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Chapter 1

Introduction

Let R""! = R™ x R with coordinates (z!,...,2",t). Let

o 0
P—P(x,t7ar,8t)

be a k-th order linear partial differential operator. Suppose that we want to
solve the partial differential equation

Pu=0

with initial conditions
81’
u(z,0) = §p(z), @u(xﬂ) =0, 1=1,...,k—1,
where dg is the Dirac delta function.
Let p be a C° function of x of compact support which is identically one
near the origin. We can write
1 ,
_ €

do(z) = Wﬂ(x)/n e dg.
Let us introduce polar coordinates in £ space:

f=w-r fwl=1 r=[¢l

so we can rewrite the above expression as

1 .
— i(zw)r, n—1
do(x) G p(x) /R+ /S"i1 e " drdw

where dw is the measure on the unit sphere S™1.

Passing the differential operator under the integrals shows that we are in-
terested in solving the partial differential equation Pu = 0 with the initial
conditions

u(z,0) = p(:c)ei(J”"")Trnfl7 %u(x,O) =0, i=1,...,k—1.

13
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1.1 The problem.

More generally, set
r=h"t

and let
P € C(R™).

We look for solutions of the partial differential equation with initial conditions

e 9
Pu(z,t) =0, wu(z,0)= p(m)elw(ﬁ)h_é, @u(x,O) =0, i=1,....,k—1
(1.1)
Here ¢ can be any integer; in the preceding example we had £ =1 — n.
1.2 The eikonal equation.
Look for solutions of (1.1) of the form
u(z,t) = a(z,t, h)e'®@D/h (1.2)
where
a(z,t,h) =h"> " ai(x,t)h'. (1.3)

=0

1.2.1 The principal symbol.
Define the principal symbol H(z,t,&,7) of the differential operator P by

Sz EttT cx.EttT
3

Rre "N PR T = H(w,t,€,7) + O(h). (1.4)

We think of H as a function on T*R"t!,
If we apply P to u(z,t) = a(z, t, h)e®@H/n, then the term of degree Bk is
obtained by applying all the differentiations to e*?(*)/% In other words,

. , d¢ 0
hFe= /P pa(x, t)e?" = H ( .t —¢, 9¢ a(z,t) + O(h). (1.5)
ox’ Ot
So as a first step we must solve the first order non-linear partial differential
equation
¢ 0¢
H t,—,— | =0 1.6
(2t 52 57 (1)

for ¢. Equation (1.6) is known as the eikonal equation and a solution ¢ to
(1.6) is called an eikonal . The Greek word eikona eckwra means image.
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1.2.2 Hyperbolicity.
For all (z,t,£) the function
T H(x,t,&71)

is a polynomial of degree (at most) k in 7. We say that P is hyperbolic if this
polynomial has k distinct real roots

T = Ti(x, 1, 6).

These are then smooth functions of (z,t,&).
We assume from now on that P is hyperbolic. For each i =1,...,k let

¥; C T*R™*!
be defined by
2 = {(I707657>|§:dw¢7 TZTZ'(.%‘,O,E)} (1.7)

where 1) is the function occurring in the initial conditions in (1.1). The classical
method for solving (1.6) is to reduce it to solving a system of ordinary differential
equations with initial conditions given by (1.7). We recall the method:

1.2.3 The canonical one form on the cotangent bundle.

If X is a differentiable manifold, then its cotangent bundle T* X carries a canon-
ical one form o = ax defined as follows: Let

Tm:T*X - X

be the projection sending any covector p € T X to its base point z. If v €
T,(T*X) is a tangent vector to T*X at p, then

dmpv
is a tangent vector to X at x. In other words, dmyv € T, X. But pe Ty X is a
linear function on 7, X, and so we can evaluate p on dm,v. The canonical linear
differential form « is defined by

(ap,v) == (p,dmpv) i veT,(T"X). (1.8)

For example, if our manifold is R"*! as above, so that we have coordinates
(x,t,&,7) on T*R™! the canonical one form is given in these coordinates by

a=E-dr+7dt = & dxt + - E,da™ + Tdt. (1.9)
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1.2.4 The canonical two form on the cotangent bundle.

This is defined as
wx = —dax. (1.10)

Let ¢',...,q" be local coordinates on X. Then dq',...,dq" are differential
forms which give a basis of Ty X at each z in the coordinate neighborhood U.
In other words, the most general element of 7 X can be written as p;(dg'), +
o+ pn(dg™)s. Thus ¢, ...,q¢" p1,...,pn are local coordinates on

U C T*X.
In terms of these coordinates the canonical one-form is given by
a=p-dg=pidg" + -+ padq”
Hence the canonical two-form has the local expression
w=dgA-dp=dg* Ndp, + --- +dq" A dp,. (1.11)

The form w is closed and is of maximal rank, i.e., w defines an isomorphism
between the tangent space and the cotangent space at every point of T*X.

1.2.5 Symplectic manifolds.

A two form which is closed and is of maximal rank is called symplectic. A
manifold M equipped with a symplectic form is called a symplectic manifold.
We shall study some of the basic geometry of symplectic manifolds in Chapter
2. But here are some elementary notions which follow directly from the def-
initions: A diffeomorphism f : M — M is called a symplectomorphism if
f*w = w. More generally if (M,w) and (M’,w’) are symplectic manifolds then
a diffeomorphism
f:M— M

is called a symplectomorphism if
ffu =w.

If v is a vector field on M, then the general formula for the Lie derivative of a
differential form Q with respect to v is given by

D, =i(v)dQ + di(v)2.

This is known as Weil’s identity. See (14.2) in Chapter 14 below. If we take 2
to be a symplectic form w, so that dw = 0, this becomes

Dyw = di(v)w.

So the flow t — exp tv generated by v consists (locally) of symplectomorphisms
if and only if
di(v)w = 0.



1.2. THE EIKONAL EQUATION. 17

1.2.6 Hamiltonian vector fields.

In particular, if H is a function on a symplectic manifold M, then the Hamil-
tonian vector field vy associated to H and defined by

i(vg)w =dH (1.12)
satisfies
(exptvy)'w = w.
Also
Dy, H =i(vg)dH =i(vy)i(vg)w = w(vg,vg) = 0.
Thus

(exptvy)*H = H. (1.13)

So the flow exptvy preserves the level sets of H. In particular, it carries the
zero level set - the set H = 0 - into itself.

1.2.7 Isotropic submanifolds.

A submanifold Y of a symplectic manifold is called isotropic if the restriction
of the symplectic form w to Y is zero. So if

ty: Y - M
denotes the injection of Y as a submanifold of M, then the condition for Y to
be isotropic is
tyw =10
where w is the symplectic form of M.

For example, consider the submanifold %; of T*(R"*!) defined by (1.7).
According to (1.9), the restriction of apn+1 to 3; is given by

oY o -
since t = 0 on X;. So
1y, Wrntt = —dzdy) =0

and hence ¥; is isotropic.

Let H be a smooth function on a symplectic manifold M and let Y be an
isotropic submanifold of M contained in a level set of H. For example, suppose
that

Hy =0. (1.14)

Consider the submanifold of M swept out by Y under the flow exptvy. More
precisely suppose that

e vy is transverse to Y in the sense that for every y € Y, the tangent vector
v (y) does not belong to T,Y and
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e there exists an open interval I about 0 in R such that exp tvgy (y) is defined
forallteITand y €Y.

We then get a map
JrY xI =M, j(y,t):=exptog(y)

which allows us to realize Y x I as a submanifold Z of M. The tangent space
to Z at a point (y,t) is spanned by

(exptvy).TY, and wvg(exptvgy)
and so the dimension of Z is dimY + 1.

Proposition 1. With the above notation and hypotheses, Z 1is an isotropic
submanifold of M.

Proof. We need to check that the form w vanishes when evaluated on
1. two vectors belonging to (exptvy).TY, and
2. vg(exptvmy) and a vector belonging to (exptvy).TY,.

For the first case observe that if wy,ws € T)Y then

w((exptvy)«wi, (exptup)wa) = (exptvy ) *w(wy, we) =0

since
(exptvg)'w =w

and Y is isotropic. For the second case observe that i(vg)w = dH and so for
w € T, Y we have

w(vg (exptvgy), (exptog).w) = dH(w) =0

since H is constant on Y. O

If we consider the function H arising as the symbol of a hyperbolic equation,
i.e. the function H given by (1.4), then H is a homogeneous polynomial in &
and 7 of the form b(z,t,&) [[,(7 — 7;), with b # 0 so

of #0 along 3.
or

But the coefficient of /0t in vy is 0H/0r. Now t = 0 along X; so vy is
transverse to %;. Our transversality condition is satisfied. We can arrange that
the second of our conditions, the existence of solutions for an interval I can be
satisfied locally. (In fact, suitable compactness conditions that are frequently
satisfied will guarantee the existence of global solutions.)

Thus, at least locally, the submanifold of T*R"*! swept out from %; by
exptvy is an n + 1 dimensional isotropic submanifold.
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1.2.8 Lagrangian submanifolds.

A submanifold of a symplectic manifold which is isotropic and whose dimension
is one half the dimension of M is called Lagrangian. We shall study Lagrangian
submanifolds in detail in Chapter 2. Here we shall show how they are related
to our problem of solving the eikonal equation (1.6).

The submanifold 3; of T*R™*! is isotropic and of dimension n. It is transver-
sal to vy. Therefore the submanifold A; swept out by ¥; under exptvy is
Lagrangian. Also, near ¢ = 0 the projection

7 TR — R

when restricted to A; is (locally) a diffeomorphism. It is (locally) horizontal
in the sense of the next section.

1.2.9 Lagrangian submanifolds of the cotangent bundle.

To say that a submanifold A C T* X is Lagrangian means that A has the same
dimension as X and that the restriction to A of the canonical one form ax is
closed.

Suppose that Z is a submanifold of T*X and that the restriction of 7 :
T*X — X to Z is a diffeomorphism. This means that Z is the image of a
section

s: X >TX.

Giving such a section is the same as assigning a covector at each point of X, in
other words it is a linear differential form. For the purposes of the discussion we
temporarily introduce a redundant notation and call the section s by the name
Bs when we want to think of it as a linear differential form. We claim that

s*ax = fBs.
Indeed, if w € T, X then dmy(,) o ds,(w) = w and hence
s*ax (w) = ((ax)s(z); dsz(w)) =

= (s(x), dmy(zydse(w)) = (s(x), w) = Bs(2)(w).
Thus the submanifold Z is Lagrangian if and only if dBs = 0. Let us suppose
that X is connected and simply connected. Then dB8 = 0 implies that § = d¢
where ¢ is determined up to an additive constant.
With some slight abuse of language, let us call a Lagrangian submanifold A
of T* X horizontal if the restriction of 7 : T*X — X to A is a diffeomorphism.
We have proved

Proposition 2. Suppose that X is connected and simply connected. Then every
horizontal Lagrangian submanifold of T*X is given by a section vy : X — T*X
where vy is of the form

Yo (x) = do(x)

where ¢ is a smooth function determined up to an additive constant.
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1.2.10 Local solution of the eikonal equation.

We have now found a local solution of the eikonal equation! Starting with
the initial conditions ¥; given by (1.7) at ¢ = 0, we obtain the Lagrangian
submanifold A;. Locally (in z and in ¢ near zero) the manifold A; is given as
the image of 74, for some function ¢;. The fact that A; is contained in the set
H = 0 then implies that ¢; is a solution of (1.6).

1.2.11 Caustics.

What can go wrong globally? One problem that might arise is with integrating
the vector field vyg. As is well known, the existence theorem for non-linear
ordinary differential equations is only local - solutions might “blow up” in a
finite interval of time. In many applications this is not a problem because of
compactness or boundedness conditions. A more serious problem - one which
will be a major concern of this book - is the possibility that after some time the
Lagrangian manifold is no longer horizontal.

If A C T*X is a Lagrangian submanifold, we say that a point m € A is a
caustic if

drp T = T, X. x=m7(m)

is not surjective. A key ingredient in what we will need to do is to describe how
to choose convenient parametrizations of Lagrangian manifolds near caustics.
The first person to deal with this problem (through the introduction of so-called
“angle characteristics”) was Hamilton (1805-1865) in a paper he communicated
to Dr. Brinkley in 1823, by whom, under the title “Caustics” it was presented
in 1824 to the Royal Irish Academy.

We shall deal with caustics in a more general manner, after we have intro-
duced some categorical language.

1.3 The transport equations.

Let us return to our project of looking for solutions of the form (1.2) to the
partial differential equation and initial conditions (1.1). Our first step was to
find the Lagrangian manifold A = A, which gave us, locally, a solution of the
eikonal equation (1.6). This determines the “phase function” ¢ up to an overall
additive constant, and also guarantees that no matter what a;’s enter into the
expression for u given by (1.2) and (1.3), we have

Pu = O(h~F=t1,

The next step is obviously to try to choose ag in (1.3) such that
P (a()6i¢($’t)/h> = O(h_k+2).

In other words, we want to choose ag so that there are no terms of order A~ F+1
in P (aoe’¢(x’t)/h). Such a term can arise from three sources:
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1. We can take the terms of degree k—1 in P and apply all the differentiations
to e*®/" with none to a or to ¢. We will obtain an expression C' similar
to the principal symbol but using the operator ) obtained from P by
eliminating all terms of degree k. This expression C' will then multiply ag.

2. We can take the terms of degree k in P, apply all but one differentiation
to e’/ and the remaining differentiation to a partial derivative of ¢. The
resulting expression B will involve the second partial derivatives of ¢. This
expression will also multiply aqg.

3. We can take the terms of degree k in P, apply all but one differentiation
to e’®/" and the remaining differentiation to ag. So we get a first order

differential operator
n+1
> g
" ¢ 8931
i=1

applied to ag. In the above formula we have set ¢ = x,,41 so as to write
the differential operator in more symmetric form.

So the coefficient of A= **1 in P (aoeid’(w’t)/h) is
(Rayg) e¢@D/h

where R is the first order differential operator

0
R= A,— +B+C.
> Aig-+B+
We will derive the explicit expressions for the A;, B and C below.
The strategy is then to look for solutions of the first order homogenous linear

partial differential equation
Rao =0.

This is known as the first order transport equation.
Having found ag, we next look for a; so that

P ((ao + alh)ei¢/ﬁ) = O(h™FF3).

From the above discussion it is clear that this amounts to solving an inhomoge-
neous linear partial differential equation of the form

Ra1 == bo

where by is the coefficient of A=*+2¢'%/" in P(aoe’*/") and where R is the same
operator as above. Assuming that we can solve all these equations, we see that
we have a recursive procedure involving the operator R for solving (1.1) to all
orders, at least locally - up until we hit a caustic!

We will find that when we regard P as acting on %—densities (rather than
on functions) then the operator R has an invariant (and beautiful) expression
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as a differential operator acting on %—densities on A, see equation (1.21) below.
In fact, the differentiation part of the differential operator will be given by the
vector field vy which we know to be tangent to A. The differential operator
on A will be defined even at caustics. This fact will be central in our study of
global asymptotic solutions of hyperbolic equations.

In the next section we shall assume only the most elementary facts about
%—densities - the fact that the product of two %—densities is a density and hence
can be integrated if this product has compact support. Also that the concept
of the Lie derivative of a %—density with respect to a vector field makes sense.
If the reader is unfamiliar with these facts they can be found with many more

details in Chapter 6.

1.3.1 A formula for the Lie derivative of a %-density.

We want to consider the following situation: H is a function on 7*X and
A is a Lagrangian submanifold of 7*X on which H = 0. This implies that
the corresponding Hamiltonian vector field is tangent to A. Indeed, for any
w € T,A, z € A we have

wx (v, w) =dH(w) =0

since H is constant on A. Since A is Lagrangian, this implies that v (2) € T,(A).
If 7 is a smooth %—density on A, we can consider its Lie derivative with
respect to the vector field vy restricted to A. We want an explicit formula for
this Lie derivative in terms of local coordinates on X on a neighborhood over
which A is horizontal.
Let
t:AN—>T"X

denote the embedding of A as submanifold of X so we are assuming that

mor:A— X

is a diffeomorphism. (We have replaced X by the appropriate neighborhood
over which A is horizontal and on which we have coordinates z!,...,2™.) We
let dzz denote the standard %-density relative to these coordinates. Let a be a
function on X, so that

T:=(mou)* (adx%)

is a %—density on A, and the most general %—density on A can be written in
this form. Our goal in this section is to compute the Lie derivative D, 7 and
express it in a similar form. We will prove:

Proposition 3. If A = Ay = v4(X) then

Dyya(mod)” (adz%) =b(mror)* (d;ﬁ)
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where

0’H  0°%¢ *
b=Dy,a((mot)*a 23&3@- (%:@xﬂ 23&89:1 ((mot)*a).
(1.15)
Proof. Since D,(f7) = (D, f)7 + fD,7 for any vector field v, function f

and any f—densmy 7, it suffices to prove (1.15) for the case the a = 1 in which
case the first term disappears. By Leibnitz’s rule,

Dyy(mor)” (dl‘%) = %C(ﬂ' ou)* (dgg%)

where
Dy, (mo)*|dzx| = c(m o 1)*|dx|.

Here we are computing the Lie derivative of the density (7o ¢)*|dz|, but we get
the same function ¢ if we compute the Lie derivative of the m-form

Dy (mou)*(dzt A+ Adx™) = ¢(m o 1)*(dzt A -+ A da™).
Now m*(dz! A -+ A dx™) is a well defined m-form on T*X and
Dyyia(mod)*(da' A Ada™) = "Dy, (da' A -+ Ada™).
We may write dz’ instead of 7*dx? with no risk of confusion and we get
D, (dz' A Adx™) = del A ANd(i(vg)dad) A+ A de™

H
del/\ d%/\ A da™
; J

Zafjaa:ﬂdx A Ada™ +

2H
dzt A - A ANdxe™.
Z " oe,06, "

We must apply ¢* which means that we must substitute d§; = d (%) into the
last expression. We get

PH 9% O*H
€= z; D608, 00T Z 06,0

proving (1.15). O
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1.3.2 The total symbol, locally.

Let U be an open subset of R™ and z, ...z, the standard coordinates. We
will let D; denote the differential operator

1909 1 0
7 zaxj B \/—laxj'
For any multi-index o = (a1, ..., ;) where the a; are non-negative integers,
we let
D® := D7 ... Dpm
and

la] == a1+ -+ am-

So the most general k-th order linear differential operator P can be written as

P=P(z,D)= Y as(x)D"

| <k
The total symbol of P is defined as
e "R Pe'h = Z R op,(x,€)
§=0

so that
pj(x,§) = Z aq(z)E™. (1.16)

lee|=4

So pg is exactly the principal symbol as defined in (1.4).
Since we will be dealing with operators of varying orders, we will denote the
principal symbol of P by

o(P).

We should emphasize that the definition of the total symbol is heavily coor-
dinate dependent: If we make a non-linear change of coordinates, the expression
for the total symbol in the new coordinates will not look like the expression in
the old coordinates. However the principal symbol does have an invariant ex-
pression as a function on the cotangent bundle which is a polynomial in the
fiber variables.

1.3.3 The transpose of P.

We continue our study of linear differential operators on an open subset U C R™.
If f and g are two smooth functions of compact support on U then

/U (Pf)gda = /U /P gdz
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where, by integration by parts,

Plg=> (-1)*ID*(aag).

(Notice that in this definition, following convention, we are using g and not g
in the definition of P*.) Now

Da(aag) = aoz])ag+

where the --- denote terms with fewer differentiations in g. In particular, the
principal symbol of P! is

Pi(x,€) = (=1)*pi(, ). (1.17)

Hence the operator

Q= %(P — (-1)*PY) (1.18)

is of order k — 1 The sub-principal symbol is defined as the principal symbol
of @ (considered as an operator of degree (k — 1)). So

osup(P) == 0(Q)

where @ is given by (1.18).

1.3.4 The formula for the sub-principal symbol.
We claim that

82
5.0 "

Usub(P)(x7§) = pk:—l(xag) + g Z $,§) (119)

Proof. If py(z,£) =0, i.e. if P is actually an operator of degree k — 1, then
it follows from (1.17) (applied to k — 1) and (1.18) that the principal symbol of
Q is pr—1 which is the first term on the right in (1.19). So it suffices to prove
(1.19) for operators which are strictly of order k. By linearity, it suffices to
prove (1.19) for operators of the form

aq(x)D.

By polarization it suffices to prove (1.19) for operators of the form
k
a(x)D¥, D:chDj, ¢ €R
j=1

and then, by making a linear change of coordinates, for an operator of the form

a(x)D}.
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For this operator
By Leibnitz’s rule,
P'f = (1)"Di(af)
~ 0r Y (4) plant s

J

= (~1)* <Df+ <88;1)Dk Lfy.. > 50

Q = S(P-(-1P)
_ ﬁ 94 p-1y

and therefore

since py, does not depend on &; for j > 1, in this case. O
1.3.5 The local expression for the transport operator R.
We claim that

hEe= /0 P(ue'®/My = pr(x, dp)u + hRu + - - -

where R is the first order differential operator

Ru =
Opk 82pk 0%
zj: aigj(xad(ﬁ)Dju—’_ 2\/7 Z 8&8@ z,d¢) O0x;0x; +pk1($,d¢)] !

(1.20)
Proof. The term coming from pi_1 is clearly the result of applying

Z aaD“.

|a|=k—1
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So we only need to deal with a homogeneous operator of order k. Since the
coefficients a, are not going to make any difference in this formula, we need
only prove it for the differential operator

P(z,D) = D*

which we will do by induction on |«f.
For |a| =1 we have an operator of the form D; and Leibnitz’s rule gives

; ; 0
he /M D (ue/h) = a—(bu + hDju
L

which is exactly (1.20) as p1(§) = &;, and so the second and third terms in (1.20)
do not occur.
Suppose we have verified (1.20) for D* and we want to check it for

D,D* = D"
So

plal+1g-i¢/h (DrDa(uei¢/h)) = he /0D, [(dp)ue®/" + h(Rou)e'®/"] + - -

where R,, denotes the operator in (1.20) corresponding to D®. A term involving
the zero’th power of i can only come from applying the D, to the exponential
in the first expression and this will yield

(d¢)a+5TU

which pjo)41(dp)u as desired. In applying D, to the second term in the square
brackets and multiplying by e ~"/" we get

9¢

2
WDy (Rou) + g

Rou

and we ignore the first term as we are ignoring all powers of /i higher than the
first. So all have to do is collect coefficients:

‘We have
a _ « 1 a—9081 82¢ a—06m 82¢
Dy ((d4")u) = (d6)* Drut—= [m(d@ Goroa, T emde) T
Also 96
T%Rau =

s, 1 Ny 9%¢
Zai(d¢) bt Dyu+ W leai(aj — 85)(dgp) 000 Sror.
ij v
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The coefficient of Dju, j #ris
;i (dg) @0 =)
as desired. The coefficient of D,u is
(d)* + ar(dd)* = (o + 1)(dg) >+~

as desired.
Let us now check the coefficient of

8328(23_. If i # r and j # r then the

desired result is immediate.
If j = r, there are two sub-cases to consider: 1) j=7r,j #iand2)i=j=r.

If j = r, j # i remember that the sum in R, is over all i and j, so the
¢

coefficient of ~~—2— in
8ri6zj

v—=1 09 R, u
ox,

is

1 (aiozj + ajozi) (d(b)a_éi = @y (d¢)a_6i

2
to which we add
oy (dp)* "
to get
aioy +1)(dg)* % = (a + 6,:)i(a + 6,);(dp)* %
as desired.

If i = j = r then the coefficient of (8%2732 in

ﬁa¢Ru

ox, ©
is
1 a—20;
Sai(ai —1)(dg)*™™
to which we add
o (dg)
giving
1
S0l +1)(do)* ™"

as desired.
This completes the proof of (1.20).
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1.3.6 Putting it together locally.

We have the following three formulas, some of them rewritten with H instead
of pi so as to conform with our earlier notation: The formula for the transport
operator R given by (1.20):

0%
Z agj (=, d¢)Dja+ zrz agzagj (= 4) pet; T P12 00) | @

and the formula for the Lie derivative with respect to vy of the pull back
(70 1)*(adx?) given by (m o) * bdz? where b is

OH
zj: ag; (& 49) Z aglagj xzaxf Z D¢, axz

This is equation (1.15). Our third formula is the formula for the sub-principal
symbol, equation (1.19), which says that

2
Usub( )(l’ f)a— Pk— 1(1’ §)+§Z o H

As first order partial differential operators on a, if we multiply the first expres-
sion above by v/—1 we get the second plus y/—1 times the third! So we can
write the transport operator as

(0 0)*[(Ra)dz?] = % [Dy,, + i0sup(P)(z,dd)] (7 0 1)*(adz?). (1.21)

The operator inside the brackets on the right hand side of this equation is a
perfectly good differential operator on %—densities on A. We thus have two
questions to answer: Does this differential operator have invariant significance
when A is horizontal - but in terms of a general coordinate transformation?
Since the first term in the brackets comes from H and the symplectic form on
the cotangent bundle, our question is one of attaching some invariant significance
to the sub-principal symbol. We will deal briefly with this question in the next
section and at more length in Chapter 6.

The second question is how to deal with the whole method - the eikonal
equation, the transport equations, the meaning of the series in & etc. when we
pass through a caustic. The answer to this question will occupy us for the whole
book.

1.3.7 Differential operators on manifolds.
Differential operators on functions.

Let X be an m-dimensional manifold. An operator

P: C=(X) = C%(X)
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is called a differential operator of order k if, for every coordinate patch (U, x1, ..., &)
the restriction of P to C§°(U) is of the form

P=Y"a.D" aneCU).

la| <k

As mentioned above, the total symbol of P is no longer well defined, but the
principal symbol is well defined as a function on T*X. Indeed, it is defined as
in Section 1.2.1: The value of the principal symbol H at a point (z,d¢(z)) is
determined by

H(z, do(x))u(x) = e~ % (P(ue'®)(2) + O(h).

What about the transpose and the sub-principal symbol?

Differential operators on sections of vector bundles.

Let E — X and FF — X be vector bundles. Let F be of dimension p and
F be of dimension q. We can find open covers of X by coordinate patches
(U,x1,...,2y) over which E and F are trivial. So we can find smooth sections
T1,...,7p of E such that every smooth section of E over U can be written as

flrl _|_ cee fp',"p

where the f; are smooth functions on U and smooth sections si,...,s, of F'
such that every smooth section of F' over U can be written as

g181 + -+ 9qSq
over U where the g; are smooth functions. An operator
P: C*(X,E) > C*(X,F)
is called a differential operator of order k if, for every such U the restriction of

P to smooth sections of compact support supported in U is given by

q9 P

P(firi 4 forp) =) > Pifis

j=1i=1

where the P;; are differential operators of order k.

In particular if £ and F are line bundles so that p = ¢ = 1 it makes sense
to talk of differential operators of order k£ from smooth sections of E to smooth
sections of F. In a local coordinate system with trivializations r of ¥ and s of
F' a differential operator locally is given by

fr— (Pf)s.

If E = F and r = s it is easy to check that the principal symbol of P is indepen-
dent of the trivialization. (More generally the matrix of principal symbols in the
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vector bundle case is well defined up to appropriate pre and post multiplication
by change of bases matrices, i.e. is well defined as a section of Hom(F, F') pulled
up to the cotangent bundle. See Chaper II of [?] for the general discussion.)
In particular it makes sense to talk about a differential operator of degree k
on the space of smooth %—densities and the principal symbol of such an operator.

The transpose and sub-principal symbol of a differential operator on
3-densities.

If 4 and v are %—densities on a manifold X, their product p - v is a density
(of order one). If this product has compact support, for example if p or v has
compact support, then the integral
firs
X

is well defined. See Chapter 6 for details. So if P is a differential operator of
degree k on %—densities, its transpose P? is defined via

| ewv= [ wepw)

for all i and v one of which has compact support. Locally, in terms of a coordi-
nate neighborhood (U, 21, ..., 2.m), every %—density can be written as fdx% and
then the local expression for P? is given as in Section 1.3.3. We then define the
operator () as in equation (1.18) and the sub-principal symbol as the principal
symbol of @ as an operator of degree k — 1 just as in Section 1.3.3.

We have now answered our first question - that of giving a coordinate-free
interpretation to the transport equation: Equation (1.21) makes good invariant
sense if we agree that our differential operator is acting on %—densities rather
than functions.

1.4 Semi-classical differential operators.

Until now, we have been considering asymptotic solutions to (hyperbolic) partial
differential equations. The parameter h entered into the (approximate) solution,
but was not part of the problem. In physics, i is a constant which enters
into the formulation of the problem. This is most clearly seen in the study of
Schrédinger’s equation.

1.4.1 Schrodinger’s equation and Weyl’s law.

Consider the Schrodinger operator in n-dimensions:

0? 0?
: _K2 e Vv
P(h).uw(h(axijL +8$%)+ )u
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In physics & is a constant closely related to Planck’s constant. But we want to
think of & as a small parameter. Weyl’s law says that, under appropriate growth
hypotheses on V', the operators P(h) have discrete spectrum (cf. Chapter 13,
especially Section ?? ) and that for any pair of real numbers a < b the number
of eigenvalues E(h) of P(h) between a and b can estimated by a certain volume
in phase space:
#{E(h) : a < E(h) < b}
1
= iy Vol (@ < 1P + V(@) <) +o(1)]. (1.22)
Physicists know Weyl’s law as the “formula for the density of states”.
We will give a proof of (1.22) in Chapter 9. For the moment, let us do two

special cases where we can compute the spectrum explicitly, and so verify Weyl’s
law.

1.4.2 The harmonic oscillator.

Here V is assumed to be a positive definite quadratic function of . The following
exposition is taken from Evans and Zworski.

n=1, h=1.
This is taught in all elementary quantum mechanics courses. The operator
P=P(1)is
d? 9
Pu = (de +x ) U

We have

i€*12/2 _ _xefx2/2 5o d72671,2/2 _ _6712/2 + I2€712/2

dx dz?

and hence e~%/2 is an eigenvector of P with eigenvalue 1. The remaining

eigenvalues are found by the method of “spectrum generating algebras”: Define
the creation operator

A+ = D+ZI)§'
Here 14
D=-—
i dx

and iz denotes the operator of multiplication by iz. Notice that D is formally
self-adjoint in the sense that integration by parts shows that

[ 01yt~ [ Dgas

for all smooth functions vanishing at infinity. Even more directly the operator
of multiplication by ix is skew adjoint so we can write

AL =A_:=D—ix
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in the formal sense. The operator A_ is called the annihilation operator.
Also

AfA u = —uy, — (2u)g + zuy + z2u

= —Ugr — U +x2u

= Pu—u
and
A_Au = —uge + (zu)e — 2uy + z2u
= Pu+u.
So we have proved
P=A/A_+1=A_A, -1 (1.23)

Notice that
A_ (e‘x2/2) —ixe= /2 _ e /2 =

so the first equation above shows again that

vo(x) := e~ /2

is an eigenvector of P with eigenvalue 1. Let v; := A vg. Then
P’U1 = (A+A_ +I)A+’U0 = A+(A_A+ —I)U0+2A+’UO = A+PUO+2A+’U0 = 31}1.

So v; is an eigenvector of P with eigenvalue 3. Proceeding inductively, we see
that if we define
v = Al g

then v, is an eigenvector of P with eigenvalue 2n + 1.
Also,
[A_,A+] = A_A+ 7A+A_ - P+I* (P*I) - 2[

This allows us to conclude the (vy,,v,,) = 0 if m # n. Indeed, we may suppose
that m > n. Then (v, vy) = (A%, vo, ATvg) = (A" A% g, vp) since A_ = A%,
If n =0 this is 0 since A_vg=0. If n > 0 then

ATAT = ATTTAALATT = AT AL AL 42D AT

By repeated use of this argument, we end up with a sum of expressions all being
left multiples of A_ and hence give 0 when applied to vyg.

We let

1
Up = —Vp

[[onll
so that the u, form an orthonormal set of eigenvectors. By construction, the
vn, and hence the u,,, are polynomials of degree (at most) n times vg. So we
have ,

Un(x) = Hy(z)e™® /2
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and the H,, are called the Hermite polynomials of degree n. Since the u,, are
linearly independent and of degree at most n, the coefficient of z™ in H, can
not vanish.

Finally, the u,, form a basis of L?(R). To prove this, we must show that
if g € L?(R) is orthogonal to all the u, then g = 0. To see that this is so,
if, (g,u,) = 0 for all n, then (g7pe_’”2/2) = 0 for all polynomials. Take p
to be the n-th Taylor expansion of ¢*. These are all majorized by el*! and
elrle=2"/2 ¢ L2(R). So from the Lebesgue dominated convergence theorem
we see that (g, e”e"z/z) = 0 which says that the Fourier transform of ge_ﬂvz/2
vanishes. This implies that ge’f’:Q/ 2 = (). Since e~*"/2 does not vanish anywhere,
this implies that g = 0.

h =1, n arbitrary.
We may identify Lo(R™) with the (completed) tensor product
L*R)®---&L*(R) n — factors

where @ denotes the completed tensor product.
Then the n-dimensional Schrédinger harmonic oscillator has the form

PRIQ - - QI+ IRXPQ-- - QI+ -+ IR QP

where P is the one dimensional operator. So the tensor products of the u’s
form an orthonormal basis of L?(R") consisting of eigenvectors. Explicitly, let
a = (aq,...,a,) be a multi-index of non-negative integers and

n
—1(2% 4t
Ua(T1, .. Ty) 1= HHaj(:rj)e (@it
et

J
Then the u, are eigenvectors of the operator
R (R P ]|
u— — =+ + == |u+|z|u
ox? 0x2

with eigenvalues
2|lal+n

where
laf == a1 + -+ ap.

Furthermore the u, form an orthonormal basis of L?(R").

n =1, h arbitrary.

Consider the “rescaling operator”
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This is a unitary operator on L?(R) and on smooth functions we have

d . d
oSy =h %Sﬁo%

and
22 Spu = hSp(z?u).

2 d2 2 d2 2

This shows that if we let

ujn(w) = Sn(u;)
Then the u; 5 form an orthonormal basis of L*(R) and are eigenvectors of P(h)
with eigenvalues (25 + 1).

n and h arbitrary.

We combine the methods of the two previous sections and conclude that

AT z;\ _l=1?
Uan(z) =h /4 HH%. (#) e 2k
1 2

are eigenvectors of P(h) with eigenvalues
E. (k) = (2|a| + n)h, (1.24)
and the u, ; form an orthonormal basis of L?(R").

Verifying Weyl’s law.

In verifying Weys’ law we may take a = 0 so

#{E(N)|0 < E(h) < b} 5

= oo+ ta <b—nh
- 1 n = 2h )

the number of lattice points in the simplex

b
{a|0 <2)al+n < }

b—nh
$1207xn20ax1+xn§ hn .

This number is (up to lower order terms) the volume of this simplex. Also, up
to lower order terms we can ignore the nh in the numerator. Now the volume
of the simplex is 1/n!x the volume of the cube. So

#Emo<em <=+ () +o ().

n!
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This gives the left hand side of Weyl’s formula. As to the right hand side,
Vol ({Jll|* + I€]* < b})

is the volume of the ball of radius b in 2n-dimensional space which is 7™b" /n!,
as we recall below. This proves Weyl’s formula for the harmonic oscillator.

Recall about the volume of spheres in R”.

Let Aj_1 denote the volume of the ¥ — 1 dimensional unit sphere and V}, the
volume of the k-dimensional unit ball, so

1
1
Vi, = A,H/ P ldr = = Ag_q.
0 k

The integral ff; e~ dx is evaluated as /7 by the trick

00 2 ') [e'e] . oo
(/ e””de> _ / / 6*(x2+y2)dxdy = 277/ re " dr = .
e oo J oo 0
00 , k 0o 5
7_‘,16/2 _ (/ e T dI) _ Ak—l/ kalefr dr.
o 0

The usual definition of the Gamma function is

F(y):/ ty=Lle~tdt.
0

So

If we set t = r? this becomes
o0 2
I'(y) = 2/ e " r g,
0

So if we plug this back into the preceding formula we see that

Apq = QF”(Z/;
2
Taking k& = 2n this gives
o
Azn—s (n—1)!
and hence
Vo = .
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1.5 The Schrodinger operator on a Riemannian
manifold.

As a generalization of the Schrédinger operator we studied above, we can con-
sider the operator

RA+V

where A is the Laplacian of a Riemann manifold M. For example, if M is
compact, then standard elliptical engineering tells us that this operator has
discrete spectrum. Then once again Weyl’s law is true, and the problem of
estimating the “remainder” is of great interest.

We saw that Weyl’s law in the case of a harmonic oscillator on Euclidean
space involved counting the number of lattice points in a symplex. The problem
of counting the number of lattice points in a polytope has attracted a lot of
attention in recent years.

1.5.1 Weyl’s law for a flat torus with V = 0.

Let us illustrate Weyl’s law for the Schrédinger operator on a Riemannian man-
ifold by examining what you might think is an “‘easy case”. Let M be the torus
M = (R/(27Z) x (R/(2rZ) and take the flat (Euclidean) metric so that the

Laplacian is
82 32
A== (ax * 6y>

and take V' = 0! For simplicity in notation I will work with A = 1. The
eigenvectors of A are the functions ¢, , where

imz+ny

Pmon(T,y) =€

as m,n range over the integers and the corresponding eigenvalues are m? + n?.
So the number of eigenvalues < r? is the number of lattice points in the disk of
radius r centered at the origin.

The corresponding region in phase space (with a slight change in notation)
is the set of all (z,y,&,7n) such that €2 +n? < 2. Since this condition does not
involve z or y, this four dimensional volume is (27)?x the area of the disk of
radius 7. So we have verified Weyl’s law.

But the problem of estimating the remainder is one of the great unsolved
problems of mathematics: Gauss’ problem in estimating the error term in count-
ing the number of lattice points in a disk of radius r.

In the 1920’s van der Corput made a major advance in this problem by
introducing the method of stationary phase for this purpose, as we will expain
in Chapter 15.
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1.6 The plan.

We need to set up some language and prove various facts before we can return to
our program of extending our method - the eikonal equation and the transport
equations - so that they work past caustics.

In Chapter 2 we develop some necessary facts from symplectic geometry. In
Chapter 3 we review some of the language of category theory. We also present a
“baby” version of what we want to do later. We establish some facts about the
category of finite sets and relations which will motivate similar constructions
when we get to the symplectic “category” and its enhancement. We describe
this symplectic “category” in Chapter 4. The objects in this “category” are
symplectic manifolds and the morphisms are canonical relations. The quota-
tion marks around the word “category” indicates that not all morphisms are
composible.

In Chapter 5 we use this categorical language to explain how to find a local
description of a Lagrangian submanifold of the cotangent bundle via “generating
functions”, a description which is valid even at caustics. The basic idea here
goes back to Hamilton. But since this description depends on a choice, we
must explain how to pass from one generating function to another. The main
result here is the Hormander-Morse lemma which tells us that passage from one
generating function to another can be accomplished by a series of “moves”. The
key analytic tool for proving this lemma is the method of stationary phase which
we explain in Chapter 15. In Chapter 6 we study the calculus of %—densities,
and in Chapter 7 we use half-densities to enhance the symplectic “category”. In
Chapter 8 we get to the main objects of study, which are oscillatory %—densities
and develop their symbol calculus from an abstract and functorial point of
view. In Chapter 9 we show how to turn these abstract considerations into local
computations. In Chapter 14 we review the basic facts about the calculus of
differential forms. In particular we review the Weil formula for the Lie derivative
and the Moser trick for proving equivalence. In Chapter 13 we summarize, for
the reader’s convenience, various standard facts about the spectral theorem for
self-adjoint operators on a Hilbert space.



Chapter 2

Symplectic geometry.

2.1 Symplectic vector spaces.

Let V be a (usually finite dimensional) vector space over the real numbers. A
symplectic structure on V' consists of an antisymmetric bilinear form

w:VxV =R

which is non-degenerate. So we can think of w as an element of A2V* when V/
is finite dimensional, as we shall assume until further notice. A vector space
equipped with a symplectic structure is called a symplectic vector space.

A basic example is R? with

(- -

We will call this the standard symplectic structure on R2.
So if u,v € R? then wge(u,v) is the oriented area of the parallelogram
spanned by u and v.

2.1.1 Special kinds of subspaces.

If W is a subspace of symplectic vector space V then W+ denotes the symplectic
orthocomplement of W:

Wt ={veV|whw) =0, Ywe W}.
A subspace is called
1. symplectic if W N W+ = {0},
2. isotropic if W c W+,

3. coisotropic if W+ ¢ W, and

39
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4. Lagrangian if W = W+,

Since (W+)+ = W by the non-degeneracy of w, it follows that W is symplec-
tic if and only if W+ is. Also, the restriction of w to any symplectic subspace
W is non-degenerate, making W into a symplectic vector space. Conversely,
to say that the restriction of w to W is non-degenerate means precisely that

W nw+ = {o0}.

2.1.2 Normal forms.

For any non-zero e € V we can find an f € V such that w(e, f) = 1 and so
the subspace W spanned by e and f is a two dimensional symplectic subspace.

Furthermore the map
. 1 Fis 0
¢~ \o) 1

gives a symplectic isomorphism of W with R? with its standard symplectic
structure. We can apply this same construction to W+ if W+ #£ 0. Hence, by
induction, we can decompose any symplectic vector space into a direct sum of
two dimensional symplectic subspaces:

V=W, & Wy

where dim V = 2d (proving that every symplectic vector space is even dimen-
sional) and where the W; are pairwise (symplectically) orthogonal and where
each W; is spanned by e;, f; with w(e;, f;) = 1. In particular this shows that
all 2d dimensional symplectic vector spaces are isomorphic, and isomorphic to
a direct sum of d copies of R? with its standard symplectic structure.

2.1.3 Existence of Lagrangian subspaces.

Let us collect the eq, ..., eq in the above construction and let L be the subspace
they span. It is clearly isotropic. Also, ey, ..., en, f1,..., fq form a basis of V.
If v € V has the expansion

v=aje; +---aqeq +bifi+---+bafa

in terms of this basis, then w(e;,v) = b;. Sov € L+ = v € L. Thus L is
Lagrangian. So is the subspace M spanned by the f’s.

Conversely, if L is a Lagrangian subspace of V and if M is a complementary
Lagrangian subspace, then w induces a non-degenerate linear pairing of L with
M and hence any basis ey, - - - eq picks out a dual basis f1,- - .f; of M giving a
basis of V' of the above form.

2.1.4 Consistent Hermitian structures.

In terms of the basis eq, ..., en, f1,..., fq introduced above, consider the linear
map
Jio e —fi, fim e
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It satisfies

J = -, (2.1)
w(Ju, Jv) = w(u,v), and
w(Ju,v) = w(Jv,u).

Notice that any J which satisfies two of the three conditions above auto-
matically satisfies the third. Condition (2.1) says that J makes V into a d-
dimensional complex vector space. Condition (2.2) says that J is a symplectic
transformation, i.e acts so as to preserve the symplectic form w. Condition (2.3)
says that w(Ju,v) is a real symmetric bilinear form.

All three conditions (really any two out of the three) say that (, ) = (, )w,s
defined by

(u,v) = w(Ju,v) + iw(u,v)

is a semi-Hermitian form whose imaginary part is w. For the J chosen above
this form is actually Hermitian, that is the real part of (, ) is positive definite.

2.2 Lagrangian complements.

The results of this section will be used extensively, especially in Chapter 5.
Let V be a symplectic vector space.

Proposition 4. Given any finite collection of Lagrangian subspaces My, . .., My
of V one can find a Lagrangian subspace L such that

LNM;={0}, i=1,...k

Proof. We can always find an isotropic subspace L with LNM; = {0}, =
1,...k, for example a line which does not belong to any of these subspaces.
Suppose that L is an isotropic subspace with L N M; = {0}, Vj and is not
properly contained in a larger isotropic subspace with this property. We claim
that L is Lagrangian. Indeed, if not, L' is a coisotropic subspace which strictly
contains L. Let m : L+ — L*/L be the quotient map. Each of the spaces
m(L+ N M) is an isotropic subspace of the symplectic vector space L1/L and
so each of these spaces has positive codimension. So we can choose a line £ in
L+ /L which does not intersect any of the 7(L+ N M;). Then L' := 7~1(¢) is an
isotropic subspace of L+ C V with L' N M; = {0}, V j and strictly containing
L, a contradiction. O

In words, given a finite collection of Lagrangian subspaces, we can find a
Lagrangian subspace which is transversal to all of them.

2.2.1 Choosing Lagrangian complements “consistently”.

The results of this section are purely within the framework of symplectic linear
algebra. Hence their logical place is here. However their main interest is that
they serve as lemmas for more geometrical theorems, for example the Weinstein
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isotropic embedding theorem. The results here all have to do with making
choices in a “consistent” way, so as to guarantee, for example, that the choices
can be made to be invariant under the action of a group.

For any a Lagrangian subspace L C V we will need to be able to choose
a complementary Lagrangian subspace L', and do so in a consistent manner,
depending, perhaps, on some auxiliary data. Here is one such way, depending
on the datum of a symmetric positive definite bilinear form B on V. (Here B
has nothing to do with with the symplectic form.)

Let L® be the orthogonal complement of L relative to the form B. So

1
dim L? =dim L = 5 dimV
and any subspace W C V with
. 1.
dim W = §d1mV and W N L = {0}

can be written as
graph(A)
where A : L® — L is a linear map. That is, under the vector space identification
Vv=LfoL
the elements of W are all of the form
w+ Aw, we LB,
We have
w(u+ Au,w + Aw) = w(u, w) + w(Au, w) + w(u, Aw)

since w(Au, Aw) = 0 as L is Lagrangian. Let C be the bilinear form on L?
given by
C(u,w) = w(Au, w).

Thus W is Lagrangian if and only if
C(u,w) — Clw,u) = —w(u, w).

Now
Hom(L?,L) ~ L ® LP* ~ LP* @ LB~

under the identification of L with LZ* given by w. Thus the assignment A <> C
is a bijection, and hence the space of all Lagrangian subspaces complementary
to L is in one to one correspondence with the space of all bilinear forms C' on
LB which satisfy C(u,w) — C(w,u) = —w(u,w) for all u,w € LB. An obvious

choice is to take C to be —%w restricted to LZ. In short,
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Proposition 5. Given a positive definite symmetric form on a symplectic vector
space V', there is a consistent way of assigning a Lagrangian complement L' to
every Lagrangian subspace L.

Here the word “consistent” means that the choice depends only on B. This
has the following implication: Suppose that T is a linear automorphism of V'
which preserves both the symplectic form w and the positive definite symmetric
form B. In other words, suppose that

w(Tu,Tv) = w(u,v) and B(Tu,Tv) = B(u,v) Yu,veW.
Then if L — L’ is the correspondence given by the proposition, then
TLw— TL'.

More generally, if T : V' — W is a symplectic isomorphism which is an isometry
for a choice of positive definite symmetric bilinear forms on each, the above
equation holds.

Given L and B (and hence L’) we determined the complex structure J by

J:L—=L, wl,Jv)=B(u,v) u,velL

and then
Ji=—J": L' > L
and extending by linearity to all of V' so that
J?=-1I.

Then for u,v € L we have

w(u, Jv) = B(u,v) = B(v,u) = w(v, Ju)
while

w(u, JJv) = —w(u,v) =0 = w(Jv, Ju)

and
w(Ju, JJv) = —w(Ju,v) = —w(Jv,u) = w(Jv, JJu)

so (2.3) holds for all u,v € V. We should write Jp 1, for this complex structure,
or J;, when B is understood
Suppose that T" preserves w and B as above. We claim that

JTLOT:TOJL (24)

so that T is complex linear for the complex structures J;, and Jry. Indeed, for
u,v € L we have
w(Tu, JrTv) = B(Tu, Tv)

by the definition of Jpy. Since B is invariant under T the right hand side equals
B(u,v) = w(u, Jpv) = w(Tu, TJrv) since w is invariant under T'. Thus

w(Tu, JrrTv) = w(Tu, TJLv)
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showing that
TJy, = JrT

when applied to elements of L. This also holds for elements of L’. Indeed every
element of L’ is of the form Jyu where v € L and TJru € TL' so

JriTJyu=—Jp TJyu=~Tu=TJ,(Jyu). O

Let I be an isotropic subspace of V and let I+ be its symplectic orthogonal
subspace so that I C I+, Let

be the B-orthogonal complement to 1. Thus
dimIp = dim 1

and since Ig N I+ = {0}, the spaces I and I are non-singularly paired under
w. In other words, the restriction of w to Ig @ I is symplectic. The proof of
the preceding proposition gives a Lagrangian complement (inside Ig & I) to I
which, as a subspace of V has zero intersection with I. We have thus proved:

Proposition 6. Given a positive definite symmetric form on a symplectic vector
space V', there is a consistent way of assigning an isotropic complement I' to
every co-isotropic subspace I+.

We can use the preceding proposition to prove the following:

Proposition 7. Let Vi and Vy be symplectic vector spaces of the same dimen-
sion, with I; C Vi and Iy C V4 isotropic subspaces, also of the same dimension.
Suppose we are given

e q linear isomorphism X\ : I — I and

o a symplectic isomorphism £ : I{+ /1) — Iy /1.
Then there is a symplectic isomorphism

v:V1—= Vs

such that

1. v:I{+ = I3 and (hence) v : I} — I,

2. The map induced by v on Ii-/I, is { and

3. The restriction of v to I is \.

Furthermore, in the presence of positive definite symmetric bilinear forms B
on Vi and By on Vs the choice of v can be made in a “canonical” fashion.
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Indeed, choose isotropic complements I15 to I+ and Iyp to I3 as given by
the preceding proposition, and also choose B orthogonal complements Y; to Iy
inside I and Ys to Iy inside I5-. Then Y; (i = 1,2) is a symplectic subspace
of V; which can be identified as a symplectic vector space with I;-/I;. We thus
have

Vi=hi®ehp)eh

as a direct sum decomposition into the sum of the two symplectic subspaces
(I1 ®11p) and Y7 with a similar decomposition for V5. Thus ¢ gives a symplectic
isomorphism of Y7 — Y5. Also

Ao help = Lo L

is a symplectic isomorphism which restricts to A on I7. O

2.3 Equivariant symplectic vector spaces.

Let V be a symplectic vector space. We let Sp(V) denote the group of all
all symplectic automorphisms of V, i.e all maps T which satisfy w(Tu,Tv) =
w(u,v) Vu,veV.

A representation 7 : G — Aut(V) of a group G is called symplectic if in
fact 7 : G — Sp(V). Our first task will be to show that if G is compact, and 7
is symplectic, then we can find a J satisfying (2.1) and (2.2), which commutes
with all the 7(a), a € G and such that the associated Hermitian form is positive
definite.

2.3.1 Invariant Hermitian structures.

Once again, let us start with a positive definite symmetric bilinear form B. By
averaging over the group we may assume that B is G invariant. (Here is where
we use the compactness of G.) Then there is a unique linear operator K such
that

B(Ku,v) = w(u,v) YuveV.

Since both B and w are G-invariant, we conclude that K commutes with all
the 7(a), a € G. Since w(v,u) = —w(u,v) we conclude that K is skew adjoint
relative to B, i.e. that
B(Ku,v) = —B(u, Kv).

Also K is non-singular. Then K? is symmetric and non-singular, and so V' can
be decomposed into a direct sum of eigenspaces of K? corresponding to distinct
eigenvalues, all non-zero. These subspaces are mutually orthogonal under B
and invariant under G. If K?u = pu then

uB(u,u) = B(K?u,u) = —B(Ku, Ku) <0

so all these eigenvalues are negative; we can write each p as g = —A2, A > 0.
Furthermore, if K?u = —A?u then

K*(Ku) = KK*u = -\Ku
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so each of these eigenspaces is invariant under K. Also, any two subspaces
corresponding to different values of A\? are orthogonal under w. So we need only
define J on each such subspace so as to commute with all the 7(a) and so as to
satisfy (2.1) and (2.2), and then extend linearly. On each such subspace set

J =K.
Then (on this subspace)
JP=NK =1
and
w(Ju,v) = Aw(K tu,v) = AB(u, v)

is symmetric in v and v. Furthermore w(Ju,u) = AB(u,u) >0. O
Notice that if 7 is irreducible, then the Hermitian form ( , ) = w(J-,-) +
iw(-,+) is uniquely determined by the property that its imaginary part is w.

2.3.2 The space of fixed vectors for a compact group of
symplectic automorphisms is symplectic.

If we choose J as above, if 7(a)u = u then 7(a)Ju = Ju. So the space of fixed
vectors is a complex subspace for the complex structure determined by J. But
the restriction of a positive definite Hermitian form to any (complex) subspace
is again positive definite, in particular non-singular. Hence its imaginary part,
the symplectic form w, is also non-singular. O This result need not be true
if the group is not compact. For example, the one parameter group of shear

transformations
1 ¢
0 1

in the plane is symplectic as all of these matrices have determinant one. But
the space of fixed vectors is the z-axis.

2.3.3 Toral symplectic actions.

Suppose that G = T" is an n-dimensional torus, and that g denotes its Lie
algebra. Then exp:g — G is a surjective homomorphism, whose kernel Zg is a
lattice.

If 7: G — U(V) as above, we can decompose V into a direct sum of one
dimensional complex subspaces

V=Vi® oV

where the restriction of 7 to each subspace is given by

v (exp E)v = TR

where
af € ZZ; s

the dual lattice.
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2.4 Symplectic manifolds.

Recall that a manifold M is called symplectic if it comes equipped with a
closed non-degenerate two form w. A diffeomorphism is called symplectic if it
preserves w. We shall usually shorten the phrase “symplectic diffeomorphism”
to symplectomorphism

A vector field v is called symplectic if

Dyw = 0.

Since Dyw = di(v)w + t(v)dw = di(v)w as dw = 0, a vector field v is symplectic
if and only if ¢(v)w is closed.

Recall that a vector field v is called Hamiltonian if :(v)w is exact. If 6 is
a closed one form, and v a vector field, then D,6 = di(v)6 is exact. Hence if vq
and vo are symplectic vector fields

Dy, t(ve)w = t([v1,v2])w
so [v1,v9] is Hamiltonian with

t([v1, v2])w = dw(ve,v1).

2.5 Darboux style theorems.

These are theorems which state that two symplectic structures on a manifold
are the same or give a normal form near a submanifold etc. We will prove them
using the Moser-Weinstein method. This method hinges on the basic formula
of differential calculus: If f; : X — Y is a smooth family of maps and w; is a
one parameter family of differential forms on Y then

%ft*wt = ft*%wt + Qdw; + dQuwy (2.5)
where
Qi QF(Y) - QF1(X)
is given by
Qe7m(wy .oy wi—1) := T(ve, dfe(wr), . .., dft(wg—1))
where

v X =>T(), v(zx):= %ft(x)

If wy does not depend explicitly on ¢ then the first term on the right of (2.5)
vanishes, and integrating (2.5) with respect to ¢ from 0 to 1 gives

1
f1—f=dQ+Qd, @ ::/0 Q:dt. (2.6)

We give a review of all of this in Chapter 14. We urge the reader who is
unfamiliar with these ideas to pause here and read Chapter 14.
Here is the first Darboux type theorem:
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2.5.1 Compact manifolds.

Theorem 1. Let M be a compact manifold, wy and wy two symplectic forms
on M in the same cohomology class so that

wy — wy = do
for some one form «. Suppose in addition that
w = (1 —t)wo + twr

1s symplectic for all 0 <t < 1. Then there exists a diffeomorphism f: M — M
such that
f*w1 = wp-
Proof. Solve the equation
(v wy = —a

which has a unique solution v; since w; is symplectic. Then solve the time
dependent differential equation

B— v, =1

which is possible since M is compact. Since

dwt
&t 4
at "
the fundamental formula (2.5) gives

dff we
dt

= filda+0—da] =0

SO
fiwe = wo.

In particular, set t = 1. O

This style of argument was introduced by Moser and applied to Darboux
type theorems by Weinstein.

Here is a modification of the above:

Theorem 2. Let M be a compact manifold, and wy, 0 < t < 1 a family of
symplectic forms on M in the same cohomology class.
Then there exists a diffeomorphism f: M — M such that

w1 = wp.

Proof. Break the interval [0, 1] into subintervals by choosing to = 0 < t1 < tg <
--- <ty =1 and such that on each subinterval the “chord” (1 — s)w;, + swy,,,
is close enough to the curve wq )¢, 4s¢,,, S0 that the forms (1 — s)ws, + swy,
are symplectic. Then successively apply the preceding theorem. O
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2.5.2 Compact submanifolds.

The next version allows M to be non-compact but has to do with with behavior
near a compact submanifold. We will want to use the following proposition:

Proposition 8. Let X be a compact submanifold of a manifold M and let
1: X > M
denote the inclusion map. Let v € QF(M) be a k-form on M which satisfies

dy = 0
iy = 0.

Then there exists a neighborhood U of X and a k —1 form [ defined on U such
that

s = v
Bx = 0.

