2k − Q(a) and S& = {m ∈ Z3| |Q(m) − &| ≤ 1}. (1.1.6)

Clearly (1.1.5) may be replaced by

[ ∑

&∈Z

∣∣∣∣
∑

2n∈a+S&

cnca−n

∣∣∣∣

p
p−2

] p−2
p

(1.1.6′)

and an application of Hölder’s inequality yields

[ ∑

&

|S&|
p

2(p−2)

( ∑

2n∈a+S&

c2
nc

2
a−n

) p
2(p−2)

] p−2
p

!
( ∑

&

|S&|
p

p−4

) p−4
2p

[ ∑

n

c2
nc

2
a−n

]1/2

(1.1.7)

(since the S& are essentially disjoint).
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Substitution of (1.1.7) in (1.1.4) gives the bound

‖eit!f ‖L
p
t L4

x
≤ C

( ∑

&

|S&|
p

p−4

) p−4
4p

‖f ‖2. (1.1.8)

Next, write

|S&| ≤
∫ [ ∑

|m|≤N

eiQ(m)t

]
e−i&tϕ(t)dt, (1.1.8′)

where ϕ is compactly supported and ϕ̂ ≥ 0, ϕ̂ ≥ 1 on [−1, 1].
Assume p ≤ 8, so that p

p−4 ≥ 2 and from the Hausdorff-Young inequality again

( ∑
|S&|

p
p−4

) p−4
p

!
[ ∫

loc

∏3

j=1

∣∣∣∣
∑

0≤m≤N

eiθj m2t

∣∣∣∣

p
4

dt

] 4
p

!
[ ∫

loc

∣∣∣∣
∑

0≤m≤N

eim2t

∣∣∣∣

3p
4

dt

] 4
p

. (1.1.9)

Since p > 16
3 , q = 3p

4 > 4 and

∫

loc

∣∣∣∣
∑

0≤m≤N

eim2t

∣∣∣∣
q

dt ∼ Nq−2 (1.1.10)

(immediate from Hardy-Littlewood).
Therefore,

(1.1.9) ! N
3− 8

p ,

and substituting in (1.1.8), we obtain (1.1.3)

‖eit!f ‖L
p
t L4

x
≤ CN

3
4− 2

p ‖f ‖2

for p ≤ 8. For p > 8, the result simply follows from

‖eit!f ‖L
p
t L4

x
≤ N

2( 1
8− 1

p )‖eit!f ‖L8
t L4

x
. (1.1.11)

This proves Proposition 1.

Remarks.

1. For p = 16
3 , we have the inequality

‖eit!f ‖
L

16/3
t L4

x
≤ N

3
8 +‖f ‖2 (1.1.12)

assuming suppf̂ ⊂ B(0, N).
2. Inequalities (1.1.3) and (1.1.12) remain valid if supp f̂ ⊂B(a,N) with

a ∈ Z3 arbitrary.
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Indeed,

|eit!f | =
∣∣∣∣

∑

|m|≤N

f̂ (a + m)ei[(x+2(θ1a1+θ2a2+θ3a3)t).m+Q(m)t]
∣∣∣∣

so that

‖eit!f ‖L
p
t L4

x
=

∥∥∥∥
∑

|m|≤N

f̂ (a + m)ei(x.m+Q(m)t)

∥∥∥∥
L

p
t L4

x

.

1.2 APPLICATION TO THE 3D NLS

Consider the defocusing 3D NLS

iut +!u − u|u|p−2 = 0 (1.2.1)

on T3 and with ! as in (1.1.2).
Assume 4 ≤ p < 6.

Proposition 1.2 (1.2.1) is locally and globally wellposed in H 1 for p < 6.

Sketch of Proof. Using Xs,b-spaces (see [B1]), the issue of bounding the nonlinearity
reduces to an estimate on an expression

‖ |eit!φ1| |eit!φ2| |eit!ψ |p−2‖1,

with ‖φ1‖2, ‖φ2‖2 ≤ 1 and ‖ψ‖H 1 ≤ 1.
Thus we need to estimate

‖ |eit!φ1| |eit!ψ | p−2
2 ‖2. (1.2.2)

By dyadic restriction of the Fourier transform, we assume further

supp φ̂1 ⊂ B(0, 2M)\B(0, M) (1.2.3)

supp ψ̂ ⊂ B(0, 2N)\B(0, N) (1.2.4)

for some dyadic M, N > 1.
Write

(1.2.2) ≤ ‖[eit!φ1][eit!ψ](1 + |eit!ψ |2) p
4 −1‖2, (1.2.5)

where (1 + |z|2) p
4 −1 is a smooth function of z.

