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Abstract We consider the cubic defocusing nonlinear Schrödinger equa-
tion on the two dimensional torus. We exhibit smooth solutions for which
the support of the conserved energy moves to higher Fourier modes. This
behavior is quantified by the growth of higher Sobolev norms: given any
δ � 1,K � 1, s > 1, we construct smooth initial data u0 with ‖u0‖Hs < δ,
so that the corresponding time evolution u satisfies ‖u(T )‖Hs > K at some
time T . This growth occurs despite the Hamiltonian’s bound on ‖u(t)‖Ḣ 1 and
despite the conservation of the quantity ‖u(t)‖L2 .
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The proof contains two arguments which may be of interest beyond the par-
ticular result described above. The first is a construction of the solution’s fre-
quency support that simplifies the system of ODE’s describing each Fourier
mode’s evolution. The second is a construction of solutions to these simpler
systems of ODE’s which begin near one invariant manifold and ricochet from
arbitrarily small neighborhoods of an arbitrarily large number of other invari-
ant manifolds. The techniques used here are related to but are distinct from
those traditionally used to prove Arnold Diffusion in perturbations of Hamil-
tonian systems.

Mathematics Subject Classification (2000) 35Q55
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1 Introduction

We consider the periodic defocusing cubic nonlinear Schrödinger (NLS)
equation {−i∂tu + �u = |u|2u,

u(0, x) := u0(x),
(1.1)

where u(t, x) is a complex valued function with the spatial variable x lying
in the torus T

2 := R
2/(2πZ)2. Equations such as (1.1) arise as models in var-

ious physical settings, including the description of the envelope of a general
dispersive wave in a weakly nonlinear medium, and more specifically in some
models of surface water waves. (See e.g. the survey in [75], Chap. 1.)

We shall always take the initial data u0(x) to be smooth. Recall (see
e.g. [29, 77]) that smooth solutions to (1.1) exhibit both conservation of the
Hamiltonian,

E[u](t) :=
∫

T2

1

2
|∇u|2 + 1

4
|u|4dx(t)

= E[u](0), (1.2)

and conservation of mass, or L2(T2) norm,

∫
T2

|u|2dx(t) =
∫

T2
|u|2dx(0), (1.3)

for all t > 0. The local-in-time well-posededness result of Bourgain [13] for
data u0 ∈ Hs(T2), s > 0, together with these conservation laws, immediately
gives the existence of a global smooth solution to (1.1) from smooth initial
data.

We are interested in whether there exist solutions of (1.1) which initially
oscillate only on scales comparable to the spatial period and eventually oscil-
late on arbitrarily short spatial scales. One can quantify such motion in terms
of the growth in time of higher Sobolev norms ‖u(t)‖Hs(T2), s > 1, defined
using the Fourier transform by,

‖u(t)‖Hs(T2) := ‖u(t, ·)‖Hs(T2) :=
⎛
⎝∑

n∈Z2

〈n〉s |û(t, n)|
⎞
⎠

1
2

(1.4)



42 J. Colliander et al.

where 〈n〉 := (1 + |n|2) 1
2 and,1

û(t, n) :=
∫

T2
u(t, x)e−in·xdx.

For example, together (1.2) and (1.3) give a uniform bound

‖u(t)‖H 1(T2) =
⎛
⎝∑

n∈Z2

〈n〉2|û(t, n)|2
⎞
⎠

1
2

≤ C (1.5)

on the solution’s H 1 norm. Hence, for fixed s > 1, ‖u(t)‖Hs(T2) could grow
in time if the terms contributing substantially to the sum on the left hand side
of (1.5) correspond, loosely speaking, to ever higher |n|. From this point of
view then, we are interested in whether the energy of a solution to (1.1) can
be carried by higher and higher Fourier modes.

The one space-dimensional analog of (1.1) is completely integrable
[82], and the higher conservations laws in that case imply ‖u(t)‖Hs(T1) ≤
C(‖u(0)‖Hs(T1)), s ≥ 1 for all t > 0. It is unknown (see e.g. [25]) whether
unbounded growth in Hs , s > 1, is possible in dimensions 2 and higher, let
alone whether such growth is generic. The main result of this paper is the con-
struction of solutions to (1.1) with arbitrarily large growth in higher Sobolev
norms,

Theorem 1.1 Let 1 < s, K � 1, and 0 < δ � 1 be given parameters. Then
there exists a global smooth solution u(t, x) to (1.1) and a time T > 0 with

‖u(0)‖Hs ≤ δ

and

‖u(T )‖Hs ≥ K.

Note that, in view of (1.2), (1.3), the growth constructed here must involve
both movement of energy to higher frequencies, and movement of mass to
lower frequencies. (The mass associated to the higher and higher frequency
energy must be decreasing by energy conservation. This must be balanced, by
mass conservation, by more and more mass at low frequencies.) Recall again
that any smooth data in (1.1) evolves globally in time. While finite and infinite
time blowup results are known for focusing analogs of (1.1) (e.g. [18, 20, 52,

1In what follows, we omit the factors of 2π arising in definitions of the Fourier transform and
its inverse, as these play no role in our analysis.
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65, 69]), the mechanism responsible for the Hs norm growth in Theorem 1.1
is distinct from these blowup dynamics.

Using the conservation laws (1.2), (1.3) and the Sobolev embedding theo-
rem, we observe that, for s = 1, we have a stability property near zero,(

lim sup
|t |→∞

[
sup

‖u0‖H1≤δ

‖u(t)‖H 1

])
≤ Cδ.

Theorem 1.1 implies a different behavior in the range s > 1. Since δ may
be chosen to be arbitrarily small and K may be chosen arbitrarily large in
Theorem 1.1, we observe the following:

Corollary 1.1 (Hs instability of zero solution) The global-in-time solution
map taking the initial data u0 to the associated solution u of (1.1) is strongly
unstable in Hs near zero for all s > 1:

inf
δ>0

(
lim sup
|t |→∞

[
sup

‖u0‖Hs ≤δ

‖u(t)‖Hs

])
= ∞. (1.6)

It does not follow from (1.6), nor directly from Theorem 1.1, that there
exists initial data u0 ∈ Hs for some s > 1 which evolves globally in time
and satisfies lim sup|t |→∞ ‖u(t)‖Hs = ∞. As remarked above, this remains
an interesting open question [25]. In the Appendix, we do prove that (1.1)
has no nontrivial solutions which scatter—i.e. which approach a solution to
the linear equation at time t = ∞. Note that Theorem 1.1 and Corollary 1.1
also hold true for higher dimensional generalizations of (1.1) by considering
solutions which are only dependent upon two of the spatial coordinates.

Theorem 1.1 is motivated by a diverse body of literature. We mention first
foundational work which extended results for close to integrable Hamiltonian
systems in finite dimensions to the context of partial differential equations
in one space dimension. Especially relevant to the question addressed here
are the early papers on periodic solutions to nonlinear PDE (see e.g. Rabi-
nowitz [72], and the survey in Brezis [28]), the earliest KAM-type results for
PDE (see e.g. those of Kuksin [59, 60], Wayne [79], Craig-Wayne [35, 36],
and Kuksin-Pöschel [61], see also the surveys [34, 80]), and the Nekhoroshev
type estimates of Bambusi [3] (see also related work of Pöschel [71]). There
are many related results, extending the analysis too to higher dimensional
partial differential equations, see e.g. the works of Bambusi [3], Grebert [47],
Eliasson-Kuksin [45], Bourgain [23], and references therein. We briefly re-
view now some results particularly related to Theorem 1.1, including upper
bounds on the possible growth of Sobolev norms for (1.1), lower bounds for
related models, and extensive work on the so-called weak-turbulence theory
of related wave models.
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A straightforward iteration argument based on the local theory [13] shows
that high Sobolev norms of solutions of (1.1) can grow no faster than
exponential-in-time. Bourgain used refinements [19] of the Strichartz inequal-
ity to prove polynomial-in-time upper bounds [16] on Sobolev norm growth.
These results were sharpened, using a normal forms reduction, in [17]. (See
also [31, 74].)

Previous examples of growth in the higher Sobolev norms of solutions to
(1.1) are, to the best of our knowledge, found only in the work of Kuksin [55]
(see also related work in [54, 56–58]), where the following small dispersion
nonlinear Schrödinger equation is considered,2

−i∂tw + δ�w = |w|2w (1.7)

with odd, periodic boundary conditions, where δ is taken to be a small para-
meter. Kuksin shows, among other results and in various formulations, that
smooth norms of solutions of (1.7) evolving from relatively generic data with
unit L2 norm eventually grow larger than a negative power of δ. This re-
sult can be compared with Theorem 1.1 as follows. Suppose w is a solution

of (1.7). The rescaled function uδ(t, x) = δ− 1
2 w(δ−1t, x) satisfies the PDE

(1.1), the same equation as (1.7) with δ = 1. Note that ‖Ds
xuδ(0, ·)‖L2 =

δ− 1
2 ‖Ds

xw(0, ·)‖L2
x
. Hence, in the context of (1.1), the above described re-

sult in [55] addresses growth of solutions emerging from a relatively generic
class of sufficiently large initial data, where the size of the data depends on
the amount of growth desired. In contrast, Theorem 1.1 concerns growth from
specially selected small, or order one, data3 and its proof involves a strong in-
terplay between the equation’s dispersion and nonlinearity.

In contrast to the question for the nonlinear problem (1.1), there are several
results on the growth of Sobolev norms in linear Schrödinger equations with
potentials,

−i∂tv + �v + V (t, x)v = 0, x ∈ T
2. (1.8)

For example, for V smooth in space, and random in time (resp. smooth and
periodic in x and t), Bourgain proved that generic data grows polynomially
[26] (resp. logarithmically [21]) in time.

2In these papers, Kuksin considers a variety of deterministic and random nonlinear
Schrödinger equations in addition to (1.7). In [57] the analog of (1.7) for the second order
wave equation is considered. Note too that we write (1.7) with the sign convention on the
time variable as in (1.1), rather than the convention used in [55], but this makes no substantial
difference in describing the results.
3Theorem 1.1 is stated for the case δ � 1. However as we hope is clear from the discussion in
Sect. 2.6 below, the construction allows any choice of δ > 0.
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Bourgain has constructed [14, 15] Hamiltonian PDEs with solutions with
divergent high Sobolev norms. These constructions are based on perturbation
arguments off linear equations with spectrally defined Laplacian and also in-
volve somewhat artificial4 choices of nonlinearities. In [16], solutions with
divergent Sobolev norms are constructed for a wave equation with a natural
cubic nonlinearity but still involving a spectrally defined Laplacian.

Bourgain has also shown [22, 24] that there is an abundance of time quasi-
periodic solutions of (1.1).

As mentioned at the outset, the growth of higher Sobolev norms is just
one way to quantify the diffusion of energy to higher and higher modes—
also called a forward cascade, or a direct cascade. Further motivation for
Theorem 1.1, and indeed for much of the work cited above, is the litera-
ture of analysis, physics, numerics, heuristics and conjectures regarding this
phenomenon in related wave models. For example, since the early 1960’s a
so-called weak turbulence theory (alternatively wave turbulence theory) has
been developed which gives a statistical description of a robust forward cas-
cade in various “weakly interacting” dispersive wave models, mainly based
on the analysis of associated kinetic equations for the evolution of the Fourier
modes [7, 8, 48, 62, 81]. There are a great many subsequent works both within
and outside the framework of weak turbulence theory which address the pas-
sage of energy to higher modes in dispersive wave models. We are not pre-
pared to give here a representative survey, but see [41, 44, 53, 63, 68] and
references therein for examples.

In broadest outline, the proof of Theorem 1.1 proceeds by first viewing
(1.1) as an infinite dimensional system of O.D.E.’s in {an(t)}n∈Z2 , where
an(t) is closely related to the Fourier mode û(t, n) of the solution. We iden-
tify a related system, which we call the resonant system, that we use as an
approximation to the full system.5 The goal then will be to build a solution
{rn(t)}n∈Z2 to the resonant system which grows in time. This is accomplished
by choosing the initial data {rn(0)}n∈Z2 to be supported on a certain frequency
set � ⊂ Z

2 in such a way that the resonant system of O.D.E.’s collapses to
an even simpler, finite dimensional system that we call the Toy Model Sys-
tem, and whose solution we denote by b(t) ≡ {b1(t), b2(t), . . . , bN(t)}. Each
variable bi(t) will represent how a certain subset of the {rn(t)}n∈Z2 evolves
in time. There are two independent but related ingredients which complete
the proof of the main Theorem. First, we show the existence of the frequency
set �, which is defined in terms of the desired Sobolev norm growth and

4See Remark 2 on p. 303 of [16] for further discussion.
5The reduction here is very much related to normal forms (see e.g. [4, 6, 61, 73] and the surveys
[5, 47]). A difference is that the nonresonant terms are removed here using perturbation theory
directly, rather than by first transforming the Hamiltonian and then using perturbation theory
to handle the resulting higher order terms.
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according to a wish-list of geometric and combinatorial properties aimed at
simplifying the resonant system. Second, we show that the Toy Model System
exhibits unstable orbits that travel from an arbitrarily small neighborhood of
one invariant manifold to near a distant invariant manifold. It is this instability
which is ultimately responsible for the support of the solution’s energy mov-
ing to higher frequencies. Instabilities like this have been remarked on at least
as far back as [70], but have been studied with increasing interest since the
paper of Arnold [2]. Our construction has similarities with previous work on
so-called “Arnold Diffusion”6 and more general instabilities in Hamiltonian
systems (see e.g. [1, 2, 9–12, 27, 30, 32, 33, 37–40, 42, 43, 46, 50, 51, 64,
66, 67, 78]). At the same time, however, the instability we observe in the toy
model differs in some respects from the original phenomenon observed by
Arnold. Our analysis of the instability seems to be different than arguments
presently in the literature and might be of independent interest. More specif-
ically, it may be possible to prove the instability by “softer” methods that do
not require as many quantitative estimates as the arguments in this paper, al-
though the presence of secular modes in the dynamics may complicate such a
task. While such a soft proof would be simpler, we believe that the approach
here is also of interest, as it provides a rather precise description of the orbits.

The paper is organized as follows. Section 2 provides a more detailed
overview of the argument, giving the proof of Theorem 1.1 modulo some
intermediate claims. Section 3 contains a proof that the Toy Model System ex-
hibits the unstable orbits described above. Section 4 constructs the frequency
set �. Finally, we prove as a postscript in Sect. 4 that no nontrivial solutions
to (1.1) scatter to linear solutions.

2 Overview and proof of main theorem

2.1 Preliminary reductions: NLS as an infinite system of ODE’s

Equation (1.1) has gauge freedom: upon writing

v(t, x) = eiGtu(t, x), G ∈ R (constant), (2.1)

the NLS equation (1.1) becomes the following equation for v,

(−i∂t + �)v = (G + |v|2)v (2.2)

with the same initial data. (We will soon choose the constant G to achieve a
cancellation.)

6There are several different definitions of “Arnold Diffusion” (see e.g. the remarks in the in-
troduction of the survey by Delshams, Gidea, and de la Llave in [33]).
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We make the Fourier Ansatz, motivated by the explicit solution of the linear
problem associated to NLS. For solutions of the NLSG equation (2.2), we
write

v(t, x) =
∑
n∈Z2

an(t)e
i(n·x+|n|2t). (2.3)

We consider in this paper only smooth solutions, so the series on the right
of (2.3) is absolutely summable. Substituting (2.3) into (1.1) and equating
Fourier coefficients for both sides gives the following infinite system of equa-
tions for an(t),

−i∂tan = Gan +
∑

n1,n2,n3∈Z
2

n1−n2+n3=n

an1an2an3e
iω4t , (2.4)

where

ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2. (2.5)

Certain terms on the right hand side of (2.4) can be removed by correctly
choosing the gauge parameter G. We describe this cancellation this now. Split
the sum on the right hand side of (2.4) into the following terms,∑

n1,n2,n3∈Z
2

n1−n2+n3=n

=
∑

n1,n2,n3∈Z
2

n1−n2+n3=n
n1,n3 �=n

+
∑

n1,n2,n3∈Z
2

n1−n2+n3=n
n1=n

+
∑

n1,n2,n3∈Z
2

n1−n2+n3=n
n3=n

−
∑

n1,n2,n3∈Z
2

n1−n2+n3=n
n3=n1=n

:= Term I + Term II + Term III + Term IV. (2.6)

Term IV here is not a sum at all, but rather −an(t)|an(t)|2. Terms II and III
are single sums which by Plancherel’s theorem and (1.3) total,

2an(t) ·
∑

m∈Z2

|am(t)|2 = 2an(t) · ‖u(t)‖2
L2(T2)

= 2an(t)M
2,

where we’ve written M := ‖u(t)‖L2(T2). We can cancel this with the first term
on the right side of (2.4) by choosing G = −2M in (2.1). Equation (2.4) takes
then the following useful form, which we denote F NLS,

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈�(n)

an1an2an3e
iω4t , (2.7)

where

�(n) = {(n1, n2, n3) ∈ (Z2)3 : n1 − n2 + n3 = n,n1 �= n,n3 �= n}. (2.8)
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Note that at each time u is easily recoverable from v, and both functions have
identical Sobolev norms.

One can easily show that F NLS is locally well-posed in l1(Z2), and for
completeness we sketch the argument here. Define the trilinear operator

N (t) : l1(Z2) × l1(Z2) × l1(Z2) �−→ l1(Z2)

by

(N (t)(a, b, c))n = −anbncn +
∑

n1,n2,n3∈�(n)

an1bn2cn3e
iω4t . (2.9)

With this notation, we can reexpress F NLS as −i∂tan = (N (t)(a, a, a))n.

Lemma 2.1

‖(N (t)(a, b, c))n‖l1(Z2) � ‖a‖l1(Z2)‖b‖l1(Z2)‖c‖l1(Z2). (2.10)

Proof The l1 norm of the first term in (2.9) is bounded by ‖a‖l∞‖b‖L∞‖c‖l1 ,
which is bounded as claimed. For the second term, take absolute values inside
the

∑
n1,n2,n3∈�(n) and then replace the n3 sum by the n sum using the �(n)

defining relation to observe the bound (2.10). �

Remark 2.1 From Lemma 2.1 and standard Picard iteration arguments one
obtains local well-posedness in l1(Z2). The local well-posedness result is
valid on [0, T ] with

T ∼ ‖a(0)‖−2
l1(Z2)

.

Equation −i∂ta = N (t)(a, a, a) behaves roughly like the ODE ∂ta = a3 for
the purposes of local existence theory.