(This last equation means that at every point p € X we have
6,,(1[)1, - ,wk_l) = O

for all tangent vectors, not necessarily those tangent to X. So it is a much
stronger condition than i*5 = 0.)

Proof. By choice of a Riemann metric and its exponential map, we may find
a neighborhood of W of X in M and a smooth retract of W onto X, that is a
one parameter family of smooth maps

TtZW—>W
and a smooth map 7 : W — X with

rp=id, rg=tom, m: W = X, roi=1i.

Write
d'f‘t
— =wgor
at t O Tt
and notice that w; = 0 at all points of X. Hence the form
fi=Qy

has all the desired properties where @ is as in (2.6). O

Theorem 3. Let X, M and i be as above, and let wg and wy be symplectic forms
on M such that
i*wl = i*OJO
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and such that
(1 —t)wo + twn

is symplectic for 0 < t < 1. Then there exists a neighborhood U of M and a
smooth map
f:U—=-M

such that
fix =1id  and ffwo = wi.
Proof. Use the proposition to find a neighborhood W of X and a one form «
defined on W and vanishing on X such that
w1 —wy = da
on W. Let v; be the solution of
(v wy = —a

where wy = (1 — t)wp + twy. Since vy vanishes identically on X, we can find
a smaller neighborhood of X if necessary on which we can integrate v; for
0 <t <1 and then apply the Moser argument as above. O

A variant of the above is to assume that we have a curve of symplectic forms
w; with *w; independent of ¢.

Finally, a very useful variant is Weinstein’s

Theorem 4. X, M,i as above, and wy and w1 two symplectic forms on M such
that wi|x = wo|x. Then there exists a neighborhood U of M and a smooth map

f:U—-M
such that
fix =1id  and ffwo = wi.
Here we can find a neighborhood of X such that
(1 —t)wo + tw;

is symplectic for 0 < ¢ < 1 since X is compact. O

One application of the above is to take X to be a point. The theorem
then asserts that all symplectic structures of the same dimension are locally
symplectomorphic. This is the original theorem of Darboux.

2.5.3 The isotropic embedding theorem.

Another important application of the preceding theorem is Weinstein’s isotropic
embedding theorem: Let (M, w) be a symplectic manifold, X a compact mani-
fold, and ¢ : X — M an isotropic embedding, which means that di, (T X), is an
isotropic subspace of T'M;(, for all z € X. Thus

dig(TX )y C (dig(TX),)*
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where (di,(TX),)" denotes the orthogonal complement of diy(T'X ), in TM;(,)
relative to w;(,). Hence

(dig(TX) ) /dig(TX),

is a symplectic vector space, and these fit together into a symplectic vector
bundle (i.e. a vector bundle with a symplectic structure on each fiber). We will
call this the symplectic normal bundle of the embedding, and denote it by

SN;(X)

or simply by SN(X) when i is taken for granted.

Suppose that U is a neighborhood of i(X) and g : U — N is a symplec-
tomorphism of U into a second symplectic manifold N. Then j = goi is an
isotropic embedding of X into N and f induces an isomorphism

of symplectic vector bundles. Weinstein’s isotropic embedding theorem asserts
conversely, any isomorphism between symplectic normal bundles is in fact in-
duced by a symplectomorphism of a neighborhood of the image:

Theorem 5. Let (M,wy, X, i) and (N,wn, X, j) be the data for isotropic em-
beddings of a compact manifold X. Suppose that

s an isomorphism of symplectic vector bundles. Then there is a neighborhood
U of i(X) in M and a symplectomorphism g of U onto a neighborhood of j(X)
in N such that

gx = L.
For the proof, we will need the following extension lemma;:

Proposition 9. Let
i: X—>M, j:Y—N

be embeddings of compact manifolds X andY into manifolds M and N. suppose
we are given the following data:

o A smooth map f: X —Y and, for each x € X,

o A linear map A,TM;) — TNj(s(a)) such that the restriction of A, to
TX, CTM; coincides with df,.

Then there exists a neighborhood W of X and a smooth map g : W — N such
that
goi= foi

and
dg. = A, VzelX.



52 CHAPTER 2. SYMPLECTIC GEOMETRY.

Proof. If we choose a Riemann metric on M, we may identify (via the expo-
nential map) a neighborhood of 4(X) in M with a section of the zero section of
X in its (ordinary) normal bundle. So we may assume that M = N; X is this
normal bundle. Also choose a Riemann metric on N, and let

exp: N;(Y) —» N

be the exponential map of this normal bundle relative to this Riemann metric.
For z € X and v € N;(i(x)) set

g(z,v) = expj(m)(Axv).

Then the restriction of g to X coincides with f, so that, in particular, the
restriction of dg, to the tangent space to T, agrees with the restriction of A,
to this subspace, and also the restriction of dg, to the normal space to the zero
section at = agrees A, so g fits the bill. O

Proof of the theorem. We are given linear maps ¢, : (I1/I,) — J/J.
where I, = di,(TX), is an isotropic subspace of V, := TM;y with a similar
notation involving j. We also have the identity map of

I, =TX, = J,.

So we may apply Proposition 7 to conclude the existence, for each z of a unique
symplectic linear map

for each x € X. We may then extend this to an actual diffeomorphism, call it
h on a neighborhood of (X)), and since the linear maps A, are symplectic, the
forms

h*wy and wyr

agree at all points of X. We then apply Theorem 4 to get a map k such that
k*(h*wn) = wyr and then g = ho k does the job. O

Notice that the constructions were all determined by the choice of a Riemann
metric on M and of a Riemann metric on N. So if these metrics are invariant
under a group G, the corresponding g will be a G-morphism. If G is compact,
such invariant metrics can be constructed by averaging over the group.

An important special case of the isotropic embedding theorem is where the
embedding is not merely isotropic, but is Lagrangian. Then the symplectic
normal bundle is trivial, and the theorem asserts that all Lagrangian embeddings
of a compact manifold are locally equivalent, for example equivalent to the
embedding of the manifold as the zero section of its cotangent bundle.

2.6 The space of Lagrangian subspaces of a sym-
plectic vector space.

Let V = (V,w) be a symplectic vector space of dimension 2n. We let £(V)
denote the space of all Lagrangian subspaces of V. It is called the Lagrangian
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Grassmannian.

If M € L(V) is a fixed Lagrangian subspace, we let £(V, M) denote the
subset of L(V) consisting of those Lagrangian subspaces which are transversal
to M.

Let L € £(V, M) be one such subspace. The non-degenerate pairing between
L and M identifies M with the dual space L* of L and L with the dual space
M* of M. The vector space decomposition

V=MeL=MaeoM"

tells us that any N € L(V, M) projects bijectively onto L under this decompo-
sition. In particular, this means that NN is the graph of a linear map

Tv:L—M=1L"

So
N ={(Tn¢&), §€L=M"}.

Giving a map from a vector space to its dual is the same as giving a bilinear form
on the original vector space. In other words, N determines, and is determined
by, the bilinear form Sy on L = M™* where

B (E.€) = 3(TnE &) = Jw(InE.©)

This is true for any n-dimensional subspace transversal to M. What is the
condition on By for N to be Lagrangian? Well, if w = (Tn&,€) and w' =
(Tn&', & are two elements of N then

w(w7wl) = w(TN§7€/) - w(TNglaf)

since L and M are Lagrangian. So the condition is that Sy be symmetric. We
have proved:

Proposition 10. If M € L(V) and we choose L € L(V,M) then we get an
identification of L(V, M) with S?(L), the space of symmetric bilinear forms on
L.

So every choice of a a pair of transverse Lagrangian subspaces L and M
gives a coordinate chart on L(V) which is identified with S?(L). In particular,
L(V) is a smooth manifold and

dim £(V) = w

where n = % dimV.
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Description in terms of a basis.

Suppose that we choose a basis ey, ..., e, of L and so get a dual basis fi1,..., fn
of M. If N € L(V, M) then we get a basis g1,...,g, of N where

gi=ei+ Y Siifi
J

where
Sij = Bn(eise)).

For later use we record the following fact: Let N and N’ be two elements of
L(V, M). The symplectic form w induces a (possibly singular) bilinear form on
N x N’. In terms of the bases given above for N and N’ we have

w(gi»g5) = Si; — Sij- (2.7)

Sp(V) acts transitively on the space of pairs of transverse Lagrangian
subspaces but not on the space of triples of Lagrangian subspaces.

Suppose that L; and Ly are elements of £(V). An obvious invariant is the
dimension of their intersection. Suppose that they are transverse, i.e. that
Ly N Ly ={0}. We have seen that a basis ey, ..., e, of L; determines a (dual)
basis fi,..., fn of Ly and together ey, ..., e,, f1,..., fn form a symplectic basis
of V. Since Sp(V') acts transitively on the set of symplectic bases, we see that
it acts transitively on the space of pairs of transverse Lagrangian subspaces.

But Sp(V) does not act transitively on the space of all (ordered, pairwise
mutually transverse) triplets of Lagrangian subspaces. We can see this already
in the plane: Every line through the origin is a Lagrangian subspace. If we
fix two lines, the set of lines transverse to both is divided into two components
corresponding to the two pairs of opposite cones complementary to the first two
lines:

L
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We can see this more analytically as follows: By an application of Si(2,R) =
Sp(R?) we can arrange that L; is the z-axis and Ly is the y-axis. The subgroup
of S1(2,R) which preserves both axes consists of the diagonal matrices (with
determinant one), i.e. of all matrices of the form

(6%

If A > 0 such a matrix preserves all quadrants, while if A < 0 such a matrix
interchanges the first and third and the second and fourth quadrants.

In any event, such a matrix carries a line passing through the first and third
quadrant into another such line and the group of such matrices acts transitively
on the set of all such lines. Similarly for lines passing through the second and
fourth quadrant.

2.7 The set of Lagrangian subspaces transverse
to a pair of Lagrangian subspaces

The situation depicted in the figure above has an n-dimensional analogue. Let
M; and Ms be Lagrangian subspaces of a symplectic vector space V. For the
moment we will assume that they are transverse to each other, i.e., My N My =
{0}. Let
L(V, My, Ma) = L(V, My) N L(V, M2)

be the set of Lagrangian subspaces, L of V' which are transverse both to My and
to M. Since My and M, are transverse, V = M; & Mo, so L is the graph of a
bijective mapping: T, : M7 — M>, and as we saw in the preceding section, this
mapping defines a bilinear form, 3, € S?(M;) by the recipe

1
Br(v,w) = §w(v,Lw).

Moreover since 17, is bijective this bilinear form is non-degenerate. Thus,
denoting by SQ(Ml)non_deg the set of non-degenerate symmetric bilinear forms
on M, the bijective map

L(V, My) = S*(My)
that we defined in §2.6 gives, by restriction, a bijective map
E(‘/, Ml,MQ) — Sz(Ml)non—deg- (28)

The connected components of S? (Ml)non_deg are characterized by the signa-
ture invariant

ﬂ S SZ(Ml)non—sing — Sgnﬁ,

so, via the identification (2.8) the same is true of L(V, My, M>): its connected
components are characterized by the invariant L — sgn 7. For instance in the
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two-dimensional case depicted in the figure above, sgn 5, is equal to 1 on one
of the two components of L(V, My, M3) and —1 on the other. Let

o(My, My, L) =: sgn B, (2.9)

This is by definition a symplectic invariant of the triple, My, My, L, so this
shows that just as in two dimensions the group Sp(V) does not act transitively
on triples of mutually transversal Lagrangian subspaces.

Explicit computation of sgn ;.

We now describe how to compute this invariant explicitly in some special cases.
Let z1,...,2n, &1,-..,&, be a system of Darboux coordinates on V' such that
M; and M> are the spaces, £ = 0 and x = 0. Then L is the graph of a bijective
linear map ¢ = Bz with BT = B and hence

o(Mi, M, L) = sgn(B). (2.10)

Next we consider a slightly more complicated scenario. Let Ms be, as above,
the space, z = 0, but let M; be a Lagrangian subspace of V' which is transverse
to£ =0and x =0, i.e., a space of the form z = A¢ where AT = A and A is
non-singular. In this case the symplectomorphism

(xvf) - (xvf - Ailx)
maps M; onto £ = 0 and maps the space
L:¢=Bx

onto the space
Li:¢&=(B—-AYz

and hence by the previous computation
o(My, My, L) = sgn(B — A7), (2.11)

Notice however that the matrix

oo~

can be written as the product

et [0 Boan ] [

A
1

~ O

T (2.12)

SO

sgn A +sgn(B — A™!) = sgn [ (2.13)

0~
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Hence
o(My, My, L) = sgn { 1;1 é ] —sgnA. (2.14)

In particular if L; and Ly are Lagrangian subspaces of V' which are transverse
to M7 and M the difference,

o(My, M, Ly) — o(My, Mz, La)
is equal to
SH{A I }_SH[A I ]
11 B 11 By |-
In other words the quantity
U(Mb M27 Ll; LQ) = 0(M17 M27 Ll) - U(Mla MQ, L2)
is a symplectic invariant of M7, Ms, L1, Lo which satisfies
A T A T
o(My, My, La, Lo) :sgn[ I B ] —sgn[ I B, ] . (2.15)
In the derivation of this identity we’ve assumed that M; and M, are trans-
verse, however, the right hand side is well-defined provided the matrices

A T ,
[I Bi:| 1=1,2

are non-singular, i.e., provided that L; and Lo are transverse to the M;. Hence
to summarize, we’ve proved

Theorem 6. Given Lagrangian subspaces My, Mo, L1, Lo of V' such that the
L;’s are transverse to the M;’s the formula (2.15) defines a symplectic invariant
o(My, My, L1, L) of My, Ms, Ly, Ly and if My and My are transverse

o(My, My, Ly, Ly) = o(My, My, Ly) — o(My, Ms, Ly) . (2.16)

2.8 The Maslov line bundle

We will use the results of the previous two sections to define an object which
will play an important role in the analytical applications of the results of this
chapter that we will discuss in Chapters 8 and 9.

Let X be an n-dimensional manifold and let W = T*X be its cotangent
bundle. Given a Lagrangian submanifold, A, of W one has, at every point
p = (z,§), two Lagrangian subspaces of the symplectic vector space V = T,IW,
namely the tangent space, M7 to A at p and the tangent space My at p to the
cotangent fiber T X.

Let O, = L(V, My, M) and let L, be the space of all functions

f:0,=C
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which satisfy for L1, Ly € O,
f(Ly) = e ToMiMaLasLa) 1y (2.17)

It is clear from (2.15) that this space is non-zero and from (2.16) that it
is one-dimensional, i.e., is a complex line. Thus the assignment, A > p — L,
defines a line bundle over A. We will denote this bundle by Lyasioy and refer
to it henceforth as the Maslov line bundle of A. (The definition of it that we’ve
just given, however, is due to Héormander. An alternative definition, also due
to Hormander, will be described in §5.1.3. For the tie-in between these two
definitions and the original definition of the Maslov bundle by Arnold, Keller,
Maslov, see [[?]], Integrable Operators I, §3.3.)

2.9 A look ahead - a simple example of Hamil-
ton’s idea.

2.9.1 A different kind of generating function.

Let us go back to the situation described in Section 2.7. We have a symplectic
vector space V =M @ M* = T*M and we have a Lagrangian subspace N C V
which is transversal to M. This determines a linear map Ty : M* — M and
a symmetric bilinear form Sy on M*. Suppose that we choose a basis of M
and so identify M with R™ and so M* with R™*. Then T = T becomes a
symmetric matrix and if we define

(8 1= 5N (6 ) = 5T¢ €

then 5
YN
T¢ =TnE= ——.
§=Tn¢ €
Consider the function ¢ = ¢ on M & M* given by
¢("E,§):.’Ef—’7]\{(£), xeM? £€M* (218)
Then the equation
o¢
— =0 2.19
e (219)
is equivalent to
xr = TNf.
Of course, we have
(00
- Oz
and at points where (2.19) holds, we have
9¢
= _d
E ®,

the total derivative of ¢ in the obvious notation. So
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Proposition 11. Let M be a vector space and V.= T*M = M & M* its
cotangent bundle with its standard symplectic structure. Let N be a Lagrangian
subspace of T* M which is transversal to M. Then

N = {(z,do(x,€))}

where ¢ is the function on M x M* given by (2.18) and where (z,§) satisfies
(2.19).

The function ¢ is an example of the type of (generalized) generating func-
tion that we will study in detail in Chapter 5. Notice that in contrast to the
generating functions of Chapter I, ¢ is not a function of = alone, but depends
on an auxiliary variable (in this case ). But this type of generating function
can describe a Lagrangian subspace which is not horizontal. At the extreme,
the subspace M™* is described by the case 8r = 0.

We will show in Chapter 5 that every Lagrangian submanifold of any cotan-
gent bundle can locally be described by a generating function, when we allow
dependence on auxiliary variables.

2.9.2 Composition of symplectic transformations and ad-
dition of generating functions.

Let V = (V,w) be a symplectic vector space. We let V'~ = (V, —w). In other
words, V is the same vector space as V but with the symplectic form —w.

We may consider the direct sum V~ @ V (with the symplectic form =
(—w,w). I T € Sp(V), then its graph I' := graph T' = {(v,Tv), v € V} is a
Lagrangian subspace of V~ @ V. Indeed, if v,w € V then

Q(v,Tv), (w, Tw)) = w(Tv, Tw) — w(v,w) = 0.

Suppose that V = X & X* where X is a vector space and where V is given the
usual symplectic form:

() () -
()~

is a symplectic isomorphism of V' with V~. So ¢ ®1id gives a symplectic isomor-
phism of V- @V with Vd V.

A generating function (either in the sense of Chapter I or in the sense of
Section 2.9.1 for (¢id)(T") will also (by abuse of language) be called a generating
function for I" or for T'.

Let us consider the simplest case, where X = R. Then

The map¢: V=V

VoV=ROR*GROR* =T*(RHR).
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Let (z,y) be coordinates on R @ R and consider a generating function (of the
type of Chapter I) of the form

1
o(x,y) = 5(a2® + 2bxy + cy?),
where
b # 0.
Taking into account the transformation ¢, the corresponding Lagrangian sub-
space of V~ @ V is given by the equations
§=—(ax+by), n=br+cy.

Solving these equations for y,7n in terms of z, & gives

1 c c
y=—7laz+9), n=(b-7)z-7I¢
In other words, the matrix (of) T is given by

_a _1
b b

_c

b b

(Notice that by inspection the determinant of this matrix is 1, which is that
condition that T be symplectic.)

Notice also that the upper right hand corner of this matrix is not zero.
Conversely, starting with a matrix

(5 %)

of determinant one, with 8 # 0 we can solve the equation

a 1
b b (a ﬁ)
b—e — N

for a,b,c in terms of a,3,7,d5. So the most general two by two matrix of
determinant one with the upper right hand corner # 0 is represented by a
generating function of the above form.

Suppose we have two functions

1 1
o1(w,y) = glaz® + 2bay + ey’], 6a(y, 2) = 5[Ay* +2Byz + C=7),
with b # 0 and B # 0, and consider their sum:

(b(x’zvy) = (bl(xvy) + ¢2(yaz)'
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Here we are considering y as an “auxiliary variable” in the sense of Section 2.9.1,
so we want to impose the constraint

op
a—y =0, (2.20)
and on this constrained set let
_ 0¢ 09
e=-2£ (=22, (221)

and use these equations to express <§> in terms of (g)
Equation (2.20) gives

(A+c)y+bx+ Bz=0. (2.22)
There are now two alternatives:

o If A+ c # 0 we can solve (2.22) for y in terms of z and z. This then
gives a generating function of the above type (i.e. quadratic in z and
z). It is easy to check that the matrix obtained from this generating
function is indeed the product of the corresponding matrices. This is an
illustration of Hamilton’s principle that the composition of two symplectic
transformations is given by the sum of their generating functions. This
will be explained in detail in Chapter 5, in Sections 5.6 and 5.7. Notice
also that because 9%¢/0y* = A+c # 0, the effect of (2.20) was to allow us
to eliminate y. The general setting of this phenomenon will be explained
in Section 5.8.

e If A+c =0, then (2.22) imposes no condition on y but does give bx+ Bz =

0, i.e
b

Z=—=2x

B

which means precisely that the upper right hand corner of the correspond-
ing matrix vanishes. Since y is now a “free variable”, and b # 0 we can
solve the first of equations (2.21) for y in terms of x and & giving

y= —%(éﬂw)

and substitute this into the second of the equations (2.21) to solve for ¢
in terms of z and £&. We see that the corresponding matrix is

b
B 0

aB _Cb _B
b B b

Again, this is indeed the product of the correpsonding matrices.
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Chapter 3

The language of category
theory.

3.1 Categories.
We briefly recall the basic definitions:
A category C consists of the following data:
(i) A family, Ob(C), whose elements are called the objects of C ,

(ii) For every pair (X,Y) of Ob(C) a family, Morph(X,Y’), whose elements are
called the morphisms or arrows from X to Y,

(iii) For every triple (X,Y, Z) of Ob(C) a map from Morph(X,Y") x Morph(Y, Z)
to Morph(X, Z) called the composition map and denoted (f,g) ~ g o f.

These data are subject to the following conditions:
(iv) The composition of morphisms is associative
(v) For each X € Ob(C) there is an idx € Morph(X, X) such that
foidx = f, Vf € Morph(X,Y)

(for any Y') and
idx o f = f, Vf € Morph(Y, X)

(for any Y).
It follows from the definitions that idx is unique.

63
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3.2 Functors and morphisms.

3.2.1 Covariant functors.

If C and D are categories, a functor F' from C to D consists of the following data:
(vi) amap F : Ob(C) — Ob(D)
and
(vii) for each pair (X,Y") of Ob(C) a map
F :Hom(X,Y) — Hom(F(X), F(Y))
subject to the rules

(viii)
F(de) = idF(X)

Flgo f)=F(g) o F(f)-

This is what is usually called a covariant functor.

3.2.2 Contravariant functors.

A contravariant functor would have F': Hom(X,Y) — Hom(F(Y), F(X)) in
(vii) and F(f) o F(g) on the right hand side of (ix).)

3.2.3 The functor to families.

Here is an important example, valid for any category C. Let us fix an X € Ob(C).
We get a functor
FX :C — Set

(where Set denotes the category whose objects are all families, and morphisms
are all maps) by the rule which assigns to each Y € Ob(C) the family Fx(Y) =
Hom(X,Y) and to each f € Hom(Y,Z) the map Fx(f) consisting of compo-
sition (on the left) by f. In other words, Fx(f) : Hom(X,Y) — Hom(X, Z) is
given by

g € Hom(X,Y) — fog € Hom(X, Z).
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- my)
(X) > G(X)
F(f) G(f)
F(Y) my G
Figure 3.1:

3.2.4 Morphisms

Let F and G be two functors from C to D. A morphism, m , from F to G
(older name: “natural transformation”) consists of the following data:

(x) for each X € Ob(C) an element m(X) € Homp(F(X), G(X)) subject to the
“naturality condition”

(xi) for any f € Hom¢(X,Y) the diagram in Figure 3.1 commutes. In other
words
m(Y)o F(f)=G(f)om(X) V fe feHome(X,Y).

3.2.5 Involutory functors and involutive functors.

Consider the category V whose objects are finite dimensional vector spaces (over
some given field K) and whose morphisms are linear transformations. We can
consider the “transpose functor” F': V — V which assigns to every vector space
V' its dual space

V* = Hom(V,K)

and which assigns to every linear transformation ¢: V — W its transpose
A 7 N VA

In other words,
FV)y=V* F{) =¢".

This is a contravariant functor which has the property that F? is naturally
equivalent to the identity functor. There does not seem to be a standard name
for this type of functor. We will call it an involutory functor.

A special type of involutory functor is one in which F(X) = X for all objects
X and F? = id (not merely naturally equivalent to the identity). We shall
call such a functor a involutive functor. We will refer to a category with an
involutive functor as an involutive category, or say that we have a category
with an involutive structure.
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For example, let H denote the category whose objects are Hilbert spaces
and whose morphisms are bounded linear transformations. We take F(X) = X
on objects and F(L) = L' on bounded linear transformations where LT denotes
the adjoint of L in the Hilbert space sense.

3.3 Example: Sets, maps and relations.

The category Set is the category whose objects are (“all”) families and and
whose morphisms are (“all”) maps between families. For reasons of logic, the
word “all” must be suitably restricted to avoid contradiction.

We will take the extreme step in this section of restricting our attention to
the class of finite sets. Our main point is to examine a category whose objects
are finite sets, but whose morphisms are much more general than maps. Some
of the arguments and constructions that we use in the study of this example will
be models for arguments we will use later on, in the context of the symplectic
“category”.

3.3.1 The category of finite relations.

We will consider the category whose objects are finite sets. But we enlarge the
set of morphisms by defining

Morph(X,Y’) = the collection of all subsets of X x Y.
A subset of X x Y is called a relation. We must describe the map
Morph(X,Y) x Morph(Y, Z) — Morph(X, Z)
and show that this composition law satisfies the axioms of a category. So let
I'y € Morph(X,Y) and I'; € Morph(Y, 2).

Define
I'yol'h Cc X xZ

by
(z,2) €To0ly < JyeY such that (z,y) € Ty and (y, z) € I's. (3.1)
Notice that if f: X — Y and g : Y — Z are maps, then
graph(f) = {(z, f(#)} € Morph(X,Y) and  graph(g) € Morph(Y, Z)

with
graph(g) o graph(f) = graph(g o f).
So we have indeed enlarged the category of finite sets and maps.
We still must check the axioms. Let Ax C X x X denote the diagonal:

Ax ={(z,x), z € X},
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S0
Ax € Morph(X, X).

If I' € Morph(X,Y) then
IF'ocAx =T and Ay oI'=T.

So Ax satisfies the conditions for idx.

Let us now check the associative law. Suppose that I'y € Morph(X,Y),T'; €
Morph(Y, Z) and I's € Morph(Z, W). Then both I'so (T'y0T';) and (I'3oT'g) ol
consist of all (z,w) € X x W such that there exist y € Y and z € Z with

(z,y) €Ty, (y,2) €Ty, and (z,w) € I's.

This proves the associative law.
Let us call this category FinRel.

3.3.2 Categorical “points”.

Let us pick a distinguished one element set and call it “pt.”. Giving a map
from pt. to any set X is the same as picking a point of X. So in the category
Set of sets and maps, the points of X are the same as the morphisms from our
distinguished object pt. to X.

In a more general category, where the objects are not necessarily sets, we
can not talk about the points of an object X. However if we have a distin-
guished object pt., then we can define a “point” of any object X to be an
element of Morph(pt., X). For example, later on, when we study the symplec-
tic “category” whose objects are symplectic manifolds, we will find that the
“points” in a symplectic manifold are its Lagrangian submanifolds. This idea
has been emphasized by Weinstein. As he points out, this can be considered as
a manifestation of the Heisenberg uncertainty principle in symplectic geometry.

In the category FinRel, the category of finite sets and relations, an element
of Morph(pt., X) , i.e a subset of pt. xX, is the same as a subset of X (by
projection onto the second factor). So in this category, the “points” of X are
the subsets of X. Many of the constructions we do here can be considered as
warm ups to similar constructions in the symplectic “category”.

Suppose we have a category with a distinguished object pt.. A morphism
I' € Morph(X,Y) yields a map from “points” of X to “points” of Y. Namely,
a “point” of X is an element p € Morph(pt., X) so if f € Morph(X,Y") we can
form

f op € Morph(pt.,Y)
which is a “point” of Y. So f maps “points” of X to “points” of Y.

We will sometimes use the more suggestive language f(p) instead of f o p.
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3.3.3 The universal associative law.

Consider three objects X, Y, Z. Inside
XXX XYXYXZxZ

we have the subset
A?’:A%(YZ:A)(XA)/XAZ

consisting of all points of the form
(zayyzz).

Let us move the first X factor past the others until it lies to immediate left of
the right Z factor, so consider the subset

AP =A%y, CXXY XY XZxXxXZ Aky,={(x97y 222}

By introducing parentheses around the first four and last two factors we can
write R
A%y, C(X XY XY x Z) x (X x 2).

In other words,
A3y, € Morph(X XY x Y x Z, X x Z).
Let T'y € Morph(X,Y) and I'y € Morph(Y, Z). Then
' xI'b CcXxYxYxZ
is a “point” of X XY XY x Z. We identify this “point” with an element of
Morph(pt., X XY xY x Z)

so that we can form 3
A%(YZ (e} (Fl X FQ)

which consists of all (z,z) such that

(1,91, Y2, 21, 2, 2) with

(v1,91) € Ty,

(y2,21) € To,
ry = I,
g = Y2,
21 = Z.

Thus

Agfyz o (Fl X Fg) = FQ o Fl- (32)
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Suppose we have four sets X, Y, Z, W. We can form
Ay ;00 ALy CX XY XY XZXZXWXXXZXZXW
consisting of all points of the form
(zyyz2'wrzz'w).

By inserting parentheses about the first six and last four positions we can regard
A3y, <1 Ay as an element of

Morph((X XY XY X Z X Zx W) (X x Z x Z x W)).
If we compose Ay, > Ay with

'y x Ty x '3 € Morph(pt., X XY XY x Z x Z x W)

we obtain
(TeoTy) xT3C (X x Z)x (ZxW).

Now let us consider

AXzw o (Aﬁ(YZ > AZZW) .
It consists of all pairs (zyyzz'w), (zw) such that (zzz'w) = (zzzw) i.e. such
that z = 2’. Removing the parentheses we obtain

Ay w CX XY XY XZXZxWxXxW,

given by R
A%(YZW = {(ryyzzwrw)}.

So putting in some parentheses shows that we can regard A%y 4y, as an element
of
Morph(X XY XY X Z x Z x W, X x W).

If T'y € Morph(X,Y), I'y € Morph(Y, Z), and T's € Morph(Z, W) then we can
compose A%y, with 'y x Ty x '3 to obtain an element of Morph(X, W).
Thus the equation

A%(YZW = A%(ZW o (Ag(yz > A2ZW) (3.3)

is a sort of universal associative law in the sense that if we compose (3.3) with
I’y x Ty x '3 regarded as an element of Morph(pt. ., X XY XY x Z x Z x W)
we obtain the equation

30 (Ty0T)) = A%y 7w (T1 x Ty x T3).

Similar to (3.3) we have an equation of the form

A%(’ZW o (AXY > ABYZW) = A%(YZW (3.4)
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which implies that
(T30Ty) oly = A%y (D1 x Ty x T's).

From this point of view the associative law is a consequence of equations
(3.3) and (3.4) and of the fact that

(FlXFQ)XF3:F1X(F2XF3):F1XF2XF3.

3.3.4 The transpose.
In our category FinRel, if I' € Morph(X,Y) define I'f € Morph(Y, X) by
L= {(y,2)l(z,y) € T}.
We have defined a map
T : Morph(X,Y) — Morph(Y, X) (3.5)
for all objects X and Y which clearly satisfies
2 =id (3.6)

and
(0Tt =Tl oT]. (3.7)

So t is a contravariant functor and satisfies our conditions for an involution.
This makes our category FinRel of finite sets and relations into an involutive
category.

3.3.5 Some notation.

In the category FinRel a morphism is a relation. So Morph(X,Y’) is a subset
of X xY. As we have seen, we can think of a relation as a generalization of
the graph of a map which is a special kind of relation. The following definitions
(some of which are borrowed from Alan Weinstein) will prove useful in other
categorical settings: Let I" € Morph(X,Y)

e X is called the source of T,
e Y is called the target of I,

o If T is a subset of X, then I'(T) := {y|3z € T such that (z,y) € I'} is
called the image of T and is denoted by I'(T).

I'(X) is called the range of T',

The range of I't is called the domain of T.

e [ is surjective if if its range equals its target.
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e [' is cosurjective if its domain equals its source, i.e it is “defined every-
where”.

[ is injective if for any y € Y there is at most one z € X with (z,y) € .

e [' is co-injective if for any x € X there is at most one y € Y with
(z,y) €T, ie. T is “single valued”.

I' is called a reduction if it is surjective and co-injective,

T" is called a coreduction if it is injective and co-surjective, so it takes all
the points of the source X into disjoint subsets of Y.

3.4 The linear symplectic category.

Let V1 and V5 be symplectic vector spaces with symplectic forms w; and ws.
We will let V™ denote the vector space Vi equipped with the symplectic form
—wi. So V]~ @V, denotes the vector space V; & Vs equipped with the symplectic
form —wi @ wa.

A Lagrangian subspace I' of V;” @ V4 is called a linear canonical relation.
The purpose of this section is to show that if we take the collection of symplectic
vector spaces as objects, and the linear canonical relations as morphisms we get
a category. Here composition is in the sense of composition of relations as in the
category FinRel. In more detail: Let V3 be a third symplectic vector space, let

T'; be a Lagrangian subspace of V|~ @ V5

and let
I'; be a Lagrangian subspace of V;,~ & V3.

Recall that as a set (see ( 3.1)) the composition
I'yol'y C Vi x V3
is defined by
(z,2) €90y & Jy e Vs, such that (z,y) € I'1 and (y, 2) € T's.

We must show that this is a Lagrangian subspace of V;~ @ V3. It will be important
for us to break up the definition of I'; o I'y into two steps:

3.4.1 The space I'; x1';.

Define
FQ *Fl C Fl X FQ

to consist of all pairs ((x,y), (v, 2)) such that y = y’. We will restate this
definition in two convenient ways. Let

7TZF1—>‘/2, 77(’01,’02):1)2
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and

p:To— Vo, p(vz,v3) = va.
Let
7: 1 xTy =V,
be defined by
7(71,72) = m(m) — p(12)- (3.8)

Then I'; x I'y is determined by the exact sequence
0—Tyx; =Ty xTy 5 Vo — Coker 7 — 0. (3.9)

Another way of saying the same thing is to use the language of “fiber prod-
ucts” or “exact squares”: Let f: A — C and g : B — C be maps, say between
sets. Then we express the fact that F' C A x B consists of those pairs (a,b)
such that f(a) = g(b) by saying that

F— A

Ll

B —— C
g9

is an exact square or a fiber product diagram.
Thus another way of expressing the definition of 'y x I'; is to say that

oxI'y —— I'y

l L (3.10)

Iy — W,
p

is an exact square.

3.4.2 The transpose.

IfT' C V" @ Vs is a linear canonical relation, we define its transpose I'f just as
in FinRel:

It = {(3,)|(x.y) € T}. (3.11)

Here z € V; and y € V5 so I't as defined is a linear Lagrangian subspace of
Vo @ V. But replacing the symplectic form by its negative does not change the
set of Lagrangian subspaces, so 'l is also a Lagrangian subspace of V, @ Vj,
i.e. a linear canonical relation between V5 and Vi. It is also obvious that just
as in FinRel we have

' =r.
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3.4.3 The projection o : 'y xI'y — 'y 0 I'y.

Consider the map
o (z,y,y,2) = (z,2). (3.12)

By definition
Oé:Fg*Fl —>I‘20F1.
3.4.4 The kernel and image of a linear canonical relation.

Let Vi and V2 be symplectic vector spaces and let I' C Vi~ x V5 be a linear
canonical relation. Let
m: =V,

be the projection onto the second factor. Define
e KerI' C V5 by Ker' = {v € V4|(v,0) € T'}.
e ImI' C V, by ImI" := #n(T") = {vg € Va|Fv; € V; with (v1,v2) € T'}.

Now I'f € V;~ @ V4 and hence both ker I' and Im T are linear subspaces of the
symplectic vector space V5. We claim that

(kerI'")* =TIm T. (3.13)

Here L means perpendicular relative to the symplectic structure on V5.

Proof. Let wy; and ws be the symplectic bilinear forms on V; and V5 so that
W = —w; @ wy is the symplectic form on V;~ @ V5. So v € V5 is in Ker I'f if and
only if (0,v) € T'. Since I is Lagrangian, (0,v) € ' < (0,v) € Tt and

(0,v) €Tt & 0= —wi(0,v1) + wa(v,v2) = wo(v,v2) V¥ (v1,v2) €T
But this is precisely the condition that v € (Im T')*. O
The kernel of a consists of those (0,v,v,0) € 'y xI';. We may thus identify
ker o = ker I’J{ Nkery (3.14)

as a subspace of V5.
If we go back to the definition of the map 7, we see that the image of 7 is
given by
Im7 =ImDy 4+ Im T}, (3.15)

a subspace of V5. If we compare (3.14) with (3.15) we see that
kera = (Im 7)™+ (3.16)

as subspaces of Vo where L denotes orthocomplement relative to the symplectic
form wsy of V5.
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3.4.5 Proof that I'; o I'; is Lagrangian.

Since I'p 0Ty = (T2 % T'1) and Iy x 'y = ker 7 it follows that I'; o Ty is a linear
subspace of V|~ @ V3.

It is equally easy to see that I's o I'; is an isotropic subspace of V™ & V5.
Indeed, if (x,z) and (2/,2’) are elements of I'y o 'y, then there are elements y
and y’ of V3 such that

(xay) € Fla (yvz) S F27 (xlayl) S Pla (ylvzl) S F2~
Then
w3(2,2") —wi(z,2") = ws(2,2") —w2(y, ') + wa(y,y') — wi(x,2”) = 0.

So we must show that dimI's o'y = %dim Vi+ %ding. It follows from
(3.16) that
dim ker o« =dim V5 —dimIm 7

and from the fact that I'y o I'y = a(I'y xI'y) that
dim I'soI'y =dim I'ys xI'; — dim kera =

=dim 'y %'y —dim V5 +dimIm 7.

Since I'y % I'y is the kernel of the map 7 : 'y x 'y — V5 it follows that
dim Fg *Fl = lelFl X FQ —dim Im 7=
1 . 1 . 1 . 1 . .
§dlm V1—|-§d1m ‘/2-|-§dlm V2—|—§d1m Vs —dim Im 7.
Putting these two equations together we see that
. 1 . 1 .
dimIy 0Ty = §d1mV1 + 5 dim V3

as desired. We have thus proved

Theorem 7. The composite I's0T'y of two linear canonical relations is a linear
canonical relation.

The associative law can be proved exactly as for FinRel: given four sym-
plectic vector spaces X,Y, Z, W we can form

Ady w CIX XY)x (Y™ xZ)x (Z7 x W)™ x (X~ xW)

A%(YZW = {(myyzzwxw)}

It is immediate to check thatA% .y, is a Lagrangian subspace, so

A%y zw € Morph(X™ xY) x (Y™ x Z) x (Z= x W), X~ x W).



3.4. THE LINEAR SYMPLECTIC CATEGORY. 75

If I'y € Morph(X,Y), I's € Morph(Y, Z), and I's € Morph(Z, W) then
M30(y0T) = (T300s) ol = A%y 4w (T x Ty x I'3),

as before. From this point of view the associative law is again a reflection of the
fact that
(Fl XFQ) ><F3:F1 X(FQXF3):F1 XFQXF3.

The diagonal Ay gives the identity morphism and so we have verified that

Theorem 8. LinSym s a category whose objects are symplectic vector spaces
and whose morphisms are linear canonical relations.

3.4.6 Details concerning the identity AXYZ o(I'y xI'y) =
F2 e} Fl'

Let X,Y, Z be symplectic vector spaces and I'y € Morph(X,Y), I's € Morph(Y, Z).

Since 'y € X~ xY, I's C Y™ x Z soI'y xI'y is a Lagrangian subspace of

X~ xY xY~ x Z thought of as an element of Morph(pt., X~ xY x Y~ x Z).
Also

Axyz CX XY XY XZxX" xZ, Axyz={(zyy 22}
So Axyyz x (I'1 x T'y) consists of all (z,y)(v/,2),, 7,7, % such that (z,y) €
Iy, (v,2) elgand T =2, =y =9, Z= 2. In other words,
Axyz* (01 xT9) = {((z,y,y, 2, z,2)|(z,y) €1, (y,2) € Ta}.
Thus Axyz * (I'; x I') is the kernel of the map
FiAxyz0 M xTy) 5 XaYaYSZ

given by

(9,9, 2,2, 2) (1, 91) (Y2, 22)) = (# — 21,y — Y1,y — Y2, 2 — 22).

The image of T is
X & (Ay + (m(T) @ p(T)) & Z.

Here the middle expression is the subspace of Y~ @ Y consisting of all (y —
Y1,y —y2) with y1 € 7(T'1), y2 € p(I'2). The symplectic orthogonal complement
of the image of Tin X~ @Y ®Y @& Zis 00 Q & 0 where Q is the orthogonal
complement of Ay + (7(F'1) @ p(T2) in Y~ @Y.

From the general theory we know that this orthogonal complement is iso-
morphic to ker & where

a: AXYZ* (Fl X FQ) — AXYZ o (Fl X Fg)

Since Ay is a Lagrangian subspace of Y~ @Y we know that ) must be a
subspace of Ay and so consists of all (w,w) such that w is in the orthocom-
plement in Y of both 7(T'y) and p(T'). In other words w is such that (0,w)
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is in the orthocomplement of I'; in X~ x Y and so (0,w) € I'y and similarly
(w,0) € T'y. So w € ker o where

a:ToxI'y =T 0TI

In short,

~)

Proposition 12. We have an isomorphism from (Im7)% = kera — ker &
(Im 7)* given by
w— 0® (w,w) 0.

3.4.7 The category LinSym and the symplectic group.

The category LinSym is a vast generalization of the symplectic group because
of the following observation: Let X and Y be symplectic vector spaces. Suppose
that the Lagrangian subspace I' C X~ @& Y projects bijectively onto X under
the projection of X @Y onto the first factor. This means that I' is the graph of
a linear transformation 7" from X to Y:

I'={(z,Tx)}.

T must be injective. Indeed, if Tx = 0 the fact that I' is isotropic implies that
x L X soxz=0. Also T is surjective since if y L im(7'), then (0,y) L I". This
implies that (0,y) € I' since I' is maximal isotropic. By the bijectivity of the
projection of I" onto X, this implies that y = 0. In other words T is a bijection.
The fact that T" is isotropic then says that

wy (Tz1, Tr2) = wx (21, 72),
i.e. T is a symplectic isomorphism. If 'y = graphT and I'y = graph S then
I'yol'y =graph SoT

so composition of Lagrangian relations reduces to composition of symplectic
isomorphisms in the case of graphs. In particular, if we take Y = X we see that
Symp(X) is a subgroup of Morph (X, X) in our category.

3.4.8 Reductions in the linear symplectic category.

Let X be an object in our category, i.e a symplectic vector space and let Z C X
be a coisotropic subspace of X. Since Z+ C Z, we can form the quotient space
B = Z/Z* which is a symplectic vector space. Let 7 : Z — B denote the
projection, ¢ : Z — X the injection of Z as a subspace of X, and let wx and
wp denote the symplectic forms on X and B. By definition,

Vwxy = 1twp

so that the subset
I':={(z,7(2),z€ Z} C X~ x B
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is isotropic. Let k = dim(Z1). Since dim(Z) + dim(Z+) = dim X, we see
that dim(Z) = dim(X) — k. On the other hand, dim(B) = dim(Z) — k. So
dim(B) = dim(X) — 2k. So

1
dim(T) = dim(Z) = dim(X) — k = i(dim(X) + dim(B)).
In other words, I' is a Lagrangian subspace of X~ x B, i.e. an element of
Morph(X, B) which is clearly single valued and surjective, i.e. is a reduction.

Conversely, suppose that I' € Morph(X, B) is a reduction. Let Z C X
be the domain of T', so that I' consists of all (z,7(z)) where 7 : Z — B is
a surjective map. Let V' = ker(w). Then since I' is isotropic we see that
V1L C X contains Z. The dimension of I' equals 3(dim(X) + dim(B). Let
k = dim(Z) — dim(B) = dim(V). So

dim(Z) = dim(T") = %(dim(X) +dim(Z) — k)

implying that
dim(Z) = dim(X) — k = dim(V?).

So V+ = Z, i.e Z is co-isotropic. We have proved

Proposition 13. [Benenti and Tulszyjew [?], section 3.] A reduction
I in the linear symplectic category consists of a coisotropic subspace Z of a
symplectic vector space X with quotient B = Z/Z* where I' € Morph(X, B)
being the graph of the projection w: Z — B.

In fact, suppose that I' € Morph(X, B) is such that 7(I') = B, where, recall,
7 is the projection of I' C X~ x B onto the second factor. Then the projection
p of T onto the first factor must be injective. Indeed, suppose that (0,v) € T
Since T is isotropic, we must have v € B+ so v = 0. Thus

Proposition 14. T' € Morph(X,Y) is a reduction if # : T' — Y is surjective
and hence (by applying 1), ' € Morph(X,Y) is a co-reduction if p: T' — X 1is
surjective.

We have the following result (a special case of a proposition due to Wein-
stein):

Proposition 15. Fvery morphism in the linear symplectic category can be writ-
ten as the composition of a co-reduction with a reduction.

Proof. Let I' be a morphism from X to Y. Since I' is a Lagrangian subspace of
X~ xY, we can think of I' as a morphism, call it 7y, from pt..to X~ xY. Thisisa
coreduction. Hence so is id. Xy which is a morphism from X xpt. to X x X~ xY.
As a Lagrangian submanifold of (X xpt.)” X (X XX~ xY) = X~ x (X x X~ xY)
it consists of all points of the form

(z,z,2',y) with (2/,y) € T. (3.17)
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A x is a Lagrangian subspace of X ~ x X which we can think of as a morphism
ex from X~ x X to pt.. It is a reduction, hence so is ex x idy. As a subset of
(X~ x X xY)~ xY it consists of all points of the form

(z,2,y,y). (3.18)

The composite of these two morphisms consists of the subset of X x Y =

X x pt. X pt. XY given by those (x,y) such that there exists a w = (x, ', y) with

(w,y) of the form (3.18) so = 2’ with (x,w) of the form (3.17) so (2/,y) € T
So the composite is I

O

3.4.9 Composition with reductions or co-reductions.

Suppose that I' € Morph(X, B) is a reduction and so corresponds to a co-
isotropic subspace Z C X, and let V = Z* be the kernel of the projection
7r : Z — B. Let A € Morph(B,W). Since 7 is surjective, for any (b,w) € A
there exists a z € Z with (z,w) € AoT with 7p(z) = b and this z is determined
up to an element of V. So

Proposition 16. If I' € Morph(X, B) is a reduction with V = ker(mr) and
A € Morph(B, W) then
Aol'=V x A.

Hence, if T € Morph(B,X) is a co-reduction with V. = kerpr and A €
Morph(W, B) then
ToA=AXxV.

3.5 The category of oriented linear canonical re-
lations.

Recall that on an n-dimensional vector space V, its n-th exterior power A"V is
one dimensional. Hence A"V \ {0] has two components, and a choice of one of
them is called an orientation of V. Put another way, any basis e of A"V differs
from any other basis by multiplication by a non-zero real number. This divides
the set of bases into two equivalence classes, the elements in each equivalence
class differ from one another by a positive multiple.
If
0=V =V -V">0

is an exact sequence of vector spaces a basis of V'’ extends to a basis of V which
then determines a basis of V”. So an orientation on any two of the three vector
spaces determines an orientation on the third. An orientation on a vector space
determines an orientation on its dual space.

A symplectic vector space carries a canonical orientation; indeed if w is the
symplectic form on a 2n dimensional vector space then w™ is a non-zero element
of A2"V*_ hence determines an orientation on V* and hence on V.
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Suppose that Vp, V5, V3 be three symplectic vector spaces with
NLcVi eV, ThcCcVy, @Vs.
Claim: An orientation on I'y and I's determines an orientation on I'soI'y.

Proof. Let us first consider the case where the composition is transverse. We
then have the exact sequence

0—=Tyoly 5T @y 5 Ve —0

so the orientations on I'y and I'; determine an orientation on I'y @ I'y, which
together with the canonical orientation on V5 determine an orientation on I'yol’y.

The general case is only slightly more complicated: we have the exact se-
quences

0T} = Ty @®Ty S Imr—0
0= kerao » ToxT; SThol; =0 (3.19)
0 — kera - Imr  — Im7/kera — 0.

In the last sequence we know that by definition, ker « (considered as a subspace
of V3) is a subspace of Im 7 and we proved that kera = Im7+. So Im7 /kera is a
symplectic vector space and hence has a canonical orientation. Thus a choice of
orientation on, say, ker a determines an orientation on Im 7. Such a choice then
(together with the orientation on I'y @ T's) determines an orientation on T'y %'y
by the first sequence and then an orientation on I's oI'; by the second sequence.
Had we made the opposite choice of orientation on ker o this would have made
the opposite choices of orientation on Im7 and hence on I'y x I'; from the first
exact sequence, but then we would end up with the same orientation on I'y o I'y
from the second exact sequence.

O

Proposition 17. The set whose objects are symplectic vector spaces and whose
morphisms are oriented linear canonical relations form a category.

Proof. We must prove the associative law. For this we use the identity
Axyzo(Ty xTy)=T50T, (*)

(with X =V1,Y = V5, Z = V3), together with the exact sequences (3.19) applied
to AXYZ and I'y x I'y. The space Axyz has a canonical orientation as it is
isomorphic to the symplectic vector space X &Y & Z. From Proposition 12
we know that ker « is isomorphic to ker @. So we conclude that the orientation
induced on T'y o T'; is obtained from applying the construction above to (x).
Thus the associativity follows from our “universal” associative law in that the
orientation on I'so(I'0I'1) and on (I'soI'y)oI'y both coincide with the orientation
induced on ~
AXYZW [¢] (Fl X FQ X ].—‘3)
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Victor: Maybe (as we discussed yesterday) we should use the orientation
coming from I'] x I'y where I'] denote the opposite orientation on I';. Notice
that the opposite orientation amounts to replacing one vector in a basis by its
negative, so (I'7 x I's)” =T'; x I'y and hence

(F;XFQ)_XF3:F1XF2XF3=F;X(F5XF3)

so the associative law still holds. What do you think?



Chapter 4

The Symplectic
“Category”.

Let M be a symplectic manifold with symplectic form w. Then —w is also a
symplectic form on M. We will frequently write M instead of (M,w) and by
abuse of notation we will let M~ denote the manifold M with the symplectic
form —w.
Let (M;,w;) i = 1,2 be symplectic manifolds. A Lagrangian submanifold T’
of
I'C Ml_ x Mo

is called a canonical relation. So I' is a subset of M; x Ms which is a La-
grangian submanifold relative to the symplectic form ws — wy in the obvious
notation. So a canonical relation is a relation which is a Lagrangian submani-
fold.

For example, if f : My — My is a symplectomorphism, then I'y = graph f
is a canonical relation.

If 'y € My x My and I'y C My X M3 we can form their composite

F20F1CM1><M3

in the sense of the composition of relations. So I's o I'; consists of all points
(z, z) such that there exists a y € My with (z,y) € I'; and (y,2) € I's.
Let us put this in the language of fiber products: Let

’/'TSFl*)Mg

denote the restriction to I'; of the projection of M7 x Ms onto the second factor.
Let
p: I's = M,

denote the restriction to I'y of the projection of My x M3 onto the first factor.
Let
F C My x My x My x Mg

81



82 CHAPTER 4. THE SYMPLECTIC “CATEGORY”.
be defined by
F = (7T X p)_lAMz'

In other words, F is defined as the fiber product (or exact square)

F 251

o |= (4.1)

FQ-)MQ
p

SO
FCT'y xT's C My x My x My x Ms.

Let pr;; denote the projection of My x Ma x Ma x M3 onto My x M3 (projection
onto the first and last components). Let 713 denote the restriction of prq5 to F'.
Then, as a set,

FQOFl =7T13(F). (42)

The map pr;5 is smooth, and hence its restriction to any submanifold is
smooth. The problems are that

1. F defined as
F= (7T X p)ilAMw

i.e. by (4.1), need not be a submanifold, and
2. that the restriction m3 of pry5 to F' need not be an embedding.

So we need some additional hypotheses to ensure that I's o I'; is a submanifold
of My x M3. Once we impose these hypotheses we will find it easy to check
that I'y o I'y is a Lagrangian submanifold of M; x Mj; and hence a canonical
relation.

4.1 Clean intersection.
Assume that the maps
m:1 — My and p:Ts — My

defined above intersect cleanly.
Notice that (my, ma, mh, mg) € F if and only if

® My :m/2a
e (my,ms) € Ty, and

o (mh,ms3) € I's.
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So we can think of F' as the subset of M; x My x Mjs consisting of all points
(mqy,ma, m3) with (m1,mse) € Ty and (msg, m3) € I's. The clean intersection
hypothesis involves two conditions. The first is that F' be a manifold. The
second is that the derived square be exact at all points. Let us state this second
condition more explicitly: Let m = (mi, me,m3) € F. We have the following
vector spaces:

Vi = T,,M,

Vo = T, M,

Vs = T,,Ms,

" = Tin,msl1, and
re = Tima,ms)2-

So
LT C Tiony ) (M1 x Ma) = V1 @ Vs

is a linear Lagrangian subspace of V;~ @ V5. Similarly, I'y* is a linear Lagrangian
subspace of V,~ @ V3. The clean intersection hypothesis asserts that T, F is
given by the exact square

TmF d(Ll)nL ]_—Win

d(bz)ml ld”(ml,mg) (4.3)

ry ——— T, Mo
dp(my,m3)

In other words, T, F' consists of all (v1,v2,v3) € V1 & Va @ V3 such that
(v1,v2) €T and  (vg,v3) € TH.

The exact square (4.3) is of the form (3.10) that we considered in Section
3.4. We know from Section 3.4 that I'j* o I'l" is a linear Lagrangian subspace
of Vi~ @ V3. In particular its dimension is %(dim M + dim M3) which does not
depend on the choice of m € F. This implies the following: Let

v F— My x My x Ms
denote the inclusion map, and let
K13 : M7 x My x Mz — My x M;
denote the projection onto the first and third components. So
Kizot: F — My x M;j

is a smooth map whose differential at any point m € F maps T,,F onto I'}’ o
I'T* and so has locally constant rank. Furthermore, the image of T,,F is a
Lagrangian subspace of T(p,, ms3)(M; x Msz). We have proved:
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Theorem 9. If the canonical relations I'y C My X My and T'y C My x Ms
intersect cleanly, then their composition 'y o I'y is an itmmersed Lagrangian
submanifold of M| x Ms.

We must still impose conditions that will ensure that I'; o I'y is an honest
submanifold of M; x M3. We will do this in the next section.

We will need a name for the manifold F' we created out of I'y and I'y above.
As in the linear case, we will call it I'o x I';.

4.2 Composable canonical relations.

We recall a theorem from differential topology:

Theorem 10. Let X and Y be smooth manifolds and f : X — Y is a smooth
map of constant rank. Let W = f(X). Suppose that [ is proper and that for

every w € W, f~1(w) is connected and simply connected. Then W is a smooth
submanifold of Y.

We apply this theorem to the map k13 0¢: F — M; x Ms. To shorten the
notation, let us define
K := K130 L. (4.4)

Theorem 11. Suppose that the canonical relations I'y and 'y intersect cleanly.
Suppose in addition that the map & is proper and that the inverse image of every
v e€Tlyoly = k(e *xI'1) is connected and simply connected. Then I's 0Ty is a
canonical relation. Furthermore

K:ToxI'y = T90I (45)
s a smooth fibration with compact connected fibers.

So we are in the following situation: We can not always compose the canon-
ical relations I'y C My x M3 and I'y C M x M> to obtain a canonical relation
I'yol'y C My x Ms. We must impose some additional conditions, for example
those of the theorem. So, following Weinstein, we put quotation marks around
the word category to indicate this fact.

We will let S denote the “category” whose objects are symplectic manifolds
and whose morphisms are canonical relations. We will call I'y C M, x M3 and
I'y C M, x M3 cleanly composable if they satisfy the hypotheses of Theorem
11.

If I' € M x Ms is a canonical relation, we will sometimes use the notation

I' € Morph(M;y, Ms)
and sometimes use the notation
I: M1 — MQ

to denote this fact.
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4.3 Transverse composition.

A special case of clean intersection is transverse intersection. In fact, in appli-
cations, this is a convenient hypothesis, and it has some special properties:
Suppose that the maps 7w and p are transverse. This means that

7xp:Ty x Ty — My x My
intersects Ay, transversally, which implies that the codimension of
Do« = (7 x p) " (Ang,)
in I'y x 'y is dim M>. So with F' = I'y xI'; we have
dimF = dimI'y +dimI'y — dim My
= %dili + %dimMg + %dimMz + %dimMg — dim M

1 1
= idili + gdimMg

== dimFgoI’l.

So under the hypothesis of transversality, the map x = k13 o ¢ is an immersion.
If we add the hypotheses of Theorem 11, we see that « is a diffeomorphism.

For example, if T'5 is the graph of a symplectomorphism of My with Mz then
dP(ms,ma) * Tlma,ms) (') = T, Ma is surjective at all points (mg,m3) € I's. So
if m = (my,mg, ma,m3) € I'y X T'y the image of d(m X p),, contains all vectors
of the form (0,w) in Ty, M2 & T;, M2 and so is transverse to the diagonal.
The manifold T's x I'; consists of all points of the form (mq, ma, g(ms)) with
(mq, mg) € T'1, and

Kt (my,ma, g(ma)) — (m1, g(m2)).