If in (1.2.3), (1.2.4), M > N , partition Z3 in boxes I of size N and write

φ1 =
∑

I

PIφ1,

and by almost orthogonality

(1.2.5) !
[ ∑

I

‖ |eit!PIφ1| |eit!ψ |(1 + |eit!ψ |2) p
4 −1‖2

2

]1/2

. (1.2.6)
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For fixed I , estimate

‖ |eit!PIφ1| |eit!ψ |(1 + |eit!ψ |2) p
4 −1‖2

≤ ‖eit!PIφ1‖L
16/3
t L4

x
‖eit!ψ‖

L
16/3
t L4

x

(
1 + ‖eit!ψ‖

L
8(

p
2 −2)

t L∞
x

) p
2 −2

, (1.2.7)

and in view of (1.1.12) and Remarks (1), (2) above and (1.2.4),

‖eit!PIφ1‖L
16/3
t L4

x
≤ N

3
8 +‖PIφ1‖2 (1.2.8)

‖eit!ψ‖
L

16/3
t L4

x
≤ N

3
8 +N−1‖ψ‖H 1 < N− 5

8 +. (1.2.9)

To bound the last factor in (1.2.7), distinguish the cases

(A) 4 ≤ p ≤ 16
3

Then 8(p
2 − 2) ≤ 16

3 and by (1.2.9)

‖eit!ψ‖
L

8(
p
2 −2)

t L∞
x

≤ ‖eit!ψ‖
L

16/3
t L∞

x
≤ N3/4‖eit!ψ‖

L
16/3
t L4

x
< N1/8+. (1.2.10)

Substitution of (1.2.8)–(1.2.10) in (1.2.7) gives

N− 1
4 +N

1
8 (

p
2 −2)+‖PIφ1‖2 ≤ N− 1

6 +‖PIφ1‖, (1.2.11)

hence

(1.2.6) < N− 1
6 +.

(B) 16
3 < p < 6

‖eit!ψ‖
L

8(
p
2 −2)

t L∞
x

≤ N
3
8− 1

2p−8 + 3
4 ‖eit!ψ‖

L
16/3
t L4

x
< N

1
2 − 1

2(p−4) + (1.2.12)

and

(1.2.7) ≤ N
p
4 − 3

2 +‖PIφ1‖2 (1.2.13)

(1.2.6) < N
p
4 − 3

2 +.

This proves Proposition 1.2.

1.3 IMPROVED L4-BOUND

It follows from (1.1.12) that

‖eit!f ‖L4
t,x

≤ N
3
8 +‖f ‖2 if supp f̂ ⊂ B(0, N). (1.3.1)
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In this section, we will obtain the following first improvement:

‖eit!f ‖L4
t,x

≤ N
7

20 ‖f ‖2 for supp f̂ ⊂ B(0, N). (1.3.2)

Restrict f̂ to a one level set, thus

f̂ = f̂ χ*µ (1.3.3)

with

*µ = {n ∈ [−N, N ]3| |f̂ (n)| ∼ µ}

|*µ| ≤ µ−2. (1.3.4)

In what follows, we assume f of the form (1.3.3).

Lemma 1.1

‖eit!f ‖L4
x,t

< µ1/6N
1
2 + (1.3.5)

Proof. From estimates (1.1.4) and (1.1.5′) with p = 4 and letting

cn =
{

µ if n ∈ *µ

0 otherwise

we get the following bound on ‖eit!f ‖2
4:

µ2
[ ∑

a∈Z3

∑

&∈Z
|(a + S&) ∩ (2*µ) ∩ (2a − 2*µ)|2

]1/2

. (1.3.6)

Recall also estimate (1.1.9) for p = 16
3 ,

( ∑
|S&|4

)1/4
< N

3
2 +. (1.3.7)

Hence, if we denote for L ≥ 1 (a dyadic integer)