2.2 Resonant and finite dimensional truncations of F NLS

We define the set of all resonant non-self interactions �res(n) ⊂ �(n) by

�res(n) = {(n1, n2, n3) ∈ �(n) : ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2 = 0}.
(2.11)

Note that (n1, n2, n3) ∈ �res(n) precisely when (n1, n2, n3, n) form four cor-
ners of a nondegenerate rectangle with n2 and n opposing each other, and sim-
ilarly for n1 and n3. One way to justify this claim is to first note the following
symmetry: the two conditions (2.8), (2.11) defining �res(n) imply directly that
(n1, n2, n3) ∈ �res(n) if and only if (n1 −n0, n2 −n0, n3 −n0) ∈ �res(n−n0)

for any n0 ∈ Z
2. Choosing n0 = n, it suffices to prove the above geometric in-

terpretation for �res(n) in the case n = 0, and this follows immediately from
the law of cosines.
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Heuristically, the resonant interactions dominate in (2.7) because they do
not contain the eiω4t factor that oscillates in time. We approximate solutions
of (2.7) by simply discarding the nonresonant interactions—and we make this
approximation rigorous with Lemma 2.3 below. For now, we simply define
the resonant truncation RF NLS of F NLS by,

−i∂t rn = −rn|rn|2 +
∑

(n1,n2,n3)∈�res(n)

rn1rn2rn3 . (2.12)

Even after making the resonant approximation, we still have an infinite
ODE to work with—n can range freely over Z

2. Our strategy is to choose
initial data for which the system simplifies in several ways.

Suppose we have some finite set of frequencies � that satisfies the follow-
ing two properties:

• (Property I�: Initial data) The initial data rn(0) is entirely supported in �

(i.e. rn(0) = 0 whenever n /∈ �).
• (Property II�: Closure) Whenever (n1, n2, n3, n4) is a rectangle in Z

2 such
that three of the corners lie in �, then the fourth corner must necessarily
lie in �. In terms of previously defined notation, this can be expressed as
follows,

(n1, n2, n3) ∈ �res(n), n1, n2, n3 ∈ � =⇒ n ∈ �. (2.13)

Then one can show that rn(t) stays supported in � for all time. Intuitively,
this is because the non-linearity in (2.12) cannot excite any modes outside of
� if one only starts with modes inside �.

For completeness, we include here the short argument that condition (2.13)
guarantees a finite dimensional model if the finite set � contains the support
of the initial data r(0) = {rn(0)}n∈Z2 for (2.12).

Lemma 2.2 If � is a finite set satisfying Property I�, Property II� above,
and r(0) �−→ r(t) solves RF NLS (2.12) on [0, T ] then for all t ∈ [0, T ]
spt[r(t)] ⊂ �.

Proof Define,

B(t) :=
∑
n/∈�

|rn(t)|2.
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Thus B(0) = 0, and from the closure property and the boundedness7 of rn(t)

we get the differential inequality

|B ′(t)| ≤ C|B(t)|.
Thus, by the Gronwall estimate, B(t) = 0 for all t . Hence, none of the modes
outside of � are excited. �

Our strategy thus far is to choose initial data for (1.1) with Fourier support
in such a set �—so that the resonant system (2.12) reduces to a finite dimen-
sional system. We now place more conditions on the set � and on the initial
data which bring about further simplifications.

We demand that for some positive integer N (to be specified later), the set
� splits into N disjoint generations � = �1 ∪ · · · ∪ �N which satisfy the
properties we specify below, after first introducing necessary terminology.
Define a nuclear family to be a rectangle (n1, n2, n3, n4) where the frequen-
cies n1, n3 (known as the “parents”) live in a generation �j , and the fre-
quencies n2, n4 (known as the “children”) live in the next generation �j+1.
Note that if (n1, n2, n3, n4) is a nuclear family, then so is (n1, n4, n3, n2),
(n3, n2, n1, n4), and (n3, n4, n1, n2); we shall call these the trivial permuta-
tions of the nuclear family. We require the following properties (in addition
to the initial data and closure hypotheses described above):

• (Property III�: Existence and uniqueness of spouse and children) For
any 1 ≤ j < N and any n1 ∈ �j there exists a unique nuclear family
(n1, n2, n3, n4) (up to trivial permutations) such that n1 is a parent of this
family. In particular each n1 ∈ �j has a unique spouse n3 ∈ �j and has
two unique children n2, n4 ∈ �j+1 (up to permutation).

• (Property IV�: Existence and uniqueness of sibling and parents) For any
1 ≤ j < N and any n2 ∈ �j+1 there exists a unique nuclear family
(n1, n2, n3, n4) (up to trivial permutations) such that n2 is a child of this
family. In particular each n2 ∈ �j+1 has a unique sibling n4 ∈ �j+1 and
two unique parents n1, n3 ∈ �j (up to permutation).

• (Property V�: Nondegeneracy) The sibling of a frequency n is never equal
to its spouse.

• (Property VI�: Faithfulness) Apart from the nuclear families, � contains
no other rectangles. (Indeed, from the Closure hypothesis, it does not even
contain any right-angled triangles which are not coming from a nuclear
family.)

Despite the genealogical analogies, we will not assign a gender to any in-
dividual frequency (one could do so, but it is somewhat artificial); these are

7The argument sketched previously for local well-posedness in l1 of (2.7) carries over to (2.12)
without change.
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asexual families. Since every pair of parents in one generation corresponds
to exactly one pair of children in the next, a simple counting argument now
shows that each generation must have exactly the same number of frequen-
cies.

At present it is not at all clear that such a � even exists for any given N .
But assuming this for the moment, we can simplify (2.12). It now becomes

−i∂t rn(t) = −|rn(t)|2rn(t) + 2rnchild−1(t)rnchild−2(t)rnspouse(t)

+ 2rnparent−1(t)rnparent−2(t)rnsibling(t) (2.14)

where for each n ∈ �j , nspouse ∈ �j is its spouse, nchild−1, nchild−2 ∈ �j+1
are its two children, nsibling ∈ �j is its sibling, and nparent−1, nparent−2 ∈ �j−1
are its parents. If n is in the last generation �N then we omit the term involv-
ing spouse and children; if n is in the first generation �1 we omit the term
involving siblings and parents. The factor “2” arises from the trivial permuta-
tions of nuclear families.

We now simplify this ODE by making yet another assumption, this time
again involving the initial data:

• (Property VII�: Intragenerational equality) The function n �→ rn(0) is con-
stant on each generation �j . Thus 1 ≤ j ≤ N and n,n′ ∈ �j imply
rn(0) = rn′(0).

It is easy to verify by another Gronwall argument that if one has intragen-
erational equality at time 0 then one has intragenerational equality at all later
times. This is basically because the frequencies from each generation interact
with that generation and with its adjacent generations in exactly the same way
(regardless of what the combinatorics of sibling, spouse, children, and parents
are). Thus we may collapse the function n �→ rn(t), which is currently a func-
tion on � = �1 ∪ · · · ∪ �N , to the function j �→ bj (t) on {1, . . . ,N}, where
bj (t) ;= rn(t) whenever n ∈ �j . Thus we describe the evolution by using a
single complex scalar for each generation. The ODE (2.14) now collapses to
the following system that we call the Toy Model System

−i∂tbj (t) = −|bj (t)|2bj (t) + 2bj−1(t)
2bj (t) + 2bj+1(t)

2bj (t), (2.15)

with the convention8 that b0(t) = bN+1(t) = 0.
There are three main ingredients in the proof of Theorem 1.1. The first

ingredient is the construction of the finite set � of frequencies. The second

8We show rigorously later that the support of b(t) is constant in time—so that b0, bN+1 will
vanish as a consequence of our choice of initial data. In other words, b0(t) and bN+1(t) remain
zero for all time because of the dynamics induced by the resonant system, and not by a possibly
artificial convention introduced alongside these new variables.
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ingredient is the proof that the Toy Model System described above exhibits
a particular instability: we show that there exist solutions of the Toy Model
which thread through small neighborhoods of an arbitrary number of distinct
invariant tori. More specifically, we show that we have a “multi-hop” solu-
tion to this ODE in which the mass is initially concentrated at b3 but eventu-
ally ends up at bN−2. In terms of the resonant system (2.12), this instability
corresponds to the growth of higher Sobolev norms. The third ingredient is
an Approximation Lemma which gives conditions under which solutions of
RF NLS (2.12), and hence solutions corresponding to the Toy Model System,
approximate an actual solution of the original NLS equation. When the con-
ditions of this Approximation Lemma are satisfied, it is enough to construct
a solution evolving according to the Toy Model which exhibits the desired
growth in Hs . A scaling argument shows that these conditions can indeed be
satisfied, and glues the three ingredients together to complete the proof. We
now detail the claims of the three ingredients and prove Theorem 1.1 modulo
these intermediate claims.

2.3 First ingredient: the frequency set �

The approximation to (2.7) that we ultimately study is the time evolution of
very particular data under the equation with the nonresonant part of the non-
linearity removed. The very particular initial data u(0) that we construct has
Fourier support on a set � ⊂ Z

2 which satisfies one more important condition
in addition to those described above.

The construction of this frequency set � is carried out in detail in Sect. 4.
Here we record the precise claim we make about the set.

Proposition 2.1 (First Ingredient: the frequency set �) Given parameters
δ � 1,K � 1, we can find an N � 1 and a set of frequencies � ⊂ Z

2 with,

� = �1 ∪ �2 ∪ · · · ∪ �N disjoint union

which satisfies Property II�—Property VI�
9 and also,

∑
n∈�N

|n|2s∑
n∈�1

|n|2s
� K2

δ2
. (2.16)

In addition, given any R � C(K, δ), we can ensure that � consists of
N · 2N−1 disjoint frequencies n satisfying |n| ≥ R.

9Note that Property I�, Property VII� will be easily satisfied when we choose our initial data.
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We will use the term generations to describe the sets �j that make up �.
The norm explosion condition (2.16) describes how in a sense, generation �N

has moved very far away from the frequency origin compared to generation
�1. We will use the term inner radius to denote the parameter R which we
are free to choose as large as we wish. The norm explosion property (2.16)
is ultimately responsible, as the name suggests, for the quantity ‖u(t)‖Hs(T2)

growing by a factor of K
δ

. The inner radius parameter R plays the role of a
scalar which multiplies the frequencies that populate �, and will be chosen
large enough to ensure ‖u(0)‖Hs(T2) starts with size δ, and not something
much smaller. The argument is detailed in Sect. 2.6 below.

2.4 Second ingredient: instability in the toy model

The second main component of the proof is, in comparison with the first one,
considerably more difficult to prove. Our claim is that we can construct initial
data for the Toy Model System (2.15) so that at time zero, b(0) is concentrated
in its third component b3 and this concentration then propagates from b3 to
b4, then to b5 etc. until at some later time the solution is concentrated at10

bN−2. We will measure the extent to which the solution is concentrated with
a parameter ε. More precisely,

Proposition 2.2 (Second ingredient: instability in the toy model) Given
N > 1, ε � 1, there is initial data b(0) = (b1(0), b2(0), . . . , bN(0)) ∈ C

N

for (2.15) and there is a time T = T (N, ε) so that

|b3(0)| ≥ 1 − ε, |bj (0)| ≤ ε, j �= 3,

|bN−2(T )| ≥ 1 − ε, |bj (T )| ≤ ε, j �= N − 2.

In addition, the corresponding solution satisfies ‖b(t)‖l∞ ∼ 1 for all 0 ≤
t ≤ T .

This proposition will be recast in a slightly different language in Sect. 3 as
Theorem 3.1.

2.5 Third ingredient: the approximation lemma

This ingredient concerns the extent to which we can approximate the system
of ODE’s corresponding to the full NLS equation (2.7) by other systems of
ODE’s. The approximate system we will ultimately study is that coming from

10One could in fact construct solutions that diffuse all the way from b1 to bN by a simple
modification of the argument, but to avoid some (very minor) technical issues we shall only go
from b3 to bN−2.
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removing the non-resonant part of the Fourier transform of the equation’s
cubic nonlinearity (i.e. (2.12)). Here we write the approximation lemma in a
more general form.

Lemma 2.3 (Third ingredient: approximation lemma) Let 0 < σ < 1 be an
absolute constant (all implicit constants in this lemma may depend on σ ). Let
B � 1, and let T � B2 logB . Let

g(t) := {gn(t)}n∈Z2

be a solution to the equation

−i∂tg(t) = (N (t)(g(t), g(t), g(t))) + E (t) (2.17)

for times 0 ≤ t ≤ T , where N (t) is defined in (2.9), (2.5) and where the initial
data g(0) is compactly supported. Assume also that the solution g(t) and the
error term E (t) obey the bounds of the form

‖g(t)‖l1(Z2) � B−1, (2.18)∥∥∥∥
∫ t

0
E (s) ds

∥∥∥∥
l1(Z2)

� B−1−σ (2.19)

for all 0 ≤ t ≤ T .
We conclude that if a(t) denotes the solution to F NLS (2.7) with initial

data a(0) = g(0), then we have

‖a(t) − g(t)‖l1(Z2) � B−1−σ/2 (2.20)

for all 0 ≤ t ≤ T .

Proof First note that since a(0) = g(0) is assumed to be compactly sup-
ported, the solution a(t) to (2.7) exists globally in time, is smooth with respect
to time, and is in l1(Z2) in space.

Write

F(t) := −i

∫ t

0
E (s) ds, and d(t) := g(t) + F(t).

Observe that

−idt = N (d − F,d − F,d − F),

where we have suppressed the explicit t dependence for brevity. Observe that
g = Ol1(B

−1) and F = Ol1(B
−1−σ ), where we use Ol1(X) to denote any
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quantity with an l1(Z2) norm of O(X). In particular we have d = Ol1(B
−1).

By trilinearity and (2.10) we thus have

−idt = N (d, d, d) + Ol1(B
−3−σ ).

Now write a := d + e. Then we have

−i(d + e)t = N (d + e, d + e, d + e),

which when subtracted from the previous equation gives (after more trilinear-
ity and (2.10))

iet = Ol1(B
−3−σ ) + Ol1(B

−2‖e‖1) + Ol1(‖e‖3
1),

and so by the differential form of Minkowski’s inequality, we have

∂t‖e‖1 � B−3−σ + B−2‖e‖1 + ‖e‖3
1.

If we assume temporarily (i.e. as a bootstrap assumption) that ‖e‖1 =
O(B−1) for all t ∈ [0, T ], then one can absorb the third term on the right-
hand side in the second. Gronwall’s inequality then gives

‖e‖1 ≤ B−1−σ exp(CB−2t)

for all t ∈ [0, T ]. Since we have T � B2 logB , we thus have ‖e‖1 �
B−1−σ/2, and so we can remove the a priori hypothesis ‖e‖1 = O(B−1) by
continuity arguments, and conclude the proof. �

Lemma 2.3 gives us an approximation on a time interval of approximate
length B2 logB , a factor logB larger than the interval [0,B2] for which the
solution is controlled by a straightforward local-in-time argument. The expo-
nent σ/2 can be in fact replaced by any exponent between 0 and σ , but we
choose σ/2 for concreteness.

2.6 The scaling argument and the proof of Theorem 1.1

Finally we present the relatively simple scaling argument that glues the three
main components together to get Theorem 1.1.

Given δ,K , construct � as in Proposition 2.1. (This is done in Sect. 4
below.) Note that we are free to specify R (which measures the inner radius
of the frequencies involved in �) as large as we wish and this will be done
shortly, with R = R(δ,K).

With the number N = N(δ,K) from the construction of � (recall N rep-
resents the number of generations in the set of frequencies), and a number
ε = ε(K, δ) which we will specify shortly, we construct a traveling wave
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solution b(t) to the toy model concentrated at scale ε according to Proposi-
tion 2.2 above. This proposition also gives us a time T0 = T0(K, δ) at which
the wave has traversed the N generations of frequencies. Note that the toy
model has the following scaling,

b(λ)(t) := λ−1b

(
t

λ2

)
.

We choose the initial data for (1.1) by setting

an(0) = b
(λ)
j (0) for all n ∈ �j, (2.21)

and an(t) = 0 when n /∈ �. We specify first the scaling parameter λ and then
the parameter R according to the following considerations which we detail
below after presenting them now in only the roughest form. The parameter
λ is chosen large enough to ensure the Approximation Lemma 2.3 applies,
with cn the solution of the resonant system of O.D.E.’s (2.12) also evolving
from the data (2.21), over the time interval [0, λ2T0]—which is the time the
rescaled solution b(λ) takes to travel through all the generations in �. In other
words, we want to apply the Approximation Lemma 2.3 with a parameter B

chosen large enough so that,

B2 logB � λ2T0. (2.22)

With λ and B so chosen, we will be able to prove that ‖u(t)‖Hs(T2) grows by
a factor of K

δ
on [0, λ2T0]. We finally choose R to ensure this quantity starts

at size approximately δ, rather than a much smaller scale.
We detail now these general remarks. The aim is to apply Lemma 2.3 with

g(t) = {gn(t)}n∈Z2 defined by,

gn(t) = b
(λ)
j (t),

for n ∈ �j , and gn(t) = 0 when n /∈ �. Hence, we set E (t) to be the non-
resonant part of the nonlinearity on the right hand side of (2.7). That is,

E (t) := −
∑

[�(n)\�res(n)]∩�3

gn1gn2gn3e
iω4t (2.23)

where ω4 is as in (2.5). (We include the set � in the description of the sum
above to emphasize once more that the frequency support of g(t) is always in
this set.) We choose B = C(N)λ and then show that for large enough λ the
required conditions (2.18) and (2.19) hold true. Observe that (2.22) holds true
with this choice for large enough λ. Note first that simply by considering its



Transfer of energy to small scales in NLS 57

support, the fact that |�| = C(N), and the fact that ‖b(t)‖l∞ ∼ 1, we can be
sure that, ‖b(t)‖l1(Z) ∼ C(N) and therefore

‖b(λ)(t)‖l1(Z),‖g(t)‖l1(Z2) ≤ λ−1C(N). (2.24)

Thus, (2.18) holds with the choice B = C(N)λ. For the second condition
(2.19), we claim ∥∥∥∥

∫ t

0
E (s) ds

∥∥∥∥
l1

� C(N)(λ−3 + λ−5T ). (2.25)

Note that this is sufficient with our choices B = λ · C(N) and T = λ2T0.
It remains only to show (2.25), but this follows quickly from an integration
by parts argument as in the van der Corput lemma (see e.g. Chap. VIII in
[76]). For convenience we carry out the argument explicitly: since ω4 does
not vanish in the set �(n)\�res(n), we can replace eiω4s by d

ds
[ eiω4s

iω4
] and then

integrate by parts. Three terms arise: the boundary terms at s = 0, T and the
integral term involving d

ds
[gn1(s)gn2(s)gn3(s)]. For the boundary terms, we

use (2.24) to obtain an upper bound of C(N)λ−3. For the integral term, the
s derivative falls on one of the g factors. We replace this differentiated term
using the equation to get an expression that is 5-linear in g and bounded by
C(N)λ−5T .