Since g is one to one, so is k. So the graph of a symplectomorphism is transver-
sally composible with any canonical relation.

We will need the more general concept of “clean composability” described
in the preceding section for certain applications.

4.4 Lagrangian submanifolds as canonical rela-
tions.

We can consider the “zero dimensional symplectic manifold” consisting of the
distinguished point that we call “pt.”. Then a canonical relation between pt.
and a symplectic manifold M is a Lagrangian submanifold of pt. x M which may
be identified with a Lagrangian submanifold of M. These are the “points” in
our “category” S.

Suppose that A is a Lagrangian submanifold of My and T' € Morph(M7y, M>)
is a canonical relation. If we think of A as an element of Morph(pt., M7), then
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if I" and A are composible, we can form I" o A € Morph(pt., M) which may be
identified with a Lagrangian submanifold of M. If we want to think of it this
way, we may sometimes write I'(A) instead of T o A.

We can mimic the construction of composition given in Section 3.3.2 for
the category of finite sets and relations. Let M, My and M3 be symplectic
manifolds and let I'y € Morph(M;, M3) and I'y € Morph(Mas, M3) be canonical
relations. So

I'y xTy C My x My x My X Ms

is a Lagrangian submanifold. Let

Ant, ayas = 1@y, 9, 2,2, 2)} C© My x My x My x Ms x My x M. (4.6)
We endow the right hand side with the symplectic structure
My x My x My x My x My x Mg = (M; x My x My x Ms)™ x (M x Ms).
Then A M, M, Ms 1S & Lagrangian submanifold, i.e. an element of

Morph(M; x My x My x Ms, M, x Ms).
Just as in Section 3.3.2,
Anty vy (T x Tg) =Tg 0T,

It is easy to check that I's and I'; are composible if and only if AMl,MQ, M, and
I'y x I'y are composible.

4.5 The involutive structure on S.

Let I" € Morph(M7, Ms) be a canonical relation. Just as in the category of finite
sets and relations, define

FT = {(mg,m1)|(m1,m2) S F}

As a set it is a subset of My x M; and it is a Lagrangian submanifold of My x M7 .
But then it is also a Lagrangian submanifold of

(M2 XM{)_ :Mg XMl.

So
I'" € Morph(My, My).

Therefore M +— M,T +— T'T is a involutive functor on S.

4.6 Reductions in the symplectic “category”.

In this section we recast the results of Sections 3.4.8 and 3.4.9 in the manifold
setting.
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4.6.1 Reductions in the symplectic “category” are reduc-
tions by coisotropics.

Let Z € X be a coisotropic submanifold. The null distribution of tzwx is a
foliation by Frobenius. Suppose that it is fibrating with base Y so we have
7w : Z — Y where the fiber dimension of 7 equals the codimension of Z = k,
say. We have an induced symplectic form wy on Y such that 7*wy = *wx
so the subset

{(z,m(2))|z€ Z}C X~ xY

is isotropic for the form wy — wyx. Its dimension is dimZ = dimX — k =
%(dimX +dimY) since dimY = dim X — 2k, so is Lagrangian. As a morphism
it is surjective and single valued so is a reduction in the sense of Section 3.3.5.

Conversely, suppose that a morphism in our “category” is surjective with
image Y and let Z be the pre-image of Y. So we are assuming that Z C X is
a submanifold with surjection w : Z — Y. The Lagrangian submanifold A of
X~ x Y consists of all (z,7(2)),z € Z. Its dimension equals dim Z so we must
have

dim Z = %dimX—&- %dimY.

Let k:=dim Z —dimY. Then we must have dim Z = dim X — k. Let V be the
vertical bundle for the fibration 7. Since A is isotropic, so that 7*wy = t;wx we
see that the orthogonal complement TV relative to wx to the tangent space
TV contains T'Z. But the dimension of this complement is dim X — k = dim Z
so Z is co-isotropic.

Thus we obtain symplectic “category” version of the Proposition 77 of Be-
nenti and Tulszyjew, namely that a reduction I' € Morph(X,Y’) consists of a
co-isotropic submanifold Z C X with w : Z — Y the fibration associated to the
null foliation ¢jwx. Then I' consists of all (z, m(z)).

4.6.2 The decomposition of any morphism into a reduc-
tion and a coreduction.

We next prove Weinstein’s theorem that any f € Morph(X,Y’) can be written
as the transverse composition of a reduction and a coreduction. This is the
manifold version of Proposition 15, but the proof is essentially identical:

Let f be a morphism from X to Y. Since f is a Lagrangian submanifold of
X~ x Y, we can think of f as a morphism ~(f) from pt.. to X~ x X~ x Y.
This is a coreduction. Hence so is id. X «(f) which is a morphism from X X pt.
to X x X~ xY. As a Lagrangian submanifold of (X xpt.)” x (X x X~ xY) =
X~ x (X x X~ xY) it consists of all points of the form

(z,z,2',y) with (2',y) € f. (4.7)

Ax is a Lagrangian subspace of X~ x X which we can think of as a morphism
ex from X~ x X to pt.. It is a reduction, hence so is ex x idy. As a subset of
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(X~ x X xY)~ xY it consists of all points of the form

(z,2,9,9). (4.8)

The composite of these two morphisms consists of the subset of X x Y =
X x pt. X pt. XY given by those (x,y) such that there exists a w = (x, 2’, y) with
(w,y) of the form (4.8) so z = z’ with (z,w) of the form (3.17) so (2',y) € T.
So the composite is T

4.6.3 Composition with reductions or co-reductions.

We now give the manifold version of Prop. 3.4.9. Suppose that I' € Morph(X, B)
is a reduction and so corresponds to a co-isotropic submanifold Z C X, and let
V' be a typical fiber the projection 7p : Z — B. Let A € Morph(B,W). Since
7 is surjective, for any (b, w) € A there exists a z € Z with (z,w) € AoT with
7r(z) = b and this z is determined up to an element of V. So

Proposition 18. If I' € Morph(X, B) is a reduction with V = ker(np) and
A € Morph(B, W) then
Ao~V x A

Hence, if T' € Morph(B,X) is a co-reduction with Vsimkerpr and A €
Morph(W, B) then
ToA=AXxV.

4.7 Canonical relations between cotangent bun-
dles.

In this section we want to discuss some special properties of our “category” S
when we restrict the objects to be cotangent bundles (which are, after all, special
kinds of symplectic manifolds). One consequence of our discussion will be that
S contains the category C*° whose objects are smooth manifolds and whose
morphisms are smooth maps as a (tiny) subcategory. Another consequence
will be a local description of Lagrangian submanifolds of the cotangent bundle
which generalizes the description of horizontal Lagrangian submanifolds of the
cotangent bundle that we gave in Chapter 1. We will use this local description
to deal with the problem of passage through caustics that we encountered in
Chapter 1.

We recall the following definitions from Chapter 1: Let X be a smooth
manifold and T*X its cotangent bundle, so that we have the projection 7 :
T*X — X. The canonical one form ay is defined by (1.8). We repeat the
definition: If £ € T* X,z = w(£), and v € T¢(T*X) then the value of ax at v is
given by

(ax,v) = (£, dmev). (1.8)

The symplectic form wx is given by

wx = —dax. (1.10)
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So if A is a submanifold of T* X on which ax vanishes and whose dimension
is dim X then A is (a special kind of) Lagrangian submanifold of 7% X.

The conormal bundle.

An instance of this is the conormal bundle of a submanifold: Let Y € X be
a submanifold. Its conormal bundle

N'Y cT*X

consists of all z = (z,€) € T*X such that x € Y and £ vanishes on T,Y. If
v € T,(N*Y) then dm,(v) € T,Y so by (1.8) (ax,v) =0.
4.8 The canonical relation associated to a map.
Let X7 and X5 be manifolds and f : X; — X5 be a smooth map. We set

My :=T*X; and My, :=T*X,
with their canonical symplectic structures. We have the identification

My x My =T*X; x T*Xo = T*(X; x Xa).
The graph of f is a submanifold of X7 x Xa:
X1 x X O graph(f) = {(z1, f(21))}.

So the conormal bundle of the graph of f is a Lagrangian submanifold of M; x
Ms. Explicitly,

N*(graph(f)) = {(21,&1,72,8§2) |22 = f(z1), & = —df;, &2} (4.9)

Let
(ST T*Xl — T*Xl

be defined by
§1($,€) = ('T7 _5)

Then ¢f (ax,) = —ax, and hence
Cf (wXI) = —Wwx, .

We can think of this as saying that ¢; is a symplectomorphism of M; with M
and hence
G X id

is a symplectomorphism of M; x My with M, x Ms. Let

Ij = (1 x id)(V* (graph(f)). (4.10)
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Then I'y is a Lagrangian submanifold of M| x M,. In other words,
Ff S MOI‘ph(Ml,MQ).
Explicitly,
ry= {(171,51,172,52”%2 = f(l’l), §1= f;1§2}~ (4-11)
Suppose that g : Xo — X3 is a smooth map so that I'y € Morph(Ma, Ms). So

Fg = {(I27£2,$37§3)‘$3 = g(z2)7§2 = dg;2£3}

The maps
m: Ly — Mo, (1,81, 22,62) — (22,8&2)

and
p:lg—= M, (22,&,73,&) — (22,6)

are transverse. Indeed at any point (x1,&1,z9, &2, T2, &2, x3,&3) the image of
dr contains all vectors of the form (0,w) in Ty, ¢, (T*M>), and the image of dp
contains all vectors of the form (v,0). SoI'y and I'y are transversely composible.
Their composite I'y o 'y consists of all (x1, &1, 23, &3) such that there exists an
w3 such that xo = f(x1) and 23 = g(22) and a &, such that §; = df; & and
&2 = dg;,&s. But this is precisely the condition that (z1,&1,23,83) € T'yor! We
have proved:

Theorem 12. The assignments
Xe=T'X
and
f=Ty

define a covariant functor from the category C* of manifolds and smooth maps
to the symplectic “category” S. As a consequence the assignments X +— T*X
and

fe @)t

define a contravariant functor from the category C* of manifolds and smooth
maps to the symplectic “category” S.

We now study special cases of these functors in a little more detail:

4.9 Pushforward of Lagrangian submanifolds of
the cotangent bundle.
Let f: X7 — X5 be a smooth map, and My := T*X,, My := T*X, as before.

The Lagrangian submanifold I'y C My x M, is defined by (4.11). In particular,
it is a subset of T*X; x T* X5 and hence a particular kind of relation (in the
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sense of Chapter 3). So if A is any subset of T*X; then I'¢(A) is a subset of
T* X, which we shall also denote by df.(A4). So

df.(A) :=Ts(A), ACT"X;.
Explicitly,
df. A = {(y,m) € T* Xo[3(2,€) € A with y = f() and € = df;n}.

Now suppose that A = A is a Lagrangian submanifold of T*X;. Considering A
as an element of Morph(pt., 7*X;) we may apply Theorem 9. Let

w1 @ N*(graph(f)) —» T7 X,

denote the restriction to N*(graph(f)) of the projection of T*X; x T* X, onto
the first component. Notice that N*(graph(f)) is stable under the map (z,&,y,n) —
(x, =&, y, —n) and hence 7, intersects A cleanly if and only if 71 0 (¢ xid) : 'y —

T* X, intersects A cleanly where, by abuse of notation, we have also denoted by

my restriction of the projection to I'y. So

Theorem 13. If A is a Lagrangian submanifold and 7 : N*(graph(f)) —
T* X intersects A cleanly then df.(A) is an immersed Lagrangian submanifold
Of T*XQ

If f has constant rank, then the dimension of df;T™(X2)(,) does not vary,
so that df*(T*X5) is a sub-bundle of T*X;. If A intersects this subbundle
transversally, then our conditions are certainly satisified. So

Theorem 14. Suppose that f : X1 — Xs has constant rank. If A is a
Lagrangian submanifold of T* X, which intersects df*T* Xy transversaly then
df«(A) is a Lagrangian submanifold of T*X,.

For example, if f is an immersion, then df*T* Xy, = T* X; so all Lagrangian
submanifolds are transverse to df 1™ X5.

Corollary 15. If f is an immersion, then df.(A) is a Lagrangian submanifold
of T*X5.

At the other extreme, suppose that f : X; — Xy is a fibration. Then
H*(X4) :=df*T*N consists of the “horizontal sub-bundle”, i.e those covectors
which vanish when restricted to the tangent space to the fiber. So

Corollary 16. Let f : X1 — X3 be a fibration, and let H*(X1) be the bundle
of the horizontal covectors in T*X . If A is a Lagrangian submanifold of T* X,

which intersects H*(X1) transversally, then df.(A) is a Lagrangian submanifold
of T* Xs.

An important special case of this corollary for us will be when A = graph d¢.
Then A N H*(X;) consists of those points where the “vertical derivative”, i.e.
the derivative in the fiber direction vanishes. At such points d¢ descends to
give a covector at xo = f(x1). If the intersection is transverse, the set of such
covectors is then a Lagrangian submanifold of 7% N. All of the next chapter will
be devoted to the study of this special case of Corollary 16.



92 CHAPTER 4. THE SYMPLECTIC “CATEGORY”.

4.9.1 Envelopes.

Another important special case of Corollary 16 is the theory of envelopes, a clas-
sical subject which has more or less disappeared from the standard curriculum:
Let
X1 =X x S, X2 =X

where X and S are manifolds and let f = 7 : X x S — X be projection onto
the first component.
Let
p: X xS—=>R

be a smooth function having 0 as a regular value so that
Z:=¢"1(0)

is a submanifold of X x S. In fact, we will make a stronger assumption: Let
¢s : X — R be the map obtained by holding s fixed:

¢s(x) := o(x, 5).
We make the stronger assumption that each ¢, has 0 as a regular value, so that
Zs = ¢71(0) = ZN (X x {s})
is a submanifold and

Z:U&

as a set. The Lagrangian submanifold N*(Z) C T*(X x S) consists of all points
of the form

(z,s,tdpx (z,s),tdsp(x, s)) such that ¢(x,s) = 0.

Here t is an arbitrary real number. The sub-bundle H*(X X S) consists of all
points of the form

(x’ S’ 57 O)'

So the transversality condition of Corollary 16 asserts that the map

9¢
dl =
o < as>
has rank equal to dim S on Z. The image Lagrangian submanifold df,N*(Z)
then consists of all covectors tdx ¢ where

% (a,5) =0,

d(x,8) =0 and s

a system of p + 1 equations in n + p variables, where p = dim S and n = dim X
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Our transversality assumptions say that these equations define a submanifold
of X x S. If we make the stronger hypothesis that the last p equations can be
solved for s as a function of x, then the first equation becomes

¢(x, 5(x)) =0

which defines a hypersurface £ called the envelope of the surfaces Z;. Further-
more, by the chain rule,

(-, s(-)) = dx (-, s(-)) +dso(,s(-))dxs(-) = dx (-, ("))

since dg¢ = 0 at the points being considered. So if we set

¥i= ()

we see that under these restrictive hypotheses df. N*(Z) consists of all multiples
of dip, i.e.
df+(N*(Z)) = N*(€)

is the normal bundle to the envelope.

In the classical theory, the envelope “develops singularities”. But from our
point of view it is natural to consider the Lagrangian submanifold df.N*(Z).
This will not be globally a normal bundle to a hypersurface because its projec-
tion on X (from T*X) may have singularities. But as a submanifold of T*X it
is fine:

Examples:

e Suppose that S is an oriented curve in the plane, and at each point s € S
we draw the normal ray to S at s. We might think of this line as a light
ray propagating down the normal. The initial curve is called an “initial
wave front” and the curve along which the light tends to focus is called
the “caustic”. Focusing takes place where “nearby normals intersect” i.e.
at the envelope of the family of rays. These are the points which are the
loci of the centers of curvature of the curve, and the corresponding curve
is called the evolute.

e We can let S be a hypersurface in n-dimensions, say a surface in three
dimensions. We can consider a family of lines emanating from a point
source (possible at infinity), and reflected by S. The corresponding enve-
lope is called the “caustic by reflection”. In Descartes’ famous theory of
the rainbow he considered a family of parallel lines (light rays from the
sun) which were refracted on entering a spherical raindrop, internally re-
flected by the opposite side and refracted again when exiting the raindrop.
The corresponding “caustic” is the Descartes cone of 42 degrees.

e If S is a submanifold of R™ we can consider the set of spheres of radius r
centered at points of S. The corresponding envelope consist of “all points
at distance r from S”. But this develops singularities past the radii of
curvature. Again, from the Lagrangian or “upstairs” point of view there
is no problem.
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4.10 Pullback of Lagrangian submanifolds of the
cotangent bundle.

We now investigate the contravariant functor which assigns to the smooth map
f X1 — X5 the canonical relation

Ih: T°Xy - T7X,.
As a subset of T*(X2) x T*(X1), F} consists of all
(ysm,2,8)| y = f(x), and &=df;(n). (4.12)

If B is a subset of T* X5 we can form F} (B) C T* X, which we shall denote by
df*(B). So

df*(B) :=T}H(B) = {(2,£)[3b = (y,1) € B with f(x) =y, dfsn=¢}. (4.13)

If B = A is a Lagrangian submanifold, once again we may apply Theorem 9
to obtain a sufficient condition for df*(A) to be a Lagrangian submanifold of
T*X;. Notice that in the description of F} given in (4.12), the n can vary freely
in T*(X2) ¢(z). So the issue of clean or transverse intersection comes down to
the behavior of the first component. So, for example, we have the following
theorem:

Theorem 17. Let f : X1 — X5 be a smooth map and A a Lagrangian submani-
fold of T* Xo. If the maps f, and the restriction of the projection 7 : T* Xy — Xo
to A are transverse, then df*A is a Lagrangian submanifold of T* X7 .

Here are two examples of the theorem:

e Suppose that A is a horizontal Lagrangian submanifold of 7% X,. This
means that restriction of the projection w : T*Xs — X5 to A is a diffeo-
morphism and so the transversality condition is satisfied for any f. Indeed,
if A = A4 for a smooth function ¢ on X, then

[ (Ag) = Apeg.

e Suppose that A = N*(Y) is the normal bundle to a submanifold ¥ of
X5. The transversality condition becomes the condition that the map f
is transversal to Y. Then f~1(Y) is a submanifold of X;. If z € f~1(Y)
and & = df¥n with (f(z),n) € N*(Y) then & vanishes when restricted to
T(f~1Y)),ie. (z,&) € N(f~1(S)). More precisely, the transversality as-
serts that at each z € f~1(Y) we have df,(T(X1)a) +TY ) = T(X2) (a)
S0

T(X1)x/T(f (V) = T(Xa) pay) /TY ()

and so we have an isomorphism of the dual spaces

N (fHY)) = N f(2)(Y).

x

In short, the pullback of N*(Y) is N*(f~1(Y)).
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4.11 The moment map.

In this section we show how to give a categorical generalization of the classical
moment map for a Hamiltonian group action. We begin with a review of the
classical theory.

4.11.1 The classical moment map.

In this section we recall the classical moment map, especially from Weinstein’s
point of view.

Let (M,w) be a symplectic manifold, K a connected Lie group and 7 an ac-
tion of K on M preserving the symplectic form. From 7 one gets an infinitesimal
action

0T : € — Vect(M) (4.14)

of the Lie algebra, ¢, of K, mapping £ € ¢ to the vector field, d7(§) =: £pr. Here
&pr is the infinitesimal generator of the one parameter group

t— Texp —t&-

The minus sign is to guarantee that §7 is a Lie algebra homomorphism.
In particular, for p € M, one gets from (4.14) a linear map,

drp : €= T,M, &= &u(p); (4.15)
and from w, a linear isomorphism,
T, =T, v—i(v)w; (4.16)
which can be composed with (4.15) to get a linear map
dry = T; M. (4.17)
Definition 1. A K-equivariant map
oM — ¢ (4.18)
is a moment map, if for everyp € M:
doy : TyM — ¢ (4.19)
is the transpose of the map (4.17).

The property (4.19) determines d¢, at all points p and hence determines ¢
up to an additive constant, ¢ € (£*)X if M is connected. Thus, in particular, if
K is semi-simple, the moment map, if it exists, is unique. As for the existence
of ¢, the duality of (4.17) and (4.19) can be written in the form

i(€ar)w = d(9,€) (4.20)

for all £ € ¢ and this shows that the vector field, s, has to be Hamiltonian.
If K is compact the converse is true. A sufficient condition for the existence of
¢ is that each of the vector fields, {5r, be Hamiltonian. (See for instance, [?],
§ 26.) An equivalent formulation of this condition will be useful below:
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Definition 2. A symplectomorphism, f : M — M is Hamiltonian if there
exists a family of symplectomorphisms, f; : M — M, 0 < t < 1, depending
smoothly on t with fo =1idy and f1 = f, such that the vector field

_,d
vy = fy 1%

is Hamiltonian for all t.

It is easy to see that &y; is Hamiltonian for all £ € ¢ if and only if the
symplectomorphism, 74, is exact for all g € K.

Our goal in this section is to describe a generalized notion of moment map-
ping in which there are no group actions involved. First, however, we recall
a very suggestive way of thinking about moment mappings and the “moment
geometry” associated with moment mappings, due to Alan Weinstein, [?]. From
the left action of K on T*K one gets a trivialization

T"K=Kx ¢
and via this trivialization a Lagrangian submanifold
I, ={(m,7ym,g,6(m));meM,ge K},

of M x M~ x T*K, which Weinstein calls the moment Lagrangian. He views
this as a canonical relation between M~ x M and T*K, i.e. as a morphism

r,:M"xM->T'K.

4.11.2 Families of symplectomorphisms.

We now turn to the first stage of our generalization of the moment map, where
the group action is replaced by a family of symplectomorphisms:

Let (M,w) be a symplectic manifold, S an arbitrary manifold and f,, s € S,
a family of symplectomorphisms of M depending smoothly on s . For p € M
and sg € S let g5 : S — M be the map, gy, ,(s) = fs o f5,' (p). Composing
the derivative of g5, , at so

(dso,p)so : TsoS — TpyM (4.21)
with the map (4.16) one gets a linear map
(Agsy.p)so + TeoS — Ty M . (4.22)

Now let ® be a map of M x .S into T*S which is compatible with the projection,
M x S — S in the sense

MxS-2,7*8

T

S
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commutes; and for sg € S let
O M =T, S
be the restriction of ® to M x {sg}.

Definition 3. ® is ¢ moment map if, for all sg and p,
(dPsy)p : TyM — T3 S (4.23)
is the transpose of the map (4.22).

We will prove below that a sufficient condition for the existence of @ is
that the fs’s be Hamiltonian; and, assuming that ® exists, we will consider the
analogue for ® of Weinstein’s moment Lagrangian,

T'e = {(m, fs(m),®(m,s));me M,seS}, (4.24)

and ask if the analogue of Weinstein’s theorem is true: Is (4.24) a Lagrangian
submanifold of M x M~ x T*S57
Equivalently consider the imbedding of M x S into M x M~ x T™*S given
by the map
G:MxS8—MxM"xT*S,

where G(m,s) = (m, fs(m),®(m,s)). Is this a Lagrangian imbedding? The
answer is “no” in general, but we will prove:

Theorem 18. The pull-back by G of the symplectic form on M x M~ x T*S
1s the pull-back by the projection, M x S — S of a closed two-form, u, on S.

If p is exact, i.e., if p = dv, we can modify ® by setting
(I)new(ma S) = (bold(ma 5) — Vs,

and for this modified ® the pull-back by G of the symplectic form on M x M~ x
T*S will be zero; so we conclude:

Theorem 19. If u is exact, there exists a moment map, ® : M x S — T*S,
for which g is Lagrangian.

The following converse result is also true.

Theorem 20. Let ® be a map of M x S into T*S which is compatible with the
projection of M x S onto S. Then if I'g is Lagrangian, ® is a moment map.

Remarks:

1. A moment map with this property is still far from being unique; however,
the ambiguity in the definition of ® is now a closed one-form, v € Q1(S).

2. if [u] # 0 there is a simple expedient available for making I'ps Lagrangian.
One can modify the symplectic structure of 7*S by adding to the standard
symplectic form the pull-back of —u to T™S.
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3. Let G, be the group of Hamiltonian symplectomorphisms of M. Then for
every manifold, S and smooth map

F:5—¢G,.

one obtains by the construction above a cohomology class [u] which is a
homotopy invariant of the mapping F'.

4. For a smooth map F : S — G., there exists an analogue of the character
Lagrangian. Think of I'¢ as a canonical relation or “map”

Te: M~ x M —T*S

and define the character Lagrangian of F' to be the image with respect to
I's of the diagonal in M~ x M.

Our proof of the results above will be an illustration of the principle: the more
general the statement of a theorem the easier it is to prove. We will first
generalize these results by assuming that the fy’s are canonical relations rather
than canonical transformations, i.e., are morphisms in our category. Next we
will get rid of morphisms altogether and replace M x M~ by a symplectic
manifold M and canonical relations by Lagrangian submanifolds of M.

4.11.3 The moment map in general.

Let (M,w) be a symplectic manifold. Let Z, X and S be manifolds and suppose
that
m:Z =8

is a fibration with fibers diffeomorphic to X. Let
G:Z—-M
be a smooth map and let
gs: Ly — M, Zg:= 7r_1(s)
denote the restriction of G to Z,. We assume that
gs 1s a Lagrangian embedding (4.25)

and let
Ag = g5(Zy) (4.26)

denote the image of gs. Thus for each s € S, the restriction of G imbeds the
fiber, Z, = 7 1(s), into M as the Lagrangian submanifold, A,. Let s € S and
£eT,S. For z € Z, and w € T, Z, tangent to the fiber Z,

dG.w = (dgs).w € Ta)As
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so dG, induces a map, which by abuse of language we will continue to denote
by dG,

dG, : T.Z|T.Zs — TnM /T A, m = G(2). (4.27)
But dm, induces an identification
T.Z|T.(Zs) = TsS. (4.28)

Furthermore, we have an identification

T M /T (As) =T A (4.29)
given by

T M 3 u— i(w)wn(-) = wm(u, -).
Finally, the diffeomorphism g, : Z; — A, allows us to identify
TrAs ~T;Zs, m=G(2).
Via all these identifications we can convert (4.27) into a map
T8 - T;Z,. (4.30)
Now let ® : Z — T*S be a lifting of 7 : Z — S, so that
zZ -2 T+8

.

S

commutes; and for s € S let
O,:Z, > TrS
be the restriction of ® to Z;.

Definition 4. @ is ¢« moment map if, for all s and all z € Zs,
(dPs), T, Zs = TS (4.31)
is the transpose of (4.30).

Note that this condition determines ®5 up to an additive constant v, € TS
and hence, as in § 4.11.2, determines ® up to a section, s — v, of T*S.

When does a moment map exist? By (4.30) a vector, v € TS, defines, for
every point, z € Zg, an element of T*Z, and hence defines a one-form on Z;
which we will show to be closed. We will say that G is exact if for all s and all
v € T,S this one-form is exact, and we will prove below that the exactness of G
is a necessary and sufficient condition for the existence of ®.

Given a moment map, ®, one gets from it an imbedding

(G,®): Z — M x T*S (4.32)

and as in the previous section we can ask how close this comes to being a
Lagrangian imbedding. We will prove
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Theorem 21. The pull-back by (4.32) of the symplectic form on M x T*S is
the pull-back by m of a closed two-form p on S.

The cohomology class of this two-form is an intrinsic invariant of G (doesn’t
depend on the choice of ®) and as in the last section one can show that this is
the only obstruction to making (4.32) a Lagrangian imbedding.

Theorem 22. If [u] = 0 there exists a moment map, ®, for which the imbed-
ding (4.32) is Lagrangian.

Conversely we will prove

Theorem 23. Let ® be a map of Z into T*S lifting the map, w, of Z into S.
Then if the imbedding (4.32) is Lagrangian ® is a moment map.

4.11.4 Proofs.

Let us go back to the map (4.30). If we hold s fixed but let z vary over Zj,
we see that each £ € TS gives rise to a one form on Z,. To be explicit, let us
choose a trivialization of our bundle around Z, so we have an identification

H:Z,xU— 7 *U)

where U is a neighborhood of s in S. If t — s(¢) is any curve on S with
5(0) = s, s'(0) = £ we get a curve of maps hy of Zy — M where
Rty = sty © H.

We thus get a vector field v¢ along the map h,

d
’UE : ZS — TM, 'Ug(Z) = ahs(t)(,z)‘tzo.

Then the one form in question is
78 = R (i(v5)w).

A direct check shows that this one form is exactly the one form described above
(and hence is independent of all the choices). We claim that

dr¢ = 0. (4.33)

Indeed, the general form of the Weil formula (14.8) and the fact that dw = 0
gives

o)
—hipw = dhti(v®)w
(dt “ |t=0

and the fact that A is Lagrangian for all s implies that the left hand side and
hence the right hand side is zero. Let us now assume that G is ezact, i.e. that
for all s and ¢ the one form 7¢ is exact. So

7€ = d(;bf
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for some C™ function ¢¢ on Z,. The function ¢¢ is uniquely determined up to
an additive constant on each Z; (if Z; is connected) which we can fix (in various
ways) so that it depends smoothly on s and linearly on £. For example, if we
have a cross-section ¢ : S — Z we can demand that ¢(c(s)) = 0 for all s and &.
Alternatively, we can equip each fiber Z; with a compactly supported density
dzs which depends smoothly on s and whose integral over Z; is one for each s.
We can then demand that that | 7. ¢¢dz, = 0 for all € and s.

Suppose that we have made such choice. Then for fixed z € Z, the number
¢%(z) depends linearly on ¢. Hence we get a map

Do: Z = T*S, Bo(z) =\ e AE) = ¢5(2). (4.34)

We shall see below (Theorem 25) that ®q is a moment map by computing its
derivative at z € Z and checking that it is the transpose of (4.30).

If each Z, is connected, our choice determines ¢¢ up to an additive constant
v(s, &) which we can assume to be smooth in s and linear in &. Replacing ¢¢ by
@ + v(s,€) has the effect of making the replacement

by~ Py t+vom

where v : S — T*S is the one form (v, &) = v(s,§)
Let wg denote the canonical two form on T*S.

Theorem 24. There exists a closed two form p on S such that
G'w— P*'wg =7"p. (4.35)

If [p] = 0 then there is a one form v on S such that if we set

=9y +vorm
then
G'w — ®*wg = 0. (4.36)
As a consequence, the map
G:Z M xT*S, z—(G(2),®(2)) (4.37)

18 a Lagrangian embedding.

Proof. We first prove a local version of the theorem. Locally, we may
assume that Z = X x S. This means that we have an identification of Z, with
X for all s. By the Weinstein tubular neighborhood theorem we may assume
(locally) that M = T*X and that for a fixed sy € S the Lagrangian submanifold
A, is the zero section of T*X and that the map

50

G:XxS—>T'X

is given by

G(z,s) = dxy(z,s)
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where ¢ € C*°(X x S). In local coordinates z1,...,x, on X, this reads as
oY oY
G =—d s+ ——dxy,.
(z,5) 91 Ty 4ot B Tk

In terms of these choices, the maps h;) used above are given by
hs(t) (QE) = de(xv S(t))

and so (in local coordinates) on X and on S the vector field v¢ is given by

d
UE(Z) = ahs(t)(z)\f:o =
9% 0 Oy 0 Oy 0
92105, o T T G, op T Gands, S

where 7 = dim S. We can write this more compactly as

Odsv€) 0, dsin&) 0
0x1 Opr dx,  Op

Taking the interior product of this with > dg; A dp; gives
ds, §) s, §)

— Sldgy — - — 225 g
a1 q1 Drr Ak
and hence the one form 7¢ is given by

so we may choose
(I)(I, S) = 7d51/1(1‘, 5)
Thus
Grax =dxy, @ asg=—dsy

and hence
G*wX - CID*wS = 7dd1/1 =0.
This proves a local version of the theorem with p = 0.

We now pass from the local to the global: By uniqueness, our global ®q
must agree with our local ® up to the replacement ® +— ® + pow. So we know
that

G'w— Ojws = (pom)'ws =" pws.

Here p is a one form on S regarded as a map S — T*S. But
dr*p*ws = 7 p*dwg = 0.

So we know that G*w — ®jws is a closed two form which is locally and hence
globally of the form 7*p where dp = 0. This proves (4.35).
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Now suppose that [p] = 0 so we can write p = dv for some one form v on S.
Replacing ®¢ by ®¢ + v o 7 replaces p by p + v*wg. But

viws = —v'dag = —dv = —p. O

Remark. If [p] # 0 then we can not succeed by modifying ®. But we can
modify the symplectic form on 7S replacing ws by ws —m5p where mg denotes
the projection T%S — S.

4.11.5 The derivative of .

We continue the current notation. So we have the map
d: 7 —>T"S.

Fix s € S. The restriction of ® to the fiber Z; maps Z, — T7.S. Since TS is
a vector space, we may identify its tangent space at any point with 775 itself.
Hence for z € Z; we may regard d®, as a linear map from 7.7 to TS. So we
write

dd. :T.Z, — T*S. (4.38)

On the other hand, recall that using the identifications (4.28) and (4.29) we got
a map

dG, : TsS - Th A, m=G(z)
and hence composing with d(gs)% : T A — TFZ, a linear map
Xz :=d(gs)s0dG, : TsS =T, Z. (4.39)

Theorem 25. The maps d®, given by (4.38) and x. given by (4.39) are trans-
poses of one another.

Proof. Each ¢ € T,S gives rise to a one form 7¢ on Z, and by definition,
the value of this one form at z € Z, is exactly x.(£). The function ¢¢ was
defined on Z, so as to satisfy d¢¢ = 7¢. In other words, for v € T,Z

<Xz(€)’v> = <d¢’z(v)a€> o

Corollary 26. The kernel of x, is the annihilator of the image of the map
(4.88). In particular z is a regular point of the map ® : Zs — TS if the map
Xz 1S tnjective.

Corollary 27. The kernel of the map (4.38) is the annihilator of the image of
Xz-

4.11.6 A converse.

The following is a converse to Theorem 24:



104 CHAPTER 4. THE SYMPLECTIC “CATEGORY”.

Theorem 28. If ®: Z — T*S is a lifting of the map 7 : Z — S to T*S and
(G, ®) is a Lagrangian imbedding of

Z =M~ xT*S
then ® is a moment map.

Proof. It suffices to prove this in the local model described above where
Z=Xx8 M=T*X and G(z,s) = dx¢(z,s). f & : X xS - T*S is a
lifting of the projection X x S — X, then (G, ®) can be viewed as a section of
T*(X x S) i.e. as a one form S on X x S. If (G, ®) is a Lagrangian imbedding
then f is closed. Moreover, the (1,0) component of 3 is dx so S — dy is a
closed one form of type (0,1), and hence is of the form pom for some closed one
form on S. this shows that

& =dgp+7"pu

and hence, as verfied above, is a moment map. O

4.11.7 Back to families of symplectomorphisms.

Let us now specialize to the case of a parametrized family of symplectomor-
phisms. So let (M,w) be a symplectic manifold, S a manifold and

F:MxS—M

a smooth map such that
fs:M—M

is a symplectomophism for each s, where fs(m) = F(m,s). We can apply the
results of the preceding section where now Ay C M x M~ is the graph of f;
(and the M of the preceding section is replaced byM x M ™) and so

G:MxS—>MxM~", G(m,s)=(m,F(m,s)). (4.40)
Theorem 24 says that get a map
S:MxS—->T*S
and a moment Lagrangian

I'e CMx M~ xT*S.

The equivariant situation.

Suppose that a compact Lie group K acts as fiber bundle automorphisms of
m: Z — S and acts as symplectomorphisms of M. Suppose further that the
fibers of Z are compact and equipped with a density along the fiber which is
invariant under the group action. (For example, we can put any density on Z
varying smoothly on s and then replace this density by the one obtained by
averaging over the group.) Finally suppose that the map G is equivariant for
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the group actions of K on Z and on M. Then the map G can be chosen to be
equivariant for the actions of K on Z and the induced action of K on M xT*S.

More generally we want to consider situations where a Lie group K acts on
Z as fiber bundle automorphisms and on M and where we know by explicit
construction that the map G can be chosen to be equivariant .

Hamiltonian group actions.

Let us specialize further by assuming that S is a Lie group K and that F' :
M x K — M is a Hamiltonian group action. So we have a map

G:MxK—>MxM"™, (m,a) — (m,am).
Let K act on Z = M x K via its left action on K so a € K acts on Z as
a: (m,b) — (m,ab).

We expect to be able to construct G : M x K — T*K so as to be equivariant
for the action of K on Z = M x K and the induced action of K on T*K.

To say that the action is Hamiltonian with moment map ¥ : M — £* is to
say that

i(Ep)w = —d(T,&).
Thus under the left invariant identification of T* K with K x £* we see that ¥
determines a map

O MxK—->T'K, ®(m,a)=(a,¥(m)).

So our ® of (4.34) is indeed a generalization of the moment map for Hamiltonian
group actions.

4.12 Double fibrations.

The set-up described in § 4.11.2 has some legitimate applications of its own.
For instance suppose that the diagram

Z
m / \G
S M
is a double fibration: i.e., both 7 and G are fiber mappings and the map

(Gm): Z—>MxS

is an imbedding. In addition, suppose there exists a moment map ® : Z — TS
such that
(G,®): Z - M xT*S (4.41)

is a Lagrangian imbedding. We will prove
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Theorem 29. The moment map ® : Z — T*S is a co-isotropic immersion.
Proof. We leave as an exercise the following linear algebra result:

Lemma 1. Let V and W be symplectic vector spaces and I' a Lagrangian sub-
space of V. x W. Suppose the projection of A into V is surjective. Then the
projection of I' into W is injective and its image is a co-isotropic subspace of

w.

To prove the theorem let I'g be the image of the imbedding (4.41). Then the
projection, I'y — M, is just the map, G; so by assumption it is a submersion.
Hence by the lemma, the projection, I's — TS, which is just the map, ®, is a
co-isotropic immersion.

The most interesting case of the theorem above is the case when ® is an
imbedding. Then its image, X, is a co-isotropic submanifold of 7*S and M is
just the quotient of ¥ by its null-foliation. This description of M gives one,
in principle, a method for quantizing M as a Hilbert subspace of Ly(S). (For
examples of how this method works in practice, see [?].)

4.12.1 The moment image of a family of symplectomor-
phisms

As in §4.11.7 let M be a symplectic manifold and let {fs, s € S} be an exact
family of symplectomorphisms. Let

O MxS—->T*S
be the moment map associated with this family and let
I'={(m, fs(m)), ®(m,s); (m,s) € M x S} (4.42)

be its moment Lagrangian. From the perspective of §4.4, I" is a morphism or
“Inap”

M~ xM=T*S
mapping the categorical “points” (Lagrangian submanifolds) of M~ x M into the
categorical “points” (Lagrangian submanifolds) of T*S. Let Ag be the image
with respect to this “map” of the diagonal, A, in M x M. In more prosaic terms
this image is just the image with respect to ® (in the usual sense) of the subset

X ={(m,s) € M xS; fs(m) =m} (4.43)

of M x S. As we explained in §4.2 this image will be a Lagrangian submanifold
of TS only if one imposes transversal or clean intersection hypotheses on I" and
A. More explicitly let

p: T = MxM (4.44)

be the projection of I' into M x M. The the pre-image in I' of A can be identified
with the set (4.43), and if p intersects A cleanly, the set (4.43) is a submanifold
of M x S and we know from Theorem 9 that:
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Theorem 30. The composition,
Doj: X TS, (4.45)

of ® with the inclusion map, j, of X into M x S is a mapping of constant rank
and its image, Ag, is an immersed Lagrangian submanifold of T*S.

Remarks.

1. If the projection (4.44) intersects A transversally one gets a stronger result,
Namely in this case the map (4.45) is a Lagrangian immersion.

2. If the map (4.45) is proper and its level sets are simply connected, then
Ag is an imbedded Lagrangian submanifold of 7*S5, and (4.45) is a fiber
bundle mapping with X as fiber and Ag as base.

Let’s now describe what this “moment image”, Ag, of the moment La-
grangian look like in some examples:

4.12.2 The character Lagrangian.

Let K be the standard n-dimensional torus and ¢ its Lie algebra. Given a
Hamiltonian action, 7, of K on a compact symplectic manifold, M, one has its
usual moment mapping, ¢ : M — €; and if K acts faithfully the image of ¢ is
a convex n-dimensional polytope, Pg.

If we consider the moment map ® : M — T*K = K x ¢* in the sense of
§4.11.2, The image of ® in the categorical sense can be viewed as a labeled
polytope in which the open (n — k)-dimensional faces of Pg are labeled by k-
dimensional subgroups of K. More explicitly, since M is compact, there are a
finite number of subgroups of K occurring as stabilizer groups of points. Let

K,, a=1,...,N (4.46)
be a list of these subgroups and for each « let
Mo, t=1,...kq (4.47)

be the connected components of the set of points whose stabilizer group is K.
Then the sets

d)(Mz,oz) = P'L,a (448)

in € are the open faces of P and the categorical image, Ag, of the set of sym-
plectomorphisms {7, , a € K} is the disjoint union of the Lagrangian manifolds

Ai,oc = Ka X Pi,a (449)
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4.12.3 The period—energy relation.

If one replaces the group, K = T™ in this example by the non-compact group,
K = R" one can’t expect Ag to have this kind of polyhedral structure; however,
A4 does have some interesting properties from the dynamical systems perspec-
tive. If H : M — (R™)* is the moment map associated with the action of R™
onto M, the coordinates, H;, of H can be viewed as Poisson—commuting Hamil-
tonians, and the R™ action is generated by their Hamiltonian vector fields, vy, ,
i.e., by the map

s €R" = fs = (expsivm,)...(exp spvm, ) - (4.50)

Suppose now that H : M — (R™)* is a proper submersion. Then each connected
component, A, of Ag in T*R"™ = R™ x (R™)* is the graph of a map

oy N

over an open subset, U, of (R™)* with ¢» € C*°(U), and, for ¢ € U, the element,

T=(Ty,....,T,), T; = 86;11’ (c), of R™ is the stabilizer of a connected component

of periodic trajectories of the vg,’s on the level set:

H1:C1,...,Hn:C.

In particular all trajectories of vy, have the same period, T;, on this level set.
This result is known in the theory of dynamical systems as the period—energy
relation. In many examples of interest, the Legendre transform

oY

—:U—>R"

OH
is invertible, mapping U bijectively onto an open set, V', and in this case A is
the graph of the “period mapping”

o™
oT

TeV — e (R™)*

where 9* is the Legendre function dual to .

4.12.4 The period—energy relation for families of symplec-
tomorphisms.

We will show that something similar to this period—energy relation is true for
families of symplectomorphisms providing we impose some rather strong as-
sumptions on M and w. Namely we will have to assume that w is exact and
that H'(M,R) = 0. Modulo these assumptions one can define, for a symplec-
tomorphism, f : M — M, and a fixed point, p of f, a natural notion of “the
period of p”.
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The definition is the following. Choose a one-form, «, with do = w. Then
dla— ffa)=w— ffw=0

0
a— ffa=dy (4.51)

for some 9 in C*°(M). (Unfortunately, ¢ is only defined up to an additive
constant, and one needs some “intrinsic” way of normalizing this constant. For
instance, if v is bounded and M has finite volume one can require that the
integral of v over M be zero, or if there is a natural base point, pg, in M fixed
by f, one can require that 1(pg) = 0.) Now, for every fixed point, p, set

T, = v(p). (4.52)

This definition depends on the normalization we’ve made of the additive con-
stant in the definition of v, but we claim that it’s independent of the choice of
a. In fact, if we replace a by a+dg, g € C°°(M), ¥ gets changed to v+ f*g—g
and at the fixed point, p,

Y(p) + (f*9—9)p) =),

so the definition (4.42) doesn’t depend on «.

There is also a dynamical systems method of defining these periods. By a
variant of the mapping torus construction of Smale one can construct a contact
manifold, W, which is topologically identical with the usual mapping torus of
f, and on this manifold a contact flow having the following three properties.

1. M sits inside W and is a global cross-section of this flow.
2. f is the “first return” map.
3. If f(p) = p the periodic trajectory of the flow through p has T}, as period.

Moreover, this contact manifold is unique up to contact isomorphism. (For
details see [?] or [?].) Let’s apply these remarks to the set-up we are considering
in this paper. As above let F': M x .S — M be a smooth mapping such that for
every s the map fs : M — M, mapping m to F(m,s), is a symplectomorphism.
Let us assume that

H'(M x S,R) = 0.

Let m be the projection of M x S onto M. Then if « is a one-form on M
satisfying da = w and «g is the canonical one-form on 7S the moment map
d: M xS — M associated with F' has the defining property

m™a— F'a+ ®*as = dyp (4.53)

for some 9 in C*°(M x S). Let’s now restrict both sides of (4.53) to M x {s}.
Since ® maps M x {s} into T, and the restriction of ag to T is zero we get:

o — froo=dis (4.54)
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where s = Y|arx {s}-
Next let X be the set, (4.43), i.e., the set:

{(m,s) e M xS, F(m,s)=m}

and let’s restrict (4.53) to X. If j is the inclusion map of X into M x S, then
Foj=mso
Jr(m*a— F*a) =0

and we get from (4.53)
J (¢*as —dip) =0. (4.55)

The identities, (4.54) and (4.55) can be viewed as a generalization of the
period—energy relation. For instance, suppose the map

F:MxS—MxM

mapping (m, s) to (m, F(m,s)) is transversal to A. Then by Theorem 30 the
map ®oj: X — T*S is a Lagrangian immersion whose image is Ag. Since F'
intersects A transversally, the map

fs5M‘>MXMa f;}(m):(mafs(m))a

intersects A transversally for almost all s, and if M is compact, f, is Lefschetz
and has a finite number of fixed points, p;(s), ¢ = 1,...,k. The functions,
¥i(s) = ¥(pi(s),s), are, by (4.54), the periods of these fixed points and by
(4.55) the Lagrangian manifolds

Ay, ={(s,§) €T"S § =dui(s)}

are the connected components of Ag.

4.13 The category of exact symplectic manifolds
and exact canonical relations.

4.13.1 Exact symplectic manifolds.

Let (M,w) be a symplectic manifold. It is possible that the symplectic form w
is exact, that is, that w = —da for some one form «. When this happens, we
say that (M, «) is an exact sympletic manifold. In other words, an exact
symplectic manifold is a pair consisting of a manifold M together with a one
form « such that w = —da is of maximal rank. The main examples for us, of
course, are cotangent bundles with their canonical one forms. Observe that

Proposition 19. No positive dimensional compact symplectic manifold can be
exact.
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Indeed, if (M,w) is a symplectic manifold with M compact, then

/wd>0
M

where 2d = dim M assuming that d > 0. But if w = —d« then
wl=—d (N wd_l)

and so [,, w? = 0 by Stokes’ theorem. O

4.13.2 Exact Lagrangian submanifolds of an exact sym-
plectic manifold.

Let (M, «) be an exact symplectic manifold and A a Lagrangian submanifold of
(M,w) where w = —da. Let

BA = o (4.56)
where
in AN — M
is the embedding of A as a submanifold of M. So
dpa = 0.

Suppose that 8 is exact, i.e. that Sy = di for some function ) on A. (This
will always be the case, for example, if A is simply connected.) We then call A
an exact Lagrangian submanifold and ¢ a choice of phase function for A.

Another important class of examples is where S5 = 0, in which case we can
choose 1 to be locally constant. For instance, if M = T*X and A = N*(Y) is
the conormal bundle to a submanifold Y C X then we know that the restriction
of ax to N*(V) is 0.

4.13.3 The sub“category” of & whose objects are exact.

Consider the “category” whose objects are exact symplectic manifolds and
whose morphisms are canonical relations between them. So let (Mj, ;) and
(M3, asg) be exact symplectic manifolds. Let

11)1‘12‘2\41><]\42—>]\417 pr2:M1><M2—>M2
be projections onto the first and second factors. Let
Q= —pr; aj + prj as.

Then —da gives the symplectic structure on M; x Ms.

To say that I' € Morph(M;, M>) is to say that I is a Lagrangian submanifold
of M x M. Let v : I' = M, x M denote the inclusion map, and define, as
above:

Br = (pa.
We know that dfr = t*da = 0. So every canonical relation between cotangent
bundles comes equipped with a closed one form.
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Example: the canonical relation of a map.

Let f : X1 — X3 be a smooth map and I'; the corresponding canonical relation
from M; = T*X; to My = T* X5. By definition I'y = (51 xid) N*(graph(f)) and
we know that the canonical one form vanishes on any conormal bundle. Hence

pr, = 0.

So if T" is a canonical relation coming from a smooth map, its associated one
form vanishes. We want to consider an intermediate class of I'’s - those whose
associated one forms are exact.

Before doing so, we must study the behavior of the S under composition.

4.13.4 Functorial behavior of [r.
Let (M;,a;) i = 1,2, 3 be exact symplectic manifolds and
I'y € Morph(My, M), T3 € Morph(Ma, Ms)
be cleanly composible canonical relations. Recall that we defined
ToxDy C Ty x Ty
to consist of all (mq,ma, ma, m3) and we have the fibration
k:TaxTy = Ty0ls, k(my,ma,ma, ms) = (my,ms).
We also have the projections
01:Tox 'y = Ty, 01((m1, ma, ma, m3)) = (M1, ma)

and
02 : Tox Ty = Ta, o((m1, m2, ma, m3)) = (ma, ms).
We claim that
K" Bryor, = 01Pr, + 0361, (4.57)
Proof. Let p; and m; denote the projections of I'; onto M; and Ms, and let ps
and 7o denote the projections of I's onto My and M3, so that

101 = P202
both maps sending (ms, ma, ma, ms) to ma. So
Br, = —piaq + miae and  fBr, = —pias + mHas.
Thus
018r, + 058r, = —oipia1 + 05m5a3 = K fryor,. O
As a corollary we see that if Op, = di;, i =1,2 then
ﬂ*6F20F1 =d (QT¢1 + 931/12) .

So let us call a canonical relation exact if its associated (closed) one form
is exact. We see that if we restrict ourselves to canonical relations which are
exact, then we obtain a sub“category” of the “category” whose objects are exact
symplectic manifolds and whose morphisms are exact canonical relations.
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4.13.5 Defining the “category” of exact symplectic mani-
folds and canonical relations.

If ' is an exact canonical relation so that Sr = di, then v is only deter-
mined up to an additive constant (if " is connected). But we can enhance our
sub“category” by specifying . That is, we consider the “category” whose ob-
jects are exact symplectic manifolds and whose morphisms are pairs (I, 1) where
I' is an exact canonical relation and fr = di. Then composition is defined as
follows: If I'y and I's are cleanly composible, then we define

(P2, 4p2) o (1, 41) = (o 0Ty, 9p) (4.58)

where the (local) additive constant in v is determined by

K'Y = 01¢1 + 0392 (4.59)

We shall call this enhanced sub“category” the “category” of exact canonical
relations.

An important sub“category” of this “category” is where the objects are
cotangent bundles with their canonical one forms.

The “category” of exact symplectic manifolds and conormal canonical
relations.

As we saw above, the restriction of the canonical one form of a cotangent bundle
to the conormal bundle of a submanifold of the base has the property that t*a =
0. So we can consider the subcategory of the “category” of exact symplectic
manifolds and canonical relations by demanding that fr = 0 and that ¢ = 0.
Of course, in this subcategory the 1’s occurring in (4.58) and (4.59) are all zero.
We shall call this subcategory of the exact symplectic “category” the “category”
of symplectic manifolds and conormal canonical relations. in honor of the
conormal case.

The integral symplectic “category”.

On the other hand in Chapter 7?7 we will make use of a slightly larger “category”
than the “category” of exact symplectic manifolds and exact canonical relations.
The objects in this larger “category” will still be exact symplectic manifolds
(M, ). But a morphism between (Mj, ;) and (M, as) will be a pair (T, f)
where T is a Lagrangian submanifold of M;” x M and f : T' — St is a C° map
satisfying .
N 1 d
e = o 7 (4.60)
Here a = m3ae — wia; as before.
(Notice that if (I';%) is a morphism in the exact symplectic “category”,
then we get a morphism is this larger “category” by setting f = €>™¢.) The
condition (4.60) implies that ¢}« defines an integral cohomology class which is
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the reason that we call this “category” the integral symplectic “category”.
The composition law (generalizing the laws in (4.58) and (4.59)) is

(T, f2) o (T', f1) = (T, f)

where

&1 = (paf) - (P1S)- (4.61)

4.13.6 Pushforward via a map in the “category” of exact
canonical relations between cotangent bundles.

As an illustration of the composition law (4.58) consider the case where Az is
an exact Lagrangian submanifold of 7% Z so that the restriction of the one form
of T*Z to A is given by dip. We consider A as an element of Morph(pt., T*7)
so we can take (A,) as the (I'1,4;) in (4.58). Let f : Z — X be a smooth
map and take I'y in (4.58) to be I'y. We know that the one form associated
to I'y vanishes. In our enhanced category we must specify the function whose
differential vanishes on I'y - that is we must pick a (local) constant ¢. So in
(4.58) we have (I'y,12) = (I'f,c). Assume that the I'y and A are composible.
Recall that then I'y o Ay = df,(Az) consists of all (z,§) where = f(2) and
(z,df*(€)) € A. Then (4.58) says that

¥(z, &) =Pa(z,n) + c. (4.62)

In the next chapter and in Chapter 8 will be particularly interested in the
case where f is a fibration. So we are given a fibration 7 : Z — X and we
take Az = Ay to be a horizontal Lagrangian submanifold of 7*Z. We will
also assume that the composition in (4.58) is transversal. In this case the
pushforward map dr, gives a diffecomorphism of Ay with A := df.(Ay). In our
applications, we will be given the pair (A, 1) and we will regard (4.62) as fizing
the arbitrary constant in ¢ rather than in I'y whose constant we take to be 0.



Chapter 5

Generating functions.

In this chapter we continue the study of canonical relations between cotangent
bundles. We begin by studying the canonical relation associated to a map in
the special case when this map is a fibration. This will allow us to generalize
the local description of a Lagrangian submanifold of T*X that we studied in
Chapter 1. In Chapter 1 we showed that a horizontal Lagrangian submanifold
of T*X is locally described as the set of all d¢(z) where ¢ € C°°(X) and we
called such a function a “generating function”. The purpose of this chapter is
to generalize this concept by introducing the notion of a generating function
relative to a fibration.

5.1 Fibrations.

In this section we will study in more detail the canonical relation associated to
a fibration. So let X and Z be manifolds and

m:Z —X
a smooth fibration. So (by equation (4.11))
I, € Morph(T*Z, T X)
consists of all (z,&,xz,n) € T*Z x T*X such that
r=m(z) and &= (dm,)"n.

Then

pry :]-—‘ﬂ‘)T*Za (2357%77)'_)(2,5)
maps I'; bijectively onto the sub-bundle of T*Z consisting of those covectors
which vanish on tangents to the fibers. We will call this sub-bundle the hori-
zontal sub-bundle and denote it by H*Z. So at each z € Z, the fiber of the
horizontal sub-bundle is

H*(Z)z = {(dﬂ-z)*na ne . )X}

w(z

115
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Let Az be a Lagrangian submanifold of T%Z which we can also think of as
an element of Morph(pt.,7*Z). We want to study the condition that T'; and
Az be composable so that we be able to form

FTK‘(AZ) = F'n’ o AZ

which would then be a Lagrangian submanifold of T*X. If v : Ay — T*Z
denotes the inclusion map then the clean intersection part of the composibility
condition requires that ¢ and pr; intersect cleanly. This is the same as saying
that Az and H*Z intersect cleanly in which case the intersection

F:=A;NH"Z

is a smooth manifold and we get a smooth map « : F — T*X. The remaining
hypotheses of Theorem 11 require that this map be proper and have connected
and simply connected fibers.

A more restrictive condition is that intersection be transversal, i.e. that

AyMH*Z
in which case we always get a Lagrangian immersion
F—-T'X, (zdrin)— (7(z),n).

The additional composibility condition is that this be an embedding.
Let us specialize further to the case where Az is a horizontal Lagrangian
submanifold of T*Z. That is, we assume that

Az = As =75(Z) = {(2,do(2))}

as in Chapter 1. When is
A,MH*Z?

Now H*Z is a sub-bundle of T*Z so we have the exact sequence of vector
bundles
0—-HZ>T"Z—->V*Z—=0 (5.1)

where
(V*2), =T:Z)(H*Z), =T (x"}(x)), ==n(z)

is the cotangent space to the fiber through z.

Any section d¢ of T*Z gives a section dye1¢ of V*Z by the above exact
sequence, and Ay M H*Z if and only if this section intersects the zero section of
V*Z transversally. If this happens,

Cyp =1z € Z|(dvert®). = 0}
is a submanifold of Z whose dimension is dim X. Furthermore, at any z € Cy

d¢. = (dm.)*n for a unique n € T )X
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Thus Ay and I'; are transversally composable if and only if
Co—>T"X, zw(n(2),n)
is a Lagrangian embedding in which case its image is a Lagrangian submanifold
A=T,(Ay) =T 0Ay

of T* X. When this happens we say that ¢ is a transverse generating func-
tion of A with respect to the fibration (Z, ).