LL = {& ∈ Z
∣∣ |S&| ∼ N

3
2 +L−1/4}, (1.3.8)

it follows that

|LL| < L. (1.3.9)

Estimate (1.3.6) by

µ2
[ ∑

&∈Z
|S&|

∑

a

|(a + S&) ∩ (2*µ) ∩ (2a − 2*µ)|
]1/2

(1.3.10)

and restrict in (1.3.10) the &-summation to LL.
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There are the following two bounds:

µ2
[ ∑

&∈LL

|S&|
∑

a

|(a + S&) ∩ (2*µ)|
]1/2

≤µ2
[ ∑

&∈LL

|S&|2|*µ|
]1/2

< µN
3
2 +L1/4 (1.3.11)

and also

µ2N
3
4 +L−1/8

[ ∑

&,a

|(a + S&) ∩ (2*µ) ∩ (2a − 2*µ)|
]1/2

< µ2N
3
4 +L−1/8|*µ| < N

3
4 +L−1/8. (1.3.12)

Taking the minimum of (1.3.11), (1.3.12), we obtain µ1/3N1+. Summing over
dyadic values of L ! N2, the estimate follows.

Next, we need a discrete maximal inequality of independent interest.

Lemma 1.2 Consider the following maximal function on Z3

F ∗(x) = max
1<&<N2

∑

|Q(y)−&|≤1

F(x + y). (1.3.13)

For

λ >N
1
2 ‖F‖2 (1.3.14)

we have

|[F ∗ > λ]| < N
3
2 +‖F‖2

2 λ
−2. (1.3.15)

(‖F‖2 denotes (
∑

x∈Z3 |F(x)|2)1/2).

Proof. Let A = [F ∗ > λ] ⊂ Z3. Thus for x ∈ A, there is &x s.t.

〈F, χx+S&x
〉 > λ.

Estimate as usual

λ.|A| ≤
〈
F,

∑

x∈A

χx+S&x

〉

≤‖F‖2

∥∥∥∥
∑

x∈A

χx+S&x

∥∥∥∥
2

=‖F‖2[|A| max
&

|S&| + |A|2 max
x 0=y

|(x + Sx) ∩ (y + Sy)|]1/2. (1.3.16)

Use the crude bound |S&| < N
3
2 + from (1.3.7) and denote

K = max
x,y∈Z3,x 0=y

|(x + Sx) ∩ (y + Sy)|. (1.3.17)
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From (1.3.16), we conclude that

|A| < N
3
2 +‖F‖2

2 λ
−2 (1.3.18)

if

λ > ‖F‖2 K1/2. (1.3.19)

It remains to evaluate K .
If n ∈ Z3 lies in (x + S&x ) ∩ (y + S&y ), then

|Q(x − n) − &x | ≤ 1

|Q(y − n) − &y | ≤ 1,

and subtracting

|2θ1(x1 − y1)n1 + 2θ2(x2 − y2)n2 + 2θ3(x3 − y3)n3

−Q(x) + Q(y) + &x − &y | ≤ 2. (1.3.20)

Since x 0= y in Z3, |x − y| ≥ 1 and (1.3.20) restricts n to a 1-neighborhood
∏

(1) of
some plane

∏
. Therefore (fig. 1.1.),

|(x + Sx) ∩ (y + Sy)

∣∣∣∣ < max
&,

∏ |S& ∩
∏

(1)

∣∣∣∣ (1.3.21)

Fig. 1.1.

Recall that S& is a 1√
&
-neighborhood of a “regular” ellipsoid E of size

√
&. Esti-

mate the number of lattice points |S& ∩
∏

(1) | in S& ∩
∏

(1) by the area of E inside∏
(1). By affine transformation, we may assume E a sphere of radius at most N . A

simple calculation shows that this area is at most ∼ N . Hence K ! N and (1.3.18)
holds if (1.3.14).

This proves Lemma 1.2.
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Remark. The number K in (1.3.17) allows more refined estimates that will be
pointed out later.