Once λ has been chosen as above, we choose R sufficiently large so that
the initial data g(0) = a(0) has the right size:

(∑
n∈�

|gn(0)|2|n|2s

) 1
2

∼ δ. (2.26)

This is possible since the quantity on the left scales like λ−1 in λ, and Rs

in the parameter R. (The issue here is that our choice of frequencies � only
gives us a large factor (that is, K

δ
) by which the Sobolev norm of the solution

will grow. If our data is much smaller than δ in size, the solution’s Sobolev
norm will not grow to be larger than K .)

It remains to show that we can guarantee,⎛
⎝∑

n∈Z2

|an(λ
2T0)|2|n|2s

⎞
⎠

1
2

≥ K, (2.27)

where a(t) is the evolution of the data c(0) under the full system (2.7). We do
this by first establishing,(∑

n∈�

|gn(λ
2T0)|2|n|2s

) 1
2

� K, (2.28)
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and second that, ∑
n∈�

|gn(λ
2T0) − an(λ

2T0)|2|n|2s � 1. (2.29)

As for (2.28), consider the ratio of this norm of the resonant evolution at time
λ2T0 to the same norm at time 0,

Q :=
∑

n∈Z2 |gn(λ
2T0)|2|n|2s∑

n∈Z2 |gn(0)|2|n|2s

=
∑N

i=1
∑

n∈�i
|b(λ)

i (λ2T0)|2|n|2s∑N
i=1

∑
n∈�i

|b(λ)
i (0)|2|n|2s

,

since gn := 0 when n /∈ �. We use now the notation Sj := ∑
n∈�j

|n|2s ,

Q =
∑N

i=1 |b(λ)
i (λ2T0)|2Si∑N

i=1 |b(λ)
i (0)|2Si

� SN−2(1 − ε)

εS1 + εS2 + (1 − ε)S3 + εS4 + · · · + εSN

= SN−2(1 − ε)

SN−2 · [ε S1
SN−2

+ ε S2
SN−2

+ (1 − ε)
S3

SN−2
+ ε S4

SN−2
+ · · · + ε + ε

SN−1
SN−2

+ ε
SN

SN−2
]

= (1 − ε)

(1 − ε)
S3

SN−2
+ O(ε)

� K2

δ2
,

where the last inequality is ensured by Proposition 2.1 and by choosing ε �
C(N,K, δ) sufficiently small.

As for the second inequality (2.29), using Approximation Lemma 2.3 we
obtain that

∑
n∈�

|gn(λ
2T0) − an(λ

2T0)|2|n|2s � λ−2−2σ
∑
n∈�

|n|2s ≤ 1

2
, (2.30)

by possibly increasing λ and R, maintaining11 (2.26). Together, the inequal-
ities (2.30), (2.20) give us immediately (2.29).

11If we set C � 1 some constant and scale λ and R by C and C
1
s , respectively, then the right

hand side of the first inequality in (2.30) scales as C−2σ , while the left hand side of (2.26)
remains unchanged.



Transfer of energy to small scales in NLS 59

3 Instability in the toy model

In this section we prove Proposition 2.2 above, which claims a particular sort
of instability for the system which we call the Toy Model System,

∂tbj = −i|bj |2bj + 2ibj (b
2
j−1 + b2

j+1). (3.1)

This system was derived in the discussion preceding equation (2.15) above.
We write b(t) for the vector (bj )j∈Z and begin with some general remarks
about the system (3.1).

Note that (3.1) is globally well-posed in l2(Z). To see local well-posedness,
observe that the system is of the form ∂tb = T (b, b, b) where T : l2 × l2 ×
l2 → l2 is a trilinear form which is bounded on l2. Local well-posedness then
follows from the Picard existence theorem. The time of existence obtained by
the Picard theorem depends on the l2 norm of b, but one quickly observes that
this quantity is conserved. Indeed, we have

∂t |bj |2 = 2 Rebj∂tbj

= 4 Re i
[
bj

2
b2
j−1 + bj

2
b2
j+1

]
= 4 Im(b2

j bj−1
2 − b2

j+1bj
2
) (3.2)

and hence by telescoping series we obtain the mass conservation law
∂t

∑
j |bj |2 = 0. Note that all these formal computations are justified if b

is in l2, thanks to the inclusion l2(Z) ⊂ l4(Z).
Though our analysis won’t use it explicitly, we note next that (3.1) also

enjoys the conservation of the Hamiltonian

H(b) :=
∑
j

1

4
|bj |4 − Re(bj

2
b2
j−1).

Indeed, if one rewrites H(b) algebraically in terms of b and b as

H(b) =
∑
j

1

4
b2
j bj

2 − 1

2
bj

2
b2
j−1 − 1

2
b2
j bj−1

2

then we see from (3.1) that

∂tb = −2i
∂H

∂b
; ∂tb = 2i

∂H

∂b
,

and thus

∂tH(b) = ∂tb · ∂H

∂b
+ ∂tb · ∂H

∂b
= 0.
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Again, it is easily verified that these formal computations can be justified in
l2(Z).

The system (3.1) enjoys a number of symmetries. Firstly, there is phase
invariance

bj (t) ← eiθbj (t)

for any angle θ ; this symmetry corresponds to the l2 conservation. There is
also scaling symmetry

bj (t) ← λb(λ2t)

for any λ > 0, time translation symmetry

bj (t) ← bj (t − τ)

for any τ ∈ R (corresponding to Hamiltonian conservation, of course), and
space translation symmetry

bj (t) ← bj−j0(t)

for any j0 ∈ Z. Finally, there is time reversal symmetry

bj (t) ← bj (−t)

and space reflection symmetry

bj (t) ← b−j (t).

There is also a sign symmetry

bj (t) ← εjbj (t)

where for each j , εj = ±1 is an arbitrary sign.
Next we show that the infinite system (3.1) evolving from l2 data reduces

to a finite system if the data is supported on only a finite number of modes bi .
Indeed (3.2) gives the crude differential inequality

∂t |bj |2 = 2 Re(bj ∂tbj )

= 4 Re(ibj
2
(b2

j−1 + b2
j+1))

≤ 4|bj |2

for any j ∈ Z. From Gronwall’s inequality we conclude first that if b is an
l2(Z) solution to (3.1), then the support of b is nonincreasing in time, i.e. if
b(t0) is supported on I ⊆ Z at some time t0 ∈ R, then b(t) is supported in I
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for all time. The time reversal symmetry allows us to conclude that in fact the
support of b is constant in time.

In particular, if I is finite, then (3.1) collapses to a finite-dimensional ODE,
which is obtained from (3.1) by setting bj = 0 for all j /∈ I .

We conclude our general remarks here on the dynamics of (3.1) by observ-
ing how this evolution, and the assumptions on � that went into its derivation,
account for the necessary balance in mass at high and low frequencies dictated
by the conservation laws (1.2) and (1.3). As discussed immediately following
Theorem 1.1, this balance—i.e. the presence of both a forward and inverse
cascade of mass—is an important complication to constructing any solutions
to (1.1) that carry energy at higher and higher frequencies. Recall that the Toy
Model comes from imposing a host of assumptions on the initial data for the
resonant truncation system (2.12), which also has conserved mass, energy,
and momentum. Under the assumptions that led to the Toy Model System,
the conserved mass becomes essentially12

∑
j

|bj (t)|2, (3.3)

the conserved momentum essentially becomes

∑
j

|bj (t)|2
( ∑

n∈�j

n

)
, (3.4)

and the conserved energy now becomes

1

2

∑
j

|bj (t)|2
( ∑

n∈�j

|n|2
)

+ 1

2

[∑
j

|bj (t)|2|�j |
]2

− 1

4

∑
j

|bj (t)|4|�j |

+
∑
j

Rebj (t)
2bj+1(t)

2
. (3.5)

It looks like these three quantities are quite different. However, one observes
the identities ∑

n∈�j

n =
∑

n∈�j+1

n

and ∑
n∈�j

|n|2 =
∑

n∈�j+1

|n|2

12We are systematically ignoring a harmless multiplicative constant.
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for all 1 ≤ j < N . This simply reflects the fact that in any nuclear family
(n1, n2, n3, n4), one has n1 + n3 = n2 + n4 and |n1|2 + |n3|2 = |n2|2 + |n4|2.
Thus the conservation of momentum follows trivially from the conservation
of mass, and the conservation of energy is now equivalent to the conservation
of the Hamiltonian H(b) introduced earlier.

We turn now to the more specific, unstable behavior in (3.1) which we aim
to demonstrate. Let N ≥ 1 be a fixed integer and let � ⊂ C

N be the unit-mass
sphere

� := {x ∈ C
N : |x|2 = 1}.

Assigning initial data b(t0) with bj (t0) = 0 for j ≤ 0, j > N , (3.1) generates
a group S(t) : � → � of smooth flows on the smooth 2N − 1-dimensional
compact manifold �, defined by S(t)b(t0) := b(t + t0). We shall refer to
elements x of � as points.

Define the circles T1, . . . ,TN by

Tj := {(b1, . . . , bN) ∈ � : |bj | = 1; bk = 0 for all k �= j}
then it is easy to see from the above arguments that the flows S(t) leave each
of the circles Tj invariant: S(t)Tj = Tj . Indeed for each j we have the fol-
lowing explicit oscillator solutions to (3.1) that traverse the circle Tj :

bj (t) := e−i(t+θ); bk(t) := 0 for all k �= j. (3.6)

Here θ is an arbitrary phase.
The main result in this section is that there are orbits connecting arbitrarily

small neighborhoods of any two of these circles, for instance between the
third13 circle T3 and the third-to-last circle TN−2.

Theorem 3.1 (Instability for (3.1)) Let N ≥ 6. Given any ε > 0, there exists
a point x3 within ε of T3 (using the usual metric on �), a point xN−2 within
ε of TN−2, and a time14 t ≥ 0 such that S(t)x3 = xN−2.

To state this result more informally, there exist solutions to (3.1) of total
mass 1 which are arbitrarily concentrated at the mode j = 3 at some time,
and then arbitrarily concentrated at the mode j = N − 2 at a later time.

13As mentioned previously, one could in fact construct an orbit travelling all the way from T1
to TN by a simple modification of the argument, but to avoid some (very minor) notational
issues near the endpoints we shall only go from T3 to TN−2.
14We shall only flow forwards in time here. However, the time reversal symmetry bj (t) �→
bj (−t) (or the spatial reflection symmetry bj (t) �→ bN+1−j (t)) allows one to obtain ana-
logues of all these results when one evolves backwards in time. Of course, when doing so, the
stable and unstable modes that we describe below shall exchange roles.
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Fig. 1 Explicit oscillator
solution around T1 and the
slider solution from T1 to T2

To motivate the theorem let us first observe that when N = 2 we can easily
demonstrate an orbit connecting T1 to T2. Indeed in this case we have the
explicit “slider” solution

b1(t) := e−itω√
1 + e2

√
3t

; b2(t) := e−itω2√
1 + e−2

√
3t

(3.7)

where ω := e2πi/3 is a cube root of unity. This solution approaches T1 expo-
nentially fast as t → −∞, and approaches T2 exponentially fast as t → +∞.
One can translate this solution in the j parameter, and obtain solutions that
“slide” from Tj to Tj+1 (or back from Tj+1 to Tj , if we reverse time or
apply a spatial reflection). This for instance validates the N = 6 case of The-
orem 3.1. Intuitively, the proof of Theorem 3.1 for higher N should then pro-
ceed by concatenating these slider solutions. Of course, this does not work
directly, because each solution requires an infinite amount of time to connect
one circle to the next, but it turns out that a suitably perturbed or “fuzzy”
version of these slider solutions can in fact be glued together.

3.1 General notation

We shall use the usual O() notation, but allow the constants in that notation
to depend on N . Hence X = O(Y) denotes X ≤ CY for some constant C that
depends on N , but is otherwise universal. We use X � Y as a synonym for
X = O(Y).

We will also use schematic notation, so that an expression such as O(fgh)

will mean some linear combination of quantities which resemble fgh up to
the presence of constants and complex conjugation of the terms. Thus for
instance 3f gh + 2fgh − ifgh qualifies to be of the form O(fgh), and |b|2b
qualifies to be of the form O(b3). We will extend this notation to the case
when f,g,h are vector-valued, and allow the linear combination to depend
on N . Thus for instance if c = (c1, . . . , cN) then

∑N−1
j=1 cj cj+1 would qualify

to be of the form O(c2).
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3.2 Abstract overview of argument

Off the expressway, over the river, off the billboard, through the window,
off the wall, nothin’ but net. Michael Jordan [49]

To prove Theorem 3.1, one has to engineer initial conditions near T3 that
can “hit” the target TN−2 (or more precisely a small neighborhood of TN−2)
after some long period of time. This is difficult to do directly. Instead, what we
shall do is create a number of intermediate “targets” between T3 and TN−2,
and show that in a certain sense one can hit any point on each target (to some
specified accuracy) by some point on the previous target (allowing for some
specified uncertainty in one’s “aim”). These intermediate trajectories can then
be chained together to achieve the original goal. The basic difficulty here
comes from the fact that we are working with flows in high dimensions, so
there are many secular modes which have the ability to knock a candidate
orbit not only away from the stable manifold Tj , but also away from it’s
immediate target (for example, the next Tj in the chain). The only way to
prevent such an occurrence is to keep the secular modes reasonably small
(e.g. exponentially small) in size. However, the only way to keep these secular
modes small is to keep all other modes small as well, and so we’re led to the
large menu of estimates that this section of the paper considers. To describe
the strategy more precisely, it is useful to set up some abstract notation.

Definition 3.1 (Targets) A target is a triple (M,d,R), where M is a subset
of �, d is a semi-metric15 on �, and R > 0 is a radius. We say that a point
x ∈ � is within a target (M,d,R) if we have d(x, y) < R for some y ∈ M .
Given two points x, y ∈ �, we say that x hits y, and write x �→ y, if we
have y = S(t)x for some t ≥ 0. Given an initial target (M1, d1,R1) and a
final target (M2, d2,R2), we say that (M1, d1,R1) can cover (M2, d2,R2),
and write (M1, d1,R1) � (M2, d2,R2), if for every x2 ∈ M2 there exists an
x1 ∈ M1, such that for any point y1 ∈ � with d(x1, y1) < R1 there exists a
point y2 ∈ � with d2(x2, y2) < R2 such that y1 hits y2.

Remark 3.1 One could eliminate the radius parameter R here by replacing
each target (M,d,R) with the equivalent target (M,d/R,1), but this seems
to make the concept slightly less intuitive (it is like replacing all metric balls
Bd(x,R) with unit balls Bd/R(x,1) in a renormalized metric).

15A semi-metric is the same as a metric, except that d(x, y) is allowed to degenerate to zero
even when x �= y. The reason we need to deal with semi-metrics is because of the phase sym-
metry x �→ eiθ x on �; one could quotient this out and then deal with nondegenerate metrics if
desired.
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Fig. 2 M1 � M2. The
shaded disk of radius r1
around x1 flows out to the
shaded area near M2 inside a
disk of radius r2 around x2

Remark 3.2 The notion of covering may seem somewhat complicated (in-
volving no less than five quantifiers!), but it can be summarized as follows.
The assertion (M1, d1,R1) � (M2, d2,R2) is a guarantee that one can hit any
point in the final target M2 that one desires—within an accuracy of R2 in the
d2 metric—by “aiming” at some well-chosen point in the initial target M1
and then evolving by the flow, even if one’s “aim” is a little uncertain (by an
uncertainty of R1 in the d1 metric). Thus the concept of covering is simulta-
neously a notion of surjectivity (that the flowout of M1 contains M2 in some
approximate sense) and a notion of stability (that small perturbations of the
initial state lead to small perturbations in the final state). See also Fig. 2.

Informally, one can think of a target (M,d,R) as a “fuzzy” set {x +
Od(R) : x ∈ M}, where Od(R) represents some “uncertainty” of extent R as
measured in the semi-metric d . Thus, for instance, if we were working in R

2

with the usual metric d , and M was a rectangle {(x1, x2) : |x1| ≤ r1, |x2| ≤ r2}
then one might describe the target (M,d,R) somewhat schematically as

{(O(r1) + O(R),O(r2) + O(R))}
where the first term in each coordinate represents the parameters of the set
(basically, they describe the points that one can “aim” at), and the second
term in each coordinate represents the uncertainty of the set (this describes the
inevitable error that causes the actual location of the solution to deviate from
the point that one intended to hit). This schematic notation may be somewhat
confusing and we shall reserve it for informal discussions only.

One of the most important features of the covering concept for us is its
transitivity.

Lemma 3.1 (Transitivity) If (M1, d1,R1), (M2, d2,R2), (M3, d3,R3) are
targets such that (M1, d1,R1) � (M2, d2,R2) and (M2, d2,R2) � (M3,

d3,R3), then (M1, d1,R1) � (M3, d3,R3).

Proof Let x3 be any point in M3. Since (M2, d2,R2) � (M3, d3,R3), we
can find x2 ∈ M2 such that for every y2 with d2(x2, y2) < R2, there exists y3
with d3(x3, y3) < R3 such that y2 �→ y3. Since (M1, d1,R1) � (M2, d2,R2),
we can find an x1 ∈ M1 such that for every y1 with d1(x1, y1) < R1, we
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Fig. 3 M1 � M2,
M2 � M3 imply M1 � M3.
The shaded disk of radius r1
centered x1 flows out onto
the double shaded portion of
the disk of radius r2 centered
at x2. The disk of radius r2
centered at x2 maps into the
disk of radius r3 near M3

can find y2 with d2(x2, y2) < R2 such that y1 �→ y2. Putting these two to-
gether, we thus see that for every y1 with d1(x1, y1) < R1, we can find y3
with d2(x3, y3) < R3 such that y1 �→ y2 �→ y3, which by the group properties
of the flow imply that y1 �→ y3, and the claim follows. �

The reader is invited to see how the transitivity of the covering relation
follows intuitively from the interpretation of the concept given in Remark 3.2.
See also Fig. 3.

We can now outline the idea of the proof. For each j = 3, . . . ,N − 2, we
will define three targets which lie fairly close to Tj , namely

• An incoming target (M−
j , d−

j ,R−
j ) (located near the stable manifold

of Tj ),
• A ricochet target (M0

j , d0
j ,R0

j ) (located very near Tj itself), and

• An outgoing target (M+
j , d+

j ,R+
j ) (located near the unstable manifold

of Tj ).