If Ay and I'; are merely cleanly composable, we say that ¢ is a clean
generating function with respect to 7.

If ¢ is a transverse generating function for A with respect to the fibration,
7, and 7 : Z1 — Z is a fibration over Z, then it is easy to see that ¢; = 7]¢ is
a clean generating function for A with respect to the fibration, 7 o 7ry; and we
will show in the next section that there is a converse result: Locally, every clean
generating function can be obtained in this way from a transverse generating
function. For this reason it will suffice, for many of the things we’ll be doing in
this chapter, to work with transverse generating functions; and to simplify no-
tation, we will henceforth,in this chapter, unless otherwise stated, use the terms
“generating function” and “transverse generating function” interchangeably.

However, in the applications in Chapter 9, we will definitely need to use
clean generating functions.

5.1.1 Transverse vs. clean generating functions.

Locally, we can assume that Z is the product, X x S, of X with an open
subset, S, of RF with standard coordinates s, ..., s,. Then H*Z is defined by

the equations, ;1 = --- = n = 0, where the 7;’s are the standard cotangent
coordinates on T*S; so Ay N H*Z is defined by the equations
9¢ :
95, =0, t=1,...,k.
K3

Let Cy4 be the subset of X xS defined by these equations. Then if A, intersects
H*Z cleanly, Cy is a submanifold of X x S of codimension r < k; and, at
every point (o, s9) € Cy, Cy can be defined locally near (zo,s¢) by r of these
equations, i.e., modulo repagination, by the equations

oo
8Si a

0, 2=1,...,7.

Moreover these equations have to be independent: the tangent space at (xq, so)
to Cy has to be defined by the equations

d<§¢> =0, i=1,...,7.
Si (z0,80)
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Suppose r < k (i.e., suppose this clean intersection is not transverse). Since
0¢/0sy, vanishes on Cy, there exist C* functions, g; € C®°(X x S),i=1,...,r

such that
0p  ~~ 0¢
B = 2%,
In other words, if v is the vertical vector field

0 - 0
= Dsp Zgz‘(%s)afsi

i=1

v

then D, ¢ = 0. Therefore if we make a change of vertical coordinates

(Si)new = (Si)neW(Ia S)
so that in these new coordinates

0

85;6

this equation reduces to

0
@W%S) =0,

S0, in these new coordinates,

d)(xa S) = d)(xa 81,y - - ~7Sk:71) .

Iterating this argument we can reduce the number of vertical coordinates so
that k = r, ie., so that ¢ is a transverse generating function in these new
coordinates. In other words, a clean generating function is just a transverse
generating function to which a certain number of vertical “ghost variables”
(“ghost” meaning that the function doesn’t depend on these variables) have
been added. The number of these ghost variables is called the excess of the
generating function. (Thus for the generating function in the paragraph above,
its excess is k — r.) More intrinsically the excess is the difference between the
dimension of the critical set Cy of ¢ and the dimension of X.

As mentioned above, unless specified otherwise, we assume in this Chapter
that our generating function are transverse generating functions.

5.2 The generating function in local coordinates.

Suppose that X is an open subset of R", that
Z=XxR"

that 7 is projection onto the first factor, and that (x, s) are coordinates on Z
so that ¢ = ¢(z,s). Then Cy C Z is defined by the k equations

dp
(931- o 0’
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and the transversality condition is that these equations be functionally indepen-
dent. This amounts to the hypothesis that their differentials

0¢ .
d(@si) i=1,...k

be linearly independent. Then A C T* X is the image of the embedding

Co—T"X, (x,5)— g—f =dx¢(z,s).

5.3 Example - a generating function for a conor-
mal bundle.

Suppose that
YCX

is a submanifold defined by the k& functionally independent equations

Let ¢ : X x RF — R be the function
d(x,8) == Zfl(a:)sl (5.2)
We claim that
A=Tr0As =N"Y, (5.3)
the conormal bundle of Y. Indeed,
¢
asi - fl
SO
Cyp=Y x RF
and the map
C’¢ —T*X
is given by

(@,9) = Y sidx fi(x).

The differentials dx f; span the conormal bundle to Y at each x € Y proving
(5.3).
As a special case of this example, suppose that

X =R"xR"
and that Y is the diagonal

diag(X) = {(z,z)} C X
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which may be described as the set of all (z,y) € R™ x R" satisfying
xi—yi:O, i:l,...,n.

We may then choose
$(w,y,8) =Y (2 — yi)si- (5.4)
i
Now diag(X) is just the graph of the identity transformation so by Section 4.8
we know that (¢ x id)(IN*(diag(X)) is the canonical relation giving the identity
map on T*X. By abuse of language we can speak of ¢ as the generating function
of the identity canonical relation. (But we must remember the ¢;.)

5.4 Example. The generating function of a geodesic
flow.

A special case of our generating functions with respect to a fibration is when
the fibration is trivial, i.e. 7 is a diffeomorphism. Then the vertical bundle
is trivial and we have no “auxiliary variables”. Such a generating function is
just a generating function in the sense of Chapter 1. For example, let X be a
Riemannian manifold and let ¢, € C*°(X x X) be defined by

Bu(e,y) = (), (55
where
t£0.

Let us compute Ay and (1 x id)(Ag). We first do this computation under the
assumption that X = R™ and the metric occurring in (5.5) is the Euclidean
metric so that

¢(I7yat) = % : (Iz 7%)2
o 1,
6xi = E(‘rz yz)
0¢ 1
o T — ) so
Ay = {(I,%(’I—y),y,%(y—x)} and
. 1 1
(c1 xid)(Ay) = {(x,g(yfﬂf),y,g(yfx)}.

In this last equation let us set y — x = &, i.e.

1
fzg(y—ff)
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which is possible since ¢t # 0. Then

(q xid)(Ag) = {(z, &,z +1£,)}
which is the graph of the symplectic map

(#,8) = (z 418, 6).

If we identify cotangent vectors with tangent vectors (using the Eulidean metric)
then x + t£ is the point along the line passing through x with tangent vector &
a distance t||¢]| out. The one parameter family of maps (z,€&) — (z + t£,§) is
known as the geodesic flow. In the case of Euclidean space, the time ¢ value of
this flow is a diffeomorphism of T* X with itself for every t. So long as t # 0 it
has the generating function given by (5.5) with no need of auxiliary variables.
When ¢ = 0 the map is the identity and we need to introduce a fibration.

More generally, this same computation works on any “geodesically convex”
Riemannian manifold, where:

A Riemannian manifold X is called geodesically convex if, given any
two points x and y in X, there is a unique geodesic which joins them. We
will show that the above computation of the generating function works for any
geodesically convex Riemannian manifold. In fact, we will prove a more general
result. Recall that geodesics on a Riemannian manifold can be described as
follows: A Riemann metric on a manifold X is the same as a scalar product
on each tangent space T,X which varies smoothly with X. This induces an
identification of TX with 7% X and hence a scalar product ( , ), on each T*X.
This in turn induces the “kinetic energy” Hamiltonian

H(z,8) = 5(6 &)

The principle of least action says that the solution curves of the corresponding
vector field vy project under 7w : T*X — X to geodesics of X and every geodesic
is the projection of such a trajectory.

An important property of the kinetic energy Hamiltonian is that it is quadratic
of degree two in the fiber variables. We will prove a theorem (see Theorem 31
below) which generalizes the above computation and is valid for any Hamil-
tonian which is homogeneous of degree k # 1 in the fiber variables and which
satisfies a condition analogous to the geodesic convexity theorem. We first recall
some facts about homogeneous functions and Euler’s theorem.

Consider the one parameter group of dilatations ¢ — d(¢) on any cotangent
bundle 7% X:

0t): T"X - T"X : (z,8) > (x,€'€).

A function f is homogenous of degree k in the fiber variables if and only if
o) f =ertf.

For example, the principal symbol of a k-th order linear partial differential
operator on X is a function on T*X with which is a polynomial in the fiber
variables and is homogenous of degree k.
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Let £ denote the vector field which is the infinitesimal generator of the one
parameter group of dilatations. It is called the Euler vector field. Euler’s
theorem (which is a direct computation from the preceding equation) says that
f is homogenous of degree k if and only if

Ef =kf.

Let o = ax be the canonical one form on 7*X. From its very definition (1.8)
it follows that
at)a=ca

and hence that
Dea = a.

Since € is everywhere tangent to the fiber, it also follows from (1.8) that
i(&)a=0
and hence that
a=Dega=1i(E)da =—i(&)w

where w = wxy = —da.
Now let H be a function on 7*X which is homogeneous of degree k in the
fiber variables. Then

kH=EH = i(6)dH
1(E)i(vy)w
—i(vy)i(E)w

= i(vg)a and

1
/ d — (exptvg)*adt with

(expvpg) o —«

(exptvg)* (i(vy)da + di(vy)a)
(exptvg)* (—i(vy)w + di(vy)a)
(exptvy)* (—dH + kdH)

= (k—1)(exptvy)*dH
(
(

d .
a(exp tvg)

k—1)d(exptvoy)*H
k—1)dH

since H is constant along the trajectories of vgy. So
(expvg)*a —a = (k—1)dH. (5.6)

Remark. In the above calculation we assumed that H was smooth on all of
T*X including the zero section, effectively implying that H is a polynomial in
the fiber variables. But the same argument will go through (if £ > 0) if all
we assume is that H (and hence vgy) are defined on T* X\ the zero section, in
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which case H can be a more general homogeneous function on 7* X\ the zero
section.

Now expvy :T*X — T*X is symplectic map. Let
I := graph (expvpg),

sol' C T* X~ xT*X is a Lagrangian submanifold. Suppose that the projection
Txxx of I' onto X x X is a diffeomorphism, i.e. suppose that I' is horizontal.
This says precisely that for every (z,y) € X x X there is a unique { € To X
such that

Texp vy (z,§) = y.

In the case of the geodesic flow, this is guaranteed by the condition of geodesic
convexity.
Since I' is horizontal, it has a generating function ¢ such that

dé = prya —prya

where pr;, ¢ = 1,2 are the projections of T*(X x X) = T*X x T*X onto the
first and second factors. On the other hand pr; is a diffeomorphism of I' onto
T*X. So
-1
Py O(7TX><X|F)

is a diffeomorphism of X x X with T%X.

Theorem 31. Assume the above hypotheses. Then up to an additive constant
we have

(pr, O(”Xxx|r)71)* [(k—1)H]=¢.

In the case where H = L||€||? is the kinetic energy of a geodesically convex
Riemann manifold, this says that

_1 2

Indeed, this follows immediately from (5.6). An immediate corollary (by
rescaling) is that (5.5) is the generating function for the time ¢ flow on a geodesi-
cally convex Riemannian manifold.

As mentioned in the above remark, the same theorem will hold if H is only
defined on T*X \ {0} and the same hypotheses hold with X x X replaced by
X x X\ A.

5.5 The generating function for the transpose.

Let
I' € Morph(T* X, T*Y)

be a canonical relation, let
T4 —=>XXY
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be a fibration and ¢ a generating function for I relative to this fibration. In
local coordinates this says that Z = X x Y x S, that

9¢
Cy = — =0
o =1,y 8)l5- =0},
and that I' is the image of Cy under the map

(I, Y, 5) — (_dX¢7 dY(b)

Recall that
I'" € Morph(T*Y, T* X)

is given by the set of all (y2,71) such that (y1,72) € T'. So if
K: XXY =>Y xX

denotes the transposition
k(z,y) = (y,z)
then
kom:Z =Y x X

is a fibration and —¢ is a generating function for I'f relative to x o w. Put more
succinetly, if ¢(x,y, s) is a generating function for I' then

U(y,x,s) = —p(x,y,s) is a generating function for I'T. (5.7)

For example, if T' is the graph of a symplectomorphism, then I'f is the graph of
the inverse diffeomorphism. So (5.7) says that —¢(y, z, s) generates the inverse
of the symplectomorphism generated by ¢(z,y, ).

This suggests that there should be a simple formula which gives a generating
function for the composition of two canonical relations in terms of the generating
function of each. This was one of Hamilton’s great achievements - that, in a
suitable sense to be described in the next section - the generating function for
the composition is the sum of the individual generating functions.

5.6 The generating function for a transverse com-
position.

Let X1, X5 and X3 be manifolds and
'y € Morph(T* X1, T*X5), To € Morph(T* X5, T"X3)

be canonical relations which are transversally composable. So we are assuming
in particular that the maps

'y = T"Xs, (p1,p2) = p2 and T'y = T"Xs, (q2,43) — q2
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are transverse.
Suppose that

71'12214))(1)()(27 WQZZQ‘)XQXX{;

are fibrations and that ¢; € C*°(Z;), ¢ = 1,2 are generating functions for T';
with respect to ;.
From m; and 7, we get a map

T X7T2ZZ1XZQ—>X1><X2XX2XX3.

Let
Ay C Xo X Xo

be the diagonal and let
7 = (71'1 X 71'2)71(X1 X AQ X Xg)

Finally, let
m:Z — X1 X X3

be the fibration
Z =1 X Zyg— X1 X Xox Xogx Xz — X1 X X3

where the first map is the inclusion map and the last map is projection onto the
first and last components. Let

o:7Z—>R
be the restriction to Z of the function

(21, 22) = ¢1(21) + P2(22). (5.8)

Theorem 32. ¢ is a generating function for I'sol'y with respect to the fibration
w4 — X1 x X3.

Proof. We may check this in local coordinates where the fibrations are
trivial to that
21:X1XX2XS, ZQZXQXX3><T

SO
Z=X1 xX3x (XaxSxT)

and 7 is the projection of Z onto X; x X3. Notice that X5 has now become a
factor in the parameter space. The function ¢ is given by

d(x1, 23,22, 5, 1) = P1(21, X2, ) + P2(22, 23, 1).

For z = (x1, 23,22, s,t) to belong to Cy the following three conditions must
be satisfied and be functionally independent:
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° 3(';351 (xlvl.Qas) = 07 i'e' z21 = (xl’x27s) € C¢l.
o %02 (g5, 25,1) = 0, Le. 20 = (22,23,1) € Cy, and

2k} O

—(x1,22,8) + —(x2,2x3,t) = 0.

8%2(1 2:5) 8332(2 31)

To show that these equations are functionally independent, we will rewrite them
as the following system of equations on X7 x X3 X Xo X Xo x S x T

1. %(1171’2,8) =0,1e 21 = (21,2, 5) € Cy,,

2. %(yz,zs,t) =0, ie. 22 = (y2,23,1) € Css

3. 9 = ys and

%)

0
a—m(axl,xg,s) + ﬂ(yz,l“s’t) =0

81'2
It is clear that 1) and 2) are independent, and define the product Cy4, x Cy,
as a submanifold of X; x X3 x Xo x X9 x S x T. So to show that 1)-4)
are independent, we must show that 3) and 4) are an independent system of
equations on Cy, X Cy,.

From the fact that ¢; is a generating function for I'y, we know that the map

0 0
Wi Cor T () = (- 5202 52 o) )

where
(w1, 22) = m1(p1)

is a diffeomorphism. Similarly, the map

Y21 Cg = T2, 72(p2) = (152’ —%(m),wg, gﬁi(m))
where
(z2,73) = Ta(p2)
is a diffeomorphism.
So if we set M; :=T*X;, ¢ = 1,2,3 we can write the preceding diffeomor-
phisms as
Yi(pi) = (mi,miy1),i=1,2
where 5 5
m; = (z;, —a;Z(pi)L mit1 = (Tiy1, 8Tiil(pi)) (5.9)
and the x; are as above. We have the diffeomorphism

Y1 X Y2t C¢1XC¢2—>F1 x I’y
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and the map
kT x Ty = My x My, k(mi,ma,nz,m3) = (mz,na).

This map « is assumed to be transverse to the diagonal Ay, and hence the
map
A:Cy, X Cy, = My x My, XN:=ko (71 X72)

is transverse to Ajs,. This transversality is precisely the functional indepen-
dence of conditions 3) and 4) above.

The manifold I'y xI'; was defined to be k~1(Ajy,) and the second condition
for transverse composibility was that the map

p: FQ *Fl — Ml_ X Mg, p(ml.mg,mg,mg) = (ml,mg)

be an embedding whose image is then defined to be I';0I'y. The diffeomorphism
71 X ¥2 then shows that the critical set Cy is mapped diffeomorphically onto
'y xT'y. Here ¢ is defined by (5.8). Call this diffeomorphism 7. So

TIC¢gF2*F1.
Thus
poT: Cp =Ty0ly

is a diffeomorphism, and (5.9) shows that this diffeomorphism is precisely the
one that makes ¢ a generating function for 'y o I'y. O

In the next section we will show that the arguments given above apply,
essentially without change, to clean composition, yielding a clean generating
function for the composite.

5.7 Generating functions for clean composition
of canonical relations between cotangent bun-
dles.

Suppose that the canonical relation, I'y and I's are cleanly composable. Let
P1 € C® (X1 x Xo x S) and ¢ € C°(X3 x X3 x T') be transverse generating
functions for I'; and I'; and as above let

d(x1,23,22,8,1) = ¢1(x1, T2, 5) + P2(z2,23,1) .

We will prove below that ¢ is a clean generating function for I'yoI'y with respect
to the fibration
X1 X Xgx (Xoax SxT)— X7 x X3.

The argument is similar to that above: As above Cy is defined by the three sets
of equations:

o1 _
1. %1 =
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062 _
2. % —

061 | 062 _
3. 58 1 82

Since ¢1 and ¢ are transverse generating functions the equations 1 and 2 are
an independent set of defining equations for Cy, x C4y,. As for the equation 3,
our assumption that I'y and I's compose cleanly tells us that the mappings

091

_— T X

81‘2 Cd)l - 2
and

2

—=: C T X.

O b2 2

intersect cleanly. In other words the subset, Cy, of Cy4, x Cy, defined by the

equation aaTi = 0, is a submanifold of Cy, x Cy,, and its tangent space at each

point is defined by the linear equation, dg—jz = 0. Thus the set of equations, 1-3,
are a clean set of defining equations for Cy as a submanifold of X7 x X3 x (X3 x
S x T). In other words ¢ is a clean generating function for I'y o I'y.

The excess, €, of this generating function is equal to the dimension of Cy
minus the dimension of X; x X3. One also gets a more intrinsic description of
€ in terms of the projections of I'y and I'y onto 7% X5. From these projections
one gets a map

I'i xI'ys — T*(XQ X X2)

which, by the cleanness assumption, intersects the conormal bundle of the di-
agonal cleanly; so its pre-image is a submanifold, I'y x 'y, of 'y x I's. It’s easy
to see that

€= d1mF2 *Fl — d1mF2 o Fl .
5.8 Reducing the number of fiber variables.

Let A C T*X be a Lagrangian manifold and let ¢ € C°°(Z) be a generating
function for A relative to a fibration 7 : Z — X. Let

xg € X,
let
Zy = 7T71(I0),
and let
Lo Lo —> 4

be the inclusion of the fiber Zy into Z. By definition, a point zg € Zy belongs
to Cy if and only if 2y is a critical point of the restriction ¢j¢ of ¢ to Zp.
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Theorem 33. If zy is a non-degenerate critical point of 1i¢ then A is horizontal
at
o¢
po = (z0,%0) = %(zo)-

Moreover, there exists an neighborhood U of xg in X and a function ¢p € C=(U)
such that
A=Ay

on a neighborhood of py and
™Y =9
on a neighborhood U’ of zy in Cy.

Proof. (In local coordinates.) So Z = X xRF, ¢ = ¢(x, s) and Cy is defined
by the k independent equations

0o
asi o

Let zo = (0, So) so that sg is a non-degenerate critical point of ¢f¢ which is the
function

0, i=1,...k (5.10)

S ¢(£L'0, S)

0%¢

is of rank k at sg. By the implicit function theorem we can solve equations (5.10)
for s in terms of = near (xo, sp). This says that we can find a neighborhood U
of g in X and a C'°° map

if and only if the Hessian matrix

g:U —RF
such that 96
= = =0,1=1,... k
g(z) =s 95, ~ 0 i=1s

if (x, s) is in a neighborhood of (g, sg) in Z. So the map
v:U=UXRE, () = (2,9(z))

maps U diffeomorphically onto a neighborhood of (zg,s¢) in Cy. Consider the
commutative diagram
v —— Cy

L

X +—— A

X
where the left vertical arrow is inclusion and 7x is the restriction to A of the
projection T*X — X. From this diagram it is clear that the restriction of 7 to
the image of U in Cy is a diffeomorphism and that A is horizontal at py. Also

pr=dxgpory
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is a section of A over U. Let
Yi=7"0.
Then
p=dxpoy=dxpoy+dspoy=dpoy
since dgp oy =0. Also, if v € T, X for x € U, then

= (dx9)y(@)(v) = (dx¢ 0 7)(x)(v)

</U'(x)7 U> = <d¢m v>

SO
A=Ay

over U and from 7 : Z — X and yor = id on v(U) C Cy we have
Y =myg = (yom)dp=¢
on~(U). O
We can apply the proof of this theorem to the following situation: Suppose

that the fibration
m: 4 —X

can be factored as a succession of fibrations
T = 1 0 My

where
mo:Z4 — 2727 and m:Z1—> X

are fibrations. Moreover, suppose that the restriction of ¢ to each fiber
mo ' (21)

has a unique non-degenerate critical point v(z1). The map

21— y(21)
defines a smooth section

v 71— 7
of mg. Let

¢1:=7"9.

Theorem 34. ¢ is a generating function for A with respect to my.
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Proof. (Again in local coordinates.) We may assume that
Z=Xx85xT

and
w(x,s,t) =z, mo(x,s,t)=(x,s), m(z,s)=uz.

The condition for (z, s,t) to belong to Cy is that

8¢_
%—O
and 96

This last condition has a unique solution giving ¢ as a smooth function of (z, s)
by our non-degeneracy condition, and from the definition of ¢, it follows that
(z,s) € Cyg, if and only if y(z, s) € Cy. Furthermore

dx¢1(z,s) = dxo(z,s,t)
along 7(Cy,). O
For instance, suppose that Z = X x R¥ and ¢ = ¢(x,s) so that zp =
(x0,50) € Cy if and only if
¢

Suppose that the matrix

0?%¢

is of rank r, for some 0 < r < k. By a linear change of coordinates we can
arrange that the upper left hand corner

0%¢
1<i,j,<
(6Si({)8j>’ =hdh=T
is non-degenerate. We can apply Theorem 34 to the fibration
XxRF 5 X xR, t=k—r

(z,81,...86) — (z,t1, ..., te),  ti = Siqr
to obtain a generating function ¢ (x,t) for A relative to the fibration
X xR = X.
Thus by reducing the number of variables we can assume that at zg = (zg, to)
0%¢
0t;0t;

A generating function satisfying this condition will be said to be reduced at
(x()a tO) .

(mo,to) :O, i,j: 17...,£. (5.11)
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5.9 The existence of generating functions.

In this section we will show that every Lagrangian submanifold of T*X can be
described locally by a generating function ¢ relative to some fibration Z — X.

So let A C T*X be a Lagrangian submanifold and let pg = (z9,&p) € A. To
simplify the discussion let us temporarily make the assumption that

§o # 0. (5.12)

If A is horizontal at py then we know from Chapter 1 that there is a generating
function for A near py with the trivial (i.e. no) fibration. If A is not horizontal
at pg, we can find a Lagrangian subspace

V1 C Tl)o (T*X)

which is horizontal and transverse to T, (A).

Indeed, to say that V; is horizontal, is to say that it is transverse to the
Lagrangian subspace W; given by the vertical vectors at py in the fibration
T*X — X. By the Proposition in §2.2 we know that we can find a Lagrangian
subspace which is transversal to both Wi and T}, (A).

Let Ay be a Lagrangian submanifold passing through pg and whose tangent
space at pg is V3. So A; is a horizontal Lagrangian submanifold and

AMA = {po}-

In words, A; intersects A transversally at pg. Since A; is horizontal, we can find
a neighborhood U of zy and a function ¢; € C*°(U) such that Ay = Ay,. By
our assumption (5.12)

(dp1)zy = &0 # 0.

So we can find a system of coordinates x; ...,z, on U (or on a smaller neigh-
borhood) so that

¢ = 1.
Let & ...,&, be the dual coordinates so that in the coordinate system
1‘1...,1‘7“51 7§n

on T*X the Lagrangian submanifold A; is described by the equations
§s=18&=-=§ =0
Consider the canonical transformation generated by the function
T:R"XR" >R, 7(x,y)=—-x-y.
The Lagrangian submanifold in 7*R™ x T*R"™ generated by 7 is

{(2, —y,y,—2)}
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so the canonical relation is
{(xv 57 67 —{E)}
In other words, it is the graph of the linear symplectic transformation
v (2, 8) = (& —).
So v(Aq1) is (locally) the cotangent space at yo = (1,0,...,0). Since v(A) is

transverse to this cotangent fiber, it follows that «(A) is horizontal. So in some
neighborhood W of yg there is a function 1 such that

YA = Ay
over W. By equation (5.7) we know that
T(zy) = —T(y,z) =y -

is the generating function for y~!. Furthermore, near py,

A =771 Ay).
Hence, by Theorem 32 the function

iz, y) =y o —p(y) (5.13)
is a generating function for A relative to the fibration
(z,y) — x.

Notice that this is a generalization of the construction of a generating func-
tion for a linear Lagrangian subspace transverse to the horizontal in Section
2.9.1.

We have proved the existence of a generating function under the auxiliary
hypothesis (5.12). However it is easy to deal with the case & = 0 as well.
Namely, suppose that g = 0. Let f € C°°(X) be such that df (z¢) # 0. Then

v T*X = T°X, (2,8 — (2,§+df)
is a symplectomorphism and ¢ (po) satisfies (5.12). We can then form
vos(A)
which is horizontal. Notice that « o vy is given by
(@,8) = (2,6 + df) = (E+ df, —).
If we consider the generating function on R™ x R™ given by

g(x,2) = —x -2+ f(x)
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then the corresponding Lagrangian submanifold is

{(1'7 —z+ df,Z, _x)}

so the canonical relation is
{(z,z —df,z,—x)}
or, setting £ = z 4+ df so z = £ — df we get
{(z, &, &+ df, —2)}

which is the graph of v o yf. We can now repeat the previous argument to
conclude that

y-x— f(z) —Y(y)

is a generating function for A. So we have proved:

Theorem 35. Every Lagrangian submanifold of T* X can be locally represented
by a generating function relative to a fibration.

Let us now discuss generating functions for canonical relations: So let X
and Y be manifolds and
FrcT*X xT*Y

a canonical relation. Let (po,qo) = (0, &0,Y0,M0) € I' and assume now that

§o#0, no#0. (5.14)

We claim that the following theorem holds

Theorem 36. There exist coordinate systems (U, 21, ..., xy) about zg and (V,y; ..

about yo such that if

yw: T°U - T*R"
is the transform

IYU(xv 'g) = (_f, :L')
and

vy T*V — T*RF
is the transform

wy,n) = (=n,y)
then locally, near

/

po=7"(po) and g :=v(q),
the canonical relation
'y‘;l ol oy (5.15)

1s of the form
Ly, ¢ =p(z,y) € C°(R" x R).

'7yk)
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Proof. Let
M, :=T*X, My=T"Y

and
V1 = TpoMla V2 = quMg, Y= T(pmqo)l“
so that ¥ is a Lagrangian subspace of

Vim x Va.

Let Wy be a Lagrangian subspace of V; so that (in the linear symplectic cate-
gory)

E(Wl) =Xo Wl
is a Lagrangian subspace of V5. Let W5 be another Lagrangian subspace of
Vo which is transverse to X(W7). We may choose Wi and Ws to be horizontal
subspaces of T}, My and Ty, M. Then Wi x Wj is transverse to X in V; x V5 and
we may choose a Lagrangian submanifold passing through py and tangent to Wy
and similarly a Lagrangian submanifold passing through gy and tangent to Wj.
As in the proof of Theorem 35 we can arrange local coordinates (z; ..., z,) on
X and hence dual coordinates (x1,...2,,&1,...,&,) around pg such that the
Lagrangian manifold tangent to W7 is given by

Si=1, &=-86 =0

and similarly dual coordinates on My = T*Y such that the second Lagrangian
submanifold (the one tangent to Ws) is given by

771:]_7 7’2::7]k20

It follows that the Lagrangian submanifold corresponding to the canonical re-
lation (5.15) is horizontal and hence is locally of the form I'y. O

5.10 The Legendre transformation.

Coming back to our proof of the existence of a generating function for La-
grangian manifolds, let’s look a little more carefully at the details of this proof.
Let X = R™ and let A € T*X be the Lagrangian manifold defined by the
fibration, Z = X x R® 5 X and the generating function

O(z,y) =z -y —Y(y) (5.16)
where ¢ € C*°(R"). Then

0
(x,y>eo¢@x:6—1§<y>.

Recall also that (20, y0) € Cy < the function ¢(zg,y) has a critical point at y.
Let us suppose this is a non-degenerate critical point, i.e., that the matrix

<8Z2£/j (xo’y")) N (a%yj (y0)> (5.17)
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is of rank n. By Theorem 33 we know that there exists a neighborhood U > xq
and a function ¢* € C°°(U) such that

Pi(x) = ¢(z,y) at (z,y) € Cy (5.18)
A = Ay (5.19)

locally, near the image py = (¢, o) of the map % : Cp — A. What do these
three assertions say? Assertion (5.17) simply says that the map

0
y - FZ (5.20)

is a diffeomorphism at yo. Assertion (5.18) says that
V*(x) = a2y — P(2) (5.21)

at z = %, and assertion(5.19) says that

_ o _ oy
oy TV T on

x (5.22)

i.e., the map

oY*

oz
is the inverse of the mapping (5.20). The mapping (5.20) is known as the
Legendre transform associated with ¢ and the formulas (5.21)— (5.23) are the
famous inversion formula for the Legendre transform. Notice also that in the
course of our proof that (5.21) is a generating function for A we proved that v
is a generating function for v(A), i.e., locally near v(pg)

YA) =A_y.

r— — (5.23)

Thus we’ve proved that locally near pg
Ay =77 (Ay)
where
4L TR — T*R™
is the transform (y,n) — (z,£) where

y=¢& and z=—n.

This identity will come up later when we try to compute the semi-classical
Fourier transform of the rapidly oscillating function

;2 W)

a(y)e’ ", a(y) € Cg°(R™).




5.11. THE HORMANDER-MORSE LEMMA. 137

5.11 The Hormander-Morse lemma.

In this section we will describe some relations between different generating func-
tions for the same Lagrangian submanifold. Our basic goal is to show that if
we have two generating functions for the same Lagrangian manifold they can
be obtained (locally) from one another by applying a series of “moves”, each of
a very simple type.

Let A be a Lagrangian submanifold of 7% X, and let

Zo 3 X, 78X
be two fibrations over X. Let ¢, be a generating function for A with respect to
T : Z1 — X.

Proposition 20. If
f : ZO — 71

18 a diffeomorphism satisfying

m o f=mp
then

¢o=["$
18 a generating function for A with respect to m.

Proof. We have d(¢; o f) = d¢o. Since f is fiber preserving, f maps Cy,
diffeomorphically onto Cy,. Furthermore, on Cy, we have

dpr o f = (do1 o fhor = (ddo)nor

so f conjugates the maps dx¢; : Cp, = A, i =0,1. Since dx¢; is a diffeomor-
phism of Cy, with A we conclude that dx ¢o is a diffeomorphism of Cyp, with A,
i.e. ¢g is a generating function for A. O

Our goal is to prove a result in the opposite direction. So as above let
m » Z; — X, i = 0,1 be fibrations and suppose that ¢y and ¢, are generating
functions for A with respect to 7;. Let

pOGA

and z; € Cyp,, 1 = 0,1 be the pre-images of py under the diffeomorphism d¢; of
Cy, with A. So
dX(yb’L(Zl) = Po, 2:071

Finally let zg € X be given by
xo = mo(20) = m1(21)

and let ¥;, i = 0,1 be the restriction of ¢; to the fiber 7'(‘;1(.1‘0). Since z; € C,
we know that z; is a critical point for ;. Let

d?p; ()
be the Hessian of v; at z;.



138 CHAPTER 5. GENERATING FUNCTIONS.

Theorem 37. The Hérmander Morse lemma. If d*yg(z) and d*y(z)
have the same rank and signature, then there exists neighborhood Uy of zy in Z
and Uy of z1 in Z1 and a diffeomorphism

f :Up — Uy
such that

mof=mg
and

p10f = f"¢p1 = ¢o+ const.

Proof. We will prove this theorem in a number of steps. We will first
prove the theorem under the additional assumption that A is horizontal at pg.
Then we will reduce the general case to this special case.

Assume that A is horizontal at py = (z9,&p). This implies that A is hori-
zontal over some neighborhood of zy. Let S be an open subset of R¥ and

T: X xS—=X

projection onto the first factor. Suppose that ¢ € C°(X x S) is a generating
function for A with respect to m so that

dxd: Cy— A

is a diffeomorphism, and let zy € Cy be the pre-image of py under this diffeo-
morphism, i.e.
20 = (dx¢) "' (po)-

We begin by proving that the vertical Hessian of ¢ at 2y is non-degenerate.
Since A is horizontal at pg there is a neighborhood U of 2 ¢ € C°°(U) such
that
dy:U—>T*X

maps U diffeomorphically onto a neighborhood of py in A. So
(d?/})il o dx¢ : C¢ —U

is a diffeomorphism. But (di) ! is just the restriction to a neighborhood of pg in
A of the projection mx : T*X — X. Somx odx¢ : Cy — X is a diffeomorphism
(when restricted to 7=1(U)). But

Tx odx¢ =T,

so the restriction of m to Cy is a diffeomorphism. So Cy is horizontal at zg, in
the sense that
ngcqﬁ n TzOS = {0}

So we have a smooth map
s:U—=S
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such that « — (z,s(z)) is a smooth section of Cy over U. We have
dx¢ =d¢ at all points (z,s(x))
by the definition of Cy and dy(z) = dx¢(z,s(x)) = do(z,s(z)) so

¥(z) = ¢(x,s(z)) + const. . (5.24)
The submanifold Cy C Z = X x § is defined by the k equations
do

=0 =1,...,k
6(9% ? ? i )

and hence T3,Cy is defined by the k independent linear equations

d9\ .
d((‘?si)_o’ 1=1,... k.

A tangent vector to S at zg, i.e. a tangent vector of the form

0,v), v=(v}...0%
will satisfy these equations if and only if

0%
; 8si83j

=0 i=1,... k.

But we know that these equations have only the zero solution as no non-zero
tangent vector to S lies in the tangent space to Cy at zgp. We conclude that the

vertical Hessian matrix
d2 (b _ 82¢
A 68168]
is non-degenerate.

We return to the proof of the theorem under the assumption that that A is
horizontal at py = (zg,&). We know that the vertical Hessians occurring in the
statement of the theorem are both non-degenerate, and we are assuming that
they are of the same rank. So the fiber dimensions of my and m; are the same.
So we may assume that Zy = X xS and Z; = X x S where S is an open subset
of R and that coordinates have been chosen so that the coordinates of z; are
(0,0) as are the coordinates of z;. We write

so(z) = (2,80(7)), s1(2) = (2,s1(x)),
where s and s; are smooth maps X — R* with
So(O) = Sl(O) =0.

Let us now take into account that the signatures of the vertical Hessians are the
same at zg. By continuity they must be the same at the points (z,s¢(x)) and
(2,81(x)) for each z € U. So for each fixed x € U we can make an affine change
of coordinates in S and add a constant to ¢; so as to arrange that
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1. so(x) =s1(z) =0.

2. G (2,0) = G(x,0), i=1.... k.

3. ¢o(z,0) = ¢1(x,0).
4. d%¢po(z,0) = d%ep(z,0).

We can now apply Morse’s lemma with parameters (see §14.14.3 for a proof) to
conclude that there exists a fiber preserving diffeomorphism f: U xS — U x S
with

[ o1 = ¢o.

This completes the proof of Theorem 37 under the additional hypothesis that
Lagrangian manifold A is horizontal.

Reduction of the number of fiber variables. Our next step in the proof of
Theorem 37 will be an application of Theorem 34. Let 7 : Z — X be a fibration
and ¢ a generating function for A with respect to m. Suppose we are in the
setup of Theorem 34 which we recall with some minor changes in notation: We
suppose that the fibration

m:Z =X

can be factored as a succession of fibrations
m = p (6] Q

where
p:Z—-W and po:W =X

are fibrations. Moreover, suppose that the restriction of ¢ to each fiber
p~H(w)

has a unique non-degenerate critical point v(w). The map

w — y(w)
defines a smooth section

vy W —=Z
of p. Let

X =70

Theorem 34 asserts that y is a generating function of A with respect to p.
Consider the Lagrangian submanifold

Ay C T*W.

This is horizontal as a Lagrangian submanifold of 7*W and ¢ is a generating
function for A, relative to the fibration p: Z — W.
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Now suppose that we had two fibrations and generating functions as in the
hypotheses of Theorem 37 and suppose that they both factored as above with
the same o : W — X and the same x. So we get fibrations g¢ : Zg — W and
01 : Z1 — W. We could then apply the above (horizontal) version of Theorem
37 to conclude the truth of the theorem.

Since the ranks of d?¢y and d?v; at zp and z; are the same, we can apply
the reduction leading to equation (5.11) to each. So by the above argument
Theorem 37 will be proved once we prove it for the reduced case.

Some normalizations in the reduced case. We now examine a fibration
Z = X xS = S and generating function ¢ and assume that ¢ is reduced at
20 = (o, S9) so all the second partial derivatives of ¢ in the S direction vanish,
i. e. )
%9

—F—(20,50) =0 Vi, j.

05,0 Sj( 05 50) J
This implies that

Ty S NT{2y,50)Cp = T, S.

i.e. that
TSOS C T(Io,so)cti" (525)

Consider the map
dx¢p: X xS —=T"X, (z,5)—dxo(x,s).

The restriction of this map to Cy is just our diffeomorphism of Cy with A. So
the restriction of the differential of this map to any subspace of any tangent
space to Cy is injective. By (5.25) the restriction of the differential of this
map to Ty, S at (2o, S) is injective. In other words, by passing to a smaller
neighborhood of (xg, sg) if necessary, we have an embedding

X xS 2%, werex

" |

X — X
id
of X x S onto a subbundle W of T*X.
Now let us return to the proof of our theorem. Suppose that we have two
generating functions ¢;, i = 0,1 X x 5; — X and both are reduced at the points
z; of Cy, corresponding to py € A. So we have two embeddings

" |
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of X x S; onto subbundles W; of T*X for ¢ = 0,1. Each of these maps the
corresponding Cy, diffeomorphically onto A.

Let V be a tubular neighborhood of W7 in T* X and 7 : V' — Wj a projection
of V onto W7 so we have the commutative diagram

V%Wl

ﬂxl lWX

XT>X

Let

vi=(dx¢1) "o
So we have the diagram

V 2 Xx5

dl [ =

and
yodx¢r =id.
We may assume that Wy C V' so we get a fiber map

g::'yodX(bo g:XXSO—)XX;S’l.

When we restrict g to Cy, we get a diffeomorphism of Cy, onto Cy,. By (5.25)
we know that
T,,5 C TZiC¢i

and so dg,, maps 1,50 bijectively onto T, S;. Hence g is locally a diffeomor-
phism at zy. So by shrinking X and S; we may assume that

gZXXSO%XX;Sl

is a fiber preserving diffeomorphism. We now apply Proposition 20. So we
replace ¢1 by ¢*¢1. Then the two fibrations Zy and Z; are the same and
Cp, = C4,. Call this common submanifold C. Also dx¢9 = dx¢1 when
restricted to C, and by definition the vertical derivatives vanish. So d¢g = d¢;
on C, and so by adjusting an additive constant we can arrange that ¢y = ¢1 on
C.

Completion of the proof. We need to prove the theorem in the following
situation:

o /y=27; =X xS and my = m; is projection onto the first factor.

e The two generating functions ¢y and ¢; have the same critical set:

C¢0 = C¢1 =C.
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® ¢g=¢1onC.
[ dS¢i:O7 210,1 on C' and dx¢0:dx¢1 on C.

0 0
1(Ge) =4 (50 )
We will apply the Moser trick: Let
¢ = (1= 1)¢o +tor.
From the above we know that
® ¢ =¢o=¢1 onC.
e dspy =0o0n C and dx ¢y = dx o = dx ¢, on C.

99\ (0do\ (091
(22) —a(22) a ()

So in a sufficiently small neighborhood of Zy the submanifold C' is defined by
the k£ independent equations

Opt .
8731-_0, 1 =1

We look for a vertical (time dependent) vector field
v = Xi:vi(a:,s,t)a(zi
on X x S such that
L. Dy, = —¢¢ = bo — ¢1 and
2.v=0o0nC.
Suppose we find such a v;. Then solving the differential equations

d

%ft(m) =vi(fe(m)), fo(m)=m

will give a family of fiber preserving diffeomorphsms (since v; is vertical) and

b d ! :
fion=ou= [ GUiondt= [ fi1Duo+ bt =0,

So finding a vector field v; satisfying 1) and 2) will complete the proof of the
theorem. Now ¢y — ¢1 vanishes to second order on C' which is defined by the
independent equations d¢;/ds; = 0. So we can find functions

wi;(z, s,1)
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defined and smooth in some neighborhood of C' such that

s 00000
(bo - ¢1 - izjwlj(x7s7t) 852 6SJ

in this neighborhood. Set

0
xst waxst ¢t
Sj

Then condition 2) is clearly satisfied and

Oy O
th¢t Zwu z,s, t a;%a;ﬁt _¢0_¢1 ¢

as required. O

5.12 Changing the generating function.

We summarize the results of the preceding section as follows: Suppose that

(m1 + Z1 — X,¢1) and (72 : Zy — X, ¢2) are two descriptions of the same

Lagrangian submanifold A of 7% X. Then locally one description can be obtained

from the other by applying sequentially “moves” of the following three types:
1. Adding a constant. We replace ¢ by ¢2 = ¢1 + ¢ where c is a constant.

2. Equivalence. There exists a diffeomorphism ¢ : Z; — Z5 with
Ty 0g = and @209 = ¢1.

3. Increasing (or decreasing) the number of fiber variables. Here
Zy = 71 x R% and

6a(z05) = $1(2) + 5 (s,

where A is a non-degenerate d X d matrix (or vice versa).

5.13 The Maslov bundle.

We wish to associate to each Lagrangian submanifold of a cotangent bundle a
certain flat line bundle which will be of importance to us when we get to the
symbol calculus in Chapter 8. We begin with a review of the Cech-theoretic
description of flat line bundles.
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5.13.1 The Cech description of locally flat line bundles.
Let Y be a manifold and U = {U;} be an open cover of Y. Let
N' = {(4,)|UinU; # 0}.

A collection of of non-zero complex numbers {c;; }; jyent is called a (multiplica-
tive) cocycle (relative to the cover U) if

Cij - Cjk = ¢, whenever  U; NU; NU # 0. (5.26)
From this data one constructs a line bundle as follows: One considers the set
I1;(U; x C)
and puts an an equivalence relation on it by declaring that
(pi,ai) ~ (pj,a;) & pi=pjeU;NU; and a; = ¢;;a;.

Then

is a line bundle over Y. The constant functions
U, —-1eC
form flat local sections of L.
si:U—=L, p—[(p,1)]

and thus make L into a line bundle with flat connection over Y.
Any section s of L can be written over U; as s = f;s;. If v is a vector field
on Y, we may define D,s by

Dys:= (Dy,fi)s; on U,.

The fact that the transitions between s; and s; are constant shows that this is
well defined.

5.13.2 The local description of the Maslov cocycle.

We first define the Maslov line bundle Lyas10v — A in terms of a global gener-
ating function, and then show that the definition is invariant under change of
generating function. We then use the local existence of generating functions to
patch the line bundle together globally. Here are the details:

Suppose that ¢ is a generating function for A relative to a fibration 7 : Z —
X. Let z be a point of the critical set Cy, let © = 7(2) and let F = 7~1(z) be
the fiber containing z. The restriction of ¢ to the fiber F' has a critical point at
z. Let sgn?(z) be the signature of the Hessian at z of ¢ restricted to F. This
gives an integer valued function on Cy:

sgn” : Cy — Z, 2+ sgn(2).
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Notice that since the Hessian can be singular at points of Cy this function can
be quite discontinuous.
From the diffeomorphism Ay = dx¢

)\¢ : C¢ — A
we get a Z valued function sgn, on A given by
sgny 1= sgn’ o)\;l.

Let v
i
S¢ 1= e1 8N,

So
S¢ZA—)C*

taking values in the eighth roots of unity.

We define the Maslov bundle Lyjas10v — A to be the trivial flat bundle having
54 as its defining flat section.

Suppose that (Z;, m;,¢;), ¢ = 1,2 are two descriptions of A by generating
functions which differ from one another by one of the three Hormander moves
of Section 5.12. We claim that

S¢1 = €1,25¢, (5.27)

for some constant c;» € C*. So we need to check this for the three types of
move of Section 5.12. For moves of type 1) and 2), i.e. adding a constant or
equivalences this is obvious. For each of these moves there is no change in sgn .

For a move of type 3) the sgnf& and sgné’£ are related by
sgni‘yE = sgn;‘7£ +signature of A.

This proves (5.27), and defines the Maslov bundle when a global generating
function exists.

In this discussion we have been tacitly assuming that ¢ is a transverse gener-
ating function of A. However, the definition of s4 above makes sense as well for
clean generating functions. Namely if ¢ € C*°(Z) is a clean generating function
for A with respect to the fibration 7 : Z — X then as we showed in §5.11, 7
factors (locally) into fibrations with connected fibers

75 72,83 X

and ¢ can be written as a pull-back ¢ = 771 where p; € C*(Z;) is a transverse
generating function for A with respect to mo. Thus C, = 7, '(Cy,) and the
signature map, (sgn)?” : C, — Z is just the pull-back of the signature map
Cyp, — Z associated with ;. Moreover, the diffeomorphism

Aoy 1 Cpy — A
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lifts to a fiber preserving map

Ao : Cp = A
and we can define, as above, a function

sgn, A —7Z

by requiring that sgn, o\ = (sgn)” and then define 54 as above to be the

. in
function e1 8"¢,

5.13.3 The global definition of the Maslov bundle.

Now consider a general Lagrangian submanifold A C T*X. Cover A by open
sets U; such that each U; is defined by a generating function and that generating
functions ¢; and ¢; are obtained from one another by one of the Hérmander
moves. We get functions sg, : U; — C such that on every overlap U; N U;

S¢; = CijSg;

with constants ¢;; with |¢;;| = 1. Although the functions s4; might be quite
discontinuous, the ¢;; in (5.27) are constant on U; NU;. On the other hand, the
fact that sy, = cijs4, shows that the cocycle condition (5.26) is satisfied. In

other words we get a Cech cocycle on the one skeleton of the nerve of this cover
and hence a flat line bundle.

5.13.4 The Maslov bundle of a canonical relation between
cotangent bundles.

We have defined the Maslov bundle for any Lagrangian submanifold of any
cotangent bundle. If
I' € Morph(T* X1, T* X>)

is a canonical relation between cotangent bundles, so that I" is a Lagrangian
submanifold of
(T*Xl)_ X T*XQ

then
(61 x id)(T)

is a Lagrangian submanifold of
T*Xl X T*XQ = T*(Xl X X2)

and hence has an associated Maslov line bundle. We then use the identification
¢1 X id to pull this line bundle back to I'. In other words, we define

Lasiov (T') := (61 X id)*Lmasiov((s1 x id)(T")). (5.28)
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5.13.5 Functoriality of the Maslov bundle.
Let X1, X5, and X3 be differentiable manifolds, and let
Ty € Morph(T* X, T*X5) and T'o € Morph(T™*Xs, T" X3)

be cleanly composable canonical relations. Recall that this implies that we have

a submanifold
ToxI'y CT "Xy x T "X x T X3

and a fibration (4.5)
K:FQ*Fl —>F20F1

with compact connected fibers. So we can form the line bundle
K" (LMaslov (T2 0 T'1)) — Ty x Ty
On the other hand, I's * I'y consists of all (mq, ms, m3) with
(my,m2) €Ty and  (ma2.mg3) € Da.
So we have projections
pry: oIy =Ty, (mq, ma, mg) — (my,ma)

and
pr2 : FQ*FI — F27 (m17m27m3) = (m27m3)'

So we can also pull the Maslov bundles of I'; and I's back to I's xI'y. We claim
that
K*LMaslov(FQ o Fl) = PTT ILMaslov (Fl) (24 pr; ]LMaslov (FZ) (529)

as line bundles over I'g xI';.

Proof. We know from Section 5.7 that we can locally choose generating
functions ¢, for I'y relative to a fibration

X1 X Xog xS — X1 xS,
and ¢, for I's relative to a fibration
XQXX:;XSQ—)XQXXS

so that
¢ = ¢(x1, 2,3, 51,52) = P1(x1,72,51) + P2(x2, 3, 52)

is a generating function for I'; o I'; relative to the fibration
X1XX3XX2X51X524)X1XX3

(locally). We can consider the preceding equation as taking place over a neigh-
borhood in T'; x I'y. Over such a neighborhood, the restrictions of the bundles
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on both sides of (5.29) are trivial, and we define the isomorphism in (5.29) to
be given by
Pri Sp, @ Pry Sa, F> K Sp. (5.30)

We must check that this is well defined.

We may further restrict our choices of generating functions and neighbor-
hoods for I'; so that the passage from one to the other is given by one of the
Hormander moves, and similarly for I's. A Hérmander move of type 1 on each
factor just adds a constant to ¢; and to ¢o and hence adds the sum of these
constants to ¢, i.e. is a Hormander move of type 1 on I'y o I'y. Similarly for a
Hoérmander move of type 2. Also for Hérmander moves of type 3, we are adding
a quadratic form in (additional) s variables to ¢1, and a quadratic form in ¢
variables to ¢o yielding a Hormander move of type 3 to ¢. This proves that
(5.29) is well defined. O

5.14 Identifying the two definitions of the Maslov
bundle.

We will use the functoriality above to show that the line bundle Lygag10v that
we defined in §5.13.2 coincides with the line bundle that we defined in §2.8. Let
po = (z0,&p) be a point of A. Without loss of generality we can assume &y # 0.
Hence by §5.3 there exists a coordinate patch centered at zoy and a generating
function for A near pg

D:UxR" >R

having the form

Y(x,y) =2y +1h(y). (5.31)
Then Cd? is the set
o
and
)\w : Clzj — A
is the map
o
Yy = <_8y’y>

Let A; be a Lagrangian submanifold which is horizontal and intersects A
transversally at pp. From Chapter 1 we know that A; = Ay for some ¢ €
C>(X), ie.e is the image of the map

UaxH%.

Since ¢ is a function on X and so does not involve any fiber variables, the section
s of L(A1) associated with ¢ is the function s, = 1. On the other hand, at
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every point = Ay (y) € A, the section of Lfasiov(A) associated with 15 is the

function v
It sgn d21/)

sy =e1
Let us now consider A and A; as canonical relations
A € Morph(pt.,T*X), Ay € Morph(pt., T*X)
and consider the composition

Al o A € Morph(pt., pt.). (5.32)

Since composition of canonical relations corresponds to addition of their gener-
ating functions, we get a generating function

z-y+¢(x) +9(y)
for (5.32) with respect to the fibration
R?*" — pt..

This has a critical point at (z,y) = (z0,&) = po and the composition for the
sections 1 = s, and s, of the Maslov bundles L(AI) and Lyasiov (A) that we
described in the preceding section gives us, for the composite section the element

TP L, =C (5.33)

where
A T
D= ( ; B) (5.34)
where o2
P
A =
(i)

and

_ (9%
B= <8x18x] (Z‘o)) '

In particular, let us fix ¢ to be of the form
Gx) =D biwi+ Y bijaix;
i ij

where the b; are the coordinates of {y at « = 0 = z. Let us vary B = (b;;)
so that D stays non-degenerate which is the same as saying that A4 stays
transversal to A at pg.

Let V be the tangent space at py to the cotangent bundle of X, let M; be
the tangent space to A at pp and let M5 be the tangent space to the cotangent
fiber T, X at po.
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As we vary A, we get by (2.8) and (5.33) and (5.34) a map
f : [,(V, M17M2) —-C

satisfying the transformation law (2.17). Thus this function is an element of the
Maslov line Lygasiov(po) that we defined in Section 2.8. Thus our composition
formula (5.32) for s4 o sy gives us an identification of this line with the fiber of
L(po) as defined in Section 5.13.3.

5.15 More examples of generating functions.
5.15.1 The image of a Lagrangian submanifold under geodesic
flow.

Let X be a geodesically convex Riemannian manifold, for example X = R™. Let
ft denote geodesic flow on X. We know that for ¢ # 0 a generating function for
the symplectomorphism f; is

il y) = d(e, )

Let A be a Lagrangian submanifold of T*X. FEven if A is horizontal, there
is no reason to expect that f;(A) be horizontal - caustics can develop. But
our theorem about the generating function of the composition of two canonical
relations will give a generating function for f;(A). Indeed, suppose that ¢ is a
generating function for A relative to a fibration

T: X x5 —=X.

Then 1
id(xv y)2 + w(yv S)

is a generating function for f;(A) relative to the fibration

XxXx8—=>X, (z,y,8) — x.

5.15.2 The billiard map and its iterates.
Definition of the billiard map.

Let © be a bounded open convex domain in R™ with smooth boundary X. We
may identify the tangent space to any point of R™ with R™ using the vector
space structure, and identify R™ with (R™)* using the standard inner product.
Then at any z € X we have the identifications

T,X=2T, X"
using the Euclidean scalar product on T, X and

T,X ={veR" v -n(z) =0} (5.35)
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where n(z) denotes the inward pointing unit normal to X at z. Let U C
TX denote the open subset consisting of all tangent vectors (under the above
identification) satisfying

llo|l < 1.

For each € X and v € T, X satisfying ||v|| <1 let
u:= v+ an(z) where a:= (1 — ||’UH2)%.

So u is the unique inward pointing unit vector at x whose orthogonal projection
onto T, X is v.
Consider the ray through z in the direction of u, i.e. the ray

xz+tu, t>0.

Since €2 is convex and bounded, this ray will intersect X at a unique point y.
Let w be the orthogonal projection of v on T}, X. So we have defined a map

B:U—-U (z,0) (y,w)

which is known as the billiard map.

The generating function of the billiard map.

We shall show that the billiard map is a symplectomorphism by writing down
a function ¢ which is its generating function.
Consider the function

¢ R* xR = R, ¢(z,y) = |z —yl|.

This is smooth at all points (x,y), = # y. Let us compute d,1(v) at such a
point (z,y) where v € T, X.

d r—y
il t == 7
dt¢($+ /Uay)\tfo <||y—$(}||’v)

where (, ) denotes the scalar product on R™. Identifying TR™ with T*R™ using
this scalar product, we can write that for all z # y

y—x y—x
dzw(x7y) = _”:L'*y”’ dyl/J(CE,y) = ||:177y||
If we set Y-z - H
U= ——-, =lz—y

|z —yll

we have
ull =1

and

y=x+tu.



5.15. MORE EXAMPLES OF GENERATING FUNCTIONS. 153

Let ¢ be the restriction of ¥ to X x X C R™ x R". Let
t: X - R"”
denote the embedding of X into R™. Under the identifications
T.R*>2TR", T,X=T:X
the orthogonal projection
T"R*"=T,R"su—vel, X=T X

is just the map
dey Th)R" - TrX, u—ov.

So
U= dLZu = dl’;drd}(xay) = dr¢(x7y)

So we have verified the conditions
v = 7d$¢(‘ra y)v w = dy¢(x7y)

which say that ¢ is a generating function for the billiard map B.

Iteration of the billiard map.

Our general prescription for the composite of two canonical relations says that a
generating function for the composite is given by the sum of generating functions
for each (where the intermediate variable is regarded as a fiber variable over the
initial and final variables). Therefore a generating function for B™ is given by
the function

¢(x0, 15y ) = [Jo1 = wol| + lze — [l + -+ + [l — Zna .

5.15.3 The classical analogue of the Fourier transform.
We repeat a previous computation: Let X = R" and consider the map
F:T"X >TX, (2,8 (=& x).
The generating function for this symplectomorphism is
x-y.

Since the transpose of the graph of a symplectomorphism is the graph of the
inverse, the generating function for the inverse is

_y . :L'.
So a generating function for the identity is
¢ € C™®(X x X, xR")

QS(IZ?,Z,y) = (xiz) Y.
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5.15.4 Quadratic generating functions.
Reduced quadratic generating functions.

Let X and Y be vector spaces, 7 : Y — X a linear fibration and ¢ a homogenous
quadratic generating function. The condition that ¢ be reduced says that the
restriction of ¢ to the kernel of 7 vanishes. So let K be this kernel, i.e. we have
the exact sequence

0-K5Y 5 X —o. (5.36)

If k € K and « € X, then ¢(k,y) does not depend on the choice of y with
Ty = x, so we get a bilinear map

B: KxX—R, B(kx)=d¢k,y) where my = z.
We can consider B as a linear map
B: K— X"

So Im B C X* is a subspace of the (linear) Lagrangian subspace of T*X =
X & X* determined by the generating function ¢. The kernel of ¢ consists of
“excess variables” so must vanish for the case that ¢ is transverse.