Taking in Lemma 1.2 F = χ2*µ , we get

Corollary 1.3 If λ >N
1
2 µ−1, then

|{a ∈ Z3| max
&!N2

|(a + S&) ∩ 2*µ| > λ}| < N
3
2 +(µλ)−2. (1.3.22)

Now we establish

Lemma 1.4

‖eit!f ‖4 < N
3
16 + + N

1
8 µ− 1

4 . (1.3.23)

Proof. We return to (1.3.6).
Denote for dyadic λ

Aλ = {a ∈ Z3 ∩ [−N, N ]3| max
&

|(a + S&) ∩ (2*µ)| ∼ λ}.

For a ∈ Aλ, there are at most µ−2λ−1 values of & ∈ Z s.t.

|(a + S&) ∩ (2*µ)| > λ (1.3.24)

(since the S& are disjoint).

We estimate
∑

a∈Aλ

∑

&∈Z
(1.3.24)

|(a + S&) ∩ (2*µ) ∩ (2a − 2*µ)|2 (1.3.25)

distinguishing the following two cases:

Case 1.1 λ ≤ N
1
2 µ−1.

Write

(1.3.25)≤λ
∑

a

∑

&∈Z
|(a + S&) ∩ (2*µ) ∩ (2a − 2*µ)|

<λ|*µ|2 < N
1
2 µ−5. (1.3.26)

Case 1.2 λ >N
1
2 µ−1.

Then (1.3.22) applies and |Aλ| < N
3
2 +(µλ)−2. Hence

(1.3.25) < |Aλ|µ−2λ <N
3
2 +µ−4λ−1. (1.3.27)

Since there is also the obvious bound given by (1.3.26)

(1.3.25) < λµ−4, (1.3.28)
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we obtain

(1.3.25) < N
3
4 +µ−4. (1.3.29)

Substitution of (1.3.26), (1.3.29) implies

‖eit!f ‖2
4 ≤ (1.3.6) < N

1
4 µ− 1

2 + N
3
8 +.

Proposition 1.3 ‖eit!f ‖L4
x,t

≤ N
7

20 +‖f ‖2 if suppf̂ ⊂ B(0, N).

Proof. With f as above, it follows from Lemma 1.1 and 1.4 that

‖eit!f ‖4 < N
3
16 + + min(µ

1
6 N

1
2 +, N

1
8 µ− 1

4 ) < N
7

20 +.

As a corollary of Proposition 1.3, we get the following wellposedness result for
cubic NLS in 3D.

Proposition 1.4 Consider iut + !u ± u|u|2 = 0 on T3 and with ! as above.
There is local wellposedness for u(0) ∈ Hs(T3), s > 7

10 .

1.4 A REFINEMENT OF PROPOSITION 3

Our purpose is to improve upon Lemma 1.2 by a better estimate on the quantity K

in (1.3.17), thus

|(x + Eε) ∩ (x ′ + E ′
ε) ∩ Z3|, (1.4.1)

where E, E ′ are nondegenerated ellipsoids centered at 0 of size ∼ R < N and ε = 1
R

refers to an ε′-neighborhood, x 0= x ′ in Z3.
The main ingredients are versions of the the standard Jarnick argument to estimate

the number of lattice points on a curve (cf. [Ja]). Here we will have to deal with
neighborhoods.

We start with a 2-dimensional result.

Lemma 1.5 Let E be a “regular” oval in R2 of size R. Then

max
a

|B(a,R1/3) ∩ E 1
R
∩ Z2| < C. (1.4.2)

In particular

|E 1
R
∩ Z2| < CR2/3 (1.4.3)

and for all ρ > 1

|B(a, ρ) ∩ E 1
R
∩ Z2| < Cρ2/3 (1.4.4)

(E 1
R

denotes a 1
R

-neighborhood of E).
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Proof. Let P1, P2, P3 be noncolinear points in B(a, cR1/3) ∩ E 1
R
∩ Z2, letting c be

a sufficiently small constant. Following Jarnick’s argument,

0 0= area triangle (P1, P2, P3) = 1
2
|
∣∣∣∣

1 1 1
P1 P2 P3

∣∣∣∣ ∈
1
2

Z+

and hence

area (P1, P2, P3) ≥
1
2
. (1.4.5)

Take P ′
1, P

′
2, P

′
3 ∈ E so that |Pj − P ′

j | < 1
R

. Clearly,
∣∣∣∣

∣∣∣∣
1 1 1
P1 P2 P3

∣∣∣∣ −
∣∣∣∣

1 1 1
P ′

1 P ′
2 P ′

3

∣∣∣∣

∣∣∣∣ < R
1
3 R−1 & 1

so that

area (P ′
1, P

′
2, P

′
3) >

1
4
. (1.4.6)

On the other hand, obviously

area (P ′
1, P

′
2, P

′
3) ≤ cR1/3 R2/3

R
& 1 (1.4.7)

a contradiction. This proves (1.4.2), observing that if- is a line, then clearly-∩E 1
R

is at most of bounded length. Hence |E 1
R
∩- ∩ Z2| < C.