We will then prove the covering relations

(M−
j , d−

j ,R−
j ) � (M0

j , d0
j ,R0

j ) for all 3 < j ≤ N − 2, (3.8)

(M0
j , d0

j ,R0
j ) � (M+

j , d+
j ,R+

j ) for all 3 ≤ j < N − 2, (3.9)

(M+
j , d+

j ,R+
j ) � (M−

j+1, d
−
j+1,R

−
j+1) for all 3 ≤ j < N − 2 (3.10)

which by many applications of Lemma 3.1 implies covering relation

(M0
3 , d0

3 ,R0
3) � (M0

N−2, d
0
N−2,R

0
N−2). (3.11)

As we shall construct (M0
3 , d0

3 ,R0
3) to be close to T3 and (M0

N−2, d
0
N−2,

R0
N−2) to be close to TN−2, Theorem 3.1 will follow very quickly16

from (3.11).

16Readers familiar with the original paper of Arnold [2] will see strong parallels here; the
notion of one set “obstructing” another in that paper is analogous to the notion of “covering”
here, the targets (M−

j
, d−

j
,R−

j
) are analogous to “incoming whiskers” for the torus Tj , and

the targets (M+
j

, d+
j

, r+
j

) are “outgoing whiskers”. Unfortunately, it seems that we cannot
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Our exposition is structured as follows. In Sect. 3.4, we shall define the tar-
gets (M−

j , d−
j ,R−

j ), (M0
j , d0

j ,R0
j ), (M

+
j , d+

j ,R+
j ), after construction of some

useful local coordinates near each circle Tj in Sect. 3.3, and then in Sect. 3.5
see why (3.11) implies Theorem 3.1. In Sect. 3.6, we establish the incoming
covering estimate (3.8), and in Sect. 3.8 we establish the (very similar) out-
going covering estimate. Finally in Sect. 3.10 we establish the (comparatively
easy) transitory covering estimate (3.10) and hence (3.11).

3.3 Local coordinates near Tj

Fix 3 ≤ j ≤ N − 2. In this section we shall devise a useful local coordi-
nate system around the circle Tj that will clarify the dynamics near that
circle, and will motivate the choice of targets (M−

j , d−
j ,R−

j ), (M0
j , d0

j ,R0
j ),

(M+
j , d+

j ,R+
j ) involved.

We will assume here that bj �= 0; as mentioned in the introduction, this
constraint is preserved by the flow. We shall refer to the bj mode as the pri-
mary mode, the mode bj−1 as the trailing secondary mode, the mode bj+1 as
the leading secondary mode, the modes b1, . . . , bj−2 as the trailing periph-
eral modes, and the modes bj+2, . . . , bN as the leading peripheral modes. In
the vicinity of the circle Tj , it is the primary mode that will have by far the
most mass and will thus dominate the evolution. From (3.1) we see that the
secondary modes will be linearly forced by the primary mode. The peripheral
modes will only be influenced by the primary mode indirectly (via its influ-
ence on the secondary modes) and their evolution will essentially be trivial.
At this stage there is a symmetry between the leading and trailing modes, but
later on we shall break this symmetry when trying to construct a solution that
evolves from the 3 mode to the N − 3 mode (requiring one to be far more
careful with the leading modes than the trailing ones).

Bearing in mind the phase rotation symmetry x �→ xeiθ we shall select the
ansatz

bj = reiθ ; bk = cke
iθ for k �= j (3.12)

where r , θ are real and the ck are allowed to be complex (again we assume
bj �= 0). In other words, we are conjugating the secondary and peripheral
modes by the phase of the primary mode. Substituting these equations into
(3.1) gives

∂tcj±1 + icj±1∂tθ = −i|cj±1|2cj±1 + 2ir2cj±1 + 2ic2
j±2cj±1

for ± 1 = +1,−1, (3.13)

use the machinery from [2] directly, mainly because our invariant manifolds have too small
a dimension and so do not have the strong “transversality” properties required in [2]. This
requires a certain “thickening” of these sets using the above machinery of covering of targets.
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∂tθ = −r2 + 2 Re(c2
j−1 + c2

j+1), (3.14)

∂tck + ick∂t θ = −i|ck|2ck + 2ick(c
2
k−1 + c2

k+1) for |j − k| ≥ 2. (3.15)

We have not stated the equation for r (the magnitude of the primary mode)
explicitly, since on � one can recover r from the other coordinates by the
conservation of mass which gives the formula

r2 = 1 −
∑
k �=j

|ck|2. (3.16)

In particular we have the crude estimates

r2 = 1 − O(c2); ∂tθ = −1 + O(c2)

where we use schematic notation, thus O(c2) denotes any quadratic combina-
tion of the ck and their conjugates. We can substitute this into (3.15) to obtain
an equation for the evolution of the peripheral modes

∂tck = ick + O(ckc
2). (3.17)

Now we turn to the secondary modes (3.13). Fix a sign ±. From (3.16), (3.14)
we have

r2 = 1 − |cj±1|2 − O(c2�=j±1);
∂tθ = −1 + |cj±1|2 + 2 Re(c2

j±1) + O(c2�=j±1)

where we write c�=j+1 := (c1, . . . , cj−1, cj+2, . . . , cN) and c�=j−1 := (c1, . . . ,

cj−2, cj+1, . . . , cN). Substituting this into (3.13) we have

∂tcj±1 = icj±1 + 2icj±1 − 2i|cj±1|2cj±1 − 2i Re(c2
j±1)cj±1

− 2i|cj±1|2cj±1 + O(cj±1c
2�=j±1).

It is then natural to diagonalize the linear component of this equation by in-
troducing the coordinates

cj±1 = ωc−
j±1 + ω2c+

j±1, (3.18)

where as in (3.7) ω := e2πi/3. One then computes

icj±1 + 2icj±1 = −√
3ωc−

j±1 + √
3ω2c+

j±1

and

Re(c2
j±1) = −1

2
|cj±1|2 + O(c−

j±1c
+
j±1)
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and thus

∂tcj±1 = (1 − |cj±1|2)(−
√

3ωc−
j±1 + √

3ω2c+
j±1) + O(cj±1c

−
j±1c

+
j±1)

+ O(cj±1c
2�=j±1). (3.19)

Taking components, we conclude

Proposition 3.1 (Local coordinates near Tj ) Let 3 ≤ j ≤ N − 2, and let b(t)

be a solution to (3.1) with bj (t) �= 0. Define the coordinates r, θ (primary
mode), c−

j±1, c
+
j±1 (secondary modes), and c∗ := (c1, . . . , cj−2, cj+2, . . . , cN)

(peripheral modes) by (3.12), (3.18). Then we have the system of equations

∂tc
−
j±1 = −√

3c−
j±1 + O(c2c−

j±1) + O(c+
j±1c

2�=j±1), (3.20)

∂tc
+
j±1 = √

3c+
j±1 + O(c2c+

j±1) + O(c−
j±1c

2�=j±1), (3.21)

∂tc∗ = ic∗ + O(c2c∗). (3.22)

Also, the constraint bj (t) �= 0 is equivalent (via (3.16)) to the condition

|c| < 1. (3.23)

Remark 3.3 Note the total disappearance of the primary mode coordinates
r, θ . From a symplectic geometry viewpoint, we have effectively taken the
symplectic quotient of the state space with respect to the rotation symme-
try x �→ eiθx. The elimination of these (very large) coordinates is conducive
to analyzing the evolution of the (much smaller) secondary and peripheral
modes accurately.

When one is near the torus Tj (which in these coordinates is just the ori-
gin c = 0), we expect the cubic terms O(c3) in the above proposition to be
negligible. From (3.20), (3.21), (3.22) we conclude in this regime that the
two real-valued modes c−

j±1 are linearly stable, the two real-valued modes

c+
j±1 are linearly unstable (growing like e

√
3t ), and the remaining modes c∗

are oscillatory (behaving like eit ). Observe also that most of the nonlinear in-
teraction on these modes resembles a diagonal linear potential of magnitude
O(c2), indicating that the coupling between these modes is relatively weak
(especially when O(c2) is small); however there are some troublesome inter-
actions arising from the final terms in the right-hand sides of (3.20), (3.21)
that allow the stable modes to influence the unstable modes and vice versa
(via coupling with other modes). This causes a certain amount of mixing in
the evolution which will require some care to handle, and is directly responsi-
ble for the rather inelegant appearance of polynomial factors of T (in addition
to the more natural exponential factors) in the analysis of later sections.
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For the purpose of obtaining upper bounds for the magnitude of the various
modes, the following useful lemma captures the stable nature of the c−

j±1, the

unstable nature of the c+
j±1, and the oscillatory nature of the c∗, provided that

the solution stays close to the circle Tj (which corresponds in these coordi-
nates to c = 0) in a certain L2 sense.

Lemma 3.2 (Upper bounds) Suppose that [0, t] is a time interval on which
we have the smallness condition∫ t

0
|c(s)|2 ds � 1. (3.24)

Then we have the estimates

|c−
j±1(t)| � e−√

3t |c−
j±1(0)| +

∫ t

0
e−√

3(t−s)|c+
j±1(s)||c2�=j±1(s)| ds, (3.25)

|c+
j±1(t)| � e

√
3t |c+

j±1(0)| +
∫ t

0
e
√

3(t−s)|c−
j±1(s)||c�=j±1(s)|2 ds, (3.26)

|cj±1(t)| � e
√

3t |cj±1(0)|, (3.27)

|c∗(t)| � |c∗(0)|. (3.28)

Proof We take absolute values in (3.20), (3.21), (3.22) and obtain the differ-
ential inequalities17

∂t |e
√

3t c−
j±1| � |c|2|e

√
3t c−

j±1| + e
√

3t |c+
j±1||c�=j±1|2,

∂t |e−√
3t c+

j±1| � |c|2|e−√
3t c+

j±1| + e−√
3t |c−

j±1||c�=j±1|2,

∂t |c∗| � |c|2|c∗|.
The claims (3.25), (3.26), (3.28) now follow from Gronwall’s inequality. To
obtain (3.27), we take absolute values of (3.20), (3.21) and sum to obtain

∂t (|c−
j±1| + |c+

j±1|) ≤ (
√

3 + O(|c|2))(|c−
j±1| + |c+

j±1|)
and the claim now follows from Gronwall’s inequality again. �

17As the quantity being differentiated is only Lipschitz rather than smooth, these inequalities
should be interpreted in the appropriate weak sense.
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Remark 3.4 The slider solution (3.7), using the j = 1 coordinates, is simply
c−

2 (t) = 0, c+
2 (t) = (1 + e−2

√
3t )−1/2, thus escaping away from T1 using the

unstable component of the 2-mode. Viewed instead in the j = 2 coordinates,
it becomes c−

1 (t) = (1 + e2
√

3t )−1/2, c+
1 (t) = 0, thus collapsing into T2 using

the stable component of the 1-mode. We shall use this solution to transition
from (M+

j , d+
j ,R+

j ) to (M−
j+1, d

−
j+1,R

−
j+1).

3.4 Construction of the targets

Always be nice to people on the way up, because you’ll meet the same
people on the way down. (Wilson Mizner)

We now are ready to construct the targets (M−
j , d−

j ,R−
j ), (M0

j , d0
j ,R0

j ),

(M+
j , d+

j ,R+
j ). As it turns out, these sets will lie close to Tj (and thus away

from the coordinate singularity at bj = 0), and will therefore be represented
using the modes c±

j+1, c
±
j−1, c∗ from Proposition 3.1. (The modes r, θ are

also present but will have no impact on our computations.) Broadly speaking,
these targets will demand a lot of control on the leading modes (in order to
set up future “ricochets” off of subsequent tori Tj+1, Tj+2, etc.) but will be
rather relaxed about the trailing modes (as they will become small and stay
small for the remainder of the evolution).

We need a number of parameters. First, we need for technical reasons an
increasing set of exponents

1 � A0
3 � A+

3 � A−
4 � · · · � A−

N−2 � A0
N−2.

For sake of concreteness, we will take these to be consecutive powers of 10
(thus A0

3 = 10, A0
3 = 102, and so forth up to A0

N−2 = 103N−14).
Next, we shall need a small parameter

0 < σ � 1

depending on N and the exponents A (actually one could take σ = 1/100
quite safely). This basically measures the distance to Tj at which the local
coordinates become effective, and the linear terms in Proposition 3.1 domi-
nate the cubic terms.

For technical reasons, we shall need a set of scale parameters

1 � r0
N−2 � r−

N−2 � r+
N−3 � · · · � r+

3 � r0
3

where each parameter is assumed to be sufficiently large depending on the
preceding parameters and on σ and the A’s; these parameters represent a
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certain shrinking of each target from the previous one (in order to guarantee
that each target can be covered by the previous).

Finally, we need a very large time parameter

T � 1

that we shall assume to be as large as necessary depending on all the previ-
ous parameters (in particular, we will obtain exponential gains in T that will
handle all losses arising from the A, σ , r parameters).

For each 3 ≤ j ≤ N − 2, we also need the concatenated coordinates

c≤j−2 := (c1, . . . , cj−2) ∈ C
j−2 (trailing peripheral modes),

c≤j−1 := (c1, . . . , cj−1) ∈ C
j−1 (trailing modes),

c≥j+1 := (cj+1, . . . , cN) ∈ C
N−j (leading modes),

c≥j+2 := (cj+2, . . . , cN) ∈ C
N−j−1 (leading peripheral modes).

Very roughly, the targets (M−
j , d−

j ,R−
j ), (M0

j , d0
j ,R0

j ), (M+
j , d+

j ,R+
j )

can be defined in terms of the modes c by Table 1. Thus for instance, the
c≥j+2 mode of (M−

j , d−
j ,R−

j ) ranges over arbitrary values of magnitude

O(r−
j e−2

√
3T ), plus an unavoidable uncertainty of magnitude O(T

A−
j e−3

√
3T ).

As one advances from (M−
j , d−

j ,R−
j ), to (M0

j , d0
j ,R0

j ), to (M+
j , d+

j ,R+
j ), to

(M−
j+1, d

−
j+1,R

−
j+1), and so forth, the uncertainty will increase by a polyno-

mial factor in T (this will be where the A exponents come in), while the size
of the manifolds M will shrink somewhat (this will be where the r parameters
come in).

It will take time T to flow from (M−
j , d−

j ,R−
j ) to (M0

j , d0
j ,R0

j ), and time

T from (M0
j , d0

j ,R0
j ) to (M+

j , d+
j ,R+

j ). (On the other hand, we will be able

to flow from (M+
j , d+

j ,R+
j ) to (M−

j+1, d
−
j+1,R

−
j+1) in time O(log 1

σ
).) The

reader may wish to verify that this is broadly consistent with Table 1, using
the heuristics from the previous section that the stable modes c−

j±1 should

decay by a factor of e−√
3T over this time, the unstable modes c+

j±1 should

grow by the same factor of e
√

3T , and the remaining modes c≤j−2, c≥j−2
should simply oscillate.

We now give more precise definitions of these objects.

The incoming target (M−
j , d−

j ,R−
j ) We define the incoming target (M−

j ,

d−
j ,R−

j ) by setting M−
j to be the set of all points whose coordinates obey the

relations

c≤j−2, c
+
j−1 = 0,
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Table 1 The targets (M−
j

, d−
j

,R−
j

), (M0
j
, d0

j
,R0

j
), (M+

j
, d+

j
,R+

j
). It is the factors of e−√

3T

which are the most important feature here; the polynomial powers of T in the uncertainties,
and the scales r in the main terms, are technical corrections which should be ignored at a first
reading, and σ should be thought of as a small constant (independent of T or the r). Note
that the outgoing target (M+

j
, d+

j
,R+

j
) resembles a shifted version of the incoming target

(M−
j

, d−
j

,R−
j

); this will be important in Sect. 3.10

Mode (M−
j

, d−
j

,R−
j

) (M0
j
, d0

j
,R0

j
) (M+

j
, d+

j
,R+

j
)

c≤j−2 0 + O(T
A−

j e−2
√

3T ) 0 + O(T
A0

j e−2
√

3T ) 0 + O(T
A+

j e−2
√

3T )

c−
j−1 σ + O(T

A−
j e−√

3T ) 0 + O(T
A0

j e−√
3T ) 0 + O(T

A+
j e−2

√
3T )

c+
j−1 0 + O(T

A−
j e−4

√
3T ) 0 + O(T

A0
j e−3

√
3T ) 0 + O(T

A+
j e−2

√
3T )

c−
j+1 O(r−

j
e−2

√
3T ) 0 + O(T

A0
j e−3

√
3T ) 0 + O(T

A+
j e−4

√
3T )

+ O(T
A−

j e−3
√

3T )

c+
j+1 O(r−

j
e−2

√
3T ) O(σe−√

3T ) σ + O(T
A+

j e−√
3T )

+ O(T
A−

j e−3
√

3T ) + O(T
A0

j e−2
√

3T )

c≥j+2 O(r−
j

e−2
√

3T ) O(r0
j
e−2

√
3T ) O(r+

j
e−2

√
3T )

+ O(T
A−

j e−3
√

3T ) + O(T
A0

j e−3
√

3T ) + O(T
A+

j e−3
√

3T )

θ uncontrolled uncontrolled uncontrolled

c−
j−1 = σ,

|c≥j+1| ≤ r−
j e−2

√
3T

with uncertainty R−
j := T

A−
j and with semimetric d−

j (x, x̃) defined by

d−
j (x, x̃) := e2

√
3T |c≤j−2 − c̃≤j−2|

+ e
√

3T |c−
j−1 − c̃−

j−1| + e4
√

3T |c+
j−1 − c̃+

j−1|
+ e3

√
3T |c≥j+1 − c̃≥j+1|)

where c̃ of course denotes the coordinates of x̃. This metric is not defined
on the set bj = 0 (where the local coordinates break down), but this is not
of importance to us because the metric is well defined for all points within
(M−

j , d−
j ,R−

j ), since T is so large. (If one wished, extend d−
j in some arbi-

trary fashion to be defined on the remaining portions of �, but this will have
no impact on the argument.)
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Fig. 4 An illustration of a
configuration of modes
within the incoming target
(M−

j
, d−

j
,R−

j
). The

illustration ignores the tiny
polynomial corrections. The
diagonal lines highlight the
vertical scale compression
between the tiny exponential
scales and the scale of
σ ∼

1
100

Informally, the incoming target has a significant presence (of size roughly σ )
on the trailing stable mode, but is small elsewhere, except of course at the pri-
mary mode.

The ricochet target (M0
j , d0

j ,R0
j ) We define the ricochet target (M0

j , d0
j ,R0

j )

by setting M0
j to be the set of all points whose coordinates obey the relations

c≤j−1, c
−
j+1 = 0,

|c+
j+1| ≤ r0

j e−√
3T ,

|c≥j+2| ≤ r0
j e−2

√
3T

with uncertainty R0
j := T

A0
j and with semimetric d0

j (x, x̃) defined by

d0
j (x, x̃) := e2

√
3T |c≤j−2 − c̃≤j−2| + e

√
3T |c−

j−1 − c̃−
j−1|

+ e3
√

3T |c+
j−1 − c̃+

j−1|
+ e3

√
3T |c−

j+1 − c̃−
j+1| + e2

√
3T |c+

j+1 − c̃+
j+1|

+ e3
√

3T |c≥j+2 − c̃≥j+2|.