Let W C X be the annihilator space of Im B, i.e

W := (Im B)°.

Then the restriction on ¢ to 7= (W) depends only on the image of 7, i.e. there
is a quadratic form @ on W such that

Q(z1,22) = ¢(y1,92)

is independent of the choice of yq,y, with 7Y; = 21, ¢ = 1,2 when z1,22 € W.
Then
A=Awoo®ImB (5.37)

where
Aw,g = {(z,dQ(x)), =z €W}

. In terms of coordinates, if z1, ...,z is a system of coordinates on W extended
to a system of coordinates on X then A consists of all points of the form

0Q 0Q
xla'“axkvov"‘vo;77"'777§k+1”'7£n .

0x1 oxy,
Reducing a homogeneous quadratic generating function.

More generally, consider the case where we have the exact sequence (5.36) and
a homogeneous function quadratic function ¢ on Y, and hence a linear map

Ly:Y =Y*
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such that .
$y) = 5{Lsy:y)-

Our general definition of generating function restricted to the case of homoge-
neous quadratic functions says that we first pass to the critical set which in this
case corresponds to the subspace Cyp C Y

Cy = ker(1" o Ly).

Taking the transpose of (5.36) we see that 7* is injective and ker * = Im7*.
Since Ly(Cyp) C kert* we see that Ly maps Cp — X*.

The general definition of a generating function then specializes in this case
to the assertion that

A= pg(Cy)
where pg : Cy = TX* =X @ X" is given by

po(u) = (m(w), Lg(u)).

Let
KO =KnN C¢,

so K is the null space of the restriction on ¢ to K, i.e. Ky = K= relative to
the quadratic form ¢ ot on K.

In terms of the preceding paragraph, we know that ¢ is reduced if and only
if Ko =K.

Example: When A is transverse to X. Recall from Chapter 2 that in this
case we can take Y = X & X* so that K = X™ and ¢ to have the form

where P is a quadratic function on X*. Let Lp : X* — (X*)* = X be the
linear map associated to P. We have Y* = X* @ X and Ly is given by

Ly(x,8) = (&2 — Lp(§))
Hence

(t" o Lg)(z,§) =z — Lp(§)
so that

Co ={(, )|z = Le (&)}
The generating function ¢ in this case will be reduced if and only if P =0 in
which case A = X" and Cy =Y.

If P # 0 we may “reduce” the number of fiber variables by replacing Y by

Yy = Cy. We then get the exact sequence

0—>kerLp Yy —>X—0

which has the form (5.36) and (5.37) becomes
A={Lp(£),9).
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Reduction.

In general, the quadratic form induced by ¢ ot on K/Kj is non-degenerate. In
particular, the restriction of Ly o ¢ to any complement K; of Ky in K maps
this complement surjectively onto (Ky)® C K*, the null space of Ky, and from
linear algebra, (Ky)° = (K/Kp)*.

Let ¢1 denote the restriction of ¢ to K; and let Yy = ker(.f o Ly). Clearly
L(KQ) C Yp.

Lemma 2. my, maps Yy surjectively onto X.

Proof. Let © € X. Let y € Y be such that 7y = x. Let k* = (1* o Ly)(y).
We can find a k € K; such that (Ly o ¢)(k) = k*. Then y — «(k) € Yy and
w(y — (k) = . O

Let
®0 = Py, Lo =LK, and mo = Ty,.

So we have the exact sequence
0= Ko 3Y, 8 X 0. (5.38)

If y € Cy then by definition, t*Ly(y) = 0, so in the proof of the above lemma,
we do not need to modify y. Hence

Proposition 21. The sequence (5.38) is exact and and the function ¢o is a
reduced generating function for A.



Chapter 6

The calculus of %-densities.

An essential ingredient in our symbol calculus will be the notion of a %— density
on a canonical relation. We begin this chapter with a description of densities
of arbitrary order on a vector space, then on a manifold, and then specialize
to the study of %—densities. We study %—densities on canonical relations in the
next chapter.

6.1 The linear algebra of densities.

6.1.1 The definition of a density on a vector space.

Let V be an n-dimensional vector space over the real numbers. A basis e =
e1,...,en of V is the same as an isomorphism £, of R"™ with V according to the
rule

Z1

= T1€1 + -+ Tpep.

Tn
We can write this as
T €
— (e1,...€n) "
Tn Tn

or even more succinctly as
fe: X e-X

where
1

T

157
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The group Gl(n) = Gl(n,R) acts on the set F (V') of all bases of V' according
to the rule
lors loo A7 A€ Gl(n)

which is the same as the “matrix multiplication”
e—e- AL
This action is effective and transitive:
o Ife=e - A~! for some basis e then A = I, the identity matrix, and
e Given any two bases e and f these exists a (unique) A such that e = f- A.

We shall use the word frame as being synonymous with the word “basis”,
especially when we want to talk of a basis with a particular property.
Let @ € C be any complex number. A density of order a on V is a function

p: F(V)—>C

satisfying
ple- A) =p(e)|det A|* VA€ Gl(n), e F(V). (6.1)

We will denote the space of all densities of order « on V' by
Ve

This is a one dimensional vector space over the complex numbers. Indeed,
if we fix one f € F(V), then every e € F(V) can be written uniquely as
e =f.B, B € Gi(n). So we may specify p(f) to be any complex value and
then define p(e) to be p(f) - | det B|*. It is then easy to check that (6.1) holds.
This shows that densities of order « exist, and since we had no choice once we
specified p(f) we see that the space of densities of order o on V form a one
dimensional vector space over the complex numbers.

Let L : V — V be a linear map. If L is invertible and e € F(V) then
Le = (Ley, ..., Le,) is (again) a basis of V. If we write

Lej = Z Lijei
then

where L is the matrix

so if p € |V]* then
p(Le) = |det L|*p(e).
We can extend this to all L, non necessarily invertible, where the right hand

side is 0. So here is an equivalent definition of a density of order o on an
n-dimensional real vector space:
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A density p of order « is a rule which assigns a number p(v1,...,v,) to every
n-tuplet of vectors and which satisfies

p(Lvy, ..., Lv,) = |det L|%p(vy, ..., vp) (6.2)

for any linear transformation L : V' — V. Of course, if the vy, ..., v, are not
linearly independent then

p(v1,...,v,) =0.

6.1.2 Multiplication.
If p€ |V|* and 7 € [V|? then we get a density p - 7 of order o + 3 given by

(p-7)(e) =ple)7(e).
In other words we have an isomorphism:

VI*@ VP2 |V per—p-T. (6.3)

6.1.3 Complex conjugation.

If p € |[V|* then p defined by

ple) = ple)
is a density of order @ on V. In other words we have an anti-linear map
VI* = VIY,  p=5

This map is clearly an anti-linear isomorphism. Combined with (6.3) we get a
sesquilinear map

VI"@ VI = [VI**P per—p- 7

We will especially want to use this for the case a = § = % +is where s is a real
number. In this case we get a sesquilinear map

V|5 @ |V]ETe o VL (6.4)

6.1.4 Elementary consequences of the definition.

There are two obvious but very useful facts that we will use repeatedly:

1. An element of |V|* is completely determined by its value on a single basis
e.

2. More generally, suppose we are given a subset S of the set of bases on
which a subgroup H C Gl(n) acts transitively and a function p : S — C
such that (6.1) holds for all A € H. Then p extends uniquely to a density
of order v on V.
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Here are some typical ways that we will use these facts:

Orthonormal frames: Suppose that V is equipped with a scalar product.
This picks out a subset O(V) C F(V) consisting of the orthonormal
frames. The corresponding subgroup of Gi(n) is O(n) and every element
of O(n) has determinant +1. So any density of any order must take on
a constant value on orthonormal frames, and item 2 above implies that
any constant then determines a density of any order. We have trivialized
the space |[V]* for all @. Another way of saying the same thing is that
V has a preferred density of order «, namely the density which assigns
the value one to any orthonormal frame. The same applies if V' has any
non-degenerate quadratic form, not necessarily positive definite.

Symplectic frames: Suppose that V is a symplectic vector space, so n =
dim V' = 2d is even. This picks out a collection of preferred bases, namely
those of the form eq,...,eq, f1,...fq where

w(eie;) =0, w(fi, fj) = 0. wles, f;) = dij

where w denotes the symplectic form. These are known as the symplectic
frames. In this case H = Sp(n) and every element of Sp(n) has determi-
nant one. So again |V|® is trivialized. Again, another way of saying this
is that a symplectic vector space has a preferred density of any order - the
density which assigns the value one to any symplectic frame.

Transverse Lagrangian subspaces: Suppose that V' is a symplectic vector
space and that M and N are Lagrangian subspaces of V with MNN = {0}.
Any basis eq,...eq of M determines a dual basis f1,... fg of N according
to the requirement that

w(es, fj) = 0y
and then ey, ...eq, f1... fa is a symplectic basis of V. If C € GI(d) and
we make the replacement
e—e-C

then we must make the replacement
fis £ (CH7L

So if p is a density of order a on M and 7 is a density of order a on N they
fit together to get a density of order zero (i.e. a constant) on V according
to the rule

(e,f)=(e1,...,ed, f1,-..,fa)— p(e)r(f)
on frames of the above dual type. The corresponding subgroup of GI(n)
is a subgroup of Sp(n) isomorphic to Gi(d). So we have a canonical

isomorphism
|M|*® |N|*=C. (6.5)

Using (6.3) we can rewrite this as

[M[* = [N]7.
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Dual spaces: If we start with a vector space M we can make M & M™* into a
symplectic vector space with M and M™ transverse Lagrangian subspaces
and the pairing B between M and M™* just the standard pairing of a vector
space with its dual space. So making a change in notation we have

[V]* = [V (6.6)
Short exact sequences: Let
0=V 2V -oV"=0

be an exact sequence of linear maps of vector spaces. We can choose a
preferred set of bases of V as follows : Let (eq,...,ex) be a basis of V'
and extend it to a basis (e1,..., €k, €k+1,-.-€,) of V. Then the images of
e;, 1 =k+1,...n under the map V — V" form a basis of V”. Any two
bases of this type differ by the action of an A € GI(n) of the form

A %
A:(o AJ

det A =det A’ -det A”.

SO

This shows that we have an isomorphism
Vi* = V|*® [V"" (6.7)
for any «.
Long exact sequences Let
0—-Vi—=Vo—=---Vp =0
be an exact sequence of vector spaces. Then using (6.7) inductively we

get
QR Vil = Q Vil (6.8)

j even ;j odd

for any «a.

6.1.5 Pullback and pushforward under isomorphism.

Let
L:V W

be an isomorphism of n-dimensional vector spaces. If
e=(e1,...,e,)

is a basis of V' then
Le := (Ley, ..., Ley)
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is a basis of W and
Le-A)=(Le)-A VAeGl(n).
So if p € |W|* then L*p defined by
(L*p)e) = plLe)
is an element of |V]%*. In other words we have a pullback isomorphism
L* [W|* = |V|¥, pw~ L.
Applied to L' this gives a pushforward isomorphism

L. : |V|* = [W|*,  L,= (LY.

6.1.6 Pairs of Lagrangian subspaces.

Here is another useful fact:
Let 41,05 be Lagrangian subspaces of a symplectic vector space. We have
the following two exact sequences:

0—=>l1Nly — 1 +€2—>(1€1 +£2)/(€1 ﬂfg)—)O

and
0—=liNly =4l Bly— L1+ 4y —0.

Since (¢1 + ¢2)/(¢1 N £2) is a symplectic vector space, the first exact sequence
tells us that
|61 + €] ~ |61 N La]”

and so the second exact sequence tells us that

(] @ (2] ~ [0y 0 o] (6.9)

6.1.7 Spanning pairs of subspaces of a symplectic vector
space.

Let M; and M be (arbitrary) subspaces of a symplectic vector space V' with
the property that
My + My =V.

We then have the exact sequence
00— M NMy— M &My —V —0.

Since we have the trivialization |V|® 2 C determined by the symplectic struc-
ture, we get an isomorphism

|Mi|* @ |Ma|™ = | My N Ma|™. (6.10)
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6.1.8 Lefschetz symplectic linear transformations.

There is a special case of (6.5) which we will use a lot in our applications, so
we will work out the details here. A linear map L : V — V on a vector space is
called Lefschetz if it has no eigenvalue equal to 1. Another way of saying this
is that I — L is invertible. Yet another way of saying this is the following: Let

graphL C V@V

be the graph of L so
graph L = {(v,Lv) v €V}

Let
AcCVeV

be the diagonal, i.e. the graph of the identity transformation. Then L is Lef-
schetz if and only if
graph L N A = {0}. (6.11)

Now suppose that V' is a symplectic vector space and we consider V- ¢V as a
symplectic vector space. Suppose also that L is a (linear) symplectic transfor-
mation so that graph L is a Lagrangian subspace of V~ @& V as is A. Suppose
that L is also Lefschetz so that (6.11) holds.

The isomorphism

V —graphL: v+~ (v, Lv)

pushes the canonical a-density on V' to an a-density on graph L, namely, if
v1,...,0U, is a symplectic basis of V', then this pushforward « density assigns
the value one to the basis

((v1, Lvy), ..., (vn, Luy))  of graph L.
Let us call this a-density py. Similarly, we can use the map
diag: V = A, v (v,0)

to push the canonical « density to an a-density pa on A. So pa assigns the
value one to the basis

((vi,v1)y -+, (Un,vp))  of A.

According to (6.5)
|graph L|* @ |A]* = C.

So we get a number (pr, pa) attached to these two a-densities. We claim that
(prspa) = | det(I — L)| . (6.12)

Before proving this formula, let us give another derivation of (6.5). Let M and
N be subspaces of a symplectic vector space W. (The letter V is currently
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overworked.) Suppose that M NN = {0} so that W = M @ N as a vector space
and so by (6.7) we have
(W = [M|* @ |[N|*.

We have an identification of |W|* with C given by sending
(W% 3 pw = pw (W)

where w is any symplectic basis of W. Combining the last two equations gives
an identification of |M|* ® |N|* with C which coincides with (6.5) in case M
and N are Lagrangian subspaces. Put another way, let w be a symplectic basis
of W and suppose that A € Gi(dim W) is such that

w-A=(m,n)

where m is a basis of M and n is a basis of N. Then the pairing of of pp; € |M|*
with py € |N|® is given by

(P, pn) = | det A|%ppr(m)py (m). (6.13)

Now let us go back to the proof of (6.12). If e,f = e1,...,eq, f1...,fq is a
symplectic basis of V' then

((e’ 0)7 (07 e)v (_fv 0)7 (0’ f))

is a symplectic basis of V— @& V. We have

I; 0 0 0
0 0 Ig 0] _
((e70)7(O’e)a(_ﬂO)?(O’f)) 0 *Id 0 0 - ((e,0)7(f,O),(O,e),(O,f))
0 0 0 Iy
and
I; O 0 0
0 0 I; 0] _
det 0o -1, 0 o~ 1.
0 0 0 Iy

Let v denote the symplectic basis e, f of V' so that we may write

((e,0),(£,0),(0,e),(0,f)) = ((v,0),(0,v)).

Write
ij = ZLijvia L= (L”)

Then
((v,0), (0,v)) Gj Z) — (v, Tv), (v,V)).
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So taking
I, O 0 0
A 0 0 Iy O (In In)
0o —-I; 0 O L I,
0 0 0 Iy
we have

((ea 0)7 (07 e)a (7fa 0)7 (07 f)) A= ((Va LV), (V, V)) .
So using this A in (6.13) proves (6.12) since

Iy O 0 O
B 0 0 I; 0 L L)\ -
det A = det 0 I, 0 0 det(L Iﬂ)—det(ln L).
0 0 Iq4

We will now generalize (6.12). Let L : V — V be a linear symplectic map,
and suppose that its fixed point set

U=Vl.={veV|Lv=1}

is a symplectic subspace of V, and let U~ be its symplectic orthocomplement.
So U+ is invariant under L and is a symplectic subspace of V.
The decomposition V = U @ U+ gives rise to the deccompositions

A = Ap® Ay and (6.14)
graph L, = Ay @ graph(L|UY) (6.15)

as Lagrangian subspaces of U~ @ U and (U+)” @ U+,

Let pa and pr, be the elements of |A|* and | graph L|* as determined above
from the canonical @ densities on V. Then (6.14) and (6.15) imply that we can
write

PA = OARTA (6.16)
prL = 0L QTL (6.17)

with oa and o7 € [Ay|®, with 7A € [Ay|* and and 77, € [graph(Ly)|*.
Furthermore, we may identify Ay with U, which, by hypothesis, is a symplectic
vector space and so carries a canonical density of order . We may take oA and
o, to be this canonical density of order o which then fixes 7o and 7.

Now A and graph L are Lagrangian subspaces of V'~ @& V and their inter-
section is Ay which we identify with U. The isomorphism (6.9) gives us a map
sending pa ® pr, into |U]?®. From (6.16) and (6.17) we see that the image of (6.9)
pa ® pr is

|du|®* (T, TA)

where |du|?* is the canonical 2a density on U. Since the restriction of L to Ut
is Lefschetz, we may apply (6.12) to conclude (6.11)
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Theorem 38. If the fixed point set U of L is a symplectic subspace, then the
isomorphism (6.9) determines a pairing sending the a density pa on A and the
« density pr, on graph L into 2« densities on U given by

<,0L,pA> = |det(IUL 7L‘UL|7Q duzo‘ (618)

where du® is the canonical 2c density on U determined by its symplectic struc-
ture.

6.2 Densities on manifolds.

Let E — X be a real vector bundle. We can then consider the complex line
bundle
|E|* — X

whose fiber over z € X is |E,|® The formulas of the preceding section apply
pointwise.

We will be primarily interested in the tangent bundle TX. So |TX|* is
a complex line bundle which we will call the a-density bundle and a smooth
section of |TX|* will be called a smooth a-density or a density of order «.

Examples.

o Let X = R"™ with its standard coordinates and hence the standard vector

fields
0 0

8.1317'”7833”.

This means that at each point p € R™ we have a preferred basis
(), (=)
(91‘1 p 3a:n p

dx®

We let

denote the a-density which assigns, at each point p, the value 1 to the
above basis. So the most general smooth a-density on R™ can be written
as

or simply as

where u is a smooth function.

e Let X be an n-dimensional Riemannian manifold. At each point p we have
a preferred family of bases of the tangent space - the orthonormal bases.
We thus get a preferred density of order « - the density which assigns the
value one to each orthonormal basis at each point.
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e Let X be an n-dimensional orientable manifold and 2 a nowhere vanishing
n-form on X. Then we get an a-density according to the rule: At each
p € X assign to each basis eq,...,e, of T, X the value

(e, ..., en)|".
We will denote this density by

Q.

e As a special case of the preceding example, if M is a symplectic manifold
of dimension 2d with symplectic form w, take

Q=wA - Aw d factors.

So every symplectic manifold has a preferred a-density for any «.

6.2.1 Multiplication of densities.

If 11 is an « density and v is a 8 density the we can multiply them (pointwise)
to obtain an (a+ ()-density u-v. Similarly, we can take the complex conjugate
of an a-density to obtain an a-density.

6.2.2 Support of a density.

Since a density is a section of a line bundle, it makes sense to say that a density
is or is not zero at a point. The support of a density is defined to be the closure
of the set of points where it is not zero.

6.3 Pull-back of a density under a diffeomor-
phism.

If
f: X—>Y
is a diffeomorphism, then we get, at each z € X, a linear isomorphism

dfaj T, X — Tf(x)y

A density v of order o on Y assigns a density of order « (in the sense of vector
spaces) to each T,,Y which we can then pull back using df, to obtain a density
of order @ on X. We denote this pulled back density by f*v. For example,
suppose that

v=[Q*

for an n-form ©Q on Y (where n = dimY"). Then

e =1rae (6.19)



168 CHAPTER 6. THE CALCULUS OF %—DENSITIES.

where the f*Q occurring on right hand side of this equation is the usual pull-
back of forms.
As an example, suppose that X and Y are open subsets of R™, then

dz® = |dxy A -+ Adxp|®, |[dy|® = |dyr A -+ A dyp|®

and
fdyr A Ndyy) =det J(f)dxy A -+ Aday,

where J(f) is the Jacobian matrix of f. So
frdy® =|det J(f)|“dz®. (6.20)

Here is a second application of (6.19). Let f; : X — X be a one-parameter
group of diffeomorphisms generated by a vector field v, and let v be a density
of order o on X. As usual, we define the Lie derivative D,v by

d .,
Dyv = %ft Vjt=0-

If v = |Q]* then
D,v = aD,|Q| - Q!

and if X is oriented, then we can identify |Q2| with Q on oriented bases, so
D, |92 = D,Q = di(v)Q

on oriented bases. For example,

1 1
Dyde = 2 (div v)da? (6.21)
where
divv—%+ +5vn if v—vi+ + Uy =——
o 0xp ~ o "oz,

6.4 Densities of order 1.
If we set o« =1 in (6.20) we get
frdy = |det J(f)|dx

or, more generally,
[ (udy) = (wo f)|det J(f)|dx

which is the change of variables formula for a multiple integral. So if v is a
density of order one of compact support which is supported on a coordinate
patch (U, z1,...,2,), and we write

v = gdx
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L/w:lﬂm

is independent of the choice of coordinates. If v is a density of order one of
compact support we can use a partition of unity to break it into a finite sum of
densities of order one and of compact support contained in coordinate patches

then

vV=uv1+- -+,

| v [nses [

is independent of all choices. In other words densities of order one (usually just
called densities) are objects which can be integrated (if of compact support).
Furthermore, if

and [ v defined as

f: X—=>Y

is a diffeomorphism, and v is a density of order one of compact support on Y,
we have the general “change of variables formula”

/Xf*y:/yy. (6.22)

Suppose that « and 3 are complex numbers with
a+8=1.

Suppose that p is a density of order a and v is a density of order S on X and
that one of them has compact support. Then u -7 is a density of order one of
compact support. So we can form

(pv) = /XW

So we get an intrinsic sesquilinear pairing between the densities of order « of
compact support and the densities of order 1 — @.

6.5 The principal series representations of Diff(.X).

Soif s € R, we get a pre-Hilbert space structure on the space of smooth densities
of compact support of order % + s given by

() = / p.
b's
If f e Diff(X), ie. if f: X — X is a diffeomorphism, then

(f ' f7v) = (,v)
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and
(fog)"=g"of"
Let $, denote the completion of the pre-Hilbert space of densities of order %—H’s.

The Hilbert space $), is known as the intrinsic Hilbert space of order s.
The map

fer (7Y

is a representation of Diff (X) on the space of densities or order 3 + is which
extends by completion to a unitary representation of Diff (X) on $s. This
collection of representations (parametrized by s) is known as the principal series
of representations.

If we take S = S' = PR" and restrict the above representations of Diff(X)
to G = PL(2,R) we get the principal series of representations of G.

We will concentrate on the case s = 0, i.e. we will deal primarily with
densities of order %

6.6 The push-forward of a density of order one
by a fibration.
There is an important generalization of the notion of the integral of a density

of compact support: Let
m:Z =X

be a proper fibration. Let p be a density of order one on Z. We are going to
define

T fb

which will be a density of order one on X. We proceed as follows: for x € X,
let
F=F, =7 (z)

be the fiber over x. Let z € F. We have the exact sequence

dm,

0—-T,F—->T,Z =T,X —=0
which gives rise to the isomorphism
|T.F| @ |T,X| =T, Z|.
The density p thus assigns to each z in the manifold F' an element of
IT.F| @ |T, X]|.

In other words, on the manifold F' it is a density of order one with values in the
fixed one dimensional vector space |T, X|. Since F is compact, we can integrate
this density over F to obtain an element of |7, X|. As we do this for all =, we
have obtained a density of order one on X.
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Let us see what the operation p — m,u looks like in local coordinates.
Let us choose local coordinates (U, x1,...,%n,81...,84) on Z and coordinates
Yi,---,Yn o X so that

T (T1y ey Tny S1ye -0, 8d) > (T, -0, Tn)-
Suppose that p is supported on U and we write
w=udrds =u(ry,...,Tn,81...,84)dT1 ...dTpdsy ...dsg.

Then
Talh = (/ W(T1y ooy Ty S1y. -, 84)dST ... dsd> dzy .. .dz,. (6.23)

In the special case that X is a point, m.pu = fZ p. Also, Fubini’s theorem says
that if
whz5hX

are fibrations with compact fibers then
(0 p)e =Ty O Py (6.24)

In particular, if p is a density of compact support on Z with 7 : 7 — X a
fibration then m,p is defined and

/XML:/Z#. (6.25)

If fis a C* function on X of compact support and 7 : Z — X is a proper
fibration then 7* f is constant along fibers and (6.25) says that

/Z 7 = /X e (6.26)

In other words, the operations
7 O (X) = C§°(Z)

and
e : C°(|TZ|) = C>*(|TX))

are transposes of one another.
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Chapter 7

The Enhanced Symplectic
“Category”.

Suppose that My, My, and M3 are symplectic manifolds, and that
'y € Morph(Ms, M3) and Ty € Morph(M;, Ms)

are canonical relations which can be composed in the sense of Chapter 4. Let
p1 be a %—density on I'y and p; a %—density on I';. The purpose of this chapter
is to define a %—density p2 0 py on 'y o'y and to study the properties of this
composition. In particular we will show that the composition

(T2, p2) x (T'1,p1) = (T2 0T, pa 0 p1)

is associative when defined, and that the axioms for a “category” are satisfied.

7.1 The underlying linear algebra.

We recall some definitions from Section 3.4: Let Vi, V5 and V3 be symplectic
vector spaces and let I'ty C Vi x V5 and I'y; C V,,” x V3 be linear canonical

relations. We let
T'oxI'y €Ty x Ty

consist of all pairs ((x,y), (v, 2)) such that y = ¢/, and let
T: Fl X FQ — ‘/2

be defined by
T(11,72) =m(1) — p(12)

so that T'y x I’y is determined by the exact sequence (3.9)

0= Tyxy > Ty xI'y 5 Vy — Coker 7 — 0.

173
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We also defined
a:T9xT'y T30l

by (3.12): ( s (e
a:(x,y,y,2) — (z,2).

Then ker @ consists of those (0,v,v,0) € I's xI'1 and we can identify ker a as a
subspace of V5. We proved that relative to the symplectic structure on Vo we

have (3.16):

kera = (Im 1)+

as subspaces of V5. We are going to use (3.16) to prove

Theorem 39. There is a canonical isomorphism

I01|2 ® |T2|2 = |kera| @ |y o Ty 2. (7.1)

Proof. It follows from (3.16) that we have an identification

(Va/kera) ~ (Vo /(Im 7)) ~ (Im 7)*.

From the short exact sequence
00— kera — Vo — Vo /kera — 0
we get an isomorphism
[Va|? ~ \kera|% ® |Va/ ker a2

and from the fact that V5 is a symplectic vector space we have a canonical
T . 1
trivialization |Va|z = C. Therefore

|kera|? = |Va/kera| 2.
But since (V3/ker @) = (Im 7)* we obtain an identification
|ker |2 2 [Im 7|2, (7.2)

From the exact sequence (3.9) we obtain the short exact sequence

0= Toxly =Ty xTy HIm7 —0
which gives an isomorphism

IT1|2 © |Ta? 2 [Ty # Ty |% @ [Im7|2.
From the short exact sequence

0—>kera—>TI'y3%xI'y w501 =0
we get the isomorphism

Ty #Tq|? & TyoTy|? ® | kerof?.

Putting these two isomorphisms together and using (7.2) gives (7.1). O
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7.1.1 Transverse composition of % densities.

Let us consider the important special case of (7.1) where 7 is surjective and so
ker « = 0. Then we have a short exact sequence

O—>F2*F1—>F1XFQL>V2—>O

and an isomorphism
O[:FQ*Fl gl—‘gol—‘l

and so (7.1) becomes
|F20F1|%2|F1XF2|%. (73)

So if we are given %—densities o1 on I'y and o2 on I'y we obtain a %—density

o001 onl'yol'.
Let us work out this “composition” explicitly in the case that I's is the graph

of an isomorphism
SV, — Vs,

Then p : 'y — V5 is an isomorphism, and so we can identify %—densities on I'y
with %—densities on V5. Let us choose o3 to be the %—density on I's which is
identified with the canonical %—density on V5. So if 2dy = dim V5 = dim V3 and

U1, ...,Usd, iS a symplectic basis of V5, then o9 assigns the value one to the
basis

(u1,Su1), ..., (u2d,, Suzd,)
of FQ.

Let 2d; = dim V; and let

(61, fl)v s (ed1+d27fd1+d2)

be a basis of I';. Then

(elanl)v ce (ed1+d27sfd1+d2)

is a basis of I'y o I';. Under our identification of T's o 'y with T'y x T'; (which is
a subspace of I'; x I'y) this is identified with the basis

[(617f1)7 (thfl)]? ) [(ed1+d27fd1+d2)’ (fd1+d2)7sfd1+d2)]

of 'y xT';. The space {0} x I'y is complementary to 'y xI'; in 'y x T’y and the
basis

[(61, f1)7 (fla Sfl)]’ cee [(ed1+d27fd1+d2)’ (fd1+d2)7 Sfdl-i-dz)]v
[(070)7 (ula Sul)]a sy [(an)a (u2dzvsu2d2)]
differs from the basis

[(617 ff)’ (070)]a cey [((edr‘rdzv fd1+d2)7 (07 0)]7

[(070)7 (U'17 Sul)]’ SR [(070)’ (u2d275u2d2)]
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by multiplication by a matrix of the form
I x
0 1)’

Proposition 22. If 'y is the graph of a symplectomorphism S : Vo — V3 and
o9 € |F2|% is identified with the canonical %—density on Vo, then g9 001 s given
by (id xS).o1 under the isomorphism id xS of T'y with Ty 0 T'y. In particular,
if S =1id then o3 001 = 07.

We conclude that

7.2 Half densities and clean canonical composi-
tions.

Let My, My, M3 be symplectic manifolds and let I'y C M; x My and I's C
M, x Ms be canonical relations. Let

m: Ty = My, w(mq, ma) = ma, p: To = My, p(ma, mg) = ma,
and I'o xI'y C 'y x I’y the fiber product:
Iy« Ty = {(m1,ma,m3)|(m1,ma) € Ty, (mg2,m3) € T'a}.

Let
a FQ*Fl — Ml X M37 a(mlvaamgo) = (m17m3)'

The image of « is the composition I's o T'y.

Recall that we say that I'y and I's intersect cleanly if the maps p and =«
intersect cleanly. If 7 and p intersect cleanly then their fiber product I's xI'; is
a submanifold of I'; x I'; and the arrows in the exact square

IoxI'y —— Iy

! L

Iy — M,
P

are smooth maps. Furthermore the differentials of these maps at any point give
an exact square of the corresponding linear canonical relations. In particular, o
is of constant rank and I's o I'; is an immersed canonical relation. If we further
assume that

1. « is proper and

2. the level sets of a are connected and simply connected,
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then I'y o I'y is an embedded Lagrangian submanifold of M; x Mj and
[0 FQ*Fl HFgofl

is a fiber map with proper fibers. So our key identity (7.1) holds at the tangent
space level: Let m = (my,mg,m3) € Ty %'y and ¢ = a(m) € T o T'; and let
F, = a~1(q) be the fiber of a passing through m. We get an isomorphism

T Fyl @ |Ty(D2 0 T1) |2 2 Ty, 1y D12 @ [T gy a2 (7.4)

This means that if we are given half densities p; on I'y and ps on I's we get a
half density on I'; oI'y by integrating the expression obtained from the left hand
side of the above isomorphism over the fiber. This gives us the composition law
for half densities. Once we establish the associative law and the existence of the
identity we will have have enhanced our symplectic category so that now the
morphisms consist of pairs (T, p) where T is a canonical relation and where p is
a half density on I'.

Notice that if the composition I's o I'; is transverse, then integration is just
pointwise evaluation as in Section 7.1.1. In particular, we may apply Proposi-
tion 22 pointwise if I's is the graph of a symplectomorphism. In particular, if
I'y = A(X>) is the diagonal in Xs X X5 and we use the canonical %—density oA
coming from the identification of A(X2) with the symplectic manifold Xo with
its canonical 2-density, then (A(X3),04) 0 (I'1o1) = (I'1,01). This shows that
(A(X2),0a) acts as the identity for composition on the left at X5, and using the
involutive structure (see below) implies that it is also an identity for composition
on the right. This establishes the existence of the identity. For the associative
law, we use the trick of of reducing the associative law for compostion to the
associative law for direct product as in Section 3.3.2:

7.3 Rewriting the composition law.

We will rewrite the composition law in the spirit of Sections 3.3.2 and 4.4: If
I' € M~ x M is the graph of a symplectomorphism, then the projection of I'
onto the first factor is a diffeomorphism. The symplectic form on M determines
a canonical %-density on M, and hence on I'. In particular, we can apply this
fact to the identity map, so A C M~ x M carries a canonical %—density. Hence,

the submanifold
Anty vtpnts = {(@,y, 9, 2,2, 2) ) © My x My x My x Ms x My x M;
as in (4.6) carries a canonical %-density T1,2,3. Then we know that
a0l = Apgyasynss © (1 x Ty)
and it is easy to check that

P20 pP1 = T123° (pl X pz)-
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Similarly,
(Tz0Ty) ol =T30(Ty0Ty) = Angy ayats.ar, © (T X T x T3)
and A M, M, Ms,M, Carries a canonical %—density T1,2,3,4 With

(p3op2)opr=p3zo(p2op1) ="Ti2340(p1 X p2 X p3).

This establishes the associative law.

7.4 Enhancing the category of smooth manifolds
and maps.

Let X and Y be smooth manifolds and £ — X and F' — Y be vector bundles.

According to Atiyah and Bott, a morphism from £ — X to F' — Y consists of

a smooth map
f: X—>Y

and a section

r € C°(Hom(f*F, E)).

We described the finite set analogue of this concept in Section ??7. If s is a
smooth section of F' — Y then we get a smooth section of £ — X via

(fir)'s(@) =r(s(f(z)), =X

We want to specialize this construction of Atiyah-Bott to the case where E and
F' are the line bundles of %-densities on the tangent bundles. So we say that r
is an enhancement of the smooth map f: X — Y or that (f,r) is an enhanced
smooth map if r is a smooth section of the line bundle

Hom(|f*TY |2, |TX|?).
The composition of two enhanced maps
(f,r):(E—=X)= (F—=Y) and (g9,7):(F=Y)—=(G— 2)
is (go f,ror’) where, for T € |Tg(f(x))Z)\%

(ror’)(r) =r('(7)).

We thus obtain a category whose objects are the line bundles of %-densities on
the tangent bundles of smooth manifolds and whose morphisms are enhanced
maps.

Ifpisa %—density onY and (f,r) is an enhanced map then we get a %—density
on X by the Atiyah-Bott rule

(f.r) " pla) = r(p(f(2)) € | T, X|?.

Then we know that the assignment (f,r) — (f,r)* is functorial. We now give
some examples of enhancement of particular kinds of maps:
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7.4.1 Enhancing an immersion.

Suppose f : X — Y is an immersion. We then get the conormal bundle NiX
whose fiber at = consists of all covectors £ € T}‘(I)Y such that df;¢ = 0. We
have the exact sequence

0= T.X L Th,Y = Ny -0

Here N,Y is defined as the quotient T'y(,)Y/df,(T,X). The fact that f is an
immersion is the statement that df, is injective. The space (N7 X;) is the dual
space of N, Y. From the exact sequence above we get the isomorphism

TrwY|? =2 |NY|? @ |T, X2
So
5 7) 3 -3 o -1~ * 1
Conclusion. FEnhancing an immersion is the same as giving a section of

IN;X|3.

7.4.2 Enhancing a fibration.

Suppose that 7 : Z — X is a submersion. If z € Z, let V, denote the tangent
space to the fiber 77!(z) at z where z = 7(2). Thus V, is the kernel of dr, :
T.Z — Tr(:)X. So we have an exact sequence

0=V, >T.Z =T X =0
and hence the isomorphism
IT.2]% = |V.|? @ [Ty X1

So
1 1., 1 1 1
Hom(|Tr ()X |2, |12 2|2) = |Tr () X| 72 @ T Z|2 = |V,]2. (7.5)

Conclusion. Enhancing a fibration is the same as giving a section of |V|% where
V' denotes the vertical sub-bundle of the tangent bundle, i.e. the sub-bundle
tangent to the fibers of the fibration.

7.4.3 The pushforward via an enhanced fibration.

Suppose that 7 : Z — X is a fibration with compact fibers and r is an enhance-
1

ment of 7 so that 7 is given by a section of the line-bundle |V'|z as we have just

seen. Let p be a %—density on Z. From the isomorphism

IT,Z|? 2|V, |% @ | Ty X2
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we can regard p as section of [V|2 @ 7*|T'X |z and hence
Tep

is a section of |[V| ® 7*|TX|2. Put another way, for each 2 € X, r - p gives a
density (of order one) on 7~ (z) with values in the fixed vector space [T, X|z.
So we can integrate this density of order one over the fiber to obtain

(- p)

which is a %—density on X. If the enhancement r of 7 is understood, we will
denote the push-forward of the %—density p simply by

Ty -

‘We have the obvious variants on this construction if 7 is not proper. We can
construct 7, (r- p) if either r or p are compactly supported in the fiber direction.
An enhanced fibration 7 = (m,r) gives a pull-back operation 7* from half
(%ensities on X to %—densities on Z. So if uis a %—density on X and v is a

5-density on Z then

v-mtu

is a density on Z. If u is of compact support and if v is compactly supported in
the fiber direction, then v - 7*pu is a density (of order one) of compact support
on Z which we can integrate over Z. We can also form

(mv) - .

which is a density (of order one) which is of compact support on X. It follows
from Fubini’s theorem that

/ZV~W*MZA(W*V)-ﬂ.

7.5 Enhancing a map enhances the correspond-
ing canonical relation.

Let f: X — Y be a smooth map. We can enhance this map by giving a section
r of Hom(|TY|2,|TX|2). On the other hand, we can construct the canonical
relation

T'; € Morph(T* X, T*Y)

as described in Section 4.8. Enhancing this canonical relation amounts to giving
a %—density pon I'y. In this section we show how the enhancement r of the map
f gives rise to a %—density on I'y.

Recall (4.11) which says that

Ly ={(21,61,22,&) |22 = f(21), & =df; &}
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From this description we see that I'y is a vector bundle over X whose fiber over
re Xis T;(I)Y. So at each point z = (x,&1,y,n) € I's we have the isomorphism

ITTp |2 =T X2 @ | Ty (Ty Y12

But (T;(I)Y) is a vector space, and at any point 7 in a vector space W we
have a canonical identification of T;, W with W. So at each z € I'y we have an
isomorphism

1 1 « 1 1 1
T8 2 [T, X |2 @ [T,(T} ) Y)|? = Hom(| Ty Y]?, |T.X )

and at each z, r(z) is an element of Hom(\Tf(x)Yﬁ, |T,X|2). So r gives rise to
a %—density on I'y,

I still need to write up the
functoriality of this relation.

7.6 The involutive structure of the enhanced sym-

plectic “category”.
Recall that if I' € Morph(M;, M) then we defined I't € (My, M;) be
I = {(y, 2)|(x,y) € T}.
We have the switching diffeomorphism
s:TH =T, (y,2)— (z,9),
1 1

and so if p is a 3-density on I' then s*p is a 5-density on I'f. We define

pl = s%p. (7.6)

Starting with an enhanced morphism (I', p) we define

(Fv p)T = (FT, pT)'

We show that 1 : (T, p) = (T, p)' satisfies the conditions for a involutive struc-
ture. Since s? = id it is clear that 12 = id. If I'y € Morph(Msy, M;) and
I'y € Morph(Mj, Ms) are composible morphsims, we know that the composi-
tion of (I'y, p2) with (I'1, p1) is given by

(Anty 05, T123) © (D1 X Do,y p1 X pa).

where ~
AMl,Mg,Mg = {(xayayvzvxszx S Mlay S M27'Z S Md}

and 7193 is the canonical (real) %—density arising from the symplectic structures
on My, My and M3. So

s:(Dyol) =TToll 5 Tyoly
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is given by applying the operator S switching x and z
s Antvzvry = Ay a0

applying the switching operators s; : FI — I'y and s : F; — TI'y and also
switching the order of I'; and I's. Pull-back under switching the order of I'y
and I's sends p1 X p2 to pa2 X p1, applying the individual s7 and sj and taking
complex conjugates sends ps X p1 to p£ X pJ{. Also

S*T123 = T321
and 7307 is real. Putting all these facts together shows that

(T2, p2) o (T1, p1))" = (T1, p1)T 0 (T2, o)1

proving that § satisfies the conditions for a involutive structure.

Let M be an object in our “category”, i.e. a symplectic manifold. A “point”
of M in our enchanced “category” will consist of a Lagrangian submanifold
A C M thought of as an element of Morph(pt., M) (in S) together with a 1-
density on A. If (A,p) is such a point, then (A,p)" = (AT, pf) where we now
think of the Lagrangian submanifold AT as an element of Morph(M, pt.).

Suppose that (A1, p1) and (Ag, p2) are “points” of M and that A; and A, are
composible. Then AE oAy in S is an element of Morph(pt., pt.) which consists
of a (single) point. So in our enhanced “category” S

(A2, p2) (A1, p1)

is a %—density on a point, i.e. a complex number. We will denote this number
by
(A1, p1), (A2, p2)) -

7.6.1 Computing the pairing ((Ay, p1), (A2, p2)) .

This is, of course, a special case of the computation of Section 7.2, where I'yoT'y
is a point.

The first condition that A; and A; be composible is that A; and A intersect
cleanly as submanifolds of M. Then the F of (7.4) is F = A; N Ay so (7.4)
becomes

T, F| = |Ty(A N A)| 2 [T, A1 |7 @ [Ty As|? (7.7)

and so p; and pz multiply together to give a density p;pz on A; N As. A second
condition on composibility requires that A; N Ay be compact. The pairing is
thus

(o) (hape) = [ pipa (7.8)

A1NA>
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7.6.2 71 and the adjoint under the pairing.

In the category of whose objects are Hilbert spaces and whose morphisms are
bounded operators, the adjoint A of a operator A : H; — H, is defined by

(Av,w)y = (U,Atwh, (7.9)

for all v € Hy,w € Hy where ( ,); denotes the scalar product on H;, i = 1,2.
This can be given a more categorical interpretation as follows: A vector u in a
Hilbert space H determines and is determined by a bounded linear map from
Cto H,

Z > ZU.

In other words, if we regard C as the pt. in the category of Hilbert spaces, then
we can regard v € H as an element of of Morph(pt., H). So if v € H we can
regard v’ as an element of Morph(H, pt.) where

o (u) = (u,v).

So if we regard { as the primary operation, then the scalar product on each
Hilbert space is determined by the preceding equation - the right hand side is
defined as being equal to the left hand side. Then equation (7.9) is a consequence
of the associative law and the laws (Ao B)f = B o AT and 12 = id.. Indeed

(Av,w)g :=wl o Aov = (AT ow)T ov = (v, ATw);.

So once we agree that a %—density on pt. is just a complex number, we can

conclude that the analogue of (7.9) holds in our enhanced category S: If (Ay, p1)
is a “point 7 of M in our enhanced category, and if (Az, p2) is a “point ” of My
and if (I', 7) € Morph(Mj, M2) then (assuming that the various morphisms are
composible) we have

(((T,7) o (A1, p1), (Agy pa))y = (A1, 1), (T, 7)T 0 (A2, p2)), - (7.10)

7.7 The symbolic distributional trace.

We consider a family of symplectomorphisms as in Section 4.11.7 and follow the
notation there. In particular we have the family ® : M x S — S of symplecto-
morphisms and the associated moment Lagrangian

Fi=TeCMxM~ xT*S.

7.7.1 The %-density on [.

Since M is symplectic it has a canonical % density. So if we equip S with a half
density ps we get a % density on M x M~ x S and hence a % density pr making
I' into a morphism

(T, pr) € Morph(M ™~ x M, T*S)
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in our enhanced symplectic category.
Let A C M~ x M be the diagonal. The map

M—-M"xM m — (m,m)

carries the canonical %—density on M to a %—density, call it pa on A enhancing
A into a morphism

(A, pa) € Morph(pt.., M~ x M).

The generalized trace in our enhanced symplectic “category”.

Suppose that I' and A are composable. Then we get a Lagrangian submanifold
A=ToA

and a %—density

PA = pPr O pa
on A. The operation of passing from F': M xS — M to (A, pa) can be regarded
as the symbolic version of the distributional trace operation in operator theory.

7.7.2 Example: The symbolic trace.

Suppose that we have a single symplectomorphism f : M — M so that S is a
point as is T%S. Let

[ =Ty = graph f = {(m, f(m)), m € M}

considered as a morphism from M x M~ to a point. Suppose that I' and A
intersect transversally so that I' N A is discrete. Suppose, in fact, that it is
finite. We have the %—densities pa on T, A and T,,T" at each point m of of
I'NA. Hence, by (6.12), the result is

3 (det(I — df)| 2 (7.11)

meANT

7.7.3 General transverse trace.

Let S be arbitrary. We examine the meaning of the hypothesis that that the
inclusion ¢ : A — M x M and the projection I' — M x M be transverse.

Since I' is the image of (G, ®) : M xS — M x M x T*S, the projection of I'
onto M x M is just the image of the map G given in (4.40). So the transverse
composibility condition is

GMA. (7.12)

The fiber product of I' and A can thus be identified with the “fixed point
submanifold” of M x S:

§ = {(m, s)[fs(m) = m}.
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The transversality assumption guarantees that this is a submanifold of M x S
whose dimension is equal to dim S. The transversal version of our composition
law for morphisms in the category S asserts that

P:F—-TxS
is a Lagrangian immersion whose image is
A=ToA.

Let us assume that § is connected and that ® is a Lagrangian imbedding. (More
generally we might want to assume that § has a finite number of connected
components and that ® restricted to each of these components is an imbedding.
Then the discussion below would apply separately to each component of F.)

Let us derive some consequences of the transversality hypothesis GM A. By
the Thom transverslity theorem, there exists an open subset

SoCS
such that for every s € Sp, the map
gs: M — Mx M, gs(m)=G(m,s)=(mfs(m))
is transverse to A. So for s € Sp,
g (A) = {mi(s),i=1,...,7}

is a finite subset of M and the m; depend smoothly on s € Sp. For each 1,
®(m;(s)) € TS then depends smoothly on s € Sp. So we get one forms

wi := ®(my(s)) (7.13)

parametrizing open subsets A; of A. Since A is Lagrangian, these one forms are
closed. So if we assume that H'(Sp) = {0}, we can write

i = di;

for ¢, € C*°(So) and
A = Ay,

The maps
So = Aiy s (s,di(s))

map So diffeomorphically onto A;. The pull-backs of the %—density PA = PrOpAa
under these maps can be written as

hips

where pg is the %-density we started with on S and where the h; are the smooth
functions

Victor: details here?
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_1
2

hils) = det(I - dfin,)

(7.14)

In other words, on the generic set Sp where g, is transverse to A, we can

compute the symbolic trace h(s) of gs as in the preceding section. At points

not in Sp, the “fixed points coalesce” so that gs is no longer transverse to A

and the individual g5 no longer have a trace as individual maps. Nevertheless,
1

the parametrized family of maps have a trace as a 5-density on A which need

not be horizontal over points of S which are not in Sp.

7.7.4 Example: Periodic Hamiltonian trajectories.

Let (M,w) be a symplectic manifold and
H:M—=R

a proper smooth function with no critical points. Let v = vy be the correspond-
ing Hamiltonian vector field, so that

i(v)w = —dH.

The fact that H is proper implies that v generates a global one parameter group
of transformations, so we get a Hamiltonian action of R on M with Hamiltonian
H, so we know that the function ® of (4.34) (determined up to a constant) can
be taken to be

P MxR—->T'R=RxR, &(m,t)=(t H(m)).

The fact that dH,, # 0 for any m implies that the vector field v has no zeros.
Notice that in this case the transversality hypothesis of the previous example
is never satisfied. For if it were, we could find a dense set of ¢ for which exp tv :
M — M has isolated fixed points. But if m is fixed under exptv then every
point on the orbit (exp sv)m of m is also fixed under exptv and we know that
this orbit is a curve since v has no zeros.
So the best we can do is assume clean intersection: Our I in this case is

' = {m, (exp sv)m, s, H(m))}.
If we set fs = exp sv we write this as
I'={(m, fs(m), s, H(m))}.
The assumption that the maps I' - M x M and
L A= Mx M
intersect cleanly means that the fiber product

X ={(m,s) € M xR|fs(m) =m}
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is a manifold and that its tangent space at (m, s) is
{(v,¢) € T;,M x Rlv = (dfs)m(v) + cv(m) (7.15)

since

dF ) (uc;) = (df)m(v) + cv(m).

The map ® : X — T*S is of constant rank, and its image is an immersed
Lagrangian submanifold of 7*S. One important consequence is:

The energy-period relation.

The restriction of dt A dH = ®*(dt A d7) vanishes. Thus if ¢ is a regular value
of H, then on every connected component of H~(C) N X all trajectories of v
have the same period. For this reason A is called the period Lagrangian.

The linear Poincaré map.

At each m € M, let
WP = {w € T,,M| dH(w) = 0.}

Since dH (v) = 0, we have v(m) € W2 and since f, preserves H and v we see
that (fs)m : TnM — T, M induces a map

Pps: W%/Rv(m) — W%’S/Rv

called the linear Poincaré map.
Let us make the genericity assumption

det(I — Pp,.s) #0. (7.16)

This means the following: Let ¢ — v(t) = fi(m) be the trajectory of f; = exptv
through m. We know that the flow f; preserves the hypersurface H = H(m).
Let Y be a transverss slice to v through m on this hypersurface. If m’ is a
point of Y near m, then the trajectory through m’ will intersect Y again at
some point p(m’) at some time s’ near s, and this map p: Y — Y is known as
the Poincaré map of the flow (restricted to the hypersurface and relative to the
choice of slice). Then P,, s can be identified with the differential of this Poincaré
map, and our genericity assumption (7.16) says that m is a non-degenerate fixed
point of p.
By (7.15), the genericity assumption (7.16) implies that

1. dimX =2,

2. H : X — R is a sumbersion, and
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3. XN H~Y(c) is a disjoint union of periodic trajectories of v. In other words,
if X;, i=1,2,... are the connected components of X and
(mi, 5) € Hil(c) N Xz
then

H_l(c) nNX, = ’}/ic

where v¢ is the periodic trajectory of v = vy through m; or period s =
Tl(C)

Remarks.

e If m' = f;(m) is a second point on the trajectory through m, then the
maps P, s and P, s are conjugate. Hence det(I — P, s) = det(I — Py s
so condition (7.16) depends on the periodic trajectory, not on the choice
of a specific point on this trajectory.

e If m lies on a periodic trajectory -; then it will have a first return time
Tiﬁ > 0, the smallest positive s for which fs(m) =m, m € ;. All other

return times will be integer multiples of Tf.

e The moment map ® : M x R — T*S5 maps X; onto the period Lagrangian
Ai = {(th)at = E(T)}

This map is a fiber mapping with compact fibers and the fiber above (¢, )
can be identified with the periodic trajectory =;.

Let us equip R with its standard -density |dt| 2. We will obtain a 1-density o;
on A; which will involve fiber integration over the fibration by periodic tra-
jectories described above. If we use 7 as a coordinate on A; via the map
T~ (t,7), t = T;(r) then a computation similar to the one we gave above
for a single symplectomorphism shows that the induced %—density on A; is given
by

TH(7)| det(I — Py, ()| "2 (7.17)

7.8 The Maslov enhanced symplectic “category”

Let X be a manifold, A C T*X a Lagrangian submanifold, 7 : Z — X a
fibration and ¢ € C*°(Z) a generating function for A with respect to .
For each z € Cy let sgn ¢(z) denote the signature of the quadratic form

d* (¢ |7771(7T(Z))Z .

Let s4 : C4 — C be the function

S¢ 1= €xp % sgn . (7.18)
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Under the identification A4 : Cyp — A we will regard s, as a function on A.

In Section 5.13 we defined the Maslov bundle Lyjasioy — A to be the trivial
flat line bundle whose flat sections are constant multiples of s4.

More generally, if A does not admit a global generating function, we can
cover A by open sets U; on each of which we have a generating function ¢;,
and we showed in Section 5.13.3 that the s4,’s patch together to give a globally
defined flat line bundle Lyjasiov — A.

We can define this bundle for canonical canonical relations

I: T*Xl = T*XQ

by regarding I" as a Lagrangian submanifold of (T*X;)” x T*Xs. As we showed
in Section 5.13.5 it has the same functorial behavior with respect to clean com-
position of canonical relations as does the bundle of %—densities7 compare (5.29)
with (7.4).

So we enhance our symplectic “category” even further by defining

Ly := Luasiov(A) ® |TA|2 (7.19)
Lr = Lyasior(T) ® |TT|2, (7.20)

where the objects are now pairs (A, o), where o is a section of Ly and morphisms
are pairs (T', 7) with 7 is a section of Lr and the composition law (when defined,
i.e. under the hypotheses for clean composition) is given by combining the
composition laws (5.29) and (7.4).

As we will see in the next chapter, this enhanced “category” will play a
fundamental role in the theory of semi-classical Fourier integral operators.
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Chapter 8

Oscillatory %—densities.

Let (A,v) be an exact Lagrangian submanifold of T*X. Let
ke Z.
The plan of this chapter is to associate to (A, 1) and to k a space
IF(X, A, 0)

of rapidly oscillating %—densities on X and to study the properties of these
spaces. If A is horizontal with

A=Ay, ¢€C™(X),
and
Y =¢o(mx)a
this space will consist of %—densities of the form

h*a(x, h)el 24 00

where pg is a fixed non-vanishing %—density on X and where
a € C®(X xR).

In other words, so long as A = Ay is horizontal and 1 = ¢ o (7x)|a, our space
will consist of the %—densities we studied in Chapter 1.

As we saw in Chapter 1, one must take into account, when solving hyper-
bolic partial differential equations, the fact that caustics develop as a result
of the Hamiltonian flow applied to initial conditions. So we will need a more
general definition. We will make a more general definition, locally, in terms
of a general generating function relative to a fibration, and then show that
the class I¥(X, A, 1) of oscillating %—densities on X that we obtain this way is
independent of the choice of generating functions.

191
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This will imply that we can associate to every exact canonical relation be-
tween cotangent bundles (and every integer k) a class of (oscillatory) integral
operators which we will call the semi-classical Fourier integral operators asso-
ciated to the canonical relation. We will find that if we have two transversally
composible canonical relations, the composition of their semi-classical Fourier
integral operators is a semi-classical Fourier integral operator associated to the
composition of the relations. We will then develop a symbol calculus for these
operators and their composition.

For expository reasons, we will begin by carrying out the discussion in terms
of transverse generating functions, which limits our symbol calculus to the case
of transverse composition. Since, in the applications, we will need to allow clean
compositions of canonical relations, we will go back and give the local description
of the class I*(X, A,%) in terms of clean generating functions which will then
allow us to give a symbol calculus for the semi-classical operators associated to
clean composition of canonical relations.

In order not to overburden the notation, we will frequently write A instead
of (A,v). But a definite choice of 9 will always be assumed. So, for example,
we will write I*(X, A) instead of I"(X, A, 1) for the class of 3-densities that we
will introduce over the next few sections.

A key ingredient in the study of an element of I*(X,A) is its symbol. Ini-
tially, we will define the “symbol” in terms of a (transverse) generating function
as a function on A. Although this definition definitely depends on the choice of
presentation of A by generating functions, we will find that the assertion that
the symbol of an element of I*(X,A) vanishes at p € A does have invariant
significance. So if we let I}],f(X7 A) denote the set of all elements of I*(X,A)
whose (non-intrinsic) symbol vanishes at p, we obtain an intrinsically defined
line bundle I over A where

L, = I"(X,A) /I3 (X, A).

We will find that this definition is independent of k.

(For the experts, our line bundle L can be identified with the line bundle of
half-densities on A tensored with the Maslov bundle. But our point is to deal
with intrinsically defined objects from the start.)

We then will have a symbol map from I*(X, A) to sections of L. and will find
that I*(X,A)/I*+1(X, A) is isomorphic to sections of L. We will also find that
the study of I*(X,A)/I*T*(X, A) is associated with a sheaf £¢ on A giving rise
to the concept of microlocalization.

8.1 Definition of I*(X,A) in terms of a generat-
ing function.
Let m : Z — X be a fibration which is enhanced in the sense of Section 7.4.2.

Recall that this means that we are given a smooth section r of \V\% where V
is the vertical sub-bundle of the tangent bundle of Z. We will assume that r
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vanishes nowhere. If v is a %—density on Z which is of compact support in the
vertical direction, then recall from Section 7.4.3 that we get from this data a
push-forward %—density mev on X.