Partitioning E 1
R

in sets of size cR1/3 (1.4.3) follows.

Finally, estimate (1.4.4) by min(1 + ρR−1/3, R2/3) ! ρ2/3.

Remark. Projecting on one of the coordinate planes, Lemma 1.5 applies equally
well to a regular oval E in a 2-plane

∏
in R3 and

max
a

|B(a,R1/3) ∩ E 1
R
∩ Z3| < C (1.4.8)

and

max
a

|B(a, ρ) ∩ E 1
R
∩ Z3| < Cρ2/3, (1.4.9)

where E is of size R and E 1
R

denotes an 1
R

-neighborhood of E .

There is an obvious extension of (1.4.2) in dimension 3. One has

Lemma 1.6 Let E be a 2-dim regular oval in R3 of size R. Then, for all a ∈ R3

and appropriate c, B(a, cR1/4) ∩ E 1
R
∩ Z3 does not contain 4 noncoplanar points.

Proof. If P1, P2, P3, P4 are noncoplanar points in B(a, cR1/4) ∩ E 1
R
∩ Z3 and

|Pj − P ′
j | < 1

R
, P ′

j ∈ E , write

1
6

Z+ 2 Vol (P1, P2, P3, P4) = Vol (P ′
1, P

′
2, P

′
3, P

′
4) + 0(R1/2R−1),
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and hence

Vol (P ′
1, P

′
2, P

′
3, P

′
4) >

1
7
. (1.4.10)

On the other hand, this volume may be estimated by the volume of the cap obtained

as convex hull conv(E ∩ B(a, cR1/4) bounded by (cR1/4)2 R
1
2

R
& 1. This proves

Lemma 1.6.

We now return to (1.3.21) and estimate |E 1
R
∩ ∏

(1) ∩Z3|, where
∏

(1) is a 1-

neighborhood of a plane
∏

in R3. Our purpose is to show

Lemma 1.7
∣∣∣∣E 1

R
∩

∏
(1)

∩Z3

∣∣∣∣ < R2/3+. (1.4.11)

Proof. (see fig. 1.2.).

Fig. 1.2.

Thus E ∩ ∏
(1) is a truncated conical region of base-size Rθ , slope θ and height 1,

for some θ > 1
R

.

Consider first the case θ < R−1/4. Partition E 1
R
∩ ∏

(1) in ∼ R− 1
2 (Rθ) 1

θ
regions

D of size cR1/4. According to Lemma 1.6, D ∩ Z3 consists of coplanar points,
therefore lying in some plane P ⊂ R3 and

D ∩ Z = D ∩ P ∩ E 1
R
∩ Z3. (1.4.12)
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P ∩E is an ellipse E ′ of size r (we may assume r 3 1) and we claim that P ∩E 1
R
⊂

E ′
1
r

= 1
r
-neighborhood of E ′. To see this, we may by affine transformation assume

E to be a sphere of radius R, in which case it is a straightforward calculation.
From (1.4.12) and the preceding,

|D ∩ Z3| ≤| D ∩ E ′
1
r
∩ Z3|

< C(diam D)2/3

< CR1/6, (1.4.13)

applying (1.4.9) to E ′
1
r

in the plane P .