Informally, the ricochet target is small everywhere outside of the primary
mode, but has its largest presence at the trailing stable mode and the leading
unstable mode, with the latter just having overtaken the former.



Transfer of energy to small scales in NLS 75

Fig. 5 An illustration of a
configuration of modes
within the ricochet target
(M0

j
, d0

j
,R0

j
). Note that all

the modes displayed here are
extremely small relative to
σ ∼

1
100

The outgoing target (M+
j , d+

j ,R+
j ) We define the outgoing target (M+

j , d+
j ,

R+
j ) by setting M+

j to be the set of all points whose coordinates obey the
relations

c≤j−1 = c−
j+1 = 0,

c+
j+1 = σ,

|c≥j+2| ≤ r+
j e−2

√
3T

with uncertainty R+
j = T

A+
j and with semimetric d+

j (x, x̃) defined by

d+
j (x, x̃) := e2

√
3T |c≤j−1 − c̃≤j−1| + e4

√
3T |c−

j+1 − c̃−
j+1|

+ e
√

3T |c+
j+1 − c̃+

j+1| + e3
√

3T |c≥j+2 − c̃≥j+2|).
Informally, the outgoing target has a significant presence (of size σ ) on

the leading unstable mode and is small at all other secondary and peripheral
modes.

3.5 Proof of Theorem 3.1 assuming (3.11)

From (3.11), we see that there is at least one solution b(t) to (3.1) which
starts within the ricochet target (M0

3 , d0
3 ,R0

3) at some time t0 and ends up
within the ricochet target (M0

N−2, d
0
N−2,R

0
N−2) at some later time t1 > t0.

But from the definition of these targets, we thus see that b(t0) lies within a dis-
tance O(r0

3e−√
3T ) of T3, while b(t1) lies within a distance O(r0

N−2e
−√

3T )

of TN−2. The claim follows.
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Fig. 6 An illustration of a
configuration of modes
within the outgoing target
(M+

j
, d+

j
,R+

j
)

It now remains to show the covering relationships (3.8), (3.9), (3.10). That
is the purpose of the next three sections; the main tool shall be repeated and
careful applications of Gronwall-type inequalities.

3.6 Flowing from the incoming target to the ricochet target

Fix 3 ≤ j ≤ N − 2. In this section we show that (M−
j , d−

j ,R−
j ) covers

(M0
j , d0

j ,R0
j ); this is the lengthiest and most delicate part of the argument.

We shall be able to flow from (M−
j , d−

j ,R−
j ) to (M0

j , d0
j ,R0

j ) for time ex-
actly T . To do this we will of course need good control on the evolution
of a solution starting within (M−

j , d−
j ,R−

j ) for this length of time. The full
evolution is summarized in Table 2, but to establish this behavior we shall
need to proceed in stages. Firstly, we need upper bounds on the flow; then we
bootstrap these upper bounds to more precise asymptotics; then we use these
asymptotics to hit arbitrary locations on the final target (M0

j , d0
j ,R0

j ) starting

from a well-chosen location on the initial target (M−
j , d−

j ,R−
j ). This basic

strategy will also be employed in the next two sections, though the technical
details are slightly different in each case.

We begin with some basic upper bounds on the flow.

Proposition 3.2 (Upper bounds, inbound leg) Let b(t) be a solution to (3.1)
such that b(0) is within (M−

j , d−
j ,R−

j ). Let c(t) denote the coordinates of

b(t) as in Proposition 3.1. Then we have the bounds

|c∗(t)| = O(T
A−

j e−2
√

3T ),

|c−
j−1(t)| = O(σe−√

3t ),
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Table 2 The evolution of a solution which is within the incoming target (M−
j

, d−
j

,R−
j

) at

time t = 0. The a≥2, a+
j

, a−
j

are explicit numbers defined below in (3.34), (3.42). The function
g(t) and the transfer matrices Gj+1(t), G≥j+2(t) are explicit objects (depending only on σ )
that will be defined below. The configuration of the modes in the incoming target at t = 0 is
illustrated in Fig. 4. Upon arrival at t = T , the modes have adjusted and appear as in Fig. 5

Mode t = 0 0 < t < T t = T

c≤j−2 O(T
A−

j e−2
√

3T ) O(T
A−

j e−2
√

3T ) O(T
A−

j e−2
√

3T )

c−
j−1 σ + O(e−√

3T ) g(t) + O(e−√
3T ) O(e−√

3T )

c+
j−1 O(T

A−
j e−4

√
3T ) O(T

2A−
j

+1
e−4

√
3T e

√
3t ) O(T

2A−
j

+1
e−3

√
3T )

c−
j+1 e−2

√
3T a−

j+1 O(T
A−

j e−2
√

3T e−√
3t ) O(T

A−
j e−3

√
3T )

+O(T
A−

j e−3
√

3T )

c+
j+1 e−2

√
3T a+

j+1 e−2
√

3T e
√

3tG+
j+1(t)a+

j+1 e−√
3T G+

j+1(T )a+
j+1

+ O(T
A−

j e−3
√

3T ) + O(T
A−

j
+2

e−3
√

3T e
√

3t ) + O(T
A−

j
+2

e−2
√

3T )

c≥j+2 e−2
√

3T a≥j+2 e−2
√

3T G≥j+2(t)a≥j+2 e−2
√

3T G≥j+2(T )a≥j+2

+ O(T
A−

j e−3
√

3T ) + O(T
A−

j e−3
√

3T ) + O(T
A−

j e−3
√

3T )

|c+
j−1(t)| = O(T

2A−
j +1

e−4
√

3T e
√

3t ),

|c−
j+1(t)| = O(r−

j (1 + t)e−2
√

3T e−√
3t ),

|c+
j+1(t)| = O(r−

j e−2
√

3T e
√

3t )

for 0 ≤ t ≤ T .

Proof From the hypothesis that b(0) is within (M−
j , d−

j ,R−
j ), we easily ver-

ify that the bounds hold at time t = 0. To establish the bounds for later times,
we can use the continuity method. Let C0 be a large constant (depending only
on N ) to be chosen later, and suppose that 0 ≤ T ′ ≤ T is a time for which the
bounds

|c∗(t)| = O(C0T
A−

j e−2
√

3T ),

|c−
j−1(t)| = O(C0σe−√

3t ),

|c+
j−1(t)| = O(C0T

2A−
j +1

e−4
√

3T e
√

3t ),

|c−
j+1(t)| = O(C0r

−
j (1 + t)e−2

√
3T e−√

3t ),

|c+
j+1(t)| = O(C0r

−
j e−2

√
3T e

√
3t )
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are known to hold for all 0 ≤ t ≤ T ′. We will then prove the same bounds
without the C0 factor for the same range of times t , implying that the set of
times T ′ for which the above statements hold is both open and closed; since
that set contains 0, it must then also contain T and we are done.

Our main tool shall of course be Lemma 3.2. From our bootstrap hypothe-
ses (and the largeness of T ) we can control the total magnitude of the modes:

|c(t)| � C0σe−√
3t + C0r

−
j e−2

√
3T e

√
3t (3.29)

for all 0 ≤ t ≤ T ′ (the trailing stable mode is almost always dominant, except
near time T where the leading unstable mode begins to compete) and hence
(3.24) will hold for all 0 ≤ t ≤ T ′ (assuming σ is small depending on C0).
From (3.28) we thus have

|c∗(t)| � |c∗(0)| � T
A−

j e−2
√

3T (3.30)

for all 0 ≤ t ≤ T ′, which is the desired bound on the peripheral modes c∗(t).
Similarly from (3.27) we have

|cj+1(t)| � e
√

3t |cj+1(0)| � r−
j e−2

√
3T e

√
3t (3.31)

which gives the desired bound on the leading unstable mode c+
j+1. From

(3.30), (3.31) we have

|c�=j−1(t)| � e−2
√

3T (T
A−

j + r−
j e

√
3t ) (3.32)

and hence from (3.25) we have

|c−
j−1(t)| � e−√

3t |c−
j−1(0)|

+
∫ t

0
e−√

3(t−s)|c+
j−1(s)|e−4

√
3T (T

A−
j + r−

j e
√

3s)2 ds.

Since c−
j−1(0) = O(σ) and c+

j−1(s) = O(C0T
2A−

j +1
e−4

√
3T e

√
3t ), we con-

clude (using the largeness of T ) that

|cj−1(t)
−| = O(σe−√

3t ) (3.33)

which is the desired bound on the trailing stable mode. This and (3.30) imply
that

|c�=j+1(t)| � σe−√
3t
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and then from (3.25) we have

|c−
j+1(t)| � e−√

3t |c−
j+1(0)| +

∫ t

0
e−√

3(t−s)|c+
j+1(s)|σ 2e−2

√
3s ds.

Using (3.31) to estimate |c+
j+1(s)|, together with the initial bound |c−

j+1(0)| =
O(r−

j e−2
√

3T ) we obtain

|c−
j+1(t)| � r−

j (1 + t)e−√
3t e−2

√
3T

which is the desired bound on the leading stable mode. Finally, from (3.26)
and (3.32) we have

|c+
j−1(t)| � e

√
3t |c+

j−1(0)|+
∫ t

0
e
√

3(t−s)|c−
j−1(s)|e−4

√
3T (T

A−
j +r−

j e
√

3s)2 ds

and thus from (3.33) and the initial bound |c+
j−1(0)| = O(T

A−
j e−4

√
3T ) we

have

|c+
j−1(t)| � T

2A−
j +1

e−4
√

3T e
√

3t

which is the desired bound on the trailing unstable mode. �

For the rest of this section, the time variable t is assumed to lie in the range
0 ≤ t ≤ T . Let us make some more precise hypotheses on the initial data,
namely

c−
j+1(0) = e−2

√
3T a−

j+1 + O(T
A−

j e−3
√

3T ),

c+
j+1(0) = e−2

√
3T a+

j+1 + O(T
A−

j e−3
√

3T ), (3.34)

c≥j+2(0) = e−2
√

3T a≥j+2 + O(T
A−

j e−3
√

3T )

for some data a±
j+1 ∈ R, a≥j+2 ∈ C

N−j−1 of magnitude at most r−
j /2 which

we shall choose later. In order to reach the turnaround set (M0
j , d0

j ,R0
j ), we

will need slightly more precise bounds on the leading modes (and also the
stable trailing mode, which is dominant) as follows.

Improved control on c−
j−1(t) We first give a better bound on the trailing

stable mode c−
j−1(t), which is the largest of all the modes (other than the

primary one, of course). Observe from Proposition 3.2 that any cubic term
O(c3) splits as the sum of a main term of the form O((c−

j−1)
3)), plus an error
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of size at most O(T
A−

j e−2
√

3T ) (say). Thus we may rewrite (3.20) somewhat
crudely as

∂tc
−
j−1 = −√

3c−
j−1 + O((c−

j−1)
3) + O(T

A−
j e−2

√
3T )

for some explicit cubic expression O((c−
j−1)

3) of c−
j−1. Now let g be the

solution18 to the corresponding exact (scalar) equation

∂tg = −√
3g + O(g3)

with the same initial data g(0) = σ . Because σ is small, it is easy to establish
the decay bound

g(t) = O(σe−√
3t ) (3.35)

(e.g. by the continuity method). Writing c−
j−1 = g + E−

j−1, the error function

E−
j−1(t) thus obeys the difference equation

∂tE
−
j−1 = −√

3E−
j−1 +O(σ 2e−2

√
3t |E−

j−1|)+O(|E−
j−1|3)+O(T

A−
j e−2

√
3T )

with initial data E−
j−1(0) = 0. From this equation it is an easy matter (e.g. by

the continuity method) to establish the bound

E−
j−1(t) = O(T

A−
j +1

e−2
√

3T )

for all 0 ≤ t ≤ T . In other words we have the estimate

c−
j−1(t) = g(t) + O(T

A−
j +1

e−2
√

3T ). (3.36)

This and Proposition 3.2 allow us to refine our bound for c2 and for c2�=j+1:

O(c2) = O(g2) + O(T
A−

j +1
e−2

√
3T ) (3.37)

and

O(c2�=j+1) = O(g2) + O(T
A−

j +1
e−2

√
3T e−√

3t ). (3.38)

18This function g can in fact be computed explicitly, in fact it is essentially the function ap-
pearing in Remark 3.4, up to a translation in time. However, we will not need to know the exact
formula for it here; the only relevant features for us is that g depends only on σ (and possibly
N ) and obeys the bound (3.35).
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Improved control on c≥j+2 Now we control the leading peripheral modes.
Inserting (3.37) into (3.17) we see that

∂tc≥j+2 = ic≥j+2 + O(c≥j+2g
2) + O(T

A−
j +1

e−2
√

3T |c≥j+2|).

We approximate this by the corresponding linear equation

∂tu = iu + O(ug2)

where u(t) ∈ C
N−j−1. This equation has a fundamental solution G≥2(t) :

C
N−j−1 → C

N−j−1 for all t ≥ 0, thus G≥2(t)u(0) = u(t). (Again, this so-
lution could be described explicitly since g is itself explicit, but we will not
need to do so here). From (3.35) we have

∫ T

0
g2(t) dt = O(1), (3.39)

and so an easy application of Gronwall’s inequality shows that

|G≥2(t)|, |G≥2(t)
−1| = O(1). (3.40)

Since c≥j+2(0) = e−2
√

3T a≥j+2 + O(T
A−

j e−3
√

3T ), we are motivated to use
the ansatz

c≥j+2 = e−2
√

3T G≥2(t)a≥j+2 + E≥j+2.

The error E≥j+2 then solves the equation

∂tE≥j+2 = iE≥j+2 + O(E≥j+2g
2) + O(T

A−
j +1

e−2
√

3T |c≥j+2|)

with initial data E≥j+2(0) = O(T
A−

j e−3
√

3T ). Applying the bound on c≥j+2
from Proposition 3.2 we see that

∂t |E≥j+2| = O(|E≥j+2||g|2) + O(T
2A−

j +1
e−4

√
3T ).

From Gronwall’s inequality and (3.39) we conclude that

|E≥j+2(t)| = O(T
A−

j e−3
√

3T )

for all 0 ≤ t ≤ T , and thus

c≥j+2(t) = e−2
√

3T G≥2(t)a≥j+2 + O(T
A−

j e−3
√

3T ). (3.41)
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Improved control on cj+1 Now we consider the two leading secondary
modes c+

j+1, c−
j+1 simultaneously. From (3.20), (3.21), (3.37), (3.38), and

Proposition 3.2 we have the system

∂tc
−
j+1 = −√

3c−
j+1 + O(g2c−

j+1) + O(g2c+
j+1) + O(T

A−
j +1

e−4
√

3T ),

∂tc
+
j+1 = √

3c+
j+1 + O(g2c+

j+1) + O(g2c−
j+1) + O(T

A−
j +1

e−4
√

3T e
√

3t ).

If we make the ansatz

c−
j+1 = e−2

√
3T e−√

3t ã−
j+1(t); c+

j+1 = e−2
√

3T e
√

3t ã+
j+1(t)

to eliminate the constant coefficient terms, then the system becomes

∂t ã
−
j+1 = O(g2ã−

j+1) + O(g2e2
√

3t ã+
j+1) + O(T

A−
j +1

e−2
√

3T e
√

3t ),

∂t ã
+
j+1 = O(g2e−2

√
3t ã−

j+1) + O(g2ã+
j+1) + O(T

A−
j +1

e−2
√

3T )

with initial conditions ã±
j+1(0) = a±

j+1 + O(T
A−

j e−√
3T ). Writing aj+1 :=( a−

j+1

a+
j+1

)
and ãj+1(t) := ( ã−

j+1(t)

ã+
j+1(t)

)
, we can write this as

∂t ãj+1(t) = A(t)ãj+1(t) + O(T
A−

j +1
e−2

√
3T e

√
3t );

(3.42)
ãj+1(0) = aj+1 + O(T

A−
j e−√

3T )

where A(t) is an explicit real 2×2 matrix (depending only on σ and t) which
(by (3.35)) has bounds of the form

A(t) = σ 2

(
O(e−2

√
3t ) O(1)

O(e−4
√

3t ) O(e−2
√

3t )

)
.

Unfortunately, the non-decaying coefficient O(1) here prevents a direct appli-
cation of Gronwall’s inequality from being effective. However, because this
coefficient is located in a “nilpotent” part of the matrix, we can proceed using
the following variant of Gronwall’s lemma.

Lemma 3.3 (Gronwall-type inequality) Let x(t), y(t) be vector-valued func-
tions obeying the differential inequalities

|∂tx(t)| � δe−αt |x(t)| + δ|y(t)| + |F(t)|,
|∂ty(t)| � δe−βt |x(t)| + δe−γ t |y(t)| + |G(t)|
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for some α,β, γ > 0, some 0 < δ < 1, all 0 ≤ t ≤ T , and some forcing terms
F(t),G(t). Then we have

|x(t)| � (1 + t)|x(0)| + t |y(0)| +
∫ t

0
(1 + te−βs)|F(s)| + t |G(s)| ds,

|y(t)| � |x(0)| + |y(0)| +
∫ t

0
e−βs |F(s)| + |G(s)| ds

for all 0 ≤ t ≤ T , where the implicit constants are allowed to depend on
α,β, γ . If F = G = 0 and δ is sufficiently small depending on α,β, γ , we
also have the lower bound

|y(t)| ≥ 1

2
|y(0)| − O(|x(0)|).

Proof Throughout this proof we assume that t lies in the range 0 ≤ t ≤ T ,
and implied constants can depend on α,β, γ . From the equation for ∂tx(t)

and the usual Gronwall inequality we have

|x(t)| � |x(0)| +
∫ t

0
|y(s)| + |F(s)| ds.

Writing Y(t) := sup0≤s≤t |y(s)|, we conclude that

|x(t)| � |x(0)| +
∫ t

0
|F(s)| ds + tY (t). (3.43)

On the other hand, from the equation for ∂ty(t) and Gronwall’s inequality we
have

|y(t)| � |y(0)| +
∫ t

0
e−βs |x(s)| + |G(s)| ds;

inserting (3.43) we conclude

|y(t)| � |y(0)| +
∫ t

0
e−βs

(
|x(0)| +

∫ s

0
F(s′) ds′

)

+ |G(s)| ds +
∫ t

0
e−βsY (s)s ds.