Now suppose that ¢ is a global generating function for (A, 1)) with respect
to w. Recall that this means that we have fixed the arbitrary constant in ¢ so
that

¥(z,8) = o(2)

if d¢, = wi§ where m(z) = x, z € Cy. See the discussion following equation
(4.62). Let
d:=dim Z — dim X.

We define I} (X, A, ¢) to be the space of all compactly supported 1-densities on
X of the form

= R4, (aei%T) (8.1)

where a = a(z, h)
a€Cy®(Z xR)

and where 7 is a nowhere vanishing %—density on Z. Then define I*(X, A, ¢) to
consist of those %-densities w such that pu € I¥(X, A, ¢) for every p € C5°(X).
It is clear that I*(X, A, ¢) does not depend on the choice of the enhancement

r of 7 or on the choice of 7.

8.1.1 Local description of I*(X, A, ).

Suppose that Z = X x S where S is an open subset of R? and 7 is projection
onto the first factor. We may choose our fiber %—density to be the Euclidean
1_

5-density ds? and T to be Ty ® ds? where 79 is a nowhere vanishing %—density

on X. Then ¢ = ¢(z, s) and the push forward in (8.1) becomes the oscillating
integral
(/ a(x,s,h)eizds> T0. (8.2)
s

8.1.2 Independence of the generating function.

Let m; : Z; = X, ¢; be two fibrations and generating functions for the same
Lagrangian submanifold A C T*X. We wish to show that I*(X, A, ¢;) =
I*(X,A,¢s). By a partition of unity, it is enough to prove this locally. Ac-
cording to Section 5.12, since the constant is fixed by (4.62), it is enough to
check this for two types of change of generating functions, 1) equivalence and 2)
increasing the number of fiber variables. Let us examine each of the two cases:

Equivalence.

There exists a diffeomorphism ¢ : Z; — Z with

Mo 0 g = and  ¢o09 = 1.
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Let us fix a non-vanishing section 7 of the vertical 1-density bundle [Vi|2 of Z,
and a %—density 71 on Zp. Since g is a fiber preserving map, these determine
vertical %—densities and é—densities g1 and g, on Zy. If a € C§°(Z2 x R) then
the change of variables formula for an integral implies that

i%2 Pl
T2 xQ€ M g«T1 = T g ae " Ty

where the push-forward 3 . on the left is relative to g,r and the push-forward
on the right is relative to r. O

Increasing the number of fiber variables.

We may assume that Z5 = Z; x S where S is an open subset of R™ and

P2z, 8) = 1(2) + %(As, s)

where A is a symmetric non-degenerate m x m matrix. We write Z for Z;. If

d is the fiber dimension of Z then d + m is the fiber dimension of Z5. Let r be
1

a vertical %—density on Z so that r ® ds? is a vertical %—density on Zy. Let 7

be a % density on Z so that 7 ® ds? is a %—density on Zy. We want to consider
the expression

d+m

ho(2,9)
2 mo.as(z, s, fi)e -

R (T®dS%).

Bt
Let mo 1 : Z x S — Z be projection onto the first factor so that
T2x = T1x O T2 1%
and the operation 7y 1, sends
i 22 1 an
as(z,s8,h)e’ m 7 ®ds2 — b(z,h)e" A T

where

. (As,s)

b(z,h):/ag(z,s,h)ei 2 ds.

We now apply the Lemma of Stationary Phase (see Chapter 15) to conclude
that

b(z, h) = K™ %ay(z, )

and in fact
0,1(2, h) = CAQQ(Za 0, h) + O(h)a (83)

where cy4 is a non-zero constant depending only on A. O
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8.1.3 The global definition of I*(X,A).

Let (A,%) be an exact Lagrangian submanifold of 7*X. We can find a locally
finite open cover of A by open sets A; such that each A; is defined by a generating
function ¢; relative to a fibration 7; : Z; — U; where the U; are open subsets of
X. We let I¥(X, A) consist of those -densities which can be written as a finite
sum of the form

N
:LL:ZM’L'J" /'Lij GI(’;:(XaA’L])
j=1

By the results of the preceding section we know that this definition is inde-
pendent of the choice of open cover and of the local descriptions by generating
functions.

We then define the space I*(X,A) to consist of those i-densities yu on X
such that pu € IF(X, A) for every C™ function p on X of compact support.

8.2 Semi-classical Fourier integral operators.
Let X7 and X5 be manifolds, let
X = X1 X X2

and let
M, =T"X;, i=1,2.

Finally, let (', ¥) be an exact canonical relation from M; to Ms so

I'c My x Mo.
Let
1My — My, <(z1,6) = (21, -&1)
so that
A= (¢ x id)(T)
and

P =To (¢ xid)

gives an exact Lagrangian submanifold (A, ) of
T"X = T*Xl X T*XQ

Associated with (A, ) we have the space of compactly supported oscillatory
1-densities I§ (X, A). Choose a nowhere vanishing density on X; which we will

denote (with some abuse of language) as dx; and similarly choose a nowhere
vanishing density dz, on X5. We can then write a typical element p of I(’f(X )
as

11
= u(xy, xa, h)de? des

where u is a smooth function of compact support in all three “variables”.
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Recall that L?(X;) is the intrinsic Hilbert space of L? half densities on X;.
Since u is compactly supported, we can define the integral operator

F,=F,5: L*X;)— L*(Xs)
by
F(fda?) = ( A f(xl)u(xl,xg,h)dm) dzs . (8.4)
1
We will denote the space of such operators by
Fo' (1)

where

m:k—i—%, no = dim X,

and call them compactly supported semi-classical Fourier integral oper-
ators. In other words, F},; is a compactly supported semi-classical Fourier

integral operator of degree m if and only if its Schwartz kernel belongs to Ién -7

1
We could, more generally, demand merely that u(z1, 22, h)dz? be an element
of L?(X71) in this definition, in which case we would drop the subscript 0.

8.2.1 Composition of semi-classical Fourier integral oper-
ators.
Let X1, X5 and X3 be manifolds, let M; =T*X;, i =1,2,3 and let
(T'1, ¥1) € Morph

My, My), (I's,¥3) € Morph My, Ms3)

exact ( exact (

be exact canonical relations. Let

Fre F"(T1) and Fye F"?(T2).
Theorem 40. IfI's and I'y are transversally composible, then

Fyo Fy € FH™2((Tg,4h9) o (T, 101)). (8.5)
where the composition of exact canonical relations is given in (4.58) and (4.59).

Proof. By partition of unity we may assume that we have fibrations
7T12X1><X2X51—>X1><X2, 7T25X2XX3XSQ—>X2XX3

where S; and Sy are open subsets of R% and R% and that ¢; and ¢, are

generating functions for I'y and T'y with respect to these fibrations. We also
1

fix nowhere vanishing %—densities dr? on X;, i =1,2,3. So F is an integral

operator with respect to a kernel of the form (8.4) where

je1(®1,22,51)
R

d
wi (1,2, h) = B 7 /a1($1,$2,81,h)€ ds;
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where

n2 .
ki=m1— —=, ng=dimX,

2 )
and F» has a similar expression (under the change 1 — 2, 2 — 3). So their
composition is the integral operator

fdxlé — < f(:z:1)u(cc1,x3,7i)da:1> dxé
X1

where i va
— pRthe—=572

u(xy, xs, h) X

/ a1 (x1, T2, 81, h)as (2, 3, S2, h)ei pLe2 dsidsodxs. (8.6)

By Theorem 32 ¢ (1, z2, $1) + ¢p2(x2, x3, s2) is a generating function for I's o'y
with respect to the fibration

X1XX3X(X2X51><SQ)—)X1XX3,

and by (4.59) this is a generating function for (T's, ¥s) o (I';, ¥y). Since the
fiber dimension is di + ds + no and the exponent of A in the above expression is

ki + ko — dl;dz we obtain (8.5). O

8.3 The symbol of an element of I*(X,A).

Let A = (A, ) be an exact Lagrangian submanifold of T*X. We have attached
to A the space I*(X, A) of oscillating %—densities. The goal of this section is to
give an intrinsic description of the quotient

IF(X,A)/T" (X, A)

as sections of a line bundle L — A.

8.3.1 A local description of I*(X,A)/I*1(X,A).

Let S be an open subset of R? and suppose that we have a generating function
¢ = ¢(x, s) for A with respect to the fibration

XxS—=X, (z,5) .

Fix a C'* nowhere vanishing %—density v on X so that any other smooth %—
density p on X can be written as

U= uv

where u is a C* function on X.
The critical set Cy is defined by the d independent equations

do
3si o 07

i=1,....d (8.7)
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The fact that ¢ is a generating function of A asserts that the map
Ap:Cp = TX, (x,8) — (x,ddx(x,s)) (8.8)

is a diffeomorphism of Cy with A. To say that g = uv belongs to I§¥(X,A)
means that the function u(x, i) can be expressed as the oscillatory integral

u(z, h) = A /a(m,s,h)eid)(

Proposition 23. If a(x,s,0) =0 on Cy then p € I(])HI(X7 A).

“ds, where a€CP(X xSxR). (8.9)

Proof. 1If a(z,s,0) = 0 on Cy then by the description (8.7) of Cy we see that we
can write

a—ZaJmsh ¢+a0(x5h)h

We can then write the mtegral (8.9) as v + up where

. p(x,s)
h

uo(z, h) = Rrt1-3 /ao(x,s,h)el

ds

SO
po = upr € IFTH(X, A)
and
d d 8(;5 i e
vo= hk_QZ/aj(xysyh)a%ezhdS
Jj=1
e 0 ;o
= —ipktlme Z/%’(% s, h)afsjelfds
Jj=1
< 0 (@
= iphtloE Z/ <8Sjaj(x, s, h)) en ds
j=1
SO
v =ihFti% /b(w, s, h)ei%ds where = Z:: gz; (8.10)
This completes the proof of Proposition 23. O

This proof can be applied inductively to conclude the following sharper re-
sult:
Proposition 24. Suppose that p = uv € I¥(X,A) where u is given by (8.9)
and fori=0,...,20 -1
az
oht
vanishes to order 2(¢ —i) on Cy. Then

p€ IFTHFL(X ).

—(x,s,0)
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As a corollary we obtain:

Proposition 25. If a vanishes to infinite order on Cy then p € I°(X,A), i.e.

peIHX,A).
k

8.3.2 The local definition of the symbol.

We now make a tentative definition of the symbol, one that depends on the
presentation (Z,m, ¢) of the Lagrangian manifold, and also on the choices of
non-vanishing half densities: If u € I*(X, A) we define the function o, € C°°(A)
by

os(p)(x, &) = a(z, s,0) where (z,s) € Cp and Ag(z,s) = (z,§).  (8.11)

Strictly speaking, we should also include the choice of non-vanishing half-densities
in the notation for o but this would clutter up the page too much.

The symbol as just defined depends on the presentation of A and on the
choices of non-vanishing half-densities. However, we claim that

Proposition 26. If p € A, the assertion that (04(1))(p) = 0 has an intrinsic
significance, i.e. is independent of all the above choices.

Proof. Changing the choice of non-vanishing half-densities clearly multiplies
o4(1)(p) by a non-zero factor. So we must investigate the dependence on the
presentation. As in Section 8.1.2, we must check what happens for the two
Hoérmander moves: For the case of equivalence this is obvious. When increas-
ing the number fiber variables as in Section 8.1.2 (and with the notation of
that section) we have Cy, = Cy, x {0} and setting & = 0 in (8.3) shows that
Og, (1) = a0y, (1) where ca # 0. O

8.3.3 The intrinsic line bundle and the intrinsic symbol
map.

With the above notation, define
Iy(X,A) = {p € IN(X, A)|og(u)(p) = 0} .

According to Prop. 26, this is independent of all the choices that went into the
definition of o4. So we have defined a line bundle

L—A

where
L, :=I"(X,A)/I} (X, A). (8.12)

Multiplication by A*~* is an isomorphism of I*(X,A) onto I*(X,A) and it is
easy to check that this isomorphism maps IZ’,“(X7 A) onto If;(X, A), so we see
that the above definition is independent of k.
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The choice of data that went into the definition of o4 gives a trivialization
of I and shows that . — A is indeed a smooth line bundle. It also shows the
following: let us define the intrinsic symbol map

o: I*(X,A) — sections of L

by
o(w)p = 1y = p/I;(X,A) € Ly

ie. o(u)p is the equivalence class of p mod I}(X,A). Then o(u) is a smooth
section of L. In other words,

o IF(X,A) — C=(L).
The following proposition now follows from Prop. 23:
Proposition 27. If u € I*(X,A) and o(u) =0 then p € I*1 (X, A).
We will soon prove the converse to this proposition and hence conclude that

o induces an isomorphism of I*(X, A)/I**1(X,A) with C>(L).

8.4 Symbols of semi-classical Fourier integral op-
erators.

Let X7 and X5 be manifolds, with
Ng = dim XQ

and let
I' € Morph(T* X1, T* X5)

be an exact canonical relation. Let
A= (¢ xid)(T)

where ¢(21,&1) = (x1,—&1) so that A is an exact Lagrangian submanifold of
T*(X; x X3). We have associated to I" the space of compactly supported semi-
classical Fourier integral operators

)
where ' € F§*(T") is an integral operator with kernel
pe I T (X) x X, A).

We have the line bundle L, — A and we define the line bundle L — T to be
the pull-back under ¢ ® id of the line-bundle LL:

Lr =T := (c®id)jp(La). (8.13)
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Similarly, if F' € FJ*(I') corresponds to

m_n2
,UEIO 2 (X1><X2,A)
we define the symbol of F' to be

o(F) = (s ®id){po(p). (8.14)

8.4.1 The functoriality of the symbol.

We recall some results from Section 5.6: Let X1, Xo and X3 be manifolds and
'y € Morph(T* X4, T*X5), T3 € Morph(T*Xs,T*X35)

be canonical relations which are transversally composible. So we are assuming
in particular that the maps

I'n = T"X,, (p1,p2) = p2 and Ty = T"Xs, (q2,¢3) — ¢2

are transverse.
Suppose that

7'('11Z1—))(1><)(27 Ty Jg — Xo X X3

are fibrations and that ¢; € C*(Z;), © = 1,2 are generating functions for T';
with respect to ;.
From m; and 7 we get a map

T X o i L1 X Jo — X1 X Xo x Xo x X5.

Let
Ay C X5 x Xo

be the diagonal and let
7 = (7'('1 X 772)_1(X1 X AQ X X3)

Finally, let
w4 — X1 x X3

be the fibration
Z—>Z1XZQ—>X1XX2XX2XX3—>X1XX3

where the first map is the inclusion map and the last map is projection onto the
first and last components. Let

$:Z—=R
be the restriction to Z of the function (5.8)

(21, 22) = ¢1(21) + Pa(22).



202 CHAPTER 8. OSCILLATORY %—DENSITIES.

Then (Theorem 32) ¢ is a generating function for
I':= FQ o Fl

with respect to the fibration 7 : Z — X; x X3.

Suppose that we have chosen trivializing data for semi-classical Fourier in-
tegral operators as in Section 8.2, and, more particularly, as in the proof of
Theorem 40. So F = Fy o F corresponds to u € I*(X,A) given by (8.6). We
have the diffeomorphism

K:FQ*Fl —>F20F1
where
FQ *Fl = {(ml,mg.m3)|(m1,m2) € Fl, (mg,mg) € FQ}
We also have the projections
pry : Do x Ty = Ty, (mq,me, m3) — (mq, ma)
and
pry : Fg *Fl — FQ, (ml,mg,mg) — (mg,mg).

Our choices of trivializing data give trivializations of Ly — I'y and of Lo — I'y
and hence of
pI‘T Ll & pr§ ]]_42 — FQ *Fl.

Also, our choice of dzs gives a choice of trivializing data for (Z, 7, ¢) representing
I'. Indeed, in terms of local product representations Z; = X; x Xy x S and

1 1 1
Zy = X9 x X9 x5y we now have the half-density dz; ®@ds; ®ds; on Xg xS x Ss.
We have the diffeomorphism 7y := 74 : Cp — I' and the maps

")/ZC(bl—)F“ 221,2
as in the proof of Theorem 32. We have the immersion
LZC¢—>C¢,1 XC¢2

given by
L(Il,fﬂg,l‘g,s,t) = ((Il,IQ,S), ($2,I37t)).

The amplitude in (8.6) is
a(x1,x3,®2,5,t) = ai1(x1, T2, s)az(x2, ¥3,1)

SO
CLIC¢ =" (al\cm . a2\0¢2) (815)

We have
oy(F) = (7_1)*G\C¢,h:0
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with similar expressions for o4, (F1) and o4, (F2). Also, if j : ToxT'y = 'y xT'y
denotes the injection
j(ma,ma,m3) = ((m1,m2), (M2, ms))

then
j05_107:(71 X y2) 0L

as maps from Cy to I'y x I';. In other words,
oy tor=(1" x5 o]
as maps from I's x T’y to Cy, x Cy,. Setting A =0 in (8.15) we see that
K'0p(F) = " (04, (F1)04, (F2)) - (8.16)

In this equation, the data entering into the definition of o4 must be chosen
consistently with the data defining 04, and o4,. But we see from this equation
that if

p = k(p1,p2,p3),  (p1,p2,p3) € L2 x Ty
then

0s(F)(p) =0« either o4, (F1)(p1,p2) =0 or o4, (F2)(p2,p3) =0. (8.17)

The condition of vanishing or not vanishing of the symbol is intrinsic, as we
have seen. Let

L—Tyol, L' 5T, and L2—T,
be the intrinsic line bundles so that

L o = F™ (T0)/F

(p1,p2 (p1,p2)

(I'1)

where .7-"(7;11 ps) denotes those elements of F™(T'y) whose symbols vanish at

(p1, p2) with similar notation for L? and L.

Then (8.17) says the following: If F} € F™(T'y) and Fy € F™2(T'3) then
o(Fyo0 Fy)(p) = 0 if and only if either o(Fy)(p1,p2) = 0 or o(Fz)(p2,ps) =0 (or
both). Thus composition of operators induces an isomorphism

ol 2
Ly = L, pa) © Lipa po)- (8.18)
We have proved the following theorem:

Theorem 41. Composition of semi-classical Fourier integral operators induces
multiplication of their symbols in the following sense: Let

'y € Morph(T*X1,T*X5), Ty € Morph(T*X,,T*X3)
be exact canonical relations and

L!'>T;, L?2->T,
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their associated intrinsic line bundles. Suppose that T'y and T’y are transversally

composible and let
I'=T50I4

and . — T its line bundle. Let
k:T'9%xI'y =T

be the diffeomorphism k(p1,p2,p3) = (p1,p3) and j : Ty x 'y — T'y x Ty the
immersion j(p1,p2,p3) = ((p1,p2), (P2,p3)). Then we have a canonical isomor-
phism

L 25" (L ®@Ls). (8.19)

If Fy € F™(T1) and F» € F™2(T'y) (so that Fyo Fy € F™+™2(T)) then
5 (0(F> 0 Fy)) = (o (F)o(Fy) (8.20)
under the isomorphism (8.19).
We can now prove the converse to Prop. 23:

Proposition 28. Let i1 be an element of I*(X, A) and o(u) = op(u) denote its
symbol (as an element of I*(X,\)). If u € I*TY(X, A) then

o(u) =0.

Proof. Let us first prove this for the case that A is horizontal. So (locally) we
can assume that A = Ag. So the fibration is trivial, and hence the critical set
Cy is X itself and the diffeomorphism Ay : X — Ay is just the map z — do,.
Any p € I*(X, A) is of the form

p=hra(z, h)ei%dx%
(with no integration) and
a6(1) = (A5 ") alz, 0).
To say that u € I**1(X, A,) means that p is of the form
R Lb(z, h)eth .
This implies that a(x, k) = hb(z, k), so setting h = 0 shows that o(u) = 0. So
the Proposition is trivially true when A is horizontal.

Now to the general case. Given any Lagrangian submanifold A C T* X and
any p € A, we can find a horizontal Lagrangian submanifold A4 such that

AN A= {p)

and such that this intersection is transverse. Let u; € I°(X, A,) so that

le-

A3

>

p1 = ap(z, h)e’
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and we choose g1 so that aq(z,0) does not vanish. In other words, o(p1) is
nowhere vanishing. We think of A as an element of Morph(pt.,7*X) and of
AL as an element of Morph(7*X, pt.). This is a transverse composition, so for
p € IF(X, A) we have

F

o F,=F, where ve&I* 2(pt.)

v = h*e(h)
and
o(v) =a(um)(p)o(u)(p) = c(0).

If 41 were actually in I*+1(X, A) we would conclude that v € I**1(pt.) so
v =h"*le ()

implying that ¢(h) = hei(h) so o(v) = ¢(0) = 0. Since o(u1)(p) # 0 we
conclude that o(p)(p) = 0. Since we can do this for every p € A we conclude
that o(u) = 0. O

Putting together Propositions 23 and 28 we obtain:

Theorem 42. The symbol map o induces a bijection

IF(X,AN)/T"PH (X, A) — C*°(L).

8.5 The Keller-Maslov-Arnold description of the
line bundle L

Let X be an n-dimensional manifold and A C T*X an exact Lagrangian sub-
manifold. In §8.3 we proved that there exists an intrinsically defined line bundle
L — A and symbol map

o : I"(X,A) — C>(L) (8.21)

which is surjective and has kernel 7**1(X,1LL). In this section we will show that
L = Lyaslov @ |TA\% and give a much more concrete description of this map.
We'll begin by reviewing some material in §7.4-7.5 on “enhancing” fibrations.
Let Z 5 X be a fibration and let V be the vertical sub-bundle of TZ. An
enhancement of 7 is the choice of a non-vanishing section, v,, of the %—density
bundle, |V|2. This enhancement does two things for us: it gives us a non-
vanishing % density, pr, on the canonical relation I';;, and it also enables us to
define a fiber integration operation

T CO(TZ|2) = CO(IT X)) .
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Now let A be an exact Lagrangian submanifold of 7*X and ¢ : Z — R a
generating function for A with respect to 7. Then by definition

A:F,TOAQg

where Ay is the Lagrangian submanifold, {(¢,d¢,), ¢ € Z}, of T*Z. So if we
are given a % density, v, on A, we can associate with it a 1 density pr ov on A
by the composition described in (7.1). In particular let p € I*(X,A) be the
oscillatory %—density (8.1), i.e.,

W= (27rh)k_%7r*u (8.22)

where v € I9(Z, Ay) is the oscillatory half-density, v := a(z, ﬁ)ei%r

Let us denote by g the projection of A, onto Z. We define the “Symbol”
of v to be the % density, o(v) = p*(a(z,0)7) on A, and we define the Symbol of
1 to be the product

o(1) = spx 0 (1) (8.23)
where s4 is the section of Latasiov associated with ¢, (see Sec. 5.13.2.)

We will show below that this “Symbol” is intrinsically defined. Assuming
this for the moment, we now show that the “Symbol” map we’ve just defined:

o IF(X,A) = C®(Ltasiov ® |TA|?) (8.24)

coincides with the map (8.21). In particular, this will show that the line bundle
L of (8.21) can be identified with Lyjasioy @ |TA|2.

To prove this we show that this map is surjective and that its kernel is
I*Y(X,A).

To see that this is the case let’s go back to §5.1 and recall how the compo-
sition I'yx o Ay is defined. As in §5.1 let H*Z be the horizontal sub-bundle of
T*Z. Then one has canonical identifications

I,=H"Z
and

Trolsg=AsNH*Z.

The assumption that I'; and A, are transversally composable simply says
that this intersection is transversal. i.e., that every point we have

TpA¢ N TpH*Z = TP(A¢ n H*Z)
and
TpA¢ + TpH*Z = Tp(T*Z) .

So at every p we are in the situation of (6.10). In other words one has a short
exact sequence

0=>T,(Apg NH*Z) > TyAy ® T, H* Z - T,T"Z — 0.
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Moreover, T*Z is a symplectic manifold, so \TpT*Zﬁ >~ C, so (taking a = 1

2
in (6.10—))from this short exact sequence we get an isomorphism

Ty(Ag N H*Z)|2 = |TAy|% @ T, H*Z|2

and from the 1-densities o(v)(p) and pr(p), we get a i-density

o(v)(p)o(m)(p) € IT,(Ag N HZ)|2.
From the diffeomorphism,
A NH*Z - Tr0A,

mapping p = (q,de(q)) to A,(g), this maps to the i-density, (pr 0 0(v))(As(q))
n ‘T/\Lp(p)]_—‘ﬂ. [¢] A¢|%

Now recall that by (8.22) o(v) = p*a(z,0)p*T where *7 is a non-vanishing
3-density on Ay. Hence

oroo(v)= (A;l)*(a(z, 0)|Cy)or 0 p*T (8.25)

where (A;l)*a(z, 0)|C, is the “provisional symbol” of p and pr o p*7 is a non-
vanishing %—density on A. Thus it’s clear that the symbol mapping (8.24) is
surjective and that its kernel is I¥+1(X, A).

This proves that we have the identification I = Lyjasioy ® \TA|% and that
under this identification, the map “Symbol” coincides with the intrinsic symbol
map defined earlier, assuming that “Symbol” is intrinsically defined.

We will now show that the symbol (8.25) is intrinsically defined, i.e., doesn’t
depend on our choice of defining data z, m, ¢, v, 0. To check this it suffices to
show that (8.23) is unchanged if we apply a sequence of Hérmander moves to
these data:

1. Let us first consider what happens if we replace these data by diffeomor-
phic data: Zy, w1, ¢1, v1, 01 where f : Z; — Z is a diffeomorphism with the
properties - f = m, po f = ¢1, f*v =11 and f*o = 0y. Since f: 77 — Z
is a diffeomorphism it lifts to a symplectomorphism, f# : T*Z, — T*Z and
(f*)*o(v) = o(v1). Moreover since 7o f = m and f*oc = o', f# maps
H*Z, = I'; diffeomorphically onto H*Z = I'; and maps o,, onto o,. Thus
or00(v) =0y, oo(ry). Also since ¢ o f = ¢; the signature functions (sgn)? :
Cy — Z and (sgn)*# : Cy, — Z (see 5.13.2) are intertwined by f and hence
84 = 5¢,. Thus

o(p) = sppr 0 0(V) = 8¢, pr, 0 0(11) . (8.26)

2. The situation is a bit more complicated for the Hérmander move that
increases the number of fiber variables. Let Q@ = R — R be a non-degenerate
quadratic form, and let us replace Z by Z; = Z x RY, m by 1 = 7 o p, where
p is the projection of Z x R? onto Z, replace ¢(z) by ¢1(z,5) = o(2) + Q(s),
replace o by o1 = U\ds|% and v by the expression

v = (27rh)k_%a1 (2,8, h)eifb1

T‘d8|%CQ
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where a1(z,0,h) = a(z,h) and

cQ = e*%sgnQ| detQ|% .
By stationary phase

peV1 =V + O(hk+1_%)

and hence
j = (m)avn = p+ O(RM).
On the other hand we claim that

opo00(n) = e el (y).,

Indeed to check this it suffices to check this for the fibration p : R — pt, for

the generating function, w; = Q(s), for the fiber %—density7 o1 = ds? and for
iQ(s)
Vl = €& h

ds|%7 i.e., to show that, in this case, 0, 0 o(r1) = |det Q|_%, and
we’ll leave this as an exercise. Thus

Or 00(11) =e T8 9 oo(v) (8.27)
On the other hand since ¢;(z,5) = ¢(2) + Q(5s), 55, = €T %P5, s0 we again
get

o(p) = 5,07 00(V)Sp, 0 0 0(V) = 5, 0 0(11). (8.28)

Since every Hérmander move is a succession of the two elementary Hérmander
moves described above this proves that o(u) is intrinsically defined.

Remark. The definition of I that we’ve given in this section is due to Hérmander,
but the presence of the phase factor, s, in this definition has antecedents in
earlier work of Joe Keller in geometric optics and of Maslov—Arnold on the
fundamental group of Lagrangian manifolds, A C T*X.

8.6 Microlocality.

We have identified I*(X,A)/I**1(X,A) as the space of smooth sections of a
line bundle IL over A. What about higher quotients of the form

I*(X,N)/TFH(X, ), €> 17

We will find in this section that I*(X,A)/I***(X,A) can be identified with
elements of a sheaf on A. As usual, we will first describe this identification via
the choice of some local data, and then describe what happens when we change
our choice.

So we start with a (local) presentation (Z, 7, $) of A where Z = X x R?,
where 7 is projection onto the first factor, and where we have chosen densities
ds =dsy ---dsq on R? and dz on X. Then p € I*(X,A) means that

(NI

W= udzx
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where
u = hk_%/ a(z,h)ei%ds
RE
where a € C§°(Z).
Recall that u € I*1(X,A) if and only if a(x,s,0)c, = 0. Let us now

examine what the condition u € I**2(X,A) says about a. The fact that
a(w,s,0)|c, = 0 tells us that we can write

a(x, s,0) Zakms

and hence that we can write

a(x, s, h) Zakaﬁs——i—hb(acsh)

Then

/ a(z,h)e'tds = / Zakx s —e ﬁd5+h/ b(z, h)e' ds
Rk Rk

0 )
ih () ds+h | bz R)etd
i /Rk ;ak(fms)a&c (e ) s+ /]Rk (z,h)e'rds
- zh/ ZL’“(“)&%Hh/ b(z, h)eit ds
N Rk & 8sk Rk ’

So define the operator 74 by
0
ro(a) m i 5 20E8) Ly (8.29)
& 8Sk

Then we can write € I¥+1 (X, A) as pu = udz? where
_ hk+1—g il
U= rea(z, s, h)e'*ds,

and hence
pe "X A\ < (r¢a(z,s,0))‘c¢ =0.

Notice that the operator r4 involves a and its first two partial derivatives.
Iterating this argument proves

Proposition 29. If u € I*(X,A) and £ > 0 then

i e X, A) & (rha)(z,0)0, =0 for0<j <. (8:30)
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We now examine what this proposition tells us about I* /I*+¢. For this we
make some further choices:
Let O be tubular neighborhood of Cy in Z, so that we have a retraction map

r:0—0Cy
and let p € C§° be a function which is:
e identically one in a neighborhhood of Cy,
e with supp p C O and such that
o 1: supp p — C4y is proper.

If u = A¥(m.al(z, h)ei%dz)dx% and v = h¥(m.p(2)a(z, h)ei%dz)d:r% then p—v €
I*°(X, A) since pa = a in a neighborhhod of Cy.

Proposition 30. Every p € I*(X, A) has a unique expression modulo I* (X, A)
of the form
-1
p=n"%x, | p(z) Zr*ajhj eirdz | da?
§=0

with
a; € C5°(Cy).-

Proof. Let p € I¥(X,A) = hFr,(a(z, h)e'® dz)dx? . Let
ao := a(z,0)|c,

and a ;
py=p—her, (P(Z)r*(aO)(z)el

Then py € I*+1(X, A) so
= he, (b(z, h)ei%dz)dx%

for some b € C5°(Z x R). Set a; := b(z,0)|c, and

[N

[ 1= ft — REHI=g (p(z)(r*al)(z)ei%dz> dz2.

Then pg € I**2(X, A). Continue. O
Let us define s
o6 IM(X,A) = @D W CF(A)

Jj=0

-1
o ()\;1)* Z ha;.
7=0
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This map is independent of the choice of cutoff function p. Indeed, if we had
two cutoff functions, they would agree in some neighborhood of C; and hence
give the same a;.

We need to investigate how 0§, depends on the choice of the tubular neigh-
borhood O. So let O; and O be two such tubular neighborhoods. Let us

set

of = O'él and of:= Uéz.

Proposition 31. There exists a differential operator
-1 -1
P:@PWCrA) - PHCrA)
j=0 j=0

of degree 20 — 2 such that
crg =Po Jf.

Proof. Since the maps of, i = 1,2, are independent of the choice of cutoff
functions, we may choose a common cutoff function p supported in O; N Os.

Suppose that
-1
g=> M'a
7=0
where ag,...a,_1 are elements of C§°(Cy) and that

W= Ko, (p (rig) ei%dz) dz?

so that
oi(p) = (A;)"s.
Let . . )
v=np—h"%n, (p (r3g) elﬁdz> dxz
=n o, (p (rig —r3g) ei%dz) dz? .
If we set

g = p(rig —158)

then since g vanishes on Cy we know that
v=nht1"0g, (rd,gei%dz) da?.
So define the operator P; by

Pig = (r¢8)c,-
We know that P; is a second order differential operator. Set

g1 = Pig.
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We have shown that
W= RE= i, (p (r3g) e’%dz) dz? mod I*H(X,A).

In fact,
0= RE= o, (p (r3g) ei%dz) dx%ul

where

Nl

1 = REHI=% o, (p (rig1) ei%dz) dz2.

Continuing in this way proves the proposition.

8.6.1 The microsheaf.
Let U be an open subset of A. We define the subset

(X, A)
by saying that for u € I*(X, A) that

pe "™ (X,A) & o'(u)=0 on U.

(8.31)

In order for this to make sense, we need to know that the condition o(x) = 0
is independent of the presentation. (We already know that it is independent of

the tubular neighborhood O of Cy.)
So we need to check this for each of the two Hormander moves:

e Equivalence: In this case we have (Z1,m1¢1, dz1) together with (Za, ma, ¢o, dzo)

and a diffeomorphism 1 : Z; — Z5 such that
T =T20%, ¢1=¢20%, and dz =Y dzs.

In this case, we choose
O1 =9 10), 11 =120%, and p; =prot

and the result is obvious.

o /o =71 xR™ mg=mor wherer: Z; x R™ — Z is projection onto

the first factor, and
P2 =1 +Q

where @ is a non-degenerate quadratic form on R™. In this case
C¢2 = C¢>1 X {0}
We may choose our densities so that

dzo = dz1 ® ds
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where ds is Lebesgue measure on R™. If ry : O; — Cy, is a tubular
neighborhood of Cy, we choose

Oy =01 xR™

and ry = tory or where ¢ : Z3 — Z; x R™ is the injection ¢(z) = z x {0}.
If p; is a cutoff function for r; we chose ps to be of the form

p2(z,8) = p1(2)p(s)

where p € C§°(R™) which is identically one near the origin. Then the
result is also obvious.

‘We now define

YUY == TM(X, N)/TFT (X, A). (8.32)

If V C U is an open set, then I[’}H(X, A) C I\kf'g(X7 A) so we get a projection

ELU) = g4V

and it is routine to check that the axioms for a sheaf are satisfied.
Notice that

Multiplication by a power of i shows that £/(U) is independent of k.
For £ = 1 the sheaf £ is the sheaf of sections of L.

There is an intrinsic symbol map of; : I*(X,A) — E4(U).

In the whole discussion, we can let £ = oo.

In particular, if u € I*(X, A), we will say that g =0 on U if o8¢ (u) = 0.

For semi-classical Fourier integral operators F*(T") we similarly get a sheaf
on I

8.6.2 Functoriality of the sheaf &£°.

We return to the situation and the notation of Section 8.4.1. Let U; be an open
subset of I'y and let Uy be an open subset of I's. Then

pry ' (U1)

is an open subset of I's xI'; as is pI'2_1(U2).
Let F € .le(Fl) and F5 € fm2(P2) so that Fr o I € ]:'m1+m2(1"2 Orl).

Theorem 43. If Uéll (F1) =0 and O'ZUZ(FQ) =0 then

where

0_5U1+Z2(F2 o Fl) =0

U=k (prfl(Ul) N prgl(UQ)) .
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Proof. This is a local assertion. So let (Z1,m1¢1) be a presentation of I'; and
(Z3, 2, d2) be presentations of 'y and T's where

Zi=X1 x Xog xRY, Zy = X5 x X3 x R
with the obvious projections. Let
r: 01 =0y, and 12— O
be tubular neighborhoods and let p; and ps be cutoff functions. Define
Wy = rl_l'y;ll(Ul) Wy = rQ_I’y;;(U2).

Then F! is of the form (8.4) where
mi—n2 4 Kok~ 91 :
up =h"MT2 T2 p1T1 Vg, a1€" R ds1, mn9 =dim Xy
1

where
a, € O{)’O(I‘l X R)

with a similar expression for F2.
If we set
ay = per’y;;la], ag 1= pgr;y;;ng
then the composition F' = F2?o F! is of the form (8.4) where u is given by (8.6).
Now our assumptions about F' and F? say that a; = ht b; which implies
that
a; = kb on W;, i=1.2.

So
a = hzl—i_&bl (331, o, S1, h)bg(xg, I3, S92, h)
on the set
W = {(1‘1,333, 81752,$2)| (331,.132,81) S W1 and ($2,$3,52) S WQ}
But the set v4(W N Cy) is precisely the set U of the theorem. O

Corollary 1. Composition of semi-classical Fourier integral operators induces
a a map
&, (U1) ® &L, (U2) = Ep(U).

Proof. By the theorem, F = Fy o F| lies in F**¢ if either F; € FF+¢ or
Fs e Fhatt, O

In sheaf theoretical terms we can state this corollary as

Theorem 44. Composition of semi-classical Fourier integral operators induces
a a morphism of sheaves

pri Sfil ® pry 6142 — K EF.
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8.7 Semi-classical pseudo-differential operators.

We want to apply the results of the preceding few sections to the case X; =
Xo=X3=Xand I'y =15 = A where Ay; C M~ x M is the diagonal where
M =T*X. Since

AM:FJC, fZidiX—)X

we know that the composition
Ay oAy =Apy

is transverse.
We define
UF(X) = FF(An). (8.33)

Theorem 8.5 allows us to conclude that
FL e U*(X) and F, € ¥Y(X) = FyoF € U (X).

So we define '
U(X)=|J¥(x)

and conclude that ¥(X) is a filtered algebra. It is called the algebra of semi-
classical pseudo-differential operators on X.

8.7.1 The line bundle and the symbol.
We can identify M with Ay, via the map

diag : M — Ay, m— (m,m)
and we can identify M with Ajp; x Ap; under the map
m > (m,m,m).

Under these identifications, the maps x,pr; and pr, all become the identity
map. So if we define
L]u = diag* LAM

then (8.19) says that we have a canonical isomorphism
Ly =Ly ®Ly

which implies that we have a canonical trivialization of L.
In other words, under these identifications, we have a symbol map

o UH(X) = C®(M)

with kernel W*+1(X)
If P, € V¥ (X) and P, € ¥*2(X) equation (8.20) becomes

o(Pyo Py) =0o(P)o(Py).
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8.7.2 The commutator and the bracket.
If P, € U¥1(X) and P, € U*2(X) then

O'(Pgopl):U(Pl)O'(Pg):O'(Plopg)

SO
U(P10P2—P20P1):0

which implies that
PioPy— Pyo P € Ukrtha=l(x),

Consider the symbol of (PyoP,—Py0P;) thought of as an element of Wk1+k2—1( X)),
We claim that this expression depends only on o(P;) and o(Ps). Indeed, if we
replace P, by P; + Q1 where Q; € ¥*1~1 then (P o P, — Pyo Py) is replaced by

(ProPy,—PooPy)+ (QroP,— PooQy)

and the second term in parentheses is in W¥1++2=2( X)), Similarly if we replace
P, by P2 + Q2. Thus there is a well defined bracket operation [, | on C°(M)
where

[f1, fo] =0(PLo Py — Pyo P)
(thought of as an element of U*1+*k2=1(X) when f; = o(P)) and fo = o(P2)).
(This is a general phenomenon: if R is a filtered ring whose associated graded
ring is commutative, then the graded ring inherits bracket structure.)
We will find that, up to a scalar factor, this bracket is the same as the
Poisson bracket coming from the symplectic structure on M, see (8.46) below.

8.7.3 I(X,A) as a module over V(X).

Let A be an exact Lagrangian submanifold of M = T*X thought of as an
element of Morph(pt., M). Then we have the transversal composition

A]\/[ o A = A
Thus we have the composition
Pu:=Popu. PecU"(X), pel*(X,A)

where, on the right, p is thought of as a semi-classical Fourier integral operator
from pt. to X. It follows from (8.5) that

Pu e IR (X ). (8.34)

In other words, I(X,A) = [J,I*(X,A) is a filtered module over the filtered
algebra ¥(X).
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Let us examine the symbol maps and the sheaves associated to this module
structure: We begin by examining the various maps that occur in Theorem 41:
We have the identification

Ay A=A, (pt, A A) = A
Under this identification the map
K:Apy*xA— AproA, (pt, A A) — A

becomes the identity map. The map

pry: Ay x A=A (pty, A A) = (pte, )
becomes the identity map, and the map

pro: Aprx A= Apyy (Pt AN = (A A)
becomes the inclusion ¢ — M when we identify Aj; with M. The map

JiAp*A = Ax Ay, (pt,A\A) = ((pt., A), (A AN))

becomes
j =1id xu¢.

Then the left side of (8.19) is just Ly and the right hand side of (8.19) is Ly ® C
since Ly, is the trivial bundle.
Equation (8.20) then becomes

o(Pp) =" (0(P))o(u) (8.35)
where o(P) is a function on M = T*X in view of our identification of M with
Ay
8.7.4 Microlocality.

If U is an open subset of M = T* X we define
Uit = (A
(Again we are identifying M with Ajps.) So
o =Fi (Bm).

In particular, if P € U¥(X) we say that P =0 on U if P € U$.
It follows from Theorem 43 that

Proposition 32. If P, and P, € ¥(X) and either Py or Py are zero on U then
PP is zero on U.

We define the microsupport of P € ¥(X) as follows:
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Definition 5. We say that p € T*X is not in the microsupport of P if there
18 an open set U containing p such that P =0 on U.

Let A be an exact Lagrangian submanifold of 7*X and U C T*X an open
subset.
It follows from Theorem 43 that

Pe Wit and peI*(X,A) = Puc IPPTHXA). (8.36)
Taking ¢ = oo in this equation says that
Proposition 33. If P=0 on U then

Ppi € Iy (X, ).

8.7.5 The semi-classical transport operator.

Let ¢ : A — T*X be an exact Lagrangian submanifold, let p € I*2(X,A) and
P € U*(X). Suppose that
P =0.

It then follows from (8.35) that
o(Pu) =0,
0
Pu e IMFhtl(x A).

We can then consider the symbol of Py, thought of as an element of I¥1+*2+1( X A).
Suppose we start with a section s € C°°(IL,) and choose a u € I*2(A) such
that

o(p) =s.

We can then compute the symbol of Py thought of as an element of 71 t+2+1( X A).
This gives a section, ok, 4k,+1(Pp) of Ly. We claim that o, 4 x,4+1(Pp) is inde-
pendent of the choice of u. Indeed, choosing a different ;1 amounts to replacing
p by p+ v where v € I*2+1(X, A) and

Py € [Mtkat2(x )

SO
O-k1+k2+1(P(:u + V)) = O.k1+k2+1(P:u)'

We have thus defined an operator
Lp : COO(]LA) — COO(LA)
where

Lp(8) := 0hyshpr1(Pp) if peI*(X,A) with o, (1) = s. (8.37)
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Once again, multiplication by a power of & shows that the definition of Lp is
independent of the choice of ks.
Let us examine what happens when we replace s by fs where f € C*(A):
Choose @ € ¥°(X) with ¢(Q) = f. Then

Lp(fs) = Lp(a(Q)o(n))

= Lpo(Qpu)
= o(P(Qu))
= o(Q(Pu) +a((PoQ—QoP)p)
= fLps—+[p, fls.
where
p:=o(P).
Let us now use equation (8.46) (to be proved below) which says that
.1 = (0. S

We know that since p vanishes on A, the corresponding vector field X, is tangent
to A, so

va .ﬂ = DYf
where Y is the restriction of X, to A. So

1
Lp(fs) = prS + ;(Dyf)s
Suppose we choose a connection V on Ly so

Vz(fs)=fVzs+(Dzf)s
for any vector field Z on A. Thus

<Lp - 1vy) (fs)= f (Lp - 1vy> 5.

This says that the operator (Lp — %Vy)) commutes with multiplication by
functions, and hence is itself multiplication by a function:

(Lp - ivy> s = osub(P, V)s.
Fixing V (and writing ogupb(P) instead of ogun (P, V)) we have
Lps = %VYS + Ogub(P)s. (8.38)
This now allows us to carry out the program of chapter I, with differential

operators replaced by semi-classical pseudo-differential operators. Suppose we
are interested in finding an oscillatory half density p which satisfies the equation

Pu=20
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(in the sense of oscillatory half-densities). The first step is to solve the eikonal
equation, as in Chapter I. This involves some hyperbolicity condition, as in
Chapter I. Suppose we have done this, and so have found an exact Lagrangian
submanifold A on which ¢(P) = 0, and furthermore A is the flow out under the
vector field X, of an initial isotropic submanifold S.

For any p € I*2(X,A) we know that Py € I*1T*2+1(X A). We want to do
better. We want to find p such that Pu € I*1+2+2(X A). This means that
want to choose p so that its symbol satisfies L,s = 0. According to (8.38), this
amounts to solving the equation

Vys+ ’iUsub(P)S =0

which is an ordinary first order differential homogeneous linear differential equa-
tion along the trajectories of Y. If we choose an initial section sg of Ly along
S, then there is a unique solution of this differential equation. Call the corre-
sponding oscillatory half density p1. So

p1 € IM(X,A) and Pu; € IMTR2+2(X A).
We would now like to find pg € I*271(X, A) such that
Py + pg) € TMHR23(X A)
which is the same as requiring that
Ok tkot+2(P1) + Opy4ko2(Ppz) =0
which amounts to finding a section ss of Ly such that
Lpsy = 0Ok, 1 kpr2(Ppi1).

This amounts to an inhomogeneous linear differential equation along the trajec-
tories on Y which we can solve once we have prescribed initial conditions along
S. Continuing in this way, we can find

M1+ pN
with prescribed initial conditions such that

Plug + -+ py) € THRENHL (XA,

p~ Yo
J

If we now choose

then
Pp =0 mod O(h™),
where we can prescribe initial values along S.
Since everything was intrinsically defined, we have no problems with caus-
tics. However we do have to explain the relation between the semi-classical
pseudodifferential operators discussed in this chapter, and the differential op-

erators and the semi-classical differential operators discussed in Chapter I. We
shall do this in Section 8.10.
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8.8 The local theory.

Let
X CR"
be an open convex subset,
M=TX
and
Ay CMx M

the diagonal,
Z=XxXxR"

with m: Z — X x X given by

W(l‘,y,f) = (.23, y)

and

Then we know that (Z, 7, ¢) is a generating function for Ay, with

Cy = {(z,9,9)]z = y}.

So we may identify Cy with
X x R".

Also, we identify Ays with M = T* X which is identified with X x R™. Under
these identifications the map

Yo : Cp = Ay

becomes the identity map.

We will also choose the standard Lebesgue densities dx on X and d¢ on R"”
with their corresponding half-densities.

To get a local symbol calculus for U(X) we must choose a tubular neigh-
borhood O of Cy and a projection pr: O — Cy. Three standard choices are to
take O = Z and the projections pr: Z — Cy to be

er(xayvg) = (l',f) (839)
prp (x’ Y, 5) = (ya 5) (840)
er(‘ra:%E) = (m;y7£> (841)

The first choice, prp, gives rise to the semi-classical analogue of the right symbol
calculus in the theory of pseudo-differential operators. The second choice, pry,
gives the analogue of the left symbol calculus while the third choice gives rise
to the analogue of the Weyl calculus.
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In this section we will focus on prp. Choose a cutoff function p € C§°(R™)
with p(z) =1 for ||z|| < 1. We now apply Proposition 30 to conclude that every
P € U*(X) can be written uniquely mod ¥ as an integral operator K where

K. C(X) = C=(R"), (Kf)(x) = / K (.. h) (y)dy

where

ju—e)-€

K(z,y,h) = hb" / oy — @) (prya) T dE, a = ala, £, h) € CF(Cy x R)

in other words,

(y—=z)¢€

K(z,y,h) = hkfn/p(y —z)a(z, & h)e' ™ w o dE. (8.42)

Definition 6. The function h*~"a(z,¢, h) is called the (right) total symbol
of P.

8.8.1 The composition law for symbols.

Given P; € W% (X) and P, € ¥*2(X) we will work out the formula for the total
symbol of their composition P, o P; in terms of the total symbols of P; and Ps
by an application of the formula of stationary phase. The final result will be
formula (8.45) below. We will give an alternative derivation of the composition
laws using the semi-classical Fourier transform in the next chapter.

So suppose that

i (2—y)-€
e

Kl(zvyvh) = p(z—y)al(z,f,h)e df

(w—2)m

Ky(z,z,h) = plx — 2)as(z,n,h)e' = dn

——

SO
/Kg(x,zﬁ)Kl(z,y, h)dz =
[ pla = 20tz ~ y)aaten, Ry e, 6. e dndt (.43)
where
Make the change of variables

m:==n—-£& zZ:i=z—-z
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so that in terms of these new variables

oz, y,21,6,m) = z-(m+E) —y-E+(n+z)- (E—m—¢)
= xomtr-{—y-{—2zim—T-m
= (z-y)-&—21-m.

So (8.43) becomes
[t me S e

where
a(w,y,§,h) =
z1

/p(—zl)p(zl +a—y)as(z,m + & h)ar(z1 + 2,6, R)e 7 dipdzy. (8.44)

If we set w = (z1,11), this integral has the form

/ flw)e 5 duw

where A is the non-singular symmetric matrix

0 -I
=5 )
where I is the n x n identity matrix. The formula of stationary phase says
that (in general) an integral of the form I(h) = [, f(w)eiAz%w)dw has the
asymptotic expansion

1~ (52 ) 2aatn
where o
v4 = |det A|Z "5 sEn A
and
)~ (e (<1500 1) ©
where

b(D) = breDq, Dy,
ke

with B = (bkg) =A"1
In our case m = 2n, |det A|=1, sgn A =0s0v4 =1and B= A so

b(D) = _2D771 'Dzl

and so (8.44) has the asymptotic expansion

(;) (exp(ihDy,, - D) p(z1)p(21 + = — y)az(z,m + &, h)ai(z1 + z,&, )
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evaluated at z; = 1 = 0. Any (non-trivial) derivative of p(z1) vanishes near
z1 = 0 since p is identically one there. So a has the asymptotic expansion

(2h77> ;(ih)B;D?az(f»& R)DE [p(z — y)ay (z, €, 1)) .

Once again, any non-trivial derivative of p(x — y) vanishes if |z — y| < 1. So (in
terms of the above notation) we have proved

Theorem 45. The kernel K of the compostite P, o Py has the form

A\" o)
K(l‘,y,h) = (%) /p(il)‘ - y)a(x,g,h)e_( h> Edé-

where a has the asymptotic expansion

S (1) 5 D, €, 1) Dl (. €, 1). (8.45)
] |

Let us examine the first two terms in this expansion. They are

Interchanging P; and P, and subtracting shows that the bracket introduced in
Section 8.7.1 is related to the Poisson bracket by

[ ) ] = _i{ ) } (846)

8.9 The semi-classical Fourier transform.
Let X = R"™ and consider the function
p: XxX =R, plr,y)=—-z-y.

Let I', € Morph(T*X,T*X) be the corresponding canonical relation, so T,
consists of all (z, &, y,n) with

_9% 9
or 1T oy’

In other words
6 =Y nN=-2
so I', is the graph of the symplectomorphism

J: ($,£) = (fa —J)).
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Define the semi-classical Fourier transform to be the integral operator §p,
where, for f € C§°(X)

1 iz
FuN)w) = Gmgre [ L) F .

So 1 is a semi-classical Fourier integral operator associated to I',. In terms of
the usual Fourier transform f — f where

f(z) = W/f(a:)e”‘zdx
we have
nf)y) =2 (4).

The Fourier inversion formula says that
_ 1 n jw-z
flw) = (@m)n/? f(z)e" % dz.

Setting z = y/h this gives

1

[ G e ay.
In other words, the semi-classical Fourier integral operator

1 jwy
QHW/Q(Z/)e mdy

associated to the canonical transformation
3_1 : (1‘76) = (_§, Z‘)
is the inverse of §p. So we will denote the semi-classical Fourier integral operator

1

97 Grp)nr?

/g(y)e%dy by ;-
For example, let P € W(R™) so that P(fdz?) = (K f)dz? where

(K f)(x) = / K (9,1 f(4)dy

where
(x—y)-&

k(x,y,h) =/p(x—y)a(x,£,h)ei o dg.

Ignoring the cutoff factor, this has the form

(2nh) /2 / ale, £, 1) (Fnf)(€)de. (8.47)
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So
P=Ao3, (8.48)

where (absorbing the powers of 27) A is the operator whose Schwartz kernel is
the oscillatory function
oy
a(x,y,h)e' 7 .
In particular, A is a semi-classical Fourier integral operator associated with the
symplectomorphism J 1.

8.9.1 The local structure of oscillatory %-densities.

Let X be a manifold and A C T*X be an exact Lagrangian submanifold, and
let

po = (%0,&0) € A
with & # 0. According to the argument in Section 5.9, there are canonical
Darboux coordinates

L1yeeeyTn, flu"'afn
in a neighborhood V' of py such that the horizontal Lagrangian foliation
51 :Cl7---£nzcn

is transverse to A. Let v € I*(X, A) be microlocally supported in V.
We will use these coordinates and (by restriction) we may assume that A C
T*(R™). As above, let J denote the symplectomorphism

3(%,5) = (f, —:L').

So J(A) is horizontal , i.e.
A=A_4

~ [0 _ 0¢
J (aﬁ) = (5’_35> ’

we see that J(A) is the image of the set

{woerm) =52}

As the inverse semi-classical Fourier transform &gl is a Fourier integral operator
of degree zero associated to the graph of J~! we know that

pe TR A_y) & v =5, neI(R"A).

for some ¢ € C°(R").
Since

If we write p in the form
—io(e)

fb(E, h)e ™ #

then

_ h=% jEE=(E)
v=Sns (2m)n/? / oE et e (8.49)

gives the local expression for an element of I*(X, A).
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8.9.2 The local expression of the module structure of I(X, A)
over U (X).

Continuing with the notation of previous sections, let
P=AoF,ec¥(X)

and
v=23g, ouecI{X,A).

Then
Pov=Aoyu.

More explicitly P o v has the expression

[ E— (&)

h’“”_%/a(%g,h)b(g,h)e’ R de. (8.50)

8.9.3 Egorov’s theorem.

As an application of the theorems of this section, consider the following situa-
tion: Let
v T* X, = T X,

be a symplectomorphism, and set
'y :=graph v, Ty :=graph ™'

Suppose that F} is a semi-classical Fourier operator associated to I'; and that
F, = F;* on some open subset U C T*X;, meaning that for every B € U°(X)
with microsupport in U, we have

F,FiB = B.
Theorem 46. [Egorof.] For any A € V*(X5) with microsupport in v(U),
FyoAoF, € U*(X))

and
o(FRAF) = 7" (0(A)). (8.51)

Proof. The first assertion follows from the fact that I's o Ap-x, o I'y =
AT* Xy
As to (8.51), let (x,&,y,m) € T'1 so from Fy o F; =1 on U we get

U(F2)(yavaaf)U(Fl)(u’C,E,y,n) =1

for (z,£) e U.
Now
o(FRAR)(2,€)
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= J(FQ)(:%n»xvg)o'(A)(?%n)U(Fl)(x’£7y777)'

Since A is a semi-classical pseudo-differential operator, o(A) is just a scalar, so
we can pull the middle term out of the product, and use to preceding equation
to conclude that

o(FAR)(z,§) = a(A)(y,m)

where (x,&) is related to (y,n) by (z,&,y,m) € T'1, ie. (y,n) = v(z,§). This is
precisely the assertion of (8.51). O

8.10 Semi-classical differential operators and semi-
classical pseudo-differential operators.

Recall from Chapter I that a semi-classical differential operator on R™ (of degree
0) has the expression

P=P(z,D,h) =Y an(z,h)(hD)*, aq € C®(X xR).
The right symbol of P is defined as

p(z,&,h) Zaaxh

so that

I
/N
(9]

.
‘R
St
b
N—
I

Zaaxh )(hD)“ ( 75)
= ez'TZaa(:r,h){

p(w, &, h)e' 7

Proposition 34. If P is a semi-classical differential operator and f € C§°(R™)
then

(P)(x) = (2mh)™/2 / (,€ )5 (3 ) (€)de.

Proof. This follows from the semi-classical Fourier inversion formula
_n jo€
o) = (2n) 7 [ 5 @€

and the above formula Pe?“7* = = peti s by passing P under the integral sign. O

If we compare this proposition with (8.47), we see that the (right) symbol of
a semi-classical differential operator plays the same role as the (right) symbol
of a semi-classical pseudo-differential operator.
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The composition of a semi-classical differential operator with a semi-
classical pseudo-differential operator.

Theorem 47. Let P be a semi-classical differential operator on R™ with right
symbol p = p(x, &, h) and let Q be a semiclassical pseudo-differential operator
on R™ with right symbol ¢ = q(x,&,h). Then P o @ is a semi-classical pseudo-
differential operator with right symbol

T'(!.C,g, h) ~ Z% <6a§> p (hDI)a(I~ (852)

Remark. Notice that (except for the placement of powers of % and 4) this
is the same as formula (8.45) for the composition of two semi-classical pseudo-
differential operators.