We conclude that for θ < R−1/4,
∣∣∣E 1

R
∩

∏
(1)

∩Z3
∣∣∣ < CR

1
2 R

1
6 < CR

2
3 (1.4.14)

and hence (1.4.12).
Assume next that θ > R−1/4.
Let D > 1 be such that B(a,D) ∩ E 1

R
∩∏

(1) ∩Z3 (for some a ∈ R3) contains 4
noncoplanar points P1, P2, P3, P4. Assume

D < (θR)1/2. (1.4.15)

Repeating the argument in Lemma 1.6, let |Pj −P ′
j | ≤ 1

R
, P ′

j ∈ B(a,D + 1)∩ E ∩∏
(2).
By (1.4.15),

Vol (P ′
1, P

′
2, P

′
3, P

′
4) >

1
6
− 0(D2R−1) >

1
7
. (1.4.16)

Considering sections parallel to
∏

, write an upper bound on the left side of (1.4.16)
by

Vol
(

conv(B(a, 2D) ∩ E ∩
∏

(2)

)
≤ D

D2

Rθ
. (1.4.17)

Together with (1.4.16), (1.4.17) implies

D " (Rθ)1/3 " 1
θ
, (1.4.18)

which therefore holds independently from assumption (1.4.15).
Next, we consider a cover of E 1

R
∩ ∏

(1) by essentially disjoint balls B(aα, Dα)

chosen in such a way that the following properties hold:

1. (1.4.19) All elements of B(aα, Dα) ∩ E 1
R
∩ ∏

(1) ∩Z3 are coplanar.

2. (1.4.20) B(aα, 2Dα) ∩ E 1
R
∩ ∏

(1) ∩Z3 contains 4 noncoplanar points.

By (1.4.18), Dα > 1
θ
. Fixing a dyadic size θR > D > 1

θ
and considering α’s such

that

Dα ∼ D, (1.4.21)
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their number is at most

Rθ

D
. (1.4.22)

Proceeding as earlier, let P be a plane containing the elements of

B(aα, Dα) ∩ E 1
R
∩

∏
(1)

∩Z3 (1.4.23)

and E ′ an ellipse of size r in P such that E ′ = P ∩ E, E ′
1
r

⊃ E 1
R
∩ P .

Let P1 be any point in (1.4.23) and denote τ the tangent plane to E at P1, ψ the
angle of τ and P . Thus (fig. 1.3.),

r ∼ Rψ

Fig. 1.3.

If ψ " θ , then r ∼ Rψ " Rθ and we estimate
∣∣∣B(P1, 2D) ∩

∏
(1)

∩ E ′
1
r
∩ Z3

∣∣∣ ! D.r−1/3. (1.4.24)

The corresponding contribution to E 1
R
∩ ∏

(1) ∩Z3 is at most

Rθ

D
D(Rθ)−1/3 ! R2/3. (1.4.25)

Assume thus ψ & θ , in which case θ ≈ angle (
∏

, P) and

diam
(
E ′ ∩

∏
(1)

)
∼

√
r

θ
. (1.4.26)
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Estimate
∣∣∣∣B(P1, 2D) ∩

∏
(1)

∩E ′
1
r
∩ Z3

∣∣∣∣ ! min
(

D,

√
r

θ

)
r−1/3 < θ−1/3D1/3, (1.4.27)

which collected contribution to E ∩ ∏
(1) ∩Z is bounded by

Rθ

D
θ−1/3D1/3 = Rθ2/3

D2/3
≤ R

D2/3
. (1.4.28)

We may thus assume D < R1/2.
Assume (1.4.23) contains K points and denote d < D the diameter of (1.4.23).

Hence, from (1.4.26),

θd2 ! r. (1.4.29)

Partitioning E ′ in arcs of size d
K

, we get thus a set E ′
1
r

∩B(P1,
d
K

)∩Z3 containing 3

noncollinear points P1, P2, P3 from (1.4.23). Recalling assumption (1.4.20) there
is P ∈ B(P1, 2D) ∩ E 1

R
∩ ∏

(1) ∩Z3 such that P1, P2, P3, P are noncoplanar and
therefore

Vol (P1, P2, P3, P ) ≥ 1
6
. (1.4.30)

Estimate from above (since P1, P2, P3 ∈ P)

Vol (P1, P2, P3, P )≤ area (P1, P2, P3) dist (P, P)

! 1
r

(
d

K

)3

dist (P, P). (1.4.31)

(We use here the fact that P1, P2, P3 ∈ E ′
1/r and diam{P1, P2, P3} < d

K
.)