By Fubini’s theorem we have
∫ T

0 e−βs(|x(0)| + ∫ s

0 F(s′) ds′) ds � |x(0)| +∫ T

0 e−βsF (s) ds. Taking suprema in t we conclude that

Y(t) � |y(0)| + |x(0)| +
∫ t

0
e−βs |F(s)| + |G(s)| ds +

∫ t

0
e− β

2 sY (s) ds
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and hence by Gronwall’s inequality again

|y(t)| � Y(t) � |y(0)| + |x(0)| +
∫ t

0
e−βs |F(s)| + |G(s)| ds.

The upper bounds on x and y now follows from (3.43).
Now suppose that F = G = 0 and δ is small. The triangle inequality gives

us,

|y(t)| ≥ |y(0)| −
∫ t

0
|∂sy(s)|ds.

With the given bound for |∂sy(s)| and the upper bounds we just proved for
y(s), x(s), we conclude,

|y(t)| ≥ |y(0)| −
∫ t

0
Cδe−βs |x(s)|ds −

∫ t

0
Cδe−γ s |y(s)|ds

≥ |y(0)| −
∫ t

0
Cδ(1 + t)e−βs(x(0) + y(0))ds,

and the final claim in the lemma follows by taking δ small enough. �

Let Gj+1(t) be the transfer matrix associated to A(t), i.e. Gj+1(t) is the
real 2 × 2 matrix solving the ODE

∂tGj+1(t) = A(t)Gj+1(t); Gj+1(0) = id.

Then from Lemma 3.3, the coefficients of Gj+1 enjoy the bounds

Gj+1(t) =
(

O(1 + t) O(t)

O(1) O(1)

)
. (3.44)

Since σ is small, we can also use the last part of Lemma 3.3 and conclude
that the coefficient in the bottom right corner has magnitude at least 1/2.
(This will be important later when we “invert” Gj+1(T ).)

Now we return to (3.42), and use the ansatz

ãj+1(t) = Gj+1(t)aj+1 + Ej+1(t)

to obtain an equation for the error Ej+1:

∂tEj+1(t) = A(t)Ej+1(t) + O(T
A−

j +1
e−2

√
3T e

√
3t );

Ej+1(0) = O(T
A−

j e−√
3T )
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and then by Lemma 3.3 again we obtain the bounds

Ej+1(t) = O(T
A−

j +2
e−2

√
3T e

√
3t ) + O(T

A−
j +1

e−√
3T ) = O(T

A−
j +2

e−√
3T ).

We thus conclude that(
e2

√
3T e

√
3t c−

j+1(t)

e2
√

3T e−√
3t c+

j+1(t)

)
= Gj+1(t)aj+1 + O(T

A−
j +2

e−√
3T ). (3.45)

3.7 Hitting the ricochet target

Our estimates are now sufficiently accurate to show that (M−
j , d−

j ,R−
j ) can

cover (M0
j , d0

j ,R0
j ). Consider an arbitrary point x0

j in M0
j , which in coordi-

nates would take the form

c≤j−1 = c−
j+1 = 0,

c+
j+1 = z+

j+1e
−√

3T ,

c≥j+2 = z≥j+2e
−2

√
3T

for some z+
j+1 ∈ R, z≥j+2 ∈ C

N−j−1 of magnitude at most r0
j . We need to

locate a point x−
j in M−

j , which in coordinates takes the form

c≤j−2 = c+
j−1 = 0,

c−
j−1 = σ,

c−
j+1 = a−

j+1e
−2

√
3T ,

c+
j+1 = a+

j+1e
−2

√
3T ,

c≥j+2 = a≥j+2e
−2

√
3T

for some a±
j+1 ∈ R, a≥j+2 ∈ C

N−j−1 of magnitude at most r−
j /4 (say) to be

chosen later, such that given any data c(0) which is within R−
j = T

A−
j of x−

j ,
thus in coordinates

c≤j−2(0) = O(T
A−

j e−2
√

3T ),

c−
j−1(0) = σ + O(T

A−
j e−√

3T ),

c+
j−1(0) = O(T

A−
j e−4

√
3T ),
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c−
j+1(0) = a−

j+1e
−2

√
3T + O(T

A−
j e−3

√
3T ),

c+
j+1(0) = a+

j+1e
−2

√
3T + O(T

A−
j e−3

√
3T ),

c≥j+2(0) = a≥j+2e
−2

√
3T + O(T

A−
j e−3

√
3T ),

the evolution of this data after time T will lie within R0
j = T

A0
j of x0

j in the

d0
j metric. Thus we aim to show,

e2
√

3T |c≤j−2(T )| + e
√

3T |c−
j−1(T )| + e3

√
3T |c+

j−1(T )| + e3
√

3T |c−
j+1(T )|

+ e2
√

3T |c+
j+1(T ) − e−√

3T z+
j+1| + e3

√
3T |c≥j+2(T ) − e−2

√
3T z≥j+2|

< T
A0

j . (3.46)

To establish this, we of course apply the bounds obtained in this section. From
Proposition 3.2 we have

|c≤j−2(T )| = O(T
A−

j e−2
√

3T ); c−
j−1(T ) = O(e−√

3T );
c+
j−1(T ) = O(T

2A−
j +1

e−3
√

3T )

and hence the contribution of the trailing modes c≤j−1 to (3.46) will be ac-
ceptable (recall that A0

j is ten times larger than A−
j ). From (3.41) we have

c≥j+2(t) = e−2
√

3T G≥2(T )a≥j+2 + O(T
A−

j e−3
√

3T ).

Thus if we set a≥j+2 := G≥2(T )−1z≥j+2, then the contribution of the leading
peripheral modes c≥j+2 to (3.46) is acceptable. Note that since |z≥j+2| ≤ r0

j ,

then |a≥j+2| ≤ r−
j thanks to (3.40) and the construction of r−

j large compared

to r0
j .

Finally, we need to deal with the leading secondary modes. According to
Proposition 3.2 the contribution of c−

j+1(t) to the left hand side of (3.46) is

acceptable. As for c+
j+1, from (3.45) we have

(
e3

√
3T c−

j+1(T )

e
√

3T c+
j+1(T )

)
= Gj+1(T )aj+1 + O(T

A−
j +2

e−√
3T ).

Now recall that the matrix Gj+1(T ) has the form (3.44), with the bottom
right coefficient having magnitude comparable to 1. Because of this, and the
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hypothesis that |z+
j+1| ≤ r0

j , one can easily find coefficients a−
j+1, a

+
j+1 of

magnitude at most r−
j (which is large compared to r0

j ) such that

Gj+1(T )

(
a−
j+1

a+
j+1

)
=

(
. . .

z+
j+1

)

where the exact value of the coefficient . . . is not important to us since we
already bounded c−

j+1(T ) above. We thus have

c+
j+1(T ) = e−√

3T z+
j+1 + O(T

A−
j +2

e−2
√

3T )

and conclude that the contribution of this term to (3.46) is also acceptable.
This concludes the proof that (M−

j , d−
j , r−

j ) covers (M0
j , d0

j , r0
j ).

3.8 Flowing from the ricochet target to the outgoing target

Again we fix 3 ≤ j ≤ N − 2. We now show that (M0
j , d0

j , r0
j ) covers

(M+
j , d+

j , r+
j ). Broadly speaking, this will resemble a time-reversed version

of the arguments in Sect. 3.6, though there are a number of technical dif-
ferences. On the one hand, the trailing secondary modes are now much less
important and do not require as delicate a treatment as in Sect. 3.6. On the
other hand, the time reversal changes the role of σ ; instead of starting with a

Table 3 The evolution of a solution which is within the ricochet target (M0
j
, d0

j
,R0

j
) at time

t = 0, and with a well-chosen (and small) leading unstable mode c+
j+1. The a≥2, a+

j+1 are
explicit numbers defined below in (3.49), (3.55). The function g̃(t) and the transfer matrix
G̃≥j+2(t) are explicit objects (depending only on σ ) that will be defined below. The t = 0
configuration of the modes within the ricochet target is illustrated in Fig. 5. At t = T , the
modes are within the outgoing target as illustrated in Fig. 6

Mode t = 0 0 < t < T t = T

c≤j−2 O(T
A0

j e−2
√

3T ) O(T
A0

j e−2
√

3T ) O(T
A0

j e−2
√

3T )

c−
j−1 O(T

A0
j e−√

3T ) O(T
A0

j
+1

e−√
3T e−√

3t ) O(T
A0

j
+1

e−2
√

3T )

c+
j−1 O(T

A0
j e−3

√
3T ) O(T

A0
j
+1

e−3
√

3T e
√

3t ) O(T
A0

j
+1

e−2
√

3T )

c−
j+1 O(T

A0
j e−3

√
3T ) O(T

2A0
j
+3

e−3
√

3T e−√
3t ) O(T

2A0
j
+3

e−4
√

3T )

c+
j+1 σe−√

3T a+
j+1 e−√

3T g̃(t) σ + O(T
A0

j
+2

e−√
3T )

+ O(T
A0

j e−2
√

3T ) + O(T
A0

j
+2

e−2
√

3T e
√

3t )

c≥j+2 e−2
√

3T a≥j+2 e−2
√

3T G̃≥j+2(t)a≥j+2 e−2
√

3T G̃≥j+2(T )a≥j+2

+ O(T
A0

j e−3
√

3) + O(T
A0

j e−3
√

3) + O(T
A0

j e−3
√

3)
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stable trailing mode at size σ and ensuring that it decays in a controlled man-
ner, we now are starting with an unstable leading mode c+

j+1 of small size

(like e−√
3T ) and growing it so that it reaches σ almost exactly at time T .

Once again, we begin with upper bounds on the flow, though now we also
need a smallness condition on the unstable mode c+

j+1(0) (to stop the evolu-
tion from moving too far away from Tj by time T ).

Proposition 3.3 (Upper bounds, outbound leg) Let b(t) be a solution to
(3.1) such that b(0) is within (M0

j , d0
j ,R0

j ). Let c(t) denote the coordinates

of b(t) as in Proposition 3.1. Assume the smallness condition c+
j+1(0) =

O(σe−√
3T ). Then we have the bounds

|c∗(t)| = O(T
A0

j e−2
√

3T ),

|c−
j−1(t)| = O(T

A0
j e−√

3T e−√
3t (1 + T e−√

3(T −t)))

≤ O(T
A0

j+1
e−√

3T e−√
3t ),

|c+
j−1(t)| = O(T

A0
j+1

e−3
√

3T e
√

3t ),

|c−
j+1(t)| = O(T

2A0
j+3

e−3
√

3T e−√
3t ),

|c+
j+1(t)| = O(σe−√

3T e
√

3t )

for 0 ≤ t ≤ T .

Proof From the hypotheses we easily verify that the bounds hold at time
t = 0. As in the proof of Proposition 3.2, we use the continuity method. We
again let C0 be a large constant (depending only on N ) to be chosen later, and
suppose that 0 ≤ T ′ ≤ T is a time for which the bounds

|c∗(t)| = O(C0T
A0

j e−2
√

3T ),

|c−
j−1(t)| = O(C0T

A0
j e−√

3T e−√
3t (1 + T e−√

3(T −t))),

|c+
j−1(t)| = O(C0T

A0
j+1

e−3
√

3T e
√

3t ),

|c−
j+1(t)| = O(C0T

2A0
j+3

e−3
√

3T e−√
3t ),

|c+
j+1(t)| = O(C0σe−√

3T e
√

3t )

are known to hold for all 0 ≤ t ≤ T ′. As before, it suffices to then deduce the
same bounds without the C0 factor.
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From the above bounds we have

|c(t)| = O(C0T
A0

j+1
e−√

3T e−√
3t + C0σe−√

3T e
√

3t )

which gives the bound (3.24) (taking σ small compared to C0. Lemma 3.2
now applies. From (3.28) we have

|c∗(t)| � |c∗(0)| � T
A0

j e−2
√

3T

which gives the desired control on the peripheral modes c∗. From (3.27) we
have

|cj+1(t)| � e
√

3t |cj+1(0)| � σe−√
3T e

√
3t

which gives the desired control on the unstable leading mode c+
j+1. Next, we

apply (3.25) to obtain

|c−
j−1(t)| � e−√

3t c−
j−1(0) +

∫ t

0
e
√

3(t−s)|c+
j−1(s)||c(s)|2 ds

which after substituting the initial bound c−
j−1(0) = O(T

A0
j e−√

3T ) and the

above bounds on c+
j−1(s), c(s) gives

|c−
j−1(t)| � T

A0
j e−√

3T e−√
3t (1 + T e−√

3(T −t))

which is the desired bound in the stable trailing mode c−
j−1. Then, we apply

(3.26) to obtain

|c+
j−1(t)| � e−√

3t c+
j−1(0) +

∫ t

0
e
√

3(t−s)|c−
j−1(s)||c(s)|2 ds

which after substituting the initial bound c+
j−1(0) = O(T

A0
j e−3

√
3T ) and the

above bounds for c−
j−1 and c becomes

|c+
j−1(t)| � T

A0
j+1

e−3
√

3T e
√

3t

which is the desired bound on the unstable trailing mode c+
j−1. These bounds

imply in particular that

|c�=j+1(t)| � T
A0

j+1
e−√

3T e−√
3t

while from (3.25) we have

|c−
j+1(t)| � e−√

3t c−
j+1(0) +

∫ t

0
e−√

3(t−s)|c+
j+1(s)||c2�=j+1(s)| ds.



90 J. Colliander et al.

Combining these bounds and also using the initial bound c−
j+1(0) =

O(T
A0

j e−3
√

3T ) and the bound already obtained for c+
j+1, we conclude

|c−
j+1(t)| � T

2A0
j+3

e−3
√

3T e−√
3t

which is the desired bound on the leading stable mode c−
j+1. �

Now we need more precise bounds on the leading modes. Here we will
assume the initial data takes the form

c+
j+1(0) = σe−√

3T a+
j+1 + O(T

A0
j e−2

√
3T ),

c≥j+2(0) = e−2
√

3T a≥j+2 + O(T
A0

j e−3
√

3T )

for some data a+
j+1 ∈ R, a≥j+2 ∈ C

N−j−1 of magnitude at most O(1) and

r0
j /2 respectively, which we shall choose later. Henceforth the time variable

is restricted to the interval 0 ≤ t ≤ T .

Improved control of c+
j+1 We begin by refining the control on the unsta-

ble leading mode. From Proposition 3.3 we see that any expression of the
form O(c3) splits as the sum of a term O((c+

j+1)
3), plus an error of size

O(T
3A0

j+3
e−3

√
3T e

√
3t ). From (3.21) we thus have

∂tc
+
j+1 = √

3c+
j+1 + O((c+

j+1)
3) + O(T

3A0
j+3

e−3
√

3T e
√

3t ).

Let us now compare this against the function g̃, defined as the solution of the
associated equation

∂t g̃ = √
3g̃ + O(g̃3)

with initial data

g̃(T ) = σ, (3.47)

at time T . If σ is small, then an easy continuity argument19 backwards in time
shows that

|g̃(t)| ≤ 2σe−√
3T e

√
3t .

19Alternatively, one could observe that g̃ is basically the time reflection of the function g used
in the preceding section.
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In particular we have ∫ T

0
|g̃(t)|2 dt = O(1). (3.48)

We now fix a+
j+1 by requiring

g̃(0) = σe−√
3T a+

j+1, (3.49)

thus a+
j+1 = O(1) as required. If we then use the ansatz

c+
j+1 = g̃ + E+

j+1

then the error E+
j+1 obeys the equation

∂tE
+
j+1 = √

3E+
j+1 +O(|g̃|2|Ej+1|)+O(|Ej+1|3)+O(T

3A0
j+3

e−3
√

3T e
√

3t )

with initial data E+
j+1(0) = O(T

A0
j e−2

√
3T ). A simple application of the con-

tinuity method and Gronwall’s inequality (and (3.48)) then yields the bound

E+
j+1(t) = O(T

A0
j e−2

√
3T e

√
3t )

for all 0 ≤ t ≤ T . We thus conclude that

c+
j+1(t) = g̃(t) + O(T

3A0
j+3

e−2
√

3T e
√

3t ) (3.50)

which then (in conjunction with the bounds in Proposition 3.3 implies that

O(c2) = O(g̃2) + O(T
2A0

j+2
e−2

√
3T ). (3.51)

Improved control of c≥j+2 We now control the leading peripheral modes,
by essentially the same argument used to control these modes in the previous
section. From (3.17) and (3.51) we have

∂tc≥j+2 = ic≥j+2 + O(g̃2c≥j+2) + O(T
2A0

j+1
e−2

√
3T |c≥j+2|).

We approximate this by the corresponding linear equation

∂tu = iu + O(ug̃2)

where u(t) ∈ C
M−j−1. This equation has a fundamental solution G̃≥j+2(t) :

C
M−j−1 → C

M−j−1 for all t ≥ 0, thus G≥j+2(t)u(0) = u(t). From (3.48)
and Gronwall’s inequality we have

|G̃≥j+2(t)|, |G̃≥j+2(t)
−1| = O(1). (3.52)
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We use the ansatz

c≥j+2(t) = e−2
√

3T G̃≥j+2(t)a≥j+2 + Ẽ≥j+2.

The error Ẽ≥j+2 then solves the equation

∂t Ẽ≥j+2 = iẼ≥j+2 + O(Ẽ≥j+2g̃
2) + O(T

2A0
j+2

e−2
√

3T |c≥j+2|)

with initial data Ẽ≥j+2(0) = O(T
A0

j e−3
√

3T ). Applying the bound on c≥j+2
from Proposition 3.3 we see that

∂t |Ẽ≥j+2| = O(|Ẽ≥j+2||g̃|2) + O(T
3A0

j+2
e−4

√
3T ).