Proof. Notice that for any f € C*°(R"), Leibnitz’s rule gives
(hDy,)[e"F f] = &% [hD,., + &1
and hence by induction
(hD)* ("% f] = &% [hD, + €)° .

Applied to the formula

(@) (@) = (2nh) /2 / a(a, €, 1) (Ff) (€)de

gives
(PRI = [ (e e @O
where . 5o
b6 = oD 610 = 3 () (D%
by the multinomial theorem. O

The action of a semi-classical differential operator on oscillatory %
densities.

Let P be a semi-classical differential operator
P = Zaa(x, h)(hD)“

so P has right symbol p.
Let v be a semi-classial Fourier integral operator as given by (8.49). Once
again, differentiating under the integral sign shows that Pv is given by

;€= ¢(8)

W3 / pla, €, B)b(E, W)e =T d. (8.53)
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Notice that (with & = 0 and a replaced by p0 this is the same as (8.50). This
shows that I(X,A) is a module over the ring of semi-classical differential oper-
ators.

8.10.1 Semi-classical differential operators act microlocally
as semi-classical pseudo-differential operators.

Let K C R™ be a compact subset. Let
prg- : R®" xR — R"

denote projection onto the first factor. We want to consider the action of the
semiclassical differential operator P on the set of v € I(X, A) of the form(8.49)
where

pren Supp(b) C K. (8.54)

Let p € C§°(R™) have the property that p(§) = 1 on K. Define the operator
p(hD) on the set of u satisfying (8.54) by

p(hD) = ;" 0 p(€) o Fn. (8.55)

More explicitly, (and dropping the half density factors)

(p(D)f)(x) = (2mh)~"/2 / e (Fu ) (€)de.

Then
Pp(D)v = PF; ' p(&)Fnp = Py ' Snpe = P.

In short, P = Pp(D) microlocally in a neighborhood of a point of A.

Applied to ¥(X) regarded as a module over itself, we see that microlocally,
in a neighborhood of any point of 7* X we can write P = Pp(hD). This answers
the issue raised at the end of Section 8.7.5 and we may apply the method of
that section to the solution of (semi-classical) hyperbolic differential equations.

Application: The semi-classical wave equation.

Let
P= " an(z, h)(hD)"

oo <r

be a zero-th order semi-classical partial differential operator on X := R™. In
this section we show how to apply the methods we have developed to solve the
following problem:

Construct semi-classical operators

Ult)e ¥°(X), —oco<t<oo

with
U(0) = p(hD),  pe CF(R™)



8.10. SEMI-CLASSICAL DIFFERENTIAL OPERATORS AND SEMI-CLASSICAL PSEUDO-DIFFERENTIAL O

satisfying
10
_— —= P OO.
; 8tU(t> U(t) mod h

In other words, we want to construct a semi-classical version of the wave operator
6ith(hD)

and show that this is indeed a semi-classical pseudo-differential operator.
If u = p(x,y,t, k) is to be the Schwartz kernel of our desired U(¢), then the
initial condition says that

(o 0.0 = [ ) g, (8.56)
while the wave equation requires that
1.0
—h— — hP =0. .
(ihat h )u 0 (8.57)

Condition (8.56) implies that
w(0) e IT™(X x X, Ax).

The leading symbol of the operator

1.0
( ; h 5 hP)

occurring in (8.57) is just 7, the dual variable to ¢, and so the corresponding
Hamiltonian vector field is %.

Hence, if we take Ag = Ax x (0,0) C T*(X x X) x T*R, the flowout by %
of Ay is just the subset given by 7 = 0 of 7" (X x X) x T*R. We can now apply
the method of the transport equation as developed above to get a solution of
(8.57) with initial condition (8.56) with p € I"™(X x X x R, A).

If ¢, denotes the injection

b : XXX 53 XXX XR, 14(z,y) = (z,y,a)

then
I'f oA=Ax

La

S0
€ I™™X x X, Ax)

proving that the corresponding operator U(a) is indeed an element of ¥°(X).
The construction of U that we just gave shows the power of the symbolic

method. In fact, we will need more explicit information about U (t) which will

follow from more explicit local methods that we will develop in the next chapter.
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8.10.2 Pull-back acts microlocally as a semi-classical Fourier
integral operator.

Let X and Y be smooth manifolds and
G: X—Y

as smooth map. Associated to G is the canonical relation I'¢ € Morph(T* X, T*Y")
where
(#,6,y,m) €Te < y=Gx) and { = dGon.

We have the pull-back operator
G*:C®(Y) —» C*(X).

We would like to think of G* as being associated to the transpose canonical
relation FI;. But G* is not a semi-classical Fourier integral operator. The point
of this section is to show that microlocally it is.

Since we are making micro-local assertions, we may assume that ¥ = R"”.
Let p = p(&) a smooth function of compact support, and p(AD) the operator
sending f € C§°(Y) into p(hD)f where

(D)) =7 [ ayic
Then G* o p(hD) sends f into the function
Tz " / p(Q)e

Let g;(z) denote the i-th coordinate of G(x). The function

Y(y,z,¢) = (G(z) —y) - (= Z(gi(f) —¥i)Gi

i (G(x)—y)-¢
i 7 =

f(y)dydc.

is a generating function for FE. Indeed the condition d¢ip = 0 gives y = G(x)
and then the horizontal derivatives Dy x give (n,G*n) for n = Y. Gdy;. In
other words, G* o p(hD) is a semi-classical Fourier integral operator of order
512 associated to I‘E. O

8.11 Description of the space I*(X,A) in terms
of a clean generating function.

In this section we give a local description of the space I*(X,A) in terms of a
clean generating function. We refer back to Section 5.1.1 for notation and results
concerning clean generating functions, and, in particular, for the concept of the
excess, e, of a generating function.

So let (7, ®) be a clean presentation of A of excess e where 7 : X x R — X
is projection onto the first factor . Recall that Cs denotes the set where g—i =

where s1,...,s4 are the coordinates on R%. In Section 5.1.1 we proved
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Proposition 35. There exists a neighborhood U of Cy and an embedding

f:U— X xR?

such that
mof=m
and
o= frid (8.58)
where

M X xRS X xR, di=d—e

18 the projection
m1(x, 81y, 84) = (%, 81,...,8d;)

and where ¢1 is a transverse gemerating function for A with respect to the
projection Ty : X x R¥" — X onto the first factor. In particular, we have
f(Cy) =77 (Cy,) and the map

o¢
: C A, ) y o
P Cp — (z,5) — (x 83;)
factors as
96 = Py, om0 f.
Now let a = a(z, s, h) € C§°(U x R) and let

p="Fy4:= pEsts /a(m, s, h)e%ds.

Notice that the class of such p when e = 0 (i.e. for transverse generating
functions) is precisely the space we denoted by I¥(X, A, #) in Section 8.1. We
can use the Proposition to show that we haven’t enlarged the space I(’f(X )
by allowing e to be unequal to zero.

Indeed, letting
- (5)
88j

where f(x,s) = (z, fi(x,s),..., fa(z,s)), we can, by the change of variables
formula, rewrite the above expression for p as

11

= hk_%Jr%/d(x,s,h)ei i ds

where
= (f " (a |det J|—1) .

So if we set

a1 (z, 81,y 8dy, h) == /&(x,sl, ceySdy N)dSdy 41 - Sd, (8.59)



234 CHAPTER 8. OSCILLATORY %—DENSITIES.

then

251

p=h"= /al(:zz, S1ye-, sdl,h)e%dsl e dsg, . (8.60)

Since ¢, is a transverse generating function for A we see that we have not
enlarged the space I¥(X, A).
Notice that it follows from the above definitions of @ and a; that if a(x, s,0) =
0 then p € I(’)“H.
If we now go back to the local definition of the symbol as given in Section
8.3.2, i.e.
o, (1) = pgllal(x, 815+ -+ 8d1,0)|cy, s

see equation (8.11), we see that

O¢: (M) = (Paﬁ)* a(x, S, 0)|C¢ (861)

where pg =m0 f and (pg), is fiber integration with respect to the fiber density
along the fiber f*ds.

8.12 The clean version of the symbol formula.

We will now say all this more intrinsically. Let 7 : Z — X be a fibration and
¢ : Z — R a generating function for A with respect to m. Then ¢ is a clean
generating function if and only if the canonical relations,

Ap:pt.=T"Z and I', : T"Z =>T"X

intersect cleanly, in which case A =Ty o A,. If in addition we are given a fiber
%—density, o, on Z this gives us a push-forward operation:

T C(|TZ]2) — (T X|7)

and a %—density, o, on I'y. Now let

v= (271'h)k*%a(z7 h)e%r

be an element of 75— 3 (Z,Ay), where aisin C§°(Z xR) and 7 is a non-vanishing
%—density on Z. Then, by what we proved above, m.v = u is in I¥(X,A). We
will prove that, just as in the transverse case the symbol of y is given by the
formula

o(p) =84 oxoo(v) (8.62)

where sy is the section of Lasiov(A) associated with ¢. (For the definition of
s¢ when ¢ is a clean generating function see §5.13.2 .)To prove this we will first
suppose that A C T*X is horizontal, i.e., A = Ay for some ¢ € C*°(X) and
that ¢ = om. Then Ay sits inside H*Z, so

Fﬂ*A¢=H*ZmA¢:A¢
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and the fibration
I *A¢ —I';o0 A¢ =A (863)

is just the restriction to Ay of the fibration
HZ =7n"T"X —- X.

In other words if we denote by

po Ny = Z
and

p:A—X
the projection of Ay onto Z and A onto X, the map (8.63) is just the map
Ay = A, mAa=p loTmop. (8.64)

In particular the fibers of this map coincide with the fibers of 7, so our enhance-
ment of 7 gives us an enhancement of 75, and hence a push-forward operation

(7a)s : C(ITAG|?) = C(ITAJ?)
and it is easily checked that, for o € C§°(|TA¢\%),
Or 00 = (TA)x0. (8.65)
Thus given v = (2wh)¥a(z, h)ei%T in I%(Z, \y)

oroa(v) =00 py(a(z,0)7)
= pymsa(z,0)

so if B
p=mv = (2rh)* (m.a(z, h)T)e'®
we get for the symbols of 4 and v
o(p) =0r00(v) =s40r00(V). (8.66)

(We can insert the factor, sy, into the last term because, ¢ = 7*¢ involves no
fiber variables and hence s4 = 1.)

Let us now turn to the general case. As we observed above, the fibration,
7 : Z — X can be factored (locally) into a pair of fibrations

AR AN

such that ¢ = ¢1 om and ¢1 : Z; — R is a transverse generating function
for A with respect to m;. Moreover, if we enhance these two fibrations by
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equipping them with fiber %—densities this gives us an enhancement of 7 having
the properties

On = 0g, OO0,

and

T = (1)« (72)

and the assertion (8.62) follows from the transversal version of this result and
the result we’ve just proved.

8.13 Clean composition of Fourier integral op-
erators.

Let X1, X5, X3 be manifolds and M; =T*X;, i =1,2,3. Let
FiCMi_XMH_l, Z:1,2

be exact canonical relations with phase functions ;. Suppose that I's and I'y
are cleanly composable, so that I's x 'y is a C'*° manifold and

K:ToxI'y 5> T90I

is a smooth fibration with connected fibers. Let e be the fiber dimension of this
fibration.
Suppose that
Zi:XixXiJrl XRdi, 1=1,2

that
’/TiIZig)XiXXZ'le, Z:1,2
and ¢; € C°(Z;) are such that (m;,¢;), ¢ = 1,2 are transverse presentations of
Let
Z =X x X3 x (XogxRE x R®), 7:Z = X; x X.
We know that the function ¢ on Z given by

d(x1, x3; 22, 51, 52) = P1(T1, T2, 51) + P2(x2, X3, 52)

is a clean generating function for I's o I'y with respect to 7.
The diffeomorphisms g4, : Cy, — I';, i = 1,2 give us a diffeomorphism

Vo - C¢) — Ty x T
where 74 is the composition

C¢—>C¢1XC¢2—>F1XF2
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and also gives us an identification
FQ * Fl = Fﬂr * A¢ (867)

We have the factorization

Po = KO Ve
Now suppose that 1, j = 1,2 are the Schwartz kernels of Fourier integral oper-
ators Fj of order k; associated with I'; and that they have the local description

i 5 it .
iTTz T2 /a(:cj7xj+1,sj,h)e mdsy, j=1,2.

Then the operator F; o F} has Schwartz kernel

_dy+dotng

p= /M1($17332,h)M2($2,$3,h)d$2 — phitha=5 2 /a1a2€%d51d52d$2-

By the results of the preceding section, we know that
p€ M55 (X, x X3, T, )
where n3 = dim X3. Hence we conclude

Theorem 48. The operator Fy o Fy is a Fourier integral operator of order

k1 + ko — 5 associated with the canonical relation I'y o I'y

8.13.1 A more intrinsic description.

We can describe the construction above more intrinsically as follows. If m; is
the fibration of Z; over X; x X; 1 then m X my is a fibration of Z; x Z3 over
the product X; x Xo x X5 x X3 and Z is the preimage in Z; X Zy of the set
X7 x Ay x X3 where A, is the diagonal in X5 X X5. Therefore 7 : Z — X7 x X3
is the composite map

T=ro(m Xme)oL (8.68)

where ¢ is the inclusion of Z in Z; X Zs and ~y is the projection,
’72X1XA2XX3—)X1XX3.

We will now show how to “enhance” the fibration, m, to make it into a morphism
of %—densities. By the definition above the conormal bundle of Z in Z; X Zy can
be identified with the pull-back to Z of the cotangent bundle, T* X5, via the
map

Z—>X1XA2XX3—>A2=X2

the first arrow being the map, (m o m2) o . Therefore, by Section 7.4.1, en-
hancing ¢ amounts to fixing a non-vanishing section of |T*X2|%. On the other
hand the fiber of v is X5 so enhancing v amounts to fixing a section of |TX2|%.
Thus the constant section, 1, of |T*X,|2z @ |TX5|2 gives one a simultaneous
enhancement of v and ¢. Therefore from (8.68) we conclude
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Proposition 36. Enhancements of the fibrations, m1 and 7, automatically give
one an enhancement for .

Fixing such enhancements the Schwartz kernel of F; has a global description
as a push-forward

(8.69)

where v;(z, h) is a globally defined %—density on Z; depending smoothly on h.
As for the Schwartz kernel of F5 o F; the formula for it that we described above
can be written more intrinsically as

P1+¢2

et (v @ va)el 7). (8.70)

where 4 d
k:k1+k27#f%.

(Note that since we’ve enhanced ¢ the pull-back operation, ¢*, is well-defined
as an operation on %—densities and since we’ve enhanced 7 the same is true of
the operation, m,.) We’ll make use of (8.70) in the next section to compute the

intrinsic symbol of F5 o Fj.

8.13.2 The composition formula for symbols of Fourier in-
tegral operators when the underlying canonical re-
lations are cleanly composable.

From the intrinsic description of the Schwartz kernel of F5 o F} given by (8.70)
and the results of Section 7?7 we get a simple description of the intrinsic symbol
of F5 o F}. The enhancing of 7 gives us a %—density, o, on I'; and from the
symbol of v = *(11 ® vy) we get a %—density, o(v), on A,, and from these
data we get by Theorem 36 of §7.1 an object, o * v, on I'x x Ay of the form
k*a ® B where « is a %-density on 'y o Ay and 3 is a density on the fibers of
the fibration, x : I'y x A, = I'x o A,. Hence we can integrate 8 over fibers to
get a complex-valued function, 7.3, on I'x o A, and Theorem ?7 of § 77 tells

us that the composite symbol
oroo(v)=anp

is, modulo Maslov factors, the intrinsic symbol of F; o F;. On the other hand
the symbol, o;, of F; is a %—density on I';, and from the %—densities, o1 and oy
we again get, by §7.1 , an object 0o xo1 on I'o xI'; which is the pull-back of a %—
density on I'soI'; times a density on the fibers of the fibration, I'oxI'; — I'y0l'y,
and the fiberwise integral of this object is the composite %—density 09 001 ON
I'; oI';. However as we observed above I'o x 'y = 'z x Ag, [y o'y = T'x 0 Ay,
and the fibrations of I'y x I'y over I'; o I'y and of I'z x Ay over I'y o Ay are the
same. Finally, a simple computation in linear algebra (which we’ll omit) also
shows that the objects oo %01 and o, xo(v) are the same. As for Maslov factors,

let Z be the preimage of X7 x Ax, x X3 in Z; x Zy and let s4,, i = 1,2 be
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the section of Lyjasiov(I';) associated with ¢1. By the composition formula for
sections of Maslov bundles described in Section 5.13.5

Sy © 8¢y = S¢

where ¢ is the restriction of ¢1 + ¢2 to Z and sy is the section of Lifasiov(I')
associated to ¢. Hence we have proved

Theorem 49. The intrinsic symbol
0(F) = s¢0- x0(V)
of the Fourier integral operator F' = Fy o F is the composition
o(Fy)oa(Fy)

of the M-enhanced symbols o(F;) = 84,05, 0 0(v;), i =1,2.

8.14 An abstract version of stationary phase.

As an application of the clean intersection ideas above, we’ll discuss in this
section an abstract version of the lemma of stationary phase. We’ll begin by
quickly reviewing the results of the previous two sections. Let X;, i = 1,2, 3, be
manifolds and let M; = T*X,;. Assume we are given exact canonical relations

Fi:Mi_»Mi-‘rla 221,2
and assume that I'; and I'y are cleanly composable. Then we have a fibration
K:IoxI'y = T9o0l'y =T

and the fiber dimension, e, of this fibration is the ezcess of this clean composi-
tion. If F; € F*(T;), i = 1,2 is a Fourier integral operator with microsupport
on I';, then as we showed above Fj o Fj is in the space .Fk(I‘g o I'1) where
k = ki + ko — 5. Moreover if or, € C>°(T;), i = 1,2 are phase functions on I'y
and T, the associated phase function ¢r € C>°(T") is defined by

K*or ={¢r, +v50r, - (8.71)

Recall that
Pox Ty = {(P1, P2, P3),(P;, Piy1) € T}

and that v; : 'y x 'y — T'; is the projection
(P1, Py, P3) — (P;, Piy1), i=1,2.

We now apply these facts to the following special case: Let X and Y be
differentiable manifolds of dimensions m and n and let

f: X—>Y
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be a C*° map and let

Ly ={(z,&ym)y=fla), E=dfin}.
Then f*: C*°(Y) — C°°(X) can be viewed as a semi-classical F.I.O.

m—-n

2

freFay), r=
in the sense that for every P € ¥O(Y)
[P e F(T5).

Moreover, suppose f is a fiber mapping with compact fibers. Then if we fix
volume densities dz and dy on X and Y we get a fiber integration map

Fo i C(X) = C=(Y)

with the defining property that

/f*sowdx:/sof*wdy

for all ¢ € C§°(Y) and ¢ € C*°(X). In other words, f. is just the transpose
of f*. Since transposes of semi-classical F.I.O.’s are also semi-classical F.I.O.’s
we conclude that

fe e FO(Ty)

in the sense that Pf, € FO(T'y) for all P C UY(Y).

We want to apply these remarks to the following simple setup. Let X be a
manifold and Y C X a compact manifold of codimension n. Then we have an
inclusion map ¢ : Y — X and a projection map 7 : Y — pt.. Equipping Y with
a volume density, dy, we get from these maps Fourier integral operators

2 C®(X) = C(Y)
and
e : C°(Y) = C=(pt.) =C
associated with the canonical relations

Il ={(z,&y.m), y=a,n=(d);¢}
and

Fﬂ:{(yan)ayeyanzo}a
ie., ne (dmy)*T*pt. ©n=0 . Then

Iroll ={(y,8),yeY,eT;X, (d,)*¢=0}
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is just the conormal bundle I' = N*Y in T* X. Moreover its easy to see that this
set coincides with T'; xI'f, so I'; and I'T are transversally composable. Therefore
m.t™ is a semi-classical Fourier integral operator. Moreover since

G eFTEM) n=dimX

and
e € FO(T'x) 0 = dimpt.,
Tt € FE (D)
where
n 1, . dimY
Remark.

Since I' is a conormal bundle (jaox = 0 so I' is exact with phase function
er = 0. We’ll make use of this fact below.

Now let A C T*X be an exact Lagrangian manifold with phase function ¢, .
As is our wont, we’ll regard A as a canonical relation

A:pt.=T*X
and I' as a canonical relation
I':T"X = pt.

and composing these canonical relations we get the relation

pt. = pt.
and sitting over it the relation
'xA
which is just the set of triples
(pt.,p, pt.)

with (pt.,p) € A and (p,pt.) € T, i.e., if we go back to thinking of A and T" as
Lagrangian manifolds in 7% X:

I'xA=TnA.

Therefore in this example I' and A are cleanly composable iff I' and A intersect
cleanly in 7" X. Let’s assume this is the case. Then taking

pe (X, A, p)
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and viewing p as the Schwartz kernel of the operator
F,:C*(pt.) > C*(X), c—cp
we get by composition of F.I.O.’s

Ml € IS5 (pt e )
where e = dimI' N A and
k+€+27§7k7dimXeriijLdimXiE
2 2 2 2 2 2
m e dimY
=k+4+ ——- = =

m

2 2 2
and ps. satisfies K*@pe. = ¥i @1 +75 92 where @1 and ¢, are the phase functions
on I' and A and ~; and 5 are the inclusion maps,

I'NnA—T
and

I'nA—A.

Thus since ¢1 = 0 and 9 = ¢ our formula for composition of phase functions
tells us

Lemma 3. The restriction of ¢ to ANT is constant and @py. = ©(p) where p
is any point on ANT.

Thus summarizing, we’ve proved

Theorem 50. The integral

mb*u=/(b*u) dy
Y

has an asymptotic expansion
('D o0
e TPU PRt E =5 N T gt 8.72
h 2_% i (8.72)

This is, in semi-classical analysis, the abstract lemma of stationary phase.

Remark.

If I and A intersect cleanly in N connected components
(T'NA),, r=1,...
one gets a slightly generalized version of (8.72)
* G i(pT<pt') k+12—e — T
« ~ ——=hFTE e irh 8.73
Tal™ ;e Y ;a ’ (8.73)

where ¢, (pt.) = ¢(pr), pr € (ANT), and e, =dim ANT,.



Chapter 9

Pseudodifferential
Operators.

In this chapter we will give a brief account of the “classical” theory of semi-
classical pseudo-differential operators: pseudo-differential operators whose sym-
bols satisfy appropriate growth conditions at infinity. We will show that most
of the main properties of these operators can be deduced, via microlocalization,
from properties of the semi-classical pseudo-differential operators with compact
support that we introduced in Chapter 8.

9.1 Semi-classical pseudo-differential operators
with compact microsupport.

In §8.6 we defined a class of operators which we called “semi-classical pseudo-
differential operators”. A more appropriate description of these operators is
“semi-classical pseudo-differential operators with compact microsupport”. On
open subsets of R™ they are integral operators of the form

A:C®U) = C(U), ¢ /KA(x,y,h)cb(y)dy

where K 4(z,y, h) is an oscillatory integral

(w—y)-E
i hy)

Ka(z,y,h) z/a(ac,y,f, h)e d¢ (9.1)

with amplitude
a € CyPUxUxR" xR).

By the general theory of oscillatory integrals, these are “semi-classical Fourier
integral operators associated to the identity map of T*U to itself’. We know
from the general theory that their definition is coordinate invariant. However,
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since these operators will play a fundamental role in this chapter, here is a short
proof of this fact:

Let f:V — U C R" be a diffeomorphism, and let
B= Ay
so that B is an integral operator with kernel
Ka(o.&) = [ alf(@). 1), me T et Df(w)] de.
Define f;; by
fix) = fily) = Zfij(iﬂ,y)(xj —Yj)
j

and let F' be the matrix F' = (f;;). So
(f(@) = f) - €= (Flz,y)(z —y) €= (z—y) - Fl(z,y)¢

and the above expression for K; can be written as

Kp = / by, &, h)e’ T de
where

b(z,y, 2,6 h) = a(f(x), f(y), (F1) " (2, 9)¢, k) |det (F(z,y) ' Df(y))|. O
(9.2)
Equation (9.2) shows how this changes under a diffeomorphism, and, in
particular that it is intrinsically defined.
Moreover, since

fi(x) = fily) = Dfi(x —y) + O(l|lz — y|*),
equation (9.2) also shows that

b(y,y,£,0) =a (f(y), f(y), Df(y)T€,0).

In other words, it shows that the leading symbol of f*A(f~1)* is g*o(4)(z, &)
where g : T*V — T*U is the diffeomorphism of cotangent bundles corrrespond-
ing to the diffeomorphism f.

So this gives us an elementary proof of the a property of pseudo-differential
operators that we proved in Chapter 8 - that their leading symbols are intrinsi-
cally defined as functions on the cotangent bundle.

Let us define the microsupport of A to be the closure in T*U of the set of
points, (z,£), at which D;‘D,ﬁva(x,m,g, 0) # 0 for some « and N.

We will let Wo(U) denote the set of semi-classical pseudo-differential oper-
ators with compact microsupport in U, and by Woo(U) the subset of Uy(U)
consisting of semi-classical pseudo-differential operators with microsupport in
the set £ # 0.

More generally, if X is an n-dimensional manifold, we denote the analogous
objects on X by Wo(X) and by Wgo(X). Our proof above that the definition
of of semi-classical pseudo-differential operators with compact microsupport is
coordinate invariant justifies this definition.
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9.2 Classical YDQO’s with polyhomogeneous sym-
bols.

Our goal in this chapter is to get rid of the “compact microsupport” condition
and show that Uy(X) is a subalgebra of a much larger class of of semi-classical
pseudo-differential operators.

As a first step in this direction, we will give in this section a somewhat
unorthodox description of the class of classical pseudo-differential operators with
polyhomogeneous symbols, the standard house and garden variety of pseudo-
differential operators of Kohn-Nirenberg, Hormander, et al. (See for instance,
[HorIII].) Our description is based on an observation that we made in §8.10: Let
X be a manifold and let A : C*°(X) — C*°(X) be a differential operator. We
saw that if P € Uy(X) then AP € ¥y(X).

Now let A : C§°(X) — C~°°(X) be a continuous operator in the distribu-
tional sense, i.e. admitting as Schwartz kernel a generalized function

Ka€C (X x X)

(relative to some choice of smooth density).
We will convert the observation we made above about differential operators
into a definition:

Definition 7. A is a classical pseudo-differential operator with polyho-

mogeneous symbol if,
AP e \IJoo(X)

for every P € ¥o(X).
Remarks.

e We will explain at the beginning of the next section why we cannot replace
Uoo(X) by ¥o(X) in this definition.

e From the results of §8.10 we know that differential operators belong to
this class.

Here are some other examples: Assume for the moment that
Ki€ClX x X)

for some ¢ > 0. Pre- and post-multiplying K4 by compactly supported smooth
cut-off functions, we may assume that X = R". We may write

Ka(z,y) = K(z,2 —y)

where K(z,w) = Ka(z,z — w).
Let P be the zero-th order semi-classical pseudo-differential operator

P = 4(x)p(hD)
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where ¢(w) =1 on the set where K (z,w) # 0 and p = p(§) € C(R").
The Schwartz kernel of P is

e (h—" / p(é)ei”i)'%)

and hence the Schwartz kernel of AP is
_ i(z—y)-€
I "/K(x,x—z)e n p(€)dzdE.

For fixed x, let us make the change of variables w = z — . The above integral
then becomes

/K(x, fw)eiwTE e’ (e p(&)dwdg.

This equals

(2m)"/2 / K (x 2) p(e)e T de (9.3)

where K is the Fourier transform of K with respect to w:
K S K —iwtq
(z,0) = W (z,w)e w.

Suppose that p is supported on the set

1
e<|igll< -
€
and is identically one on the set
1
2e < < —.
e<lléll < 5

Then P € Woo(R"), so in order for AP to be a semi-classical pseudo-differential
operator with compact microsupport, K has to have a semi-classical expansion

K <J:, 2) ~hk ;Fi(x,ﬁ)hi

on the set 2e < [|£]| < &, for some k.
Letting h = ﬁ and writing

&
A

this becomes the more conventional expression

§= €l
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for ||€|| >> 0 where

ailz.€) = |¢|*F <x én) el (9.5)

is a homogeneous symbol of degree —i + k. In other words, A is a classical
pseudo-differential operator with polyhomogeneous symbol a(z,£) = K(z,¢).
(For the standard definition of these objects, see [HorlII] p. 67.)

Notice that since K (z,-) € C§, k has to be less than —% — /.

We now prove a converse result - that if A is a classical pseudo-differential
operator with polyhomogeneous symbol

o0

a(z,§) ~ Y ai(x,¢) (9.6)

=0

which is compactly supported in z and of degree kK < —n then A is a polyho-
mogeneous pseudo-differential operator in our sense.

Let
1

@ny? /a(l’,f)eiw'gdfa

be the inverse Fourier transform of a with respect to £&. We recall the following
facts about the Fourier transform:

K(z,w) =

Lemma 4. If —k > n+{ then K(z,-) € C*.
Proof. For |a| < ¢,

(D) K ) € s [ laten 6 de

is bounded. Indeed, the integrand on the right is bounded by (¢)¥+¢ and k4 <
a O
Lemma 5. On the set w; # 0,
1 o \" ,
K(z,w) = w;NW/ (z(%]) a(zx, €)e™tde
for all N.

Proof. Use the identity

a\" _
—i— ) W& = NeiwE
( 35;‘)

and integration by parts. O
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Lemma 6. If a is a polyhomogeneous symbol of degree k, then

s a polyhomogeneous symbol of degree k — N .

Proof. Term-wise differentiation of the asymptotic expansion a(z,§) = > a;(z, £).
U

Corollary 51. K(z,w) is C* on the set w # 0.

Now note that by the Fourier inversion formula,

Hence for p € C§°(R™) with support on the set
1
e<igl < -,
€

the Schwartz kernel of Ap(hD) is

nn [ (i § ) sl e

by (9.3). Hence, by (9.6), Ap(hD) € Tgo(R™).
More , if P € ¥o(R™) and p = 1 on the microsupport of P, then by (8.45)

P = p(hD)P

and hence

Conclusion: A is a polyhomogeneous pseudo-differential operator in our
sense.

Let us now get rid of the assumption that A is an integral operator:

Let X be a manifold and
A:C(X) —» CT(X)

be a continuous operator with Schwartz kernel K 4(z,y). Pre- and post- multi-
plying K 4 by compactly supported cut-off functions we may assume that

K4 € Cy® (R xR").
Hence by Schwartz’s theorem,

Ka = (Dy)*(D,)*"Kp
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where
Kp € C§(R™ x R")

for some positive integers £ and N. In other words,
B = <D>—2NA<D>—2N

is an integral operator with a C* kernel. Now (D)~2V is a classical pseudo-
differential operator with polyhomogeneous symbol

(1 + el =

and hence by what we proved above, it is a pseudo-differential operator with
polyhomogeneous symbol in our sense. Thus if A is a polyhomogeneous pseudo-
differential operator in our sense, so is B. We conclude that B is a polyho-
mogeneous pseudo-differential operator in the standard sense, i.e., operates on
Co(R™) by the recipe

- - / b(z, €)™ f(€)dE

@m"

where b is a standard polyhomogeneous symbol. Thus A is the classical pseudo-
differential operator with polyhomogeneous symbol

a(w,8) = (Dy + €)*b(x,)(6)*".
A consequence of this computation which will be useful later is

Proposition 37. Let A : C*(R™) — C*(R"™) be a classical pseudo-differential
operator with polyhomogeneous symbol a(z,€) of order k. Then A(D)~2N is a
classical pseudo-differential operator with polyhomogeneous symbol a(x, £)(€) =N,

In particular, if k — 2N < —{ —n then A(D)~2N is an integral operator and its
kernel is in C*(R™ x R™).

As a corollary we obtain

Proposition 38. Let A : C§°(R™) — C~°°(R") be a classical pseudo-differential
operator with polyhomogeneous symbol of order k. Then A maps C§°(R™) into
C>®(R™).

Proof. For any /£ pick N so that k — 2N < n — £ and write A = B(D)?" where
B is a a classical pseudo-differential operator with polyhomogeneous symbol of
order k—2N < n—/{. Now (D)2 maps C$°(R") into itself and B maps C§°(R")
into C*(R™). O

Remarks.

1. Formally, the Schwartz kernel of A is the generalized function

Ka(r,y) = / al, )’V 4.
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If we make the change of variables £ +— £/h this becomes

o)

In other words, in semi-classical form, A is the operator

C®R™) > f -t / o, £, )T (Faf) (€)de

where

ety = ()

and JFy, is the semi-classical Fourier transform.
Now Frp(hD)f = p(§)Fnf, so Ap(hD) is the operator given by

[Ap(hD) ] (x) = A"/2 / oz, €, W)p(€)e" T (Fu) (€)de. (9.7)

2. Let A : Cg°(X) — C™(X) be a smoothing operator. In other words,
assume that A has a Schwartz kernel K = K4 € C*°(X x X). Then A can be
viewed as a classical pseudo-differential operator of order —oo. Hence, for every
P € ¥y(X), the operator PA belongs to ¥y, (X). This can also be easily
proved by the methods of Chapter 8. Indeed, we may write

i¢(z,y)
T

K(z,y) = K(x,y)e

where ¢ = 0. Hence A can be regarded as a semi-classical Fourier integral
operator with microsupport on the zero section of T*(X x X). Soif P € ¥o(X),
its microsupport does not intersect the microsupport of A, and hence AP is a
Fourier integral operator (with microsupport on the zero section of 7% (X x X))
of order —oco. In other words from the microlocal perspective it’s the zero
operator.

9.3 Semi-classical pseudo-differential operators.
We have seen that an operator
A:CP(X) = C~(X)

is a classical polyhomogeneous pseudo-differential operator if and only if it has
the property
AP € \I’Qo(X) forall P e \Ifoo(X)

The condition that P € Wyo(X) requires not only that P have compact micro-
support, but also that the microsupport of P is disjoint from the zero section
of T*X. We will now show that it’s important to make this stipulation. We



9.3. SEMI-CLASSICAL PSEUDO-DIFFERENTIAL OPERATORS. 251

will show that if we impose on A the stronger condition: “AP € ¥y(X) for
all P € Uy(X)” then essentially the only operators with this property are
differential operators.
To see this, let us assume that X = R™ and that the Schwartz kernel K 4 of
A'is in C§(R™ x R™) for large ¢. Let K be defined by
Ka(z,y) = K(z,2 —y),

where K(x,w) = Ka(z,z —w). Let p € C§°(R™) with
1
o) =1 for ] < -

Then Ap(hD) has kernel
n/2 2 5 j(2=vy)€
m2 [ & (2% ple)e ™+ ag
by (9.3). Thus if Ap(hD) € ¥o(X), we would have an asymptotic expansion
K|z & ~ thFl(x R
) h )

for ||€| < %, with £ > % + £. Thus for i < 1 we may replace £ by h{ in this
expansion to get

K(z,8) ~ h* Y Fi(x, hOH

and hence, letting i — 0, R
K(z,8) =0.

The situation becomes a lot better if we allow our operators to depend on
h. More explicitly, let
Ap : CE(R™) — C°(R™)

be an operator with Schwartz kernel
Ka(z,y,h) € CY(R" x R" x R)

and set
K(x,w,h) = Ka(z,z — w, k).

Since K (z,w, h) is in C¢ as function of z, there is a constant C' such that
/|D2‘,K(x7w,h)| dw<C, V |of<Ht.

So if K denotes the Fourier transform of K with respect to w, we have

EK(z,&,h)|<C VY |a| <L (9.8)
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We now repeat the argument we gave at the beginning of this section, but keep
track of the h-dependence: As above, let p = p(§) € C§°(R™) be supported on
the set [|¢]| < 1 and be identically 1 on the set [[£]| < 5-. By (9.3), the Schwartz

kernel of Ap(hD) is
i [ & (w - h) ple)e T de.

For Ap(hD) to be a semi-classical pseudo-differential operator with compact
microsupport for all choices of such p, we must have

K <x ’ih) = b(x, &, h)

for some b € C°°(R™ x R™ x R). In other words, K has to be a function of the
form

K(w,€ h) = b, hE, ). (9.9)
We have thus proved:
Theorem 52. Let A : C5°(R™) — C§(R™) be an operator with Schwartz kernel

K = K(z,y,h) € C5(R" x R" x R).
Suppose that A has the microlocality property
AP € Uo(R™) for all P € Uy(R™).

Then the Schwartz kernel of A is given by an oscillatory integral of the form

z—y)-§

hn / b(a, hE, B)el " dg (9.10)

where (by (8))
[b(x, &, B)| < CR(E) ™. (9.11)

We will devote most of the rest of this section to proving a converse result.
Let us first note that (9.10) can be written as

/ b(x, e, h)e @Y Ede (9.12)

by making the change of variables £ — h¢. So A = Ay, is the operator
(A7)(a) = [ b Wy ey (9.13)

where f is the Fourier transform of f. This operator makes sense under hy-
potheses much weaker than (9.11). Namely, suppose that

b(z, &, R)| < C{E™ (9.14)

for some (possibly very large) integer m. We claim:
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Theorem 53. For b satisfying (9.14) the operator (9.13) is well defined and
has the microlocality property

AP € Uo(R") if P e Wo(R™).
Proof. Since f € Cg°(R™) we have

1£ (&) < Cule)™*

for all ¢ so the operator (9.13) is well defined. Moreover, for p € C§°(R"),

(Ap(hD))(x) = h~"/? / b, €. W)p(€)e"F Fof(€)de (9.15)

” Ap(hD) € W(R™).
O

For the operator A to have other desirable properties, one has to impose
some additional conditions on b. For instance, one such desirable property is
that the range of A be contained in C*°(R™). We will show that a sufficient
condition for this to be the case is a mild strengthening of (9.15):

Theorem 54. Suppose that for every multi-index o there is a C = C(«) and
an N = N(«) such that

|Db(x, &, )| < O (9.16)
Then A maps C§°(R™) into C°(R™).
Proof. By (9.13)

(DEAf)(2) = / (Dy +€)b(a, hE, B)ei™ F(€)de

and by (9.16) the integral on the right is well defined. O

Another desirable property is “pseudolocality”. Recall that if X is a man-
ifold, and A : C§°(X) — C*°(X) is a linear operator, then A is said to be
pseudolocal if, for every pair of functions p1, p2 € C§°(X) with non-overlapping
supports, the operator

Coo(X) > f = p2Apif

is a smoothing operator, i.e. an operator of the form
£ [ pa(a)K @ y)on(w)dy
where K is a C* function on the set x # y. We claim that we can achieve this

property for the operator (9.10) by imposing a condition analogous to (9.16) on
the ¢ derivatives of b(z, &, h):
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Theorem 55. Suppose that for all multi-indices « there is a constant C = C(«)
such that
|Dgb(z, &, k)| < C(g)m1ol, (9.17)

Then the operator (9.10) is pseudolocal.

Proof. For k large,
Af = Anew<D>2kf

where

(Ao f) (@) = / b €, B)(€) e f(¢)de.

Since (D)?* is pseudolocal, A will be pseudolocal if A, is pseudolocal. Thus
replacing A by Apew, we may assume that the m in (9.17) is less than —n — £
for ¢ large. In other words, we can assume that A is an integral operator with
Schwartz kernel

Ka= / bz, hE, h)e' @ YEde

in C*(R™ x R™). Now for any multi-index o we have

(y — ) / b(w, hE, h)e'"~V8dg = / b(x, hé, h)(=Dg)™e'"~¥)4d¢

= / Dgb(x, h¢, h)e' )8 dg
by integration by parts. Thus, by (9.17)
(y — ) K (x,y, h) € C*H1I(R™ x R™).

Since |a| can be chosen arbitrarily large, this shows that K4 is C°° on the set
x # y, and hence that A is pseudolocal. O

The inequalities (9.16) and (9.17) are the motivation for the following defi-
nition:

Definition 8. A function b = b(x,&, h) is said to be in the symbol class S™ if,
for every pair of multi-indices o and 3, and for every compact subset W C R"”,
there is a constant Cw o g such that

DS Db(x, &, h)| < Cw,a,5(6)™ 7

forallx e W,
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From the previous two theorems we conclude that an operator A given by

(Af)(x) = / b, B, B)e™ € (€)de
with
be S™

maps C§°(R™) into C*°(R™) and is both pseudolocal and microlocal.

To relate the results of this section to the theorem we proved in the preceding
section, we note that a particularly nice subset of S™ is the set of polyhomo-
geneous symbols of degree m given by the following definition:

Definition 9. A symbol b(x,&, k) is a polyhomogeneous symbol of degree m if
there exist, for i = m,m — 1,... homogeneous functions of degree i in &:

bi(x,&,h) € CF(R™ x (R"\ {0}) x R)

such that for p € Cg°(R™) and r < m

b—(1—p)> bieSm

Operators with symbols of this type we will call semi-classical polyhomoge-
neous pseudo-differential operators, or SCPHWYDO’s for short.

A nice property of these operators is that they can be completely character-
ized by microlocal properties: More explicitly, let X be a manifold and

A C(X) = C®(X)

be a family of polyhomogeneous operators in the sense of §9.2 which depend
smoothly on A. By this we mean that its restriction to a coordinate patch has
a polyhomogeneous symbol (in the sense of §9.2):

a(w,&,h) € CF(R" x R" x R).

Then Ap, viewed as a semi-classical object, i.e.as an operator depending on # ,
is a SCPHYDO if

a(z, &, k) = b(z, h, )
and, as we proved above, this is the case if and only if AP € Uy(X) for P €
Uo(X).

9.4 The symbol calculus.

The “semi-classical pseudo-differential operators with compact microsupport”
that we discussed in §8.7 were integral operators

(Af)(w) = / K a5, h) £ (y)dy
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with kernel of the form

(z—y)-€

Ka(z,y,h) :h—”/a(x,y,g,h)ei R de.

In particular, the symbol, a(z,y, &, i) of A was allowed to be a function of both
the variable x and the variable y. We will show that the same is true of the
semi-classical pseudo-differential operators that we introduced in Section 9.3.

We begin by enlarging the class of symbols that we introduced in Section
9.3:

Definition 10. A function
a=a(z,y,&,h) € C°(R" xR" x R x R)

s said to be in the symbol class S™ if for all multi-indices «, 3, and all
compact subsets W of R™ x R™ there are constants Cy g~ w such that

DD} DL a(x,y,& )| < Caprw (O™ Y (2,y) € W. (9.18)
We will show below that operators with symbols of this type are essentially
the same operators that we introduced in Section 9.3. For the moment, let us

assume that m < —¢ —n with £ > 0. Let A be the operator with Schwartz
kernel

Ka(z,y,h) = / a(z, y, k¢, h)e' ¥4 de, (9.19)

From the above estimate we see that
(DD Kala )] < Cov [ (€)™ dg

for |a| + |B] < £. Since m + £ < —n the integral on the right converges, and
hence K4 € C*(R" x R™).
A similar argument shows that A is pseudolocal: For 1 <r <n

(z, —y)N / a(z,y, ke, h)e' ¥ Edg

= /a(x,yﬁ{,h) <_i3(zr

a N
:/ (i8£r> alz, y, he, h)e V€,

So by (9.18) and the preceding argument,

N
) ei(w—y)fdg

(xr — yr) N Ka(z,y,h) € C7NV(R™ x R™).

In other words, K4 € C*TV(R™ x R") for all N on the set = # ¥.
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Let us now prove that A is a semiclassical pseudo-differential operator with
symbol of type S™ in the sense of Section 9.3: Replace a(z,y, &, h) by its Taylor
expansion in y about the point z:

a(z,y,& h) ~ Z % (88y> a(z,z, &, R).

Plugging this into the right hand side of (9.19) one gets an asymptotic expansion
Ky~ ZKQ(mvyah) (920)
where

Ka(w,y, h)

O\” e
/(ay) a(x7x’h€’h)<yTx)ez(x—y)'€d§

- ! (a)aa@:,x,hf,h)(Dg>aei<”>fd5

al dy
hlal 8 “ «@ W(x—y)-
= T <5y> D¢a(x,x, h, h)e (z=9)€qe.

Thus the operator with Schwartz kernel K, is a semi-classical pseudo-differential
operator A, with symbol

Rlel /oY
ad:a!(ﬁ)y) D¢a(x,x,&, h).

Furthermore,
a=at +r

where af is in ™ and has an asymptotic expansion

plel o\
aﬁ(x,f,h)zzj (ay) Dga(z,z,&,h) (9.21)

(03

and r(x,y,&, h) is in S7°° and vanishes to infinite order at i = 0.
Letting A* and R be the operators with these symbols we conclude that

A=A+ R (9.22)
where A% € U™ and the Schwartz kernel
/r(x, y, he, h)e' @€
of R is a C'*° function which vanishes to infinite order at & = 0.
One immediate application of this result is

Theorem 56. If A is a semi-classical pseudo-differential operator with symbol
in S™ then its transpose is a semi-classical pseudo-differential operator with
symbol in S™.
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Proof. If the Schwartz kernel of A is given by (9.19) then the Schwartz kernel

Ka(y,x) of Al is given by

/ a(z, y, hE, h)e ¥ Edg,
O

In particular, one can formulate the notion of microlocality in terms of “mul-
tiplication on the left” by microlocal cut-offs:

Proposition 39. For every semi-classical pseudo-differential operator P of
compact microsupport the operator PA is a semi-classical pseudo-differential
operator of compact microsupport.

We will let W*(S™) denote the class of elements of ¥* whose symbols belong
to S™. If we do not want to specify k we will simply write U(S™).

9.4.1 Composition.

We will next show that the composition of two pseudo-differential operators
A€ U(S™) and B € ¥(S™2) with m; < n, i = 1,2 is in W(Sm1+™m2),

Indeed, by what we just proved, we may assume that A has a symbol of the
form a(x, &, h) and that B has a symbol of the form b(y, £, k). This implies that
the Schwartz kernel of A is of the form

Ky(z,y,h) = K(z,z — y, h)
where
K(x,w,&) = /a(x,hf,h)em'&dg.
By the Fourier inversion formula
az, hé, h) = (2m)"K (2, w, h) (9.23)

where K is the Fourier transform of K with respect to w.
By the identities above, the Schwartz kernel of AB is given by

/K(% x — 2, h)e!CYEb(y, he, h)dzdE.
Making the change of variables z = w + x this becomes
/ K (x, —w, h)e' ¢e@ ¥ Ep(y, & h)dwde.

By the Fourier inversion formula and (9.21) the inner integral is a(x, i€, i) so
the above expression for the Schwartz kernel of AB becomes

/ a(x, hE, h)b(y, he, h)e' )€,

We have proved
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Theorem 57. Under the above hypotheses, AB € W(S™T™2) qnd its symbol
18

a(x7 g? h)b(y7 5’ h)'

9.4.2 Behavior under coordinate change.

The operators we considered in §8.6 were the restrictions to open sets of R™
of objects which were well defined on manifolds. To prove the same for the
operators we are studying in this chapter, we must prove “invariance under
coordinate change”, and this we can do by exactly the same argument as in
89.1. More explicitly let U and V be open subsets of R and f : V — U a
diffeomorphism. Let a(z,y,£f) be a symbol in S™ with m <« —n and with
support in in the set {(z,y) C U x U} and let A be the operator with a as
symbol. By the argument in Section 9.1, f*A(f~1)* is a semi-classical pseudo-
differential operator with symbol

ag = a(f(x), f(y), (FY) 7€ ) |det fy F (2, y)]

and, by inspection ay € S™.

Our next task is to get rid of assumption, a € S™, m < —n — £. One way to
do this is by distributional techniques, but, in the spirit of this book we will do
this by a more hands-on approach. For a € S™, m < —n, let

<Dm + g 2N
Ta—a_ <£>21>Va _ (9.24)
Then Ta is in S™ 1 and
<th>2N/Wei($—y)'f de (9.25)

= /(a —Ta)(x,y, hé, h)e!@=vE de |

Thus setting
a+Ta+---+T*N-1q

(€N

b=

we have by (9.25)
(hD,)?N / b(z,y, he, h)e' V)€ ds
= /(a —T*Na)(z,y, he, h) dE .

Thus the operators, B and C with symbols, b and ¢ = T?Na, are in U™~ 2V and

A= (hD,)*B+C. (9.26)
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Using this formula we can make sense of A for a in S™ when m is large, namely
we can choose N with m — 2N <« —n and then define A by (9.26). Notice
also that by taking transposes in (9.26) we get the transpose identity: A! =
BY(D,)*N + C*. Moreover by Theorem 5 we can replace A, B and C by their
transposes in this identity, and by doing so, we get a “left handed” version of
(9.26)

A= B(hD,)*N +C (9.27)

with B and C in ¥™~ 2N One application of these formulas is making sense of
the product, A3 Ay where A; is in U™ and the m;’s are large. Letting

A = (hD)VB, +Cy

and

AQ = B2<th>2N + CQ
the product becomes
(hD?NY By Bo(hD,)*N + (hD,)N B1Cy + Oy Ba(hD,)N + C1Cy

and for N large By By, B1Cy and C1C5 are in UF for k = m; +mo —4N < —n.
We observed in the preceding paragraph that YDO’s with symbols in S™, m <
—n are invariant under coordinate change and hence are intrinsically defined on
manifolds. Combining this with (9.26) and (9.27) we can remove the restriction
m < —n. Indeed, these equations imply

Theorem 58. The algebra of WDO’s with symbol in S™, —oco < m < o0 is
invariant under coordinate change and hence intrinsically defined on manifolds.

The same argument also shows that the principal symbol, a(z,z,&,0), of
a(x,y,&, h) is intrinsically defined as a function on T*U. Indeed, for m < —n
one can prove this exactly as we did in Section 9.1, and for first order differential
operators (i.e.vector fields) the proof is more or less trivial. Hence by (9.26) and
the composition formula for symbols described in Theorem 57, it is easy to
remove the restriction m < —n.

Our goal in the last part of this chapter will be to explore in more detail
symbolic properties of the operators above. In particular three issues we’ll be
concerned with are:

1. Canonical forms for symbols. We’ve seen above that every A € U™ has a
unique symbol of the form, a(z, &, h), i.e., a symbol not depending on y.
These symbols we will call left Kohn—Nirenberg symbols (or left KN sym-
bols for short). Similarly by taking transposes we get for A = (A4%)! a
unique right Kohn—Nirenberg symbol of the form, a(y,£, h). An interest-
ing compromise between these extremes are Weyl symbols: symbols of the
form, a(%ﬂ , &, k) and, interpolating between these three classes of sym-
bols, generalized Weyl symbols: symbols of the form a((1 —t)x + ty, &, h),
0<t< 1.
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2. Compositions and transposes. Let ¥ be the union, [ J¥™. We have shown
that this space of operators is closed under composition and transposes.
We would like, however, to have a “symbolic calculus” for these operations,
(e.g.) a composition law for symbols analogous to (9.3).

3. Converting symbols of one type into symbols of another type. From (9.21)
one gets formulas relating the various canonical forms in item 1, e.g. for-
mulas for expressing left KN symbols in terms of right KN symbols or
expressing right KN symbols in terms of Weyl symbols. One of our goals
will be to describe these “conversion” laws in more detail.

The key ingredient in these computations will be

Theorem 59. Two symbols ai(x,y,&,h) and as(z,y,§, k) in S™ define the
same pseudo-differential operator A if

n
(@—y)- 0 (@—y)
a —ay=e RN (el a gcj) (9.28)
=9
with

cj € Sm+1.
Proof. Let us first prove this result under the assumption that m < —n — ¢ with
£> 0. Let b =a; — as. The Schwartz kernel of the operator defined by b is
(x—y)-€

o / b, €, h)e' S de

and this vanishes if the integrand is a “divergence”, as in the right hand side of
(9.28).

To prove this theorem in general, notice that

(z— j&=v)-€

WDy, + & = e "7 o (hD, ) o'~
So if we apply the operator (9.25) to a divergence

_ilemwee Z 0 ( EEE: )
e / e g
3

we again get such a divergence. O

In particular, for a € S™, the symbols

a(x, Y, fa h)(x - y)a
and
(=hD)%a(z,y,& h)

define the same operator. (We already made use of this observation in the course
of proving (9.22) for symbols a € S™ with m < 0.)

In the next section we will address the issues raised in items 1-4 above
by elevating (9.28) to an equivalence relation, and deriving identities between
symbols of varying types by purely formal manipulation.
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9.5 The formal theory of symbols.

We say that two symbols ai(z,y,£,h) and as(z,y,&, k) in S™ are equiva-
lent if their associated WDOs, A; and A,, differ by a YDO, B, with symbol
b(x,y,& k) € he°S™.
Starting with the relation
a(z,y, & h)(x —y)* ~ (=hDe)*(a(z,y,&, )

we will generalize the formula (9.22) to a € S™ with m arbitrary. Namely,
a(SU,%f’ h) ~ Zi 2 aa(x7y7£ah) (y_m)
al \ Oy i

1 o\"“
~ 4009 () atenen
~ aR(x7§7h>

[e%

y=x

where

(9.29)

0
aR(xyfa h) ~ €xp <hayD§> a(m7ya£7h)

y=x
is a right Kohn-Nirenberg symbol (i.e., depending only on z).

Notice that if ar(y,&, k) is a left Kohn-Nirenberg symbol (depending only
on y) then

ol €.1) ~ oxp (] De) aslo. 6.1 (9.30)
and hence P
ar, (yv fa h) ~ €Xp (_hayDE) QR(Z/, ga h) (931)

From now on, to avoid confusing x’s and y’s, we will replace the z and y by
a neutral variable z, and express this relation between right and left symbols as

ar(z,&,h) ~ exp (ﬁaazDg) ar(z,& h). (9.32)

We can generalize right and left symbols by substituting (1 — t)z + ty for z in

a(z, &, h).
This gives the generalized symbol

aw(z) =a((1 —t)x +ty, & h).

This can be converted by (9.29) into a right Kohn-Nirenberg symbol

arp(xz,&,h) ~ exp (haayD5> a((l —t)x +ty, & h)

y=x

0
= exp <th8$DE) a(z,&, h).
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Reverting to our neutral variable z this becomes

aR(Zv fa h) = exp <thiDE) aW,t(Zv 57 h) (933)
and
el 1) = exp (=t 5D ) a1 (9.34)

9.5.1 Multiplication properties of symbols.

We start with Theorem 57: If A is a YDO with right Kohn-Nirenberg symbol
a(xz,& h) and B is a $DO with left Kohn-Nirenberg symbol b(y, £, i) then the
symbol of AB is a(x, &, h)b(y,&, k). (We proved this in Section 9.4 for symbols
of large negative degree.) But by (9.26) and(9.27) this extends to symbols of
arbitrary degree.)

Let us now convert this, using (9.29) into a right Kohn-Nirenberg symbol:
We obtain

3" LhDE (ata. & 10 b(y.€.1)

y=x

|
_ Z% > g (hDQ)” ala €1) (hD)" Ob(a €.

Btr=a

3 ; (hDe)” (. €, h)% (hDe)" 87 (92b(x, €, 1))
By ’

Z % (hDg)B a(x, &, )P exp (hD¢0g) b(x, &, h).
B

If
b(y7 f» h) = bL(yvgv h) = exp (_hDEam) bR($7 f? h)|w:y

this formula simplifies to
1
> 51 (D)’ alw, & MO ba(w, &, ). (9-35)
7 P!

In other words, let ar and b be two right Kohn-Nirenberg symbols and let A
and B be the corresponding YDQO’s. Then up to equivalence, the right Kohn-
Nirenberg symbol of AB is given by (9.35). This generalizes a formula that we
proved in Chapter 8 for YDO’s of compact microsupport.

There is a more compact version of (9.35): We can write

3 ; (hDe,)’ (=1, €0, 1)92 b (22, &2, 1)
5

as
0
exp (hDgl 822> aR(zl, 51, h)bR(227 §27 h)
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We then get (9.35) by setting z = z1 = 20 and £ = &§; = &. In other words, the
symbol of AB is given by

0
exp <hD51 62:) ar(21,&1, h)br(22, &2, h) : (9.36)
2 z=z1=z22, £=£1=E2

Our next task will be to derive an analogue of this formula for symbols of
type (W, t). First we show how a product symbol of the form a(z, &, h)b(y, &, i)
can be converted into such a generalized Weyl symbol: Let

z=sr+ty, s=1—-1t

so that
r=z+tlz—y), y=z-s(@—y).