It remains to estimate dist (P, P).
Letting τ be again the tangent plane at P1, write

dist (P, P) ≤ |P − P | + dist (P , P), (1.4.32)

where P̄ ∈ τ

|P − P | = dist (P, τ ) ! D2

R
< 1, (1.4.33)

and hence

P ∈ τ ∩
∏

(2)
∩B(P1, 2D + 1).

We may assume P1 ∈ ∏
. Denote &0 the line

&0 =
∏

∩τ (1.4.34)

and &1 the line

&1 = P ∩ τ. (1.4.35)
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Thus P1 ∈ &0 ∩ &1

dist (P , P) = dist (P , &1) angle (τ, P) = dist (P , &1)ψ

∼ r

R
dist (P , &1)

∼ r|P̄ − P1|
R

angle ([P1, P ], &1). (1.4.36)

By assumption, there is a point P4 ∈ (1.4.23) s.t.

d

2
< |P1 − P4| ≤ d. (1.4.37)

Thus P4 ∈ P ∩ ∏
(1). Estimate

angle ([P1, P ], &1)≤ angle ([P1, P4], &1) + angle ([P1, P ], [P1, P4])
= (1.4.38) + (1.4.39).

Since dist (P4, τ ) ∼ d2

R
, we have

d2

R
∼ dist (P4, &1).ψ

and

(1.4.38) ∼ 1
d

dist (P4, &1) ∼
d

Rψ
∼ d

r
. (1.4.40)

Estimate

(1.4.39) ≤ angle ([P1, P ], &0) + angle ([P1, P4], &0). (1.4.41)

Since dist (P4,
∏

) ≤ 1 and dist (P4, τ ) ∼ d2

R
< 1, we get

2 ≥ dist (P4, &0) angle
(
τ,

∏ )
= θ. dist (P4, &0)

angle ([P1, P4], &0) ! 1
θd

. (1.4.42)

Similarly,

angle ([P1, P ], &0) ! 1

θ |P1 − P̄ | , (1.4.43)

and hence

(1.4.39) ! 1
θd

+ 1

θ |P1 − P̄ | . (1.4.44)

It follows that

angle ([P1, P ], &1) ! d

r
+ 1
θd

+ 1

θ |P1 − P̄ |
(1.4.29)

<
1
θd

+ 1

θ |P1 − P̄ | . (1.4.45)
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Recalling (1.4.36),

dist (P , P) ! rD

Rθd
+ r

Rθ
! rD

Rθd
(1.4.46)

and, by (1.4.32),

dist (P, P) ! D2

R
+ rD

Rdθ
. (1.4.47)

Substituting in (1.4.31) gives by (1.4.30)

1 ! d3D2

rRK3
+ d2D

θRK3

(1.4.29)

! dD2

θRK3

K ! D

(θR)1/3
. (1.4.48)

Multiplying with (1.4.22), we obtain again

Rθ

D

D

(θR)1/3
≤ R2/3 (1.4.49)

as a bound on |E 1
R
∩ ∏

(1) ∩Z3|.
This proves Lemma 1.7.
Lemma 1.7 allows for the following improvement of Lemma 1.2.

Lemma 1.2′. Let F ∗ be the discrete maximal function (1.3.13). Then

|[F ∗ > λ]| < N
3
2 +‖F‖2

2λ
−2 (1.4.50)

provided

λ >N
1
3 +‖F‖2. (1.4.51)

Proof. Returning to the proof of Lemma 1.2, Lemma 1.7 implies the bound on K

introduced in (1.3.17)

K < N
2
3 +, (1.4.52)

and (1.3.19) becomes (1.4.51) instead of (1.3.14).
Hence (1.3.32) in Corollary 1.1 holds under the assumption

λ >N
1
3 +µ−1, (1.4.53)

which leads to the following improved Lemma 1.3 and Propositions 1.5, 1.6.

Lemma 1.4′.

‖eit!f ‖4 < N
3
16 + + N

1
12 +µ− 1

4 . (1.4.54)

Proposition 1.3′.

‖eit!f ‖4 ≤ N
1
3 +‖f ‖2 if supp f̂ ⊂ B(0, N). (1.4.55)
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Proposition 1.4′. The 3D cubic NLS iut +!u ± u|u|2 = 0 on T3 with ! as in
(1.1.2) is locally well-posed for u(0) ∈ Hs(T3), s > 2

3 .
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