From Gronwall’s inequality and (3.48) we conclude that

|Ẽ≥j+2(t)| = O(T
3A0

j+2
e−3

√
3T )

for all 0 ≤ t ≤ T , and thus

c≥j+2(t) = e−2
√

3T G̃≥j+2(t)a≥j+2 + O(T
A0

j e−3
√

3T ). (3.53)

3.9 Hitting the outgoing target

Our estimates are now sufficiently accurate to show that (M0
j , d0

j ,R0
j ) can

cover (M+
j , d+

j ,R+
j ). Consider an arbitrary point x+

j in M+
j , which in coor-

dinates would take the form

c≤j−1 = c−
j+1 = 0,

c+
j+1 = σ,

c≥j+2 = z≥j+2e
−2

√
3T

for some z≥j+2 ∈ C
N−j−1 of magnitude at most r+

j . We now specify a point

x0
j in M0

j , which in coordinates has the form

c≤j−1 = c−
j+1 = 0,

c+
j+1 = σe−√

3T a+
j+1,

c≥j+2 = a≥j+2e
−2

√
3T
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with a+
j+1 = O(1) defined in (3.49) and some a≥j+2 ∈ C

N−j−1 of magnitude

at most r0
j /2 to be chosen later (see (3.55) below), such that given any data

c(0) which is within R0
j = T

A0
j of x0

j in the metric d0
j , thus in coordinates

c≤j−2(0) = O(T
A0

j e−2
√

3T ),

c−
j−1(0) = O(T

A0
j e−√

3T ),

c+
j−1(0) = O(T

A0
j e−3

√
3T ),

c−
j+1(0) = O(T

A0
j e−3

√
3T ),

c+
j+1(0) = σe−√

3T a+
j+1 + O(T

A0
j e−2

√
3T ),

c≥j+2(0) = a≥j+2e
−2

√
3T + O(T

A0
j e−3

√
3T )

the evolution of this data at time T will lie within R+
j = T

A+
j of x+

j in the d+
j

metric. Thus we aim to show,

e2
√

3T |c≤j−1(T )| + e4
√

3T |c−
j+1(T )| + e

√
3T |c+

j+1(T ) − σ |
+ e3

√
3T |c≥j+2(T ) − e−2

√
3T z≥j+2| < T

A+
j . (3.54)

We argue as in the previous section. From Proposition 3.3 we have

c≤j−2(T ) = O(T
A0

j e−2
√

3T ),

c−
j−1(T ) = O(T

A0
j+1

e−2
√

3T ),

c+
j−1(T ) = O(T

A0
j+1

e−2
√

3T ),

c−
j+1(T ) = O(T

2A0
j+3

e−4
√

3T ),

which shows that the contribution of the trailing modes and the leading stable
mode will be acceptable. From (3.50), (3.47) we have

c+
j+1(T ) = σ + O(T

3A0
j+3

e−√
3T )

so the contribution of the leading unstable mode will also be acceptable. Fi-
nally, from (3.53) we have

c≥j+2(T ) = e−2
√

3T G̃≥j+2(T )a≥j+2 + O(T
A0

j e−3
√

3T )
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so if we choose

a≥j+2 = G̃≥j+2(T )−1z≥j+2 (3.55)

then from (3.52) we see that a≥j+2 will have magnitude O(r+
j ) ≤ r0

j /2, and
the contribution of the leading peripheral modes will also be acceptable. This
completes the proof that (M0

j , d0
j , r0

j ) covers (M+
j , d+

j , r+
j ).

3.10 Flowing from the outgoing target to the next incoming target

Fix 3 ≤ j < N − 2. To conclude the proof of Theorem 3.1 we need to show
that (M+

j , d+
j , r+

j ) covers (M−
j+1, d

−
j+1, r

−
j+1). This turns out to be signifi-

cantly simpler than the previous analysis because we will only need to flow20

for a time O(log 1
σ
) rather than time O(T ). This means that we can rely on

much cruder Gronwall inequality-type tools than in preceding sections as we
do not have to be so careful about exponential or even polynomial losses
in T . On the other hand, the analysis here is more “nonperturbative” in that
we are no longer close to a circle Tj or Tj+1 but instead will be traversing
the intermediate region connecting the two. Fortunately, we have an explicit21

solution (based on (3.7)) that we can follow (via standard perturbative theory)
to carry us from one to the other without much difficulty.

We turn to the details. Before we begin, there is an issue of which coor-
dinate system to use: the local coordinates around Tj , the local coordinates
around Tj+1, or the global coordinates b1, . . . , bN . It is arguably more natural
to use global coordinates for the transition from Tj to Tj+1, but we will con-
tinue using the local coordinates around Tj since we have already built a fair
amount of machinery in these coordinates. Also, these local coordinates have
already quotiented out the phase invariance x �→ eiθx which would otherwise
have required a small amount of attention.

Let us start with initial data within the outgoing target (M+
j , d+

j , r+
j ). In

the local coordinates around Tj , such an initial data takes the form

c≤j−1(0) = O(T
A+

j e−2
√

3T ),

c−
j+1(0) = O(T

A+
j e−4

√
3T ),

20Indeed, if we could take σ as large as 1/
√

2 then we would not need to flow at all, and we
could essentially match up the j th outgoing target with the j + 1th incoming target. However
we took advantage of the smallness of σ at too many places in the above argument, and so we
are forced to add this bridging step as well.
21Actually, as in previous sections, the analysis can proceed without knowing the explicit form
of this solution, only its qualitative properties, namely that it propagates from Tj to Tj+1 using
an unstable mode of the former and a stable mode of the latter. But as the solution is so simple,
we will take advantage of its explicitness.
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c+
j+1(0) = σ + O(T

A+
j e−√

3T ),

c≥j+2(0) = e−2
√

3T a≥j+2 + O(T
A+

j e−3
√

3T )

for some a≥j+2 of magnitude at most r+
j . Let us now consider the evolu-

tion of such data for times 0 ≤ t ≤ O(log 1
σ
). Because the unstable leading

mode c+
j+1 is already as large as σ , and is growing exponentially, we will

no longer be in the perturbative regime covered by Lemma 3.2. However, we
must necessarily stay within the region (3.23); note that the coordinate singu-
larity {bj = 0} cannot actually be reached via the flow, because as remarked
earlier the support of b is an invariant of the flow. The bound (3.23) will still
allow us to use Gronwall-type arguments for a time period of O(log 1

σ
), incur-

ring (quite tolerable) losses which are polynomial in 1/σ . (This is in contrast
to the analysis of the previous sections, where such a crude argument would
cost unacceptable factors of eT .)

For the rest of this section we shall restrict the time variable t to the range
0 ≤ t ≤ 10 log 1

σ
(say). From (3.17), (3.23) (and (3.19) for the trailing sec-

ondary mode) we have the crude estimates

∂tc�=j+1 = O(|c�=j+1|)
so by Gronwall we have the crude bounds

c�=j+1(t) = O

(
1

σO(1)
T

A+
j e−2

√
3T

)
. (3.56)

We will return to establish more accurate bounds on the leading peripheral
modes c≥j+2 shortly, but for now let us focus attention on the leading sec-
ondary modes c−

j+1, c
+
j+1. The stable leading mode c−

j+1 can be controlled by
(3.20), which by (3.56) and (3.23) becomes

∂tc
−
j+1 = O(|c−

j+1|) + 1

σO(1)
T

2A+
j e−4

√
3T .

From Gronwall’s inequality we conclude that

c−
j+1(t) = O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
. (3.57)

Now we turn to the most important non-primary mode, namely the unstable
leading mode c+

j+1. Because we are no longer in the perturbative regime, the
schematic equation (3.21) has a form which is a little bit too crude for our
purposes. Instead we return to (3.19). Taking advantage of the bounds (3.57),
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(3.56) just obtained (as well as (3.23)), we can take the c+
j+1 component of

this equation and obtain

∂tc
+
j+1 = √

3(1 − |c+
j+1|2)c+

j+1 + O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
.

Now let us define ĝ to be the solution to the scalar ODE

∂t ĝ = √
3(1 − |ĝ|2)ĝ (3.58)

with initial data ĝ(0) = σ . We can easily compute ĝ explicitly22 as

ĝ(t) = 1√
1 + e−2

√
3(t−t0)

where the time t0 is defined by the formula

1√
1 + e2

√
3t0

= σ.

This is of course closely related to the slider solution (3.7) (see also Re-
mark 3.4). Also observe that

ĝ(2t0) = 1√
1 + e−2

√
3t0

=
√

1 − σ 2

and that 2t0 ≤ 10 log 1
σ

if σ is small enough.
As in previous sections, we now use the ansatz

c+
j+1 = ĝ + E+

j+1

where (thanks to the boundedness of both ĝ and c+
j+1) the error E+

j+1 obeys
the equation

∂tE
+
j+1 = O(|E+

j+1|) + O

(
1

σO(1)
T

2A+
j e−4

√
3T

)

with initial data E+
j+1(0) = O(T

A+
j e−√

3T ). From Gronwall we thus have

E+
j+1(t) = O

(
1

σO(1)
T

A+
j e−√

3T

)

22For our analysis, the only property one needs of ĝ is that it flows from σ to
√

1 − σ 2 in finite

time (the fact that this time is O(log 1
σ ) is not essential to the argument). This is immediate

from an inspection of the vector field associated to the ODE (3.58), but the argument via the
explicit solution is equally brief.
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and hence

c+
j+1(t) = ĝ(t) + O

(
1

σO(1)
T

A+
j e−√

3T

)
. (3.59)

In particular this (together with (3.57), (3.56)) implies that

O(c2) = O(ĝ2) + O

(
1

σO(1)
T

A+
j e−√

3T

)
. (3.60)

Now we can return to improve the control on the leading peripheral modes
c≥j+2. From (3.60), (3.56) and (3.17) we have

∂tc≥j+2 = ic≥j+2 + O(ĝ2c≥j+2) + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)
.

As in previous sections we approximate this flow by the linear equation

∂tu = iu + O(uĝ2)

where u(t) ∈ C
N−j−1. This equation has a fundamental solution Ĝ≥j+2(t) :

C
N−j−1 → C

N−j−1 for all t ≥ 0; from the boundedness of ĝ and Gronwall’s
inequality we have

|Ĝ≥j+2(t)|, |Ĝ≥j+2(t)
−1| � 1

σO(1)
. (3.61)

We use the ansatz

c≥j+2(t) = e−2
√

3T Ĝ≥j+2(t)a≥j+2 + E≥j+2

where the error E≥j+2 obeys an equation of the form

∂tE≥j+2 = O(|E≥j+2|) + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)

with initial data E≥j+2(0) = O(T
A+

j e−3
√

3T ). From Gronwall’s inequality
we conclude

E≥j+2(t) = O

(
1

σO(1)
T

2A+
j e−3

√
3T

)

and hence

c≥j+2(t) = e−2
√

3T Ĝ≥j+2(t)a≥j+2 + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)
. (3.62)
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We specialize the above bounds to the time t = 2t0 ≤ 10 log 1
σ

, and con-
clude that

c≤j−1(2t0) = O

(
1

σO(1)
T

A+
j e−2

√
3T

)
,

c−
j+1(2t0) = O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
,

c+
j+1(2t0) =

√
1 − σ 2 + O

(
1

σO(1)
T

A+
j e−√

3T

)
,

c≥j+2(2t0) = e−2
√

3T Ĝ≥j+2(2t0)a≥j+2 + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)
.

Using (3.16), we conclude that

r = σ + O

(
1

σO(1)
T

A+
j e−√

3T

)
.

The phase θ is unspecified, but this will not concern us. We can now move
back to the global coordinates b1, . . . , bN and conclude that

b≤j−1(2t0) = O

(
1

σO(1)
T

A+
j e−2

√
3T

)
,

bj (2t0) =
(

σ + ReO

(
1

σO(1)
T

A+
j e−√

3T

))
eiθ ,

bj+1(2t0) =
(√

1 − σ 2 + ReO

(
1

σO(1)
T

A+
j e−√

3T

))
ω2eiθ

+ O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
,

b≥j+2(2t0) = eiθ e−2
√

3T Ĝ≥j+2(2t0)a≥j+2 + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)

where we have inserted real parts in front of some error terms for emphasis.
We now recast this in terms of the local coordinates around Tj+1; to

avoid confusion with the local coordinates Tj , we shall denote these new
coordinates with tildes, thus r̃ , θ̃ , c̃≤j−1, c̃

−
j , c̃+

j , c̃−
j+2, c̃

+
j+2, c̃≥j+2. Firstly,

bj+1(2t0) is certainly non-zero (it has magnitude close to
√

1 − σ 2), and an
inspection of the phase of bj+1(2t0) shows that

θ̃ (2t0) = θ + 4π

3
+ O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
.
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We then conclude that

c̃≤j−1(2t0) = O

(
1

σO(1)
T

A+
j e−2

√
3T

)
,

c̃−
j (2t0) = σ + O

(
1

σO(1)
T

A+
j e−√

3T

)
,

c̃+
j (2t0) = O

(
1

σO(1)
T

2A+
j e−4

√
3T

)
,

c̃≥j+2(2t0) = ωe−2
√

3T Ĝ≥j+2(2t0)a≥j+2 + O

(
1

σO(1)
T

2A+
j e−3

√
3T

)
.

From this and (3.61) it is an easy matter to show that (M−
j+1, d

−
j+1,R

−
j+1) is

covered by (M+
j , d+

j ,R+
j ), by choosing a≥j+2 appropriately (note that any

losses arising from (3.61) will be acceptable since r+
j is assumed to be much

larger than r−
j+1 depending on σ ).

4 Construction of the resonant set �

Fix N ≥ 2. We begin by constructing an abstract combinatorial model � =
�1 ∪ · · · ∪ �N for the collection � = �1 ∪ · · · ∪ �N of frequencies. Each
element x0 ∈ � corresponds to a unique element n0 ∈ � and encodes both
how n0 is related to other elements of �, and (at least approximately) where
n0 is located in Z

2. The relationship between � and � will be made explicit
later when we construct an embedding of � into Z

2 and define � to be this
image. Throughout this section, we identify the frequency lattice Z

2 with the
Gaussian integers Z[i] ⊂ C in the usual manner (n1, n2) ↔ n1+in2. Whereas
� lives in the frequency lattice Z

2, � will live in a more abstract set (CN−1,
to be precise).

To construct �, we define the standard unit square S ⊂ C to be the four-
element set of complex numbers

S = {0,1,1 + i, i}.
We split S = S1 ∪ S2, where S1 := {1, i} and S2 := {0,1 + i}. The combi-
natorial model � is a subset of a large power of the set S. More precisely,
for any 1 ≤ j ≤ N , we define �j ⊂ C

N−1 to be the set of all N − 1-tuples
(z1, . . . , zN−1) such that z1, . . . , zj−1 ∈ S2 and zj , . . . , zN−1 ∈ S1. In other
words,

�j := S
j−1
2 × S

N−j

1 .



100 J. Colliander et al.

Note that each �j consists of 2N−1 elements, and they are all disjoint. We
then set � = �1 ∪ · · · ∪ �N ; this set consists of N2N−1 elements. We refer
to �j as the j th generation of �.

For each 1 ≤ j < N , we define a combinatorial nuclear family connecting
generations �j,�j+1 to be any four-element set F ⊂ �j ∪�j+1 of the form

F := {(z1, . . . , zj−1,w, zj+1, . . . , zN) : w ∈ S}
where z1, . . . , zj−1 ∈ S2 and zj+1, . . . , zN ∈ S1 are fixed. In other words, we
have

F = {F0,F1,F1+i , Fi} = {(z1, . . . , zj−1)} × S × {(zj+1, . . . , zN)}
where Fw = (z1, . . . , zj−1,w, zj+1, . . . , zN). It is clear that F is a four-
element set consisting of two elements F1,Fi of �j (which we call the par-
ents in F ) and two elements F0,F1+i of �j+1 (which we call the children
in F ). For each j there are 2N−2 combinatorial nuclear families connecting
the generations �j and �j+1. One easily verifies the following properties:

• (Existence and uniqueness of spouse and children) For any 1 ≤ j < N and
any x ∈ �j there exists a unique combinatorial nuclear family F connect-
ing �j to �j+1 such that x is a parent of this family (i.e. x = F1 or x = Fi).
In particular each x ∈ �j has a unique spouse (in �j ) and two unique chil-
dren (in �j+1).

• (Existence and uniqueness of sibling and parents) For any 1 ≤ j < N and
any y ∈ �j+1 there exists a unique combinatorial nuclear family F con-
necting �j to �j+1 such that y is a child of the family (i.e. y = F0 or
y = F1+i). In particular each y ∈ �j+1 has a unique sibling (in �j+1) and
two unique parents (in �j ).

• (Nondegeneracy) The sibling of an element x ∈ �j is never equal to its
spouse.

Example If N = 7, the point x = (0,1 + i,0, i, i,1) lies in the fourth genera-
tion �4. Its spouse is (0,1 + i,0,1, i,1) (also in �4) and its two children are
(0,1 + i,0,0, i,1) and (0,1 + i,0,1 + i, i,1) (both in �5). These four points
form a combinatorial nuclear family connecting the generations �4 and �5.
The sibling of x is (0,1 + i,1 + i, i, i,1) (also in �4, but distinct from the
spouse) and its two parents are (0,1 + i,1, i, i,1) and (0,1 + i, i, i, i,1) (both
in �3). These four points form a combinatorial nuclear family connecting the
generations �3 and �4. Elements of �1 do not have siblings or parents, and
elements of �7 do not have spouses or children.

Now we need to embed � into the frequency lattice Z
2. As mentioned

above, we shall abuse notation and identify this lattice Z
2 with the Gaussian

integers Z[i] in the usual manner. We shall need a number of parameters:
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• (Placement of initial generation) We will need a function f1 : �1 → C

which assigns to each point x in the first generation, a location f1(x) in the
complex plane (eventually we will choose f to take values in the Gaussian
integers).

• (Angle of each nuclear family) For each 1 ≤ j < N and each combinatorial
nuclear family F connecting the generations �j and �j+1, we need an
angle θ(F ) ∈ R/2πZ.

Given the placement function of the first generation, and given all the an-
gles, we can then recursively define the placement function fj : �j → C for
later generations 2 ≤ j ≤ N by the following rule:

• If 1 ≤ j < N and fj : �j → C has already been constructed, we define
fj+1 : �j+1 → C by requiring

fj+1(F1+i ) = 1 + eiθ(F )

2
fj (F1) + 1 − eiθ(F )

2
fj (Fi),

fj+1(F0) = 1 + eiθ(F )

2
fj (F1) − 1 − eiθ(F )

2
fj (Fi)

for all combinatorial nuclear families F connecting �j to �j+1.

In other words, we require fj (F1), fj+1(F1+i ), fj (Fi), fj+1(F0) to form
the four points of a rectangle in C, with the long diagonals intersecting at
angle θ(F ). Note that this definition is well-defined thanks to the existence
and uniqueness of parents.

We define f : � → C to be the function formed by concatenating the in-
dividual functions fj : �j → C. The function f will be referred to as the
complete placement function.

A prototype embedding We present here a prototype for the embedding f :
� → Z

2 which we eventually use. More precisely, we present a specific initial
placement function f1, and choice of angle θ(F ) for each nuclear family,
which are a first step towards the eventual choices of f1 and θ(F )’s which
determine �.

Let R be a large integer, and let the initial placement function be

f1(z1, . . . , zN−1) := Rz1 . . . zN−1 ∈ {R, iR,−R,−iR}
for all (z1, . . . , zN−1) ∈ �1.

Set all the angles θ(F ) to equal π/2. Then one can show inductively that

fj (z1, . . . , zN−1) := Rz1 . . . zN−1

∈ {0, (1 + i)j−1R, i(1 + i)j−1R,−(1 + i)j−1R,−i(1 + i)j−1R}
for all (z1, . . . , zN−1) ∈ �j .
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Note that as the generations increase, an increasing majority of the points
in that generation will get mapped to zero by the placement function, but
an increasingly small minority will get mapped to larger and larger frequen-
cies. For the final generation �N , there is a single element (1 + i, . . . ,1 + i)

which is mapped to the very large frequency (1+ i)N R, whereas all the other
2N−1 − 1 frequencies are mapped to zero. Notice that in each combinato-
rial nuclear family F = {F0,F1,F1+i , Fi} connecting �j to �j+1, the two
parents F1 and Fi get mapped to frequencies of equal magnitude (indeed,
fj (Fi) = ifj (F1)), but of the two children, F0 and F1+i , one of the chil-
dren (the “under-achiever” F0) gets mapped to 0, whereas the other child (the
“over-achiever” F1+i) gets mapped to a frequency of magnitude

√
2 as large

as that of its parents. Our RF NLS solution will distribute mass evenly from
F1 and Fi to F0 and F1+i , but will distribute the energy from F1 and Fi

almost entirely to F1+i , thus sending the energy to increasingly high frequen-
cies. Indeed by simply counting the number of nonzero frequencies in each
generation of the prototype, one easily verifies that

∑
n∈f (�N−2)

|n|2s = 2s(N−3)+2R2s

and ∑
n∈f (�3)

|n|2s = 22s+N−3R2s

and so there is a norm explosion by a factor of 2(s−1)(N−5) in the prototype
family of frequencies.

Figure 7 contains a sketch of the prototype complete placement function’s
image in the case N = 5. (We emphasize that this function is not injective—
for example every generation after the first has several 4-tuples mapped to the
origin.)

Fig. 7 The prototype
embedding of frequencies in
the case N = 5
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The prototype embedding turns out not to be directly usable for us because
it is highly non-injective, and also contains a large number of unwanted rec-
tangles. But this can be fixed by a perturbation argument:

Theorem 4.1 (Construction of a good placement function) Let N ≥ 2, s > 1,
and let R be a sufficiently large integer (depending on N ). Then there exists
an initial placement function f1 : �1 → C and choices of angles θ(F ) for
each nuclear family F (and thus an associated complete placement function
f : � → C) with the following properties:

• (Nondegeneracy) The function f is injective.
• (Integrality) We have f (�) ⊂ Z[i].
• (Magnitude) We have C(N)−1R ≤ |f (x)| ≤ C(N)R for all x ∈ �.
• (Closure and Faithfulness) If x1, x2, x3 ∈ � are distinct elements of � are

such that f (x1), f (x2), f (x3) form the three corners of a right-angled tri-
angle, then x1, x2, x3 belong to a combinatorial nuclear family.

• (Norm explosion) We have

∑
n∈f (�N−2)

|n|2s >
1

2
2(s−1)(N−5)

∑
n∈f (�3)

|n|2s .

Providing this theorem is true, we see that the frequency set � := f (�),
with generations �j := f (�j ), obey all the required properties described in
Sect. 2 above. (See e.g. the statement of Proposition 2.1.)

Proof To prove this theorem, we begin by a number of reductions which al-
low us to remove several of the constraints required on the placement func-
tion.

First we remove the requirement that the construction work for R suffi-
ciently large, by observing that as soon as we obtain an example involving a
single R = R0, we also get examples for any integer multiple R = kR0 of
R0 simply by multiplying f1 (and hence f ) by k. Since R only appears in
the magnitude hypothesis, we also get the same claim for any R > R0 since
any such R is comparable up to a factor of two to an integer multiple of R.

Thus we only need to exhibit an example for a single R = R(N). But then
the magnitude hypothesis would follow from the weaker hypothesis

• (Non-zero) f (x) �= 0 for all x ∈ �

and we can now drop the magnitude hypothesis.
Next, we can weaken the integrality hypothesis f (�) ⊂ Z[i] to a rational-

ity hypothesis f (�) ⊂ Q[i], since by dilating f1 (and hence f ) by a suitable
large integer (the least common denominator of all the coefficients of f (�)).
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Now observe that in order for f (�) to lie in the complex rationals Q[i], it
would suffice (by an easy induction argument) for the initial placement func-
tion f1 to take values in Q[i], and for all the phases θ(F ) to be Pythagorean,
i.e. eiθ(F ) ∈ Q[i]. (A typical example of a Pythagorean phase is tan−1 3

5 .) So
we may replace the rationality hypothesis by the hypothesis that the initial
placement function is complex-rational and all the phases are Pythagorean.

However, the complex rationals Q[i] are dense in C, and the Pythagorean
phases are dense in R/2πZ (indeed they form an infinite subgroup of this
unit circle). Thus by a perturbation argument we may dispense with these
conditions altogether. Note that the remaining conditions required are all open
conditions, in that they are stable under sufficiently small perturbations of
the parameters. Thus any non-rational solution to the above problem can be
perturbed into a rational one.

We have now eliminated the integrality and magnitude hypotheses. We
now work on eliminating the non-zero, injectivity, and closure/faithfulness
hypotheses. The point is that in the parameter space (the space of initial place-
ment functions f1 and phases θ(F )), the set of solutions to the norm explosion
property is certainly an open set, so it is either empty or has positive measure.
So it suffices to show that the sets where each of the non-zero, injectivity, and
closure/faithfulness fail is a measure zero set, and thus they have no impact
as to whether a solution actually exists or not.

Let’s begin with the injectivity condition. We need to show that for each
distinct x, y ∈ �, that we have f (x) �= f (y) for almost every choice of pa-
rameters f1, θ . Without loss of generality we may take x ∈ �j and y ∈ �j ′
where j ≥ j ′. We induct on j . When j = 1 the claim is clear since in that
case f (x) = f1(x) and f (y) = f1(y), and since there are absolutely no con-
straints on f1 we see that f1(x) �= f1(y) for almost every choice of f1 (the
angles θ(F ) are not relevant in this case).

Now suppose j > 1. Since x ∈ �j , there is a unique combinatorial fam-
ily F := {x, x′,p,p′} where p,p′ ∈ �j−1 are the parents of x and x′ is the
sibling of x. By induction hypothesis, we have f (p) �= f (p′) for almost
every choice of parameters. Now note that f (x) lies on the circle with di-
ameter f (p), f (p′), with the location on this circle determined by the an-
gle θ(F ). This angle θ(F ) is a free parameter and will not influence the
value of f (y), unless y is equal to the sibling x′ of x. But in the latter case
f (y) = f (x′) will be diametrically opposite to f (x) and thus unequal to f (x)

(since f (p) �= f (p′)). In all other cases we see that for almost every choice
of θ(F ), f (x) will not be equal to f (y), simply because a randomly cho-
sen point on a circle will almost surely be unequal to any fixed point. This
establishes injectivity almost everywhere.

A similar argument establishes the non-zero property almost everywhere:
if x is in the first generation �1 then it is clear that f (x) = f1(x) �= 0 for
almost every f1, and for x in any later generation, f (x) again ranges freely
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on the circle generated by its two parents f (p), f (p′) (which are distinct
for almost every choice of parameters), determined by some angle parameter
θ(F ) and thus will be non-zero for almost all choices of θ(F ).

Now we establish closure and faithfulness. Suppose x ∈ �jx , y ∈ �jy , z ∈
�jz with jx ≥ jy ≥ jz are distinct and do not all belong to the same combi-
natorial nuclear family. We need to show that f (x), f (y), f (z) do not form a
right-angled triangle (with either f (x), f (y), or f (z) being the right angle)
for almost all choice of parameters.

We induct on jx . When jx = 1, we have f (x) = f1(x), f (y) = f1(y),
f (z) = f1(z) and since f1 is completely unconstrained it is clear that these
three points will not form a right-angled triangle for almost all choices of
parameters. Now we assume inductively that jx > 1 and that the claim has
already been proven for smaller values of jx .

As before, x belongs to a family F = {x, x′,p,p′} consisting of x, its sib-
ling, and its parents, ranges freely on the circle C with diameter f (p), f (p′)
generated by its two parents, with the position on this circle determined by
the angle θ(F ); recall that f (p) �= f (p′) for almost all choices of parame-
ters. This angle θ(F ) will not influence either of f (y) or f (z) unless y or z is
equal to the sibling x′, in which case f (x′) is the point diametrically opposite
to f (x). To proceed further, we next claim that the circle C contains no ele-
ments of �1 ∪ · · · ∪ �jx other than f (x), f (x′), f (p), f (p′). To see this for
the first jx − 1 generations �1 ∪ · · · ∪ �jx−1 follows from the induction hy-
pothesis, because if C contained a point f (u) from one of those generations
then f (p), f (p′), f (u) would be a right-angled triangle, contradicting the
induction hypothesis for almost all choices of parameters. To see the claim
for the last generation �jx , we note that any point f (v) from that generation
ranges on another circle C′ spanned by the parents q, q ′ of v; since f (q) and
f (q ′) do not lie on C we know that C′ is not co-incident to C, and so for
almost all choices of the angle parameter determining f (v) from f (q) and
f (q ′) we know that f (v) does not lie on C.

To summarize, we know that f (x) varies freely on the circle C as deter-
mined by the angle θ(F ), that f (x′) is diametrically opposite to f (x), that
f (p), f (p′) are also diametrically opposite points on C, and all other points
in �1 ∪ · · · ∪ �jx lie outside of C and are not affected by θ(F ) (for almost
all choices of parameters). Since {x, y, z} �⊂ F = {x, x′,p,p′} by hypothesis,
this shows that for almost all choices of θ(F ), f (x), f (y), f (z) do not form
a right-angled triangle.

From the preceding discussion we see that all we need to do now is estab-
lish a single example of parameters which exhibits the norm explosion prop-
erty. But this was already achieved by the prototype embedding described
above, and we are done. �
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Appendix: Cubic NLS on T
2 has no asymptotically linear solutions

The main result of this paper is the construction of solutions to cubic NLS on
the torus in which energy is transferred to higher frequencies—in particular
the higher Sobolev norms grow to any (finite) extent desired. Because of the
global well-posedness theory in Hs for this equation, and the fact that we’re
only describing the solution on a finite time interval, our main result does
hold for a non-empty open set of data in Hs , but it’s a small open set. In
other words, the construction is not generic (though it is conjectured that this
behavior is generic).

The motivation for this appendix is to establish rigorously that the explicit
single-mode solutions (which are phase rotations of the linear solutions) are
definitely not the generic behavior. This result is not surprising, and the aim
of this appendix is provide a rigorous proof of the statement, independent of
heuristics.

Consider H 1 solutions u : R × T
2 → C to the defocusing periodic NLS

−iut + �u = |u|2u (5.1)

on the torus T
2. We do not expect such solutions to scatter to a free solution

e−it�u+. Indeed, the explicit solutions to (5.1)

u(t, x) = Aeiκein·xei|n|2t ei|A|2t (5.2)

for A ≥ 0, κ ∈ R/2πZ, n ∈ Z
2 do not converge to a free solution, due to the

presence of the phase rotation ei|A|2t caused by the nonlinearity. One may still
hope that a solution to (5.1) scatters “modulo phase rotation”. However, the
following result shows that this is only the case for the explicit solution (5.2)
mentioned above.

Theorem 5.1 (No non-trivial scattering modulo phase rotation) Let u : R ×
T

2 → C be an H 1 solution to (5.1) which scatters modulo phases in H 1 in
the sense that there exists u+ ∈ H 1(T2) and a function θ : R → R/2πZ such
that

‖u(t) − eiθ(t)e−it�u+‖H 1(T2) → 0

as t → +∞. Then u is of the form (5.2) for some A ≥ 0, κ ∈ R/2πZ, n ∈ Z
2.

To prove this theorem, we first need some harmonic analysis lemmas.
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Lemma 5.1 (Compactness) For any u+ ∈ H 1(T2), the set {eiθ e−it�u+ : θ ∈
R/2πZ, t ∈ R} is precompact (i.e. totally bounded) in H 1.

Proof By taking Fourier transforms, we see that it suffices to show that the
set {eiθ eit |·|2 û+ : θ ∈ R/2πZ, t ∈ R} is precompact in l2(〈n〉2 dn). But by
monotone convergence, for every ε > 0 there exists R > 0 such that∑

n∈Z2:|n|≥R

〈n〉2|û+(n)|2 ≤ ε

from which we easily conclude that the set {eiθ eit |·|2 û+ : θ ∈ R/2πZ, t ∈ R}
is covered by finitely many balls of radius O(ε), and the claim follows. �

Lemma 5.2 (Diamagnetic inequality) If u ∈ H 1(T2), then |u| ∈ H 1(T2) and
‖|u|‖H 1(T2) ≤ ‖u‖H 1(T2).

Proof By a limiting argument (and Fatou’s lemma) it suffices to verify this
when u is smooth. Observe that for any ε > 0 we have

2|
√

ε2 + |u|2∇
√

ε2 + |u|2| = |∇(ε2 + |u|2)|
= 2|Re(u∇u)|
≤ 2|u||∇u|

and hence

|∇
√

ε2 + |u|2| ≤ |∇u|.
(This can also be seen by observing that the map u �→ √

ε2 + |u|2 is a con-
traction.) Taking distributional limits as ε → 0 we obtain the claim. �

Lemma 5.3 (H 1 has no step functions) Let u ∈ H 1(T2) be such that u(x)

takes on at most two values. Then u is constant.

Proof Without loss of generality we may assume that u takes on the values
0 and 1 only, thus u2 = u. Differentiating this we obtain 2u∇u = ∇u, thus
(1 − 2u)∇u = 0. But since u2 = u, (1 − 2u)2 = 1, and so ∇u = 0, and so u

is constant as required. (Note that all these computations can be justified in a
distributional sense via Sobolev embedding since u lies in both H 1 and L∞,
and thus lies in Lp(T2) for every 1 ≤ p ≤ ∞.) �

Proof of Theorem 5.1 Let u,u+, θ be as above. We may of course assume
that u has non-zero mass. From Lemma 5.1 (and the continuity in H 1 of the
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solution t �→ u(t)) we see that the set {u(t) : 0 ≤ t ≤ +∞} is precompact
in H 1. Thus we can find a sequence tm → ∞ such that u(tm) converges in
H 1 to some limit v0. Applying Lemma 5.1 and passing to a subsequence, we
can also assume that e−itm�u+ converges in H 1 to a limit v+. Since u has
non-zero mass, we see on taking limits that v+ also has non-zero mass.

Now let v(m) : R × T
2 → C be the time-translated solutions v(m)(t) :=

u(t + tm), thus v(m)(0) converges in H 1 to v0. Let v : R × T
2 → C be the

solution to NLS with initial data v(0) = v0. By the H 1 local well-posedness
theory we conclude that v(m) converges uniformly in H 1 to v on every com-
pact time interval [−T ,T ]. On the other hand, by hypothesis, for every t we
have

‖v(m)(t) − eiθ(t+tm)e−i(t+tm)�u+‖H 1 → 0

as m → ∞. Since e−itm�u+ converges to v+, we conclude (since e−it� is
unitary on H 1) that

‖v(m)(t) − eiθ(t+tm)e−it�v+‖H 1 → 0.

On taking limits, we conclude that

v(t, x) = eiα(t)e−it�v+(x) (5.3)

for some α(t) ∈ R/2πZ. In particular, since v+ has non-zero mass, we have
the identity

eiα(t) = 1

‖v+‖2
L2

∫
T2

v(t)e−it�v+ dx.

From (5.1) and Sobolev embedding we see that v(t) is continuously differen-
tiable in H−1(T2), and so from the above identity we see that α is continu-
ously differentiable in time.

Now we apply (−i∂t + �) to both sides of (5.3). Using the NLS equation,
we conclude that

|v(t, x)|2v(t, x) = α′(t)eiα(t)e−it�v+(x)

and thus by (5.3) we have

|v(t, x)|2 = α′(t)

whenever v(t, x) �= 0. Thus we see that for each time t , |v(t, x)| takes on
at most two values. By Lemmas 5.2 and 5.3, we conclude that |v(t, x)| is
constant in x; by (5.3), we see that the same is true for |e−it�v+|. By mass
conservation we conclude that |e−it�v+| is also constant in time. Since v+
has non-zero mass, we can thus write

e−it�v+ = Aφ
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almost everywhere for some function φ : R × T
2 → S1 and some constant

amplitude A > 0. Since v+ was in H 1, we see that φ(t) is in H 1 also for
every t . Differentiating the identity φφ = 1, we see that ∂jφφ is imaginary
almost everywhere for j = 1,2, thus ∂jφ(t, x) is an imaginary multiple of
φ(t, x) for almost every (t, x). This implies that the imaginary vector field
∇φφ is curl-free (and also in L2 uniformly in t), and thus by Hodge theory
(and periodic extension from T

2 to R
2) we may write ∇φφ = i∇ω for some

ω : R × R
2 → R which is locally in H 1 uniformly in t . This implies that

∇(φe−iω) = 0; thus by adjusting ω by a constant independent of space we
may assume that φ = eiω, thus

e−it�v+ = Aeiω(t,x).

Applying (−i∂t + �) to both sides, we conclude that

0 = Ae−iω(ωt + i�ω − |∇ω|2)
in the sense of distributions. Since A is non-zero, we conclude that

ωt + i�ω − |∇ω|2 = 0.

Taking imaginary parts we conclude that �ω = 0, and in particular at time
t = 0 ω is a harmonic function from R

2 to R. On the other hand, from the
identity ∇φφ = i∇ω we know that ∇ω is periodic, so ω has at most linear
growth. Thus (by Liouville’s theorem) ω must in fact be linear. Descending
back to T

2, we conclude that eiω(0,x) = ei(n·x+β) for some n ∈ Z
2 and β ∈

R/2πZ. Thus we have

v+(x) = Aeiβein·x.

Since eitm�u+ converges to v+, e−itm�v+ converges to u+. But e−itm�v+ is
a multiple of Aein·x by a phase; thus we have

u+(x) = Aeiγ ein·x.

Applying phase rotation and Galilean symmetry (noting that the conclusion of
the theorem is invariant under these symmetries) we may assume γ = n = 0.
Thus u+ = A, and we have

‖u(t) − eiθ(t)e−it�A‖H 1(T2) → 0 as t → ∞.

From mass and energy conservation we conclude∫
T2

|u(t, x)|2 dx = A2|T2|
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and ∫
T2

1

2
|∇u(t, x)|2 + 1

4
|u(t, x)|4 dx = 1

4
A4|T2|.

On the other hand, from Hölder’s inequality we have

∫
T2

1

4
|u(t, x)|4 dx ≥ 1

4|T2|
(∫

T2
|u(t, x)|2 dx

)2

= 1

4
A4|T2|.

Thus we must have ∫
T2

1

2
|∇u(t, x)|2 dx = 0,

thus u is constant in space, and thus is of the form u(t, x) = Aeiκ(t). Applying
(5.1) we see that u(t, x) = Aeiκ(0)ei|A|2t , and the claim follows. �
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