By Taylor’s expansion

(I(&C,f,h)b(y,g,h) Z 6' Z f h ( )’Yazb(z7§7h>(x_y)ﬁ+’y

7
_ Z;!(t;’u Ef) a(u, &, Wb(v, €, )
~ S (omtm)

We can simplify this further: Replace

«

(z—y)

U=Vv=z2

hD¢)® (a(u, &, h)b(v, &, )

U=V=2

1 (zf—’faa) (hDe)” (alu, & W)b(v, €, )

ol
by the sum
AR AN
I3 - 4 — —
5 0o (s =t ) 0D, (s =) ol & 1o

ptr=a

evaluated at £ = 1. Summing this over « then yields

9] 0 0 0
exp (hD§ (Say — tam> + th (Say - tax>> a(fE,g, h)b(y7na h)

Now let a(z,&, k) and b(z, &, k) be symbols of type (W, t), and let

r=y=z, £=n

0
exp (tath5> a(x,& h)

ai

by = exp <—8(§;th> b(y,n, h)
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be the corresponding right and left Kohn-Nirenberg symbols so that their sym-
bolic product is a;(z, &, h)by(x, &, k). We plug this into (9.37). The “exp” part
of the formula becomes

0 0 0 0 0 0
exp (hDg (say - t@x) + thDE£ -+ hD,, <88y - t@x) — shD,,ay>

0 0
So we have proved:

Theorem 60. Let a(z,&, 1) and b(z,&, k) be symbols of type (W, t). Their sym-
bolic product is

exph (ngaay - tDnai) a(x, & h)b(y,n, k) (9.38)

evaluated at € =n and x =y = 2.

9.6 The Weyl calculus.

In this section we discuss special properties of symbols of type (W, %) which we
shall simply call Weyl symbols.
1

For the case s =t = 5 formula (9.38) takes the more symmetric form

h 0 0
exp B (Dgay — D”ax) a(z, &, h)b(y,n, h). (9.39)

Here is another important property of Weyl symbols: The YDO A associated
to a Weyl symbol a(z, £, h) has Schwartz kernel

aen) =n7 fa (Tt en) e
See the discussion in Chapter 16 of kernels of this type from the point of view
of physics and of group theory.
The Schwartz kernel of the formal adjoint of A is the operator with Schwartz

kernel K 4(y,x) which is

- fo(E )

So if a is real valued, A is formally self-adjoint.

An important consequence of this is the following: Let a and b be real Weyl
symbols and A and B their corresponding YDO’s which are therefore formally
self-adjoint. Consider their commutator: [A, B] = AB — BA. The adjoint of
this commutator is BA — AB = —[A, B] hence the symbol of [A, B] is purely
imaginary. This means that in the symbolic expansion for this commutator
all even powers of h have to be zero. This can also be seen directly from
(9.39) by interchanging a and b and subtracting. This has the consequence that
computations with Weyl symbols are usually “twice as fast” as the corresponding
computations with Kohn-Nirenberg symbols.
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9.7 The structure of I(X,A) as a module over
the ring of semi-classical pseudo-differential
operators.

Let X be a manifold and A a Lagrangian submanifold of 7*X. In €8.9.1 we
pointed out that the space of oscillatory %—densites I(X, A) is a module over the
ring of “semi-classical pseudo-differential operators” where, in Chaper 8, “semi-
classical” meant “semi-classical with compact micro-support”. We also pointed
out in 98.10 that I(X, A) is a module over the ring of differential operators. Both
these rings sit inside the ring ¥ of ¥DO’s with symbols in 5™, —oc0 < m < .
It is easy to extend the results of 99.8-8.10 to this more general setting:

Theorem 61. Let P € \i/k(X) be a semi-classical VDO with a symbol of type
Sm. If v € I%(X,A) then Py € I**(X,A). Moreover if ~y is given locally on
an open set U C R™ by the expression (8.49):

;2 E—B(E)

v =R / b(e, e =T g

where x - & — ¢(§) is a generating function for A with respect to the cotangent
fibration T*U > (z,€) — x € U then

;2 E—B(E)

Py =Rrt-3 / a(z, &, M)b(E, h)et ™ ® dE (9.40)

where a(x, &, ) is the right Kohn-Nirenberg symbol of P.

Proof. If b(&) is supported on the set ||£]] < N and p is a compactly supported
C*® function of ¢ which is identically one on this set, then

sz €—d(E)

p(iD)yy = B3 / p(E)b(E, )T

= 1 bl me =T g

and hence
P~y = Pp(hD)~.

so in view of (8.49) and (8.50) the right hand side is given by (9.40). O



Chapter 10

Trace 1nvariants.

10.1 Functions of pseudo-differential operators.

Let P : C5°(R™) — C*(R™) be a semi-classical pseudo-differential operator
of order zero with right Kohn-Nirenberg symbol p(z,&, i) € S™ with leading
symbol po(z,§) = p(z, £, 0) and Weyl symbol

h
pW(xvga h) = exp(_ngaﬂC)p(‘ragv h)

We showed in 99.5 that if p" is real valued then P is formally self-adjoint. But
much more is true: under the above assumption, for sufficiently small values of
h, the operators P = P, can be extended to a self adjoint operator with a dense
domain D(P) C L*(R"™). See Chapter 13 for a sketch of how this goes. Hence,
by the spectral theorem for self-adjoint operators, one can define the operator
f(P) for any bounded continuous or (even measurable) function f on R. (See
Chapter 13.)

Moreover, if f € C§°(R) then f(P) is itself a semi-classical pseudo-differential
operator. A nice exposition of this result based on ideas of Helffer and Sjostrand
can be found in the book [?], Chapter 8. We will give a brief account of the
exposition in the paragraphs below. A somewhat more extended description
will be given in Chapter 13.

Given f € C§°(R), an almost analytic extension of f is a function fe
C§°(C) with the property that

for all N € N. It is easy to show that almost analytic extensions exist. See , for
example [?] or [?] - or Chapter 13.
Here is a variant of Cauchy’s integral theorem valid for a smooth function g

267
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of compact support in the plane:
1 /9
T Jc0Z z—w

dxdy = —g(w). (10.1)

Proof. The integral on the left is the limit of the integral over C\ Ds where Ds
is a disk of radius J centered at w. Since g has compact support, and since

9] 1
(ﬁ(z—w) =0,

we may write the integral on the left as

1 g(2) gy — 1 [ g(w+ 6e')

=2 ), 5 0df — —g(w).

2mi Jops 2 — W
O

Suppose now that P is a self-adjoint operator on a Hilbert space $. A
standard theorem in Hilbert space theory (see Chapter 13, for example) says that
the resolvent R(z, P) = (zI — P)~! exists as a bounded operator for Im z # 0
and its norm blows up as [Im 2| ! as Im z — 0. Hence from (10.1) one is tempted
to believe that

™

f(P):= —1/(:Z£R(Z,P)dxdy, (10.2)

where f is an (any) almost holomorphic extension of f. Indeed this formula,
due to Helffer and Sjéstrand is true. For a proof see [?] or Chapter 13. In fact,
Davies [?] gives a beautiful proof of the spectral theorem starting with (10.2)
as a putative formula for f(P).

If P is a semi-classical pseudo-differential operator of order zero one can
use the Helffer-Sjéstrand formula (10.2) to prove that f(P) is a semi-classical
pseudo-differential operator by reducing this assertion to the assertion that
R(z, P) is a a semi-classical pseudo-differential operator, a fact which is much
easier to prove.

In addition, one gets from (10.2) a formula for the symbol of f(P): Indeed,
using the Weyl calculus, one can solve the equation

(z—p")g =1+ O(h™)

and use this to get a symbolic expansion of R(z, P) = (2 — P)~! and then plug
this into (10.2) to get a symbolic expansion for f(P). (Again, see Chapter 13
for more details.)

In this chapter we will develop a functional calculus on a much more modest
scale.: Let p € C3°(R). We will make sense of the expression

e p(hD), —oo <t < o0 (10.3)
mod O(h*°) as a semi-classical pseudo-differential operator and then define

f(P)p(hD)
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mod O(h*>°) by Fourier inversion:

F(P(D). = <= [ fitye " dtp(n). (10.4)

We will then show that weak “ellipticity type” assumptions allow us to remove
the p(RD) in (10.4) and so define f(P) itself (again only mod O(%*>)) as a
semi-classical pseudo-differential operator.

A somewhat stronger ellipticity hypothesis enables one not only to define
f(P) mod O(h*) but also to conclude that it is of trace class mod O(h>).
Namely, suppose that for some compact interval [a,b], py ([a,b]) is compact.
Then the operator P has discrete spectrum on the interval [a,b]. In fact,

spec(P) N (a,b) = {Ai(R),i = 1,...., N(h)}

where
N(h) ~ (2rh)~"Vol {a < po(x,&) < b}, (10.5)

and hence for f € C§°((a,b))

tr f(P) =Y f(\i(h)). (10.6)

Hence (10.4) will give, in this case, an asymptotic expansion of (10.6) as i — 0.
We will sketch a proof of this fact following an argument of Dimassi-Sjostrand in
Chapter 13. The prototye of this theorem is a well known theorem of Friedrichs
[?] which asserts that that if the potential is non-negative and — co as  — oo
then the Schrodinger operator has discrete spectrum.

We now give a brief summary of the contents of this chapter:
In Section 10.2 we will prove that the wave equation

1 0
ﬁaU(t) =U(t)
with the initial data

U(0) = p(hD)

is solvable mod O(h*°) by the symbol calculus techniques we developed in
Chaper 9. This will give us via (10.4) a symbolic expansion for f(P)p(hD),
and, when when we remove the cutoff, a symbolic expansion for f(P) itself. We
will then examine the asymptotics of (10.4) and in particular, prove the Weyl
law (10.5).

This wave trace approach to the asymptotics of (10.4) has the virtue that
it is relatively easy to implement computationally. We will illustrate this by
working through the details for a few simple cases like the Schrodinger operator
on the real line and the Schrédinger operator on R™ with radially symmetric
electro-magnetic potential.

The results described above involve operators on R™. But it is easy to modify
this approach so that it applies to operators on manifolds. This we will do in
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Section 7 We will also point out in that section that the theory developed in
this chapter is closely related to a branch of spectral theory that is some sixty
years old: the heat trace theory developed by Minakshisundaran-Pleijel in the
1950’s and since then generalized and applied to numerous problems in analysis
and differential geometry.

10.2 The wave operator for semi-classical pseudo-
differential operators.

Let P € UY9(S™(R")) be a zeroth order semi-classical pseudo-differential oper-
ator with right Kohn-Nirenberg symbol p(z, &, ) and Weyl symbol pW (x, £, h)
which we assume to be real as in the preceding section, so that P is formally
self-adjoint. Let po(z,&) = p(z,&,0) be the leading symbol of P. Let

> prl@, Ak (10.7)

be the Taylor expansion of p in & at 0.

Our goal in this section is to find a family U(t) of semi-classical pseudo-
differential operators depending differentiabyy on t for —oco < t < oo which
satisfies the differential equation

10
{&U(t) = PU(¢) (10.8)
with the initial condition
U(0) = p(hD). (10.9)

In principle we could solve these equations by the transport equation method
of Chapter 8. But a more direct and elementary approach is the following:

Let p(z,y,t, i) be the (desired) Schwartz kernel of U(t). We wish this to
belong to I~"(X x X, Ax) for each fixed t. So we want p to have the form

wz,y,t, h) = (2wh)‘7‘/a(x,£,t,h)ei S e, (10.10)
Our initial condition (10.9) says that
a(z,§,0,h) = p(§). (10.11)

Set ‘
a(z, &, t,h) = P @b(z, & ¢, h)p(€).

So (10.11) becomes
b(z,€,0,5) = 1 (10.12)
while (10.8) (for all p) yields
10

o (eitpv(w@b(a;,g,t, h)) = p(z, €, 1) * (e“?o(wvf)b(x,g,t,h)) . (10.13)
1
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We can expand (10.13) out as
4o (1 0b he ;
it a le% it
e (zat +p0b> - Za JDfpax (€"P0D).

Write
oy (e"’fp0 b) = ¢ltPo (e_itp(’(“);feitpo) b

and cancel the factor e*'Po from both sides of the preceding equation to get

10b R o e
el pob = za: aDg pQR“(b)
where
_ _ 9po
Q= (695 +it—- ) . (10.14)

Since QY = I, we can remove the term pob from both sides of the preceding
equation to obtain

1o _

Tar = 2 MDEPQ () + (p = po). (10.15)

la|>1
Let us expand b and p in powers of A,
b:Zbk(xvgvt)hkv p:Zpkhkv
k k

and equate powers of f in (10.15). We get the series of equations

1 0b,, o o

——r = S Y DpiQ%bk+ Y pjbm-; (10.16)

|| >1 j+k+|a]=m j>1
with initial conditions
bo(x,£,0) =1, by(x,£0)=0for m > 1.

We can solve these equations recursively by integration. In particular, bg(z, &, t) =
1.

Proposition 40. b,,(z,£,t) is a polynomial in t of degree at most 2m.

Proof by induction. We know this for m = 0. For j + k + |a] = m, we
know by induction that Qb is a polynomial in ¢ of degree at most || + 2k =
m—j+k <m+k < 2m so integration shows that b,, is a polynomial in ¢ of
degree at most 2m. O

So we have found a solution mod A to our wave equation problem.



272 CHAPTER 10. TRACE INVARIANTS.

10.3 The functional calculus modulo O(kA*).

Sticking (10.10) into (10.4) we get the following expression for the Schwartz
kernel of f(P)p(hD):

1<2k

where

\/—/Uké z,y,t) f(t)dt
[ st pe = (= [ fwemar) ae
= [ st o) <<1j) f) (pole, ))de.

Thus the Schwartz kernel of f(P)p(hD) has an asymptotic expansion

(2mh)- thz/bws e ((1j) f) (pol, ).

<2k
(10.18)
This shows that f(P)p(hD) € ¥°(R™) and has left Kohn-Nirenberg symbol

bf(l‘, & h)p(f)

where

L
by (e, €.) ~ S A waﬁ((ms) f><po<x,5>> . (1019)

k <2k

In particular, since by o(z, &) = 1, we have

bf(l‘,f, 0) = f(pO(X7 f)) (10.20)

Now let us show that if one imposes a mild “ellipticity type” assumption on
po(z,€) one can remove the cut-off p from the above formula.

We have been assuming that the symbol p of P is in S™ and hence, in
particular, that p(z, &) satisfies

lpo(, §)| < Cr (§)™

as x ranges over a compact set K.
In the cases we are interested in m is positive, so we can impose on pgy the
“ellipticity type” condition

Ipo(, €)| = Crll€ll* + o(l€]I") (10.21)



10.4. THE TRACE FORMULA. 273

for some 0 < k < m and positive constant Cj.
Since f is compactly supported, this assumption tells us that

() (i)

is compactly supported in . Hence, if we choose the cutoff function p(§) to be
equal to 1 on a neighborhood of this support, we can eliminate p from (10.18)
to get the simpler result

Theorem 62. Under the above ellipticity assumptions, if f € C§°(R) the oper-
ator f(P) is a semi-classical pseudo-differential operator and its Shwartz kernel
has the asymptotic expansion

2ty RS /bw T 1O (pofa, ).

<2k

10.4 The trace formula.

Suppose that for some interval [a,b] the set py*([a,b]) is compact. Then for
f € Cs°((a,b)) the functions f©)(po(z,£&)) are compactly supported and hence
by the expression for f(P) given in Theorem 62, the operator f(P) is of trace
class modulo O(A*). In Chapter 13 we will show that the “modulo O(A>)
proviso can be removed, i.e. that f(P) itself is of trace class and hence that
spec(P) N (a,b) is discrete. Assuming this, let [c,d] be a finite subinterval of
(a,b), and let \;(h), i = 1,2,--- be the eigenvalues of P lying in [c,d]. If we
choose our f to be non-negative and f =1 on [c,d] we see that

D (i(h) <Y F(h) < tr f(P) < 0.
We conclude that

Proposition 41. For any [c,d] C (a,b) the number of eigenvalues of P on [c,d)
18 finite.

From Theorem 62 we have the asymptotic expansion
S () ~ (27h) th [brste. 51O oo ot (10.22)
Since bg o = 1, the leading term on the right is

(2mh)—" / F (polx, €)) dade. (10.23)

If 0 < f <1 and is supported on the interval (¢ —¢,d + €) with f =1 on [¢, d],
then (10.22) and (10.23) imply that

#{Ai(h) € [e,d]} < (2mh)™" (Vol(c < po(x, &) < d) + O(e)).
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In the opposite direction, if 0 < f < 1 with f supported on [¢,d] and = 1 on
[c+€,d — €] we get the estimate

#{Xi(h) € [e, d]} = (2mh) ™" (Vol(c < po(z, &) < d) + O(e)) -
Putting these together we get the “Weyl law”

#{\i(h) € [e,d]} ~ (2mh) ™" (Vol(c < po(w,§) < d)) + o(1). (10.24)

Let us return to (10.22). The summands on the right, namely

/ 3> bk,@(z7€)ilgf(£) (po(x,€)) dudé (10.25)

<2k

are clearly spectral invariants of P. In the next few sections we will compute
the first few of these invariants for the Schrédinger operator

h? 9
Sn="5 Z D +V (10.26)
and the Schrodinger operator with vector potential A = (ay,...,ay):
h? 5
Sna =5 D (Du +ai)’ + V. (10.27)

7

We will also show how, in one dimension, these invariants serve to determine V'
in some cases.

The material in the next few sections is taken from the paper [GW].

10.5 Spectral invariants for the Schrodinger op-
erator.

For the Schrédinger operator (10.26), we have
p(x,& h) = po(z, &) =
€N

p(:C,E) = 9

Hence the set a < po(x,€) < b is compact if and only if the set a < V(z) < b
is compact. For the rest of this chapter let us assume that this is the case. We
now compute the trace invariants (10.25) for Sp: The first trace invariant is

+V(z). (10.28)

/ F(p(, €))dude
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as we have seen above.
To compute the next trace invariant we observe that the operator @ of
(10.14) is given as

Q=0,+ ztg—v (10.29)

for the case of the Schrédinger operator (10.26). Since p is quadratic in &,
equations ((10.16) become

L S Do

|a|>1 k+|al=m
S (L0, 4OV I~ (0, 0V
B Z <8xk + ta$k> bm—l 2 zk: <8$k t tal'k bm_2.
Since bo(z,&,t) =1 and by (x,£,0) = 0, we have
th
(2,6,1) Zfl T

and thus
10by & (O OV “52 1 i v
i ot _zk: i (azk ) Zflaxl 2%2(6 axk> ()
fo o2V L OV OV 71 _pov oV
WU\ oy amk oz, 2

8l’k 8$k
It follows that

o*v it} oV v
ba(x, &, t) = 0a2 St (Z 2+ kaiz 02,02, ) Z§k§1 B2r 1
(10.30)
Thus the next trace invariant will be the integral
ov 2
/—fzazf Ve 5 g G Ve
oV oV
Zékﬁz o0&+ SN & + Vi) drde
(10.31)
We can apply to these expressions the integration by parts formula,
52 52
2255 + V(@) dade = - [ At Jo B V) deds (1032

/fkﬁz +V( ) dzdé = — /5k ’52 V(z)) dedé. (10.33)
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Applying (10.32) to the first term in (10.31) we get

/i Z oo IO + V(@) dod,

and by applying (10.33) the fourth term in (10.31) becomes

/ Z axk +V( )) dzde.

Finally applying both (10.33) and (10.32) the third term in (10.31) becomes

/——Z [“)xk +V( )) dde.

So the integral (10.31) can be simplified to

24/2 ) f<3> +V( ) dadé.

We conclude

Theorem 63. The first two terms of (10.22) are

tr f(Sy) = / f (522 V(x )) dudé+ o h2 / Z f<3 +V (z)) dzde+O(R*).
(10.34)

In deriving (10.34) we have assumed that f is compactly supported. How-
ever, if we change our compactness hypothesis slightly, and assume that V is
bounded from below and that the set V(z) < a is compact for some a, the left
and right hand sides of (10.34) are unchanged if we replace the “f” in (10.34)
by any function, f, with support on (—oo,a), and, as a consequence of this
remark, it is easy to see that the following two integrals,

/ dude (10.35)
£ 4V (z)<A
and

/2 Z(gv) dxde (10.36)
SHV(@@)A T Ok

are spectrally determined by the spectrum (??) on the interval [0, a]. Moreover,
from (10.34), one reads off the Weyl law: For 0 < A\ < a,

#{\i(h) < A} = (2rh) ™" (Vol(€2 FV(z) <N+ 0(1)> . (10.37)
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We also note that the second term in the formula (10.34) can, by (10.33),
be written in the form

24 /Z f<2 +V())dxd§

and from this one can deduce an A2-order “cumulative shift to the left” correc-
tion to the Weyl law.

We won’t attempt to compute the invariants (10.25) explicitly. However we
will show that they can be written in the form

/ Z fQj)( ()) pri(DV, -, D**V)dade  (10.38)

=[5+1]

where py, ; are universal polynomials, and DFV the k' partial derivatives of V.

Proof of (10.38). Notice that for m even, the lowest degree term in the
polynomial b, is of degree % + 1, thus we can write

Z b lt’rn—i-l

|=—m m +1

Putting this into the the iteration formula, we will get

m+l &k 8bm_1l 8V 0%byy— 2,041
b, = Z O +Z§k bm—1,-1 — QZ 022

o ov. 9V 0 aVv
e — P m— bnl— — 1
Oxy, Oxy, + oxy 8xk) 21 2 Z(axk) 2t

75(

from which one can easily conclude that for [ > 0,
oV
bt = Y(=—)’pas(DV,--- , D™V 10.39
1= Y () s ) (10.39)

where p,, s is a polynomial, and |a| + |G| > 20 — 1. Moreover, by integration by
parts,

Jewre (B rvi)ie-- [ (Ze )i (B vi) ae

It follows from this formula and (10.32) and (10.33), all the f(™+) [ > 0, in the
integrand of the Ath term in the expansion (10.25) can be replaced by f(")’s
with » < m. In other words, only derivatives of f of degree < 2k figure in the
expression for v (f). For those terms involving derivatives of order less than 2k,
one can also use integration by parts to show that each f(™ can be replaced by
a f("*1) and a f(™=1Y . In particular, we can replace all the odd derivatives by
even derivatives. This proves (10.38). O
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10.6 An Inverse Spectral Result: Recovering the
Potential Well

Let us now consider the one dimensional case. Suppose V is a “potential well”,
i.e. has a unique nondegenerate critical point at x = 0 with minimal value
V(0) = 0, and that V is increasing for x positive, and decreasing for = negative.
For simplicity assume in addition that

—V'(=z) > V'(z) (10.40)

holds for all x. We will show how to use the spectral invariants (10.35) and
(10.36) to recover the potential function V(z) on the interval |z| < a.

<

sy
S

S~—
Iy

Figure 10.1: Single Well Potential

For 0 < A < a we let —x2(A\) < 0 < z1(\) be the intersection of the curve

% + V(z) = X\ with the z-axis on the z — £ plane. We will denote by A; the
region in the first quadrant bounded by this curve, and by A, the region in the
second quadrant bounded by this curve. Then from (10.35) and (10.36) we can

determine
/+/ dxd§ (10.41)
A1 A2

and

/Al +/A2 V' (2)?dxdé. (10.42)
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Let z = fi(s) be the inverse function of s = V(z),z € (0,a). Then

z1() 2(A=V(2))
’ 2 _ ’ 2
/A1 V'(z) dxdg _/0 V'(z) /o dédz

= / V'(z)2\/2) — 2V (z) dx
0
A

= / V22X —2sV'(f1(s)) ds
0/\ dfi\ 7

= / V2X—2s () ds.
0 ds

Similarly
Y s (T
/ 2 _ 7 e
/,42 Vi(z)® dxd€ = /0 2\ —2s < ds) ds,

where © = fa(s) is the inverse function of s = V(—z),z € (0,a). So the
spectrum of Sy determines

/okm«ilj;l)_l +(ng)_1) ds. (10.43)

Similarly the knowledge of the integral (10.41) amounts to the knowledge of

A d d
/0 VA—s ((Q + c{:) ds. (10.44)

Recall now that the fractional integration operation of Abel,

A
Jg(\) = ﬁ/o (A — 1) tg(t) dt (10.45)

for a > 0 satisfies J*J? = Jot*. Hence if we apply J'/? to the expression
(10.44) and (10.43) and then differentiate by A two times we recover % + g—j
and (%)*1 + (%)’1 from the spectral data. In other words, we can determine
f1 and f} up to the ambiguity f; < f3.

However, by (10.40), f1 > f4. So we can from the above determine f] and
/4, and hence f;,i = 1,2. So we conclude

Theorem 64. Suppose the potential function V is a potential well, then the
semi-classical spectrum of Sy, modulo o(h?) determines V near 0 up to V(z) <>

V(—x).

Remarks, 1. We will show in Section 10.9 that the hypothesis (10.40) or some
“asymmetry” condition similar to it is necessary for the theorem above to be
true.

2. The formula (10.44) can be used to construct lots of Zoll potentials, i.e.
potentials for which the Hamiltonian flow vy associated with H = &2 + V (x) is
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periodic of period 27. It’s clear that the potential V(z) = 22 has this property
and is the only even potential with this property. However, by (10.44) and
the area-period relation (See Proposition 6.1) every single-well potential V' for
which

f1(s) + fa(s) = 2s'/2
has this property.

10.7 Semiclassical Spectral Invariants for Schrodinger
Operators with Magnetic Fields

In this section we will show how the results in §10.5 can be extended to Schrodinger
operators with magnetic fields. Recall that a semi-classical Schrodinger operator
with magnetic field on R™ has the form

Sy ::72(5 0 +aj(2)* + V(x) (10.46)

i Oz
J

where a; € C*°(R™) are smooth functions defining a magnetic field B, which,
in dimension 3 is given by B =V x a, and in arbitrary dimension by the 2-
form B = d(>" axdzy). We will assume that the vector potential @ satisfies the
Coulomb gauge condition,

3% B
Z oz, = 0. (10.47)

(In view of the definition of B, one can always choose such a Coulomb vector
potential.) In this case, the Kohn-Nirenberg symbol of the operator (10.46) is
given by

p(z, & h) = % D (& +ai(2)? + V(). (10.48)
J
Recall that

(2]

Qo= H (8% it axk> , (10.49)
so the iteration formula (?7?) becomes
1 9bn, 19p 0 . dp 1 o . ap\°
= t— )bp_1—= — 4+ it—— | bp—2. (10.50
i Ot Zz@fk(ﬁxk—H 6‘:17k) ! 2;<3Ik+z oz, 2 )
from which it is easy to see that

dp Op it?
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Thus the “first” spectral invariant is

/kaﬂk 7]‘2) ) dad§ = — /Zaak p)dadg =0,

where we used the fact ) 57 aa’“ = 0.
With a little more effort we get for the next term

(,€,1) Z 8%
dp day Op dp 9p &p Ip \o
i H e D I G

iz@@@@
; &y, Oy, 0 Oy

and, by integration by parts, the spectral invariant

1 0%p Oay, Oa; @)
heog [\ Cam - T, | (Voo 05

Notice that

&a; Op daj ., OV
Z 22 O€; zj:(@wk) * o2
and

Oay, Oa; Oay,
B|? =trB? =2 =7 _9 —)2
D1 = i =23 G =2 )

So the subprincipal term is given by

1 0%V
473/1’(2)(1)(:6,5)) (”B”2223x§> da d.
k

Finally Since the spectral invariants have to be gauge invariant by definition,
and since any magnetic field has by gauge change a coulomb vector potential
representation, the integral

v
IBIP =2 S | dadt
/p</\ < zk: 695%

is spectrally determined for an arbitrary vector potential. Thus we proved

Theorem 65. For the semiclassical Schrédinger operator (10.46) with mag-
netic field B, the spectral measure v(f) = tracef(Sy) for f € C§°(R) has an
asymptotic expansion

v (f) ~ (2mh)” Z v ()R,
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where

() = / F(p(e, €, ))dude

and

2
() = 55 [ 1Ol e MBI 230 5.

10.8 An Inverse Result for The Schrodinger Op-
erator with A Magnetic Field

Making the change of coordinates (z,£) — (x,& + a(x)), the expressions (65)
and (10.8) simplify to

) = [ FE + V)
d
. m _ 1 (2)(¢2 2 82V
) = 35 [ 1€+ VIBIE 23 G duds

In other words, for all A, the integrals

I, = / dxd§
24V (z)<A
and

n= | B — 23" TV dnae
A= -
24V (z)<A ‘9%2

are spectrally determined.

Now assume that the dimension is 2, so that the magnetic field B is actually
a scalar B = Bdxj A dxy. Moreover, assume that V is a radially symmetric
potential well, and the magnetic field B is also radially symmetric. Introducing
polar coordinates

22+ 22 =5, doy Adry = %ds/\dﬁ
G+& =t dogndéy = %dt/\dw
we can rewrite the integral Iy as
Iy =72 /OS()\)()\ —V(s))ds,

where V(s(\)) = A\. Making the coordinate change V(s) = z & s = f(z) as

before, we get
A
df
I, = 72 )Lz
A=T /0 (A x)dxdx
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A similar argument shows

&y

A
L= [ O-aHrE) g

Z,

where
H(s) = B(s)? —4sV"(s) — 2V'(5s).

It follows that from the spectral data, we can determine

1
F) =2 et

and )
HUEONSO) = Z52
w2 d\?
So if we normalize V(0) = 0 as before, we can recover V from the first equation
and B from the second equation.

I,.

Remark. In higher dimensions, one can show by a similar (but slightly more
complicated) argument that V and ||B|| are both spectrally determined if they
are radially symmetric.

10.9 Counterexamples.

Let V € C*(R™) be a potential well - that is a potential with V(0) = 0,
V(z) > 0for x # 0and V(z) — +o0 as |x| — +00. Then, by Proposition 41, the
spectrum of the Shrédinger operator (10.26) is discrete. The question : “to what
extent does this spectrum determine V7”7 is still an open question; however we
will show in this section that in dimension one there exist uncountable families
of potentials for which the spectral invariants (10.25) are the same and that
in dimension greater than one there even exist infinite parameter families of
potentials for which these invariants are the same.

We first observe that if A : R™ — R" is an orthogonal transformation,
ie., A € O(n) then

A*(Sn)(Ail)* = Sri‘
where
h2
SA = FA+ VA(x)
and VA(z) = V(Az). Thus if K¢(x,y, ) is the Schwartz kernel of the operator

f(Sk), then K;(Ax, Ay, h) is the Schwartz kernel of the operator, f(SZ) and,
by (10.18), Ky(Axz, AX) has an asymptotic expansion of the form

ety S [ et 9pfene ((1;>Zf> (B van) ) ae

<2k
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In particular since the function, by ¢(x, §) in the expansion (10.19) has the form
bre =D & Poye(DV,...,d**V) (10.53)
by (39) the corresponding functions for S;;1 have the form

bioe = Zf Pake(DVA, ... D*V4) (10.54)

and hence in particular
bo(€, Ax) = Y E%pako(DVA, ... D*VA) (10.55)

for all x € R"™.
Now choose V to be rotationally symmetric and let p;(x) be a non-negative
(C*° function with support on the set

1< x| <i+1, x1>0,...,2, >0
with p; = 0 for 7 odd and p; # 0 for 7 even. Then, fixing a sequence of rotations,

A={4,¢)(n) i=1,2,3,...}
the potentials

2)+ Y pi(Aiz)

have the same spectral invariants (10.38) for all sequences, A, as can be seen by
writing

&, V) da dé

&

/ bro(6, DV, PV (S

_ / b o (€ DV, . DXVA) (S + Vi) do €
<Jz|<it1

2
= / Do (&, D(V+pi) ™, .., D (Vi)™ )ff(f <V+pi>“‘i) da d¢
i<|z|<i+1

and observing that this is equal to
52
E / b, e (€, D(V-l-pz))fé( —&-V—i—pz) dx dé
i<|m|<it1

by equation (10.55).

In dimension one this construction doesn’t give us an infinite parameter
family of potentials with the same spectral invariants (10.38) but it’s easy to see
that it does give us uncountable family of potentials for which these invariants
are the same. Namely for every K € [0,1) let

a = 103 . ..
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be the binary expansion of « and choose As; to be the symmetry, x — —x, if
«; is one and x — x if oyis 0.

This example (which is a slightly modified version of a counterexample by
Colin de Verdiere in [CV]) shows why the assumption (40) (or some asymmetry
condition similar to (40)) is necessary in the hypotheses of Theorem 64.

10.10 The functional calculus on manifolds

Let X" be a compact manifold and P, € ¥9S™(X) a self-adjoint zero'" order
semi-classical pseudodifferential operator with leading symbol Py(z, &) € S™(X)
satisfying an elliptic estimate of the form

Po(z, ) = Clgl™ (10.56)

on every coordinate patch. We will show below how to extend the results of
§610.2-10.3 to manifolds, i.e., how to define f(P;), modulo O(h*), as a zero'"
order semi-classical pseudodifferential operator on X with compact microsup-
port for all f € C°(R).

Let V;, i = 1,..., N, be a covering of X by coordinate patches, let ¢; €
C*(Vi), i =1,...,N be a partition of unity subordinate to this cover, and for
each i, let ¢; € C§°(V;) be a function which is equal to 1 on a neighborhood of
Supp ;. We can, as in §10.2, construct a family of semi-classical pseudodiffer-
ential operators, U;(t) : C3°(V;) — C*°(V;), such that modulo O(h>)

1 d

\/7_71 %Uz(t) = PhUz(t)

Ui(0) = p(hD).

Thus the sum

U(t) = vili(t)es

is a zero™ order semi-classical pseudodifferential operator on X satisfying

1 d.
s %U(t) = iPuUi(t)e:
= Z PrpiUs(t) s
= PhU(t)
modulo O(A*) with initial data
U(0) =Y wip(hD)e; “Q,, (10.57)

i.e., modulo O(h*)
U(t) = (expitPr)Q,, . (10.58)
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Thus for f € C*(R)

10, = Yo [vwiwa) v (10.59)

mod O(/*) where each of the expressions in parentheses has a Schwartz kernel
of the form (10.18). Thus by the ellipticity condition (10.56) we can, exactly as
in §10.3, remove the cut-off, p, to get an asymptotic expansion for the Schwartz
kernel of f(Py) itself of the form,

(2mh)~ ZZh%/bM x,€)e (wi’)f(

i=1 k¢

&=

SN

l
) £ (po(2,€)) dégi(y)

and from this expansion a trace formula of the form (10.22). More explicitly
since X is compact the ellipticity conditions (10.56) insure that the spectrum
of P, is discrete and for fixed i consists of a sequence of eigenvalues, \;(h),
i =1,2,..., which tend to 400 as i tends to infinity. Hence from the asymp-
totic expansion above for the Schwartz kernel of f(P},) one gets an asymptotic
expansion for Y f(A;(h)) of the form

(2mh)” Z/Zﬁ’“bie z,)p;(x )(1. d) F(Po(w.€))dud.  (10.60)

In particular, as we showed in §10.2, bé’o = 1 so the leading term in this
expansion gives the Weyl estimate

S F(R) ~ (27h)” ( [ 1ot )%+ 001 )) (10.61)

where Py : T*X — R is the intrinsic leading symbol of Py and w = 3 dx; A d¢;
is the intrinsic symplectic form on 7*X.

There is an interesting tie-in between this result and the classical “heat-
trace” theorem for Riemannian manifolds: Suppose X is a Riemannian manifold
and A : C*°(X) — C*°(X) its Laplace operator. The Minakshisundaram-Plejjel
theorem asserts that as ¢ — 0+ one has an asymptotic expansion

Tr(exp(—tA)) ~ (4mt) "2 " a;t’ (10.62)

with ag = vol(X). This is easily deduced from the formula (10.60) by letting
t = h%, P, = hv/A and the f in (10.60) a sequence of f’s which tend in the

Schwartz space norm to e —a?



Chapter 11

Fourier Integral operators.

11.1 Semi-classical Fourier integral operators

As in Chapter 9 one can extend the theory of Fourier integral operators to classes
of operators having symbols, a(x,y,&, i), which are not compactly supported
in & i.e., with “compact support in &’ replaced by growth conditions in &
similar to those we discussed for pseudodifferential operators in Chapter 9. We
won’t, however, attempt to do so here; and, in fact, we will continue to confine
ourselves in this chapter to the type of Fourier integral operator we discussed in
Chapter 8. We have already seen, however, that these include a lot of interesting
real-world examples. For instance, given a C'* mapping between manifolds
f:+ X = Y, the pull-back operation, f* : C>*(Y) — C°°(X) is microlocally
an F.I.LO. in the sense that for every semi-classical pseudodifferential operator,
Q:C>®(Y) — C>*(Y), with compact microsupport, f*@ is a semi-classical F.I.O.
Moreover if f is a fiber mapping a similar assertion is true for the push-forward
operation, f,. Given the results of Chapter 9 we can add to this list a lot of
other examples such as the operators, f*Prp(D) and f.Pyp(D) where Py is in
UkS™ and p = p(&1,...,&,) is compactly supported. In addition an example
about which we will have a lot to say at the end of this chapter is the operator,
exp(%Ph)f(Ph), f € C°(R), where Py is a self-adjoint elliptic operator in
POS™(X). This operator looks suspiciously like the operator, expit Py, which
we studied in detail in the last chapter, but the presence of the factor “1/#” in
the exponent gives it a completely different character. In particular we will show
that, like the other examples above, it is microlocally an F.I.O. What follows is
a brief table of contents for this chapter.

I. Let X be a compact manifold, let M = T*X andlet ' : T* X — T*X be
a canonical relation which is transversal to A ;. We will show in §11.2 that
if F, is a k*® order Fourier integral operator with compact microsupport

quantizing I' then one has an asymptotic expansion
iTX

i P

trace Fj, ~ hY Zap(h)ef”f’e R

(11.1)
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summed over p € I' N Ay where a,(h) = Y oo, ap k' is a formal power
series in h, o, a Maslov factor and the 7T},’s are symplectic invariants of I'.

II. In §§11.3 and 11.4 we will show how to compute these invariants when
I' is the graph of a symplectomorphism, and in particular we will show
in §11.4 that they have a simple geometric interpretation as the “period
spectrum” of a dynamical system living on the mapping torus of f.

III. The second half of this chapter will focus on the two main wave-trace
formulas of semi-classical analysis: the Gutzwiller formula and density of
states. Let X be R™ (or, alternatively, let X be a compact manifold) and
let P, : C3°(X) — C*(X) be a self-adjoint zeroth order semi-classical
pseudodifferential operator. We will denote by H : T*X — R its leading
symbol and by vy the Hamiltonian vector field associated with H. We
will show in §11.5 that if H is proper the operator, expi%P is microlo-
cally a semi-classical Fourier integral operator quantizing the symplecto-
morphism, exp tvy and we will show that for cut-offs, ¢ and f in C5°(R)
the trace of the operator

() sen = [woen asmn)

has nice asymptotic properties if the flow of vy on the energy surface,
H = 0 has non-degenerate periodic trajectories. In particular there is a
trace formula

~ [ P n iSy © )
trace 1 (;) f(Pp) ~h™2 ZeST Zawhl (11.2)
o’ 1=0

similar to (11.1) where the sum is over the periodic trajectories of v
on H = 0 and the S,’s are the classical “actions” associated with these

trajectories:
S, :/Z& dz; . (11.3)
¥

Replacing Py, by P, — E, for any E € R one gets an analogous result for
the periodic trajectories of vy on the energy surface H = F; so among
many other things this result tells us that the classical actions, S, are
spectral invariants of P.

IV. In assuming that the periodic trajectories of vy on the energy surface
of H = 0 are non-degenerate we are ruling out the case where a periodic
trajectory consists simply of a fixed point for the flow, exp tvy; i.e., a zero,
p, of the vector field vy. However, if there are a finite number of isolated
zeros of i on H = 0 and they are all non-degenerate the density of states
formula asserts that for |¢| small

. -
trace exp %th(Ph) ~ Z Fn/2e ay(t, h) (11.4)
P
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where a,(t,h) ~ Y oo, api(t)h*, and the T,’s are the symplectic invariants
figuring in (11.1).

V. In the last section of this chapter we will discuss some applications
of the results of this chapter to “heat trace invariants” in Riemannian
geometry. Let X be as in §10.11 a compact Riemannian manifold and
g: X — X an isometry of X. In the 1970’s Harold Donnelly generalized
the heat trace formula that we described in §10.11 by showing that one
has an asymptotic expansion

trace g*e IAX ~ Z(47rt)_dz/2 Zbkﬁztk (11.5)
z k=0

where the Z’s are the connected components of the fixed point set of g and
dz is the dimension of Z. Moreover since g is an isometry the eigenvalues
of the map (dg), : Np(Z) — Np(Z) at p € Z don’t depend on p, and
denoting these eigenvalues by X; z,i=1, ...n — dr he shows that

bo.z = vol(Z)(T1(1 — \i.z)) " *. (11.6)

If f is the identity map this heat trace expansion is just the Minakshisundaran-
Pleijel formula (10.62) and as we pointed out in §10.11 this expansion
can be thought of semi-classically as a trace formula for f(Pj) where
Py = Bv/A. In §11.6 we will show that the same is true of the formula
(11.5). In fact we will show more generally that if P, is a self-adjoint semi-
classical elliptic pseudodifferential operator of order zero and g : X — X

is a diffeomorphism of X whose graph intersects Ax in a finite number

of fixed point components, Z, then one has an analogue of the expansion
(11.5) for the trace of g* f(Py) and that (11.5) can be viewed as a special
case of this expansion.

A key ingredient in the proof of all these results is the lemma of stationary
phase. A detailed account of the lemma of stationary phase (with a host of
applications) can be found in Chapter 15. However, in the next section we will
give a brief acount of the manifold version of this lemma, the version that we
will need for the applications below.

11.2 The lemma of stationary phase.

Let X be an n-dimensional manifold. A C* function ¢ on X is said to be a
Bott-Morse function if

o Its critical set Cy := {z € X|d¢, = 0} is a smooth submanifold and

e For every p € Cy the Hessian d?*¢, : T,X — R is non-degenerate on the
normal space N,Cy =T, X/T,Cy.
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To state the lemma of stationary phase we need to recall some differential in-
variants which are intrinsically attached to such a function:

Let Wy, » = 1,...,N be the connected components of Cy, so that ¢ is
constant, say identically equal to v, on W,. Similarly, the signature sgnd?¢ is
constant on each W,.. Let p € W, and wy, ..., wy be a basis of N,W,.. Consider

| det (a2, (wi, w;))| 2.

If we replace w; by Aw; in this expression, where A is some linear operator
on N,W, we pullout a factor of |det A|. In other words, the above expression
defines a density on N,W,. From the exact sequence

0—=T,W, =T, X = N,W, =0
we know from (6.7) that we have an isomorphism
|T, X | ~ |T,W|®|N,W|.

Thus, the above density on N, W, together with a given density on 7T}, X deter-
mines a density on T, W,..

For example, if X = R™ with density dz; ...dz, and ¢ has an isolated non-
degenerate fixed point at 0, then the induced “density”, which is a number,
is )

| det(92¢/0x;0x;)(0)|

In short, a density p on X determines a density, call it v, on each W,.. The
lemma of stationary phase says that for u of compact support we have

i - iy SENW,.
/ eF = Z(%h%) (ehez el / vy + O(h)) : (11.7)
X - W,

11.3 The trace of a semiclassical Fourier integral
operator.

Let X be an n-dimensional manifold, let M = T*X and let
r:7"Xx -»17"X

be a canonical relation. Let Ay € M x M be the diagonal and let us assume
that
TMmAy.

Our goal in this section is to show that if F' € F¥(T') is a semi-classical Fourier
integral operator “quantizing” the canonical relation I' then one has a trace
formula of the form: _

tr F = thap(h)e%eiT;/h (11.8)
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summed over p € I'N Apy. In this formula n is the dimension of X, the n,’s are
Maslov factors, the T are symplectic invariants of I' at p N T' o Ay which will
be defined below, and a,(h) € C*(R) .

Let ¢ : M — M be the involution, (x,£) — (z,—¢£) and let A =¢oT. We
will fix a non-vanishing density, dx, on X and denote by

= e,y k) det dy* (11.9)
the Schwartz kernel of the operator, F'. By definition
peIF3(X x X,A)

and by (11.9) the trace of F is given by the integral
tr F =: /u(az,x,h) dx . (11.10)

To compute this, we can without loss of generality assume that A is defined by
a generating function, i.e., that there exists a d-dimensional manifold, .S, and
a function p(z,y,s) € C°(X x X x S) which generates A with respect to the
fibration, X x X x.§ — X x X. Let C,, be the critical set of ¢ and A\, : Cp, — A
the diffeomorphism of this set onto A. Denoting by ¢* the restriction of ¢ to
C, and by 9 the function, ot o )\;1, we have

d) = an (11.11)

where ap is the restriction to A of the canonical one form, a, on T*(X x X).
Lets now compute the trace of F. By assumption p can be expressed as an
oscillatory integral

(dx)® (dy)’? (hk’%—“ [ alas e ds)

and hence by (11.10)

tr F = hki%fd/z/a(a:,x,s,h)eﬂ(m;w dsdx . (11.12)
We claim that: The function
oz, z,8) : X xS =R (11.13)
18 a Morse function, with critical points

(xw,s):)\;l(p), pelNAy. (11.14)

Proof. Consider I' as a morphism

Fipt. > M~ x M (11.15)
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and Af, as a morphism
ALy M~ x M — pt. (11.16)

The condition that I' intersects Aj; transversally can be interpreted as say-
ing that (11.14) and (11.16) are transversally composable. Thus since ¢(z, y, s)
is a generating function for I' with respect to the fibration

XxXx8—=XxX

and p(z,y,&) = (x —y) - € is a generating function for Ay with respect to the
fibration
XxX xR - X x X

the function, ¢(z,y, s)+ p(z,y,§) is a transverse generating function for A%, ol
with respect to the fibration

X x X xS xR pt
i.e. is just a Morse function on this set. (See §5.6.)
However if we let ¢(x,y, s) = ¢(x,z,s)+ (x —y)-h(z,y,s) and set u =z —y
and w = £ + h(x,y, s) then, under this change of coordinates, ¢ + v becomes

oz, x,8)+u-w

x, s, uw and w being independent variables. Since this is a Morse function its two
summands are Morse functions with critical points (z, s) and v = v = 0 where

dp od

%(x,:ms) = —8—y(a:,cv,s)
and

s = 0

ie. xz,x,s is given by (11.14).
O

Since the function (11.13) is a Morse function we can evaluate (11.11) by
stationary phase obtaining

tr F = thap(h)ei% sen, i (P)/h (11.17)

where sgn,, is the signature of o(z,x,s) at the critical point corresponding to p
and

w(P) = (p($,$7 S) )

the value of p(z,x, s) at this point. This gives us the trace formula (11.8) with
T} = ¥(p).
P
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Replacing the transverse composition formula for generating function (§5.6)
by the analogous clean composition formula (§5.7) one gets a “clean” version of
this result. Namely suppose I' and Aj; intersect cleanly in a finite number of
connected submanifolds W,., »r =1...., N of dimd = dr. Then on each of these
submanifolds, ¢ is constant: ¢|W,. = ~,. and

trF =h"Y"h~Fa(h)e' T . (11.18)

11.3.1 Examples.

Let’s now describe how to compute these T, g’s in some examples: Suppose I is
the graph of a symplectomorphism

f:M— M.

Let pry and pro be the projections of T*(X x X) = M x M onto its first
and second factors, and let aox be the canonical one form on T*X. Then the
canonical one form, «, on T*(X x X) is

(pr1)*ax + (pr2)*ax,

so if we restrict this one form to A and then identify A with M via the map,
M — A, p— (p,of(p)), we get from (11.11)

ax—f*ax Zdw (1119)

and Tg is the value of ¥ at the point, p.
Let’s now consider the Fourier integral operator

—_———
F"=Fo---oF

and compute its trace. This operator “quantizes” the symplectomorphism f™,
hence if
graph f™ M Ay

we can compute its trace by (11.8) getting the formula
F™ = 1Y g p(R)e ETmreiThs /M (11.20)

with ¢ = km, the sum now being over the fixed points of f™. As above, the
oscillations, T#  are computed by evaluating at p the function, ,,, defined by

m,p
ax — (fm)*OéX = dwm
However,

ax — (f")*ax = ax—ffax+-+ (" Hax — (f")a,

AW+ f Y+ + ("))
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where 9 is the function (11.11). Thus at p = f™(p)

m—1
Thp= > U@, pi=rD). (11.21)
i=1
In other words Tﬁ%p is the sum of ¢ over the periodic trajectory (pi,...,Pm—1)

of the dynamical system
ff —co<k<oo.

We refer to the next subsection “The period spectrum of a symplectomorphism”
for a proof that the T}}l,p’s are intrinsic symplectic invariants of this dynamical
system, i.e., depend only on the symplectic structure of M not on the canonical
one form, ax. (We will also say more about the “geometric” meaning of these
Tﬁl’p’s in Theorem 66 below.)

Finally, what about the amplitudes, a,(h), in formula (11.8)? There are
many ways to quantize the symplectomorphism, f, and no canonical way of
choosing such a quantization; however, one condition which one can impose on
F' is that its symbol be of the form:

h"yre eioe | (11.22)

in the vicinity of I' N Aps, where vr is the % density on I' obtained from the
symplectic % density, var, on M by the identification, M < T, p — (p, f(p)).
We can then compute the symbol of a,(h) € I%(pt) by pairing the % densities,

vy and vr at p € 'N Ay as in (7.14) obtaining
ap(0) = |det(I — df,)| "7 . (11.23)

Remark. The condition (11.22) on the symbol of F' can be interpreted as a
“unitarity” condition. It says that “microlocally” near the fixed points of f:

FF'=T1+0(h).

11.3.2 The period spectrum of a symplectomorphism.

Let (M, w) be a symplectic manifold. We will assume that the cohomology class
of w is zero; i.e., that w is exact, and we will also assume that M is connected
and that

HY(M,R)=0. (*)

Let f : M — M be a symplectomorphism and let w = da. We claim that
a— f*a s exact. Indeed da — f*da = w — f*w = 0, and hence by (*) a — f*a's
exact. Let

a— ffa=dy

for v € C°°(M). This function is only unique up to an additive constant;
however, there are many ways to normalize this constant. For instance if W is a
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connected subset of the set of fixed points of f, and j : W — M is the inclusion
map, then foj=j;so

jrdip=jra—j"ffa=0

and hence v is constant on W. Thus one can normalize ¢ by requiring it to be
zero on W.

Example. Let 2 be a smooth convex compact domain in R", let X be its
boundary, let U be the set of points, (z,£), || < 1,in T*X. If B: U — U is the
billiard map and « the canonical one form on 7*X one can take for ¢ = ¢(x, §)
the function

P, 6) = |z —y|+C

where (y,n) = B(z,£). B has no fixed points on U, but it extends continuously
to a mapping of U on U leaving the boundary, W, of U fixed and we can
normalize 1) by requiring that v = 0 on W, i.e., that ¥ (z,&) = |z — y|.
Now let
Y =P1s---Pk+1

be a periodic trajectory of f, i.e.,

f(pi) = pita1 i=1,...k
and pr11 = p1. We define the period of v to be the sum

k

p(y) =D _ (i)

i=1

Claim: P(v) is independent of the choice of a and 1. In other words it is
a symplectic invariant of f.

Proof. Suppose w = da — da’. Then d(a — ') = 0; so, by (*), &/ —a =dh
for some function, h € C*°(M). Now suppose a— f*a = dy and o/ — f*o’ = dy/
with 9 = 1’ on the set of fixed points, W. Then

' — dip = d(f*h - h)
and since f*=0on W
W == fh—h.
Thus

k k

Y W) —vm) = Y h(fpi) = h(p:)
3 i=1

k

= Z h(piv1) — h(p:)
i=1

= 0.
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Hence replacing ¢ by ¢’ doesn’t change the definition of P(y). O
Example Let p; = (2;,&) i = 1,...,k 4+ 1 be a periodic trajectory of the
billiard map. Then its period is the sum

k
Z |l’i+1 - .137,‘ ’
=1

i.e., is the perimeter of the polygon with vertices at x1,...,zr. (It’s far from
obvious that this is a symplectic invariant of B.)

11.4 The mapping torus of a symplectic map-
ping.

We'll give below a geometric interpretation of the oscillations, Tﬁl’p, occurring
in the trace formula (11.20). First, however, we’ll discuss a construction used
in dynamical systems to convert “discrete time” dynamical systems to “con-
tinuous time” dynamical systems. Let M be a manifold and f : M — M a

diffeomorphism. From f one gets a diffeomorphism
g:MxR—MxR, gpq=(f(p,g+1)
and hence an action
Z — Diff(M xR), k— g, (11.24)

of the group, Z on M x R. This action is free and properly discontinuous so the
quotient
Y=MxR/Z

is a smooth manifold. The manifold is called the mapping torus of f. Now
notice that the translations

T MxR—MxR, (p,q) = (p,qg+1), (11.25)

commute with the action (11.24), and hence induce on Y a one parameter group
of translations
Y 5Y, —co<t<oo. (11.26)

Thus the mapping torus construction converts a “discrete time” dynamical sys-
tem, the “discrete” one-parameter group of diffeomorphisms, f* : M — M,
—00 < k < o0, into a “continuous time” one parameter group of diffeomor-
phisms (11.26).
To go back and reconstruct f from the one-parameter group (11.26) we note
that the map
t:M=Mx{0} > MxR— (MxR)/Z

imbeds M into Y as a global cross-section, My, of the flow (11.26) and for
p € My v(p) € My at t = 1 and via the identification My — M, the map,



11.4. THE MAPPING TORUS OF A SYMPLECTIC MAPPING. 297

p — Y1(p), is just the map, f. In other words, f : M — M is the “first return
map” associated with the flow (11.26).

We'll now describe how to “symplecticize” this construction. Let w € Q2(M)
be an exact symplectic form and f : M — M a symplectomorphism. For
a € QY (M) with da = w let

a— ffa=dp (11.27)

and lets assume that ¢ is bounded from below by a positive constant. Let
g: M xR—=MxR

be the map
9(p,q) = (psq + p(x)) . (11.28)

As above one gets from g a free properly discontinuous action, k — ¢*, of Z on
M x R and hence one can form the mapping torus

Y=(MxR)/Z.
Moreover, as above, the group of translations,
Tt t MxR— M x R7 Tt(paQ) = (p)q+t)>

commutes with (11.28) and hence induces on Y a one-parameter group of dif-
feomorphisms

TEZY*)Y,

just as above. We will show, however, that these are not just diffeomorphisms,
they are contacto-morphisms. To prove this we note that the one-form,

a=a«a+dt,
on M x R is a contact one-form. Moreover,

g'a = flatdlp+t)
a+ (ffa—a)+dp+dt
= a+tdt=a

by (11.27) and
(to)*@a=a+d(t+a)=a+dt=a

so the action of Z on M X R and the translation action of R on M x R are both
actions by groups of contacto-morphisms. Thus, Y = (M x R)/Z inherits from
M xR a contact structure and the one-parameter group of diffeomorphisms, Ttﬁ,
preserves this contact structure.

Note also that the infinitesimal generator, of the group translations, 74, is
just the vector field, %, and that this vector field satisfies

0.
L(a)a =1
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and 9
—)da=0.
o 625) Q
Thus 2 is the contact vector field associated with the contract form &, and

ot
hence the infinitesimal generator of the one-parameter group, Tf 1Y — Y is the
contact vector field associated with the contract form on Y.

Comments:

1. The construction we’ve just outlined involves the choice of a one-form, «,
on M with da = w and a function, ¢, with a = f*a = dy; however, it
is easy to see that the contact manifold, Y, and one-parameter group of
contacto-morphisms are uniquely determined, up to contracto-morphism,
independent of these choices.

2. Just as in the standard mapping torus construction f can be shown to be
“first return map” associated with the one-parameter group, Ttﬁ.

We can now state the main result of this section, which gives a geometric

description of the oscillations, Tﬁw, in the trace formula.

Theorem 66. The periods of the periodic trajectories of the flow, Ttﬁ, -0 <t<
00, coincide with the “length” spectrum of the symplectomorphism, f: M — M.

Proof. For (p,a) € M x R,
9" (p,a) = (f"(p),a+ ¢p) +¢P1) + - + @(Pm-1)
with p; = fi(p). Hence if p = f™(p)
gm(p7 a) =TTt (pa Cl)
with
m
T* =T ,=> op), pi=r(.
i=1
Thus if ¢ is the projection of (p,a) onto Y the trajectory of 7% through ¢ is
periodic of period Tfnp ]
Via the mapping torus construction one discovers an interesting connection
between the trace formula in the preceding section and a trace formula which

we described in Section 7.7.4.
Let 8 be the contact form on Y and let

It’s easy to see that M* is a symplectic submanifold of 7*Y and hence a sym-
plectic manifold in its own right. Let

H: M - R



11.5. THE GUTZWILLER FORMULA. 299

be the function H(y,tB,) =t. ThenY can be identified with the level set, H =1
and the Hamiltonian vector field vy restricted to this level set coincides with
the contact vector field, v, on Y. Thus the flow, Ttﬁ, is just the Hamiltonian flow,
exptry, restricted to this level set. Let’s now compute the “trace” of exptvy
as an element in the category S (the enhanced symplectic category).

The computation of this trace is essentially identical with the computation
we make at the end of Section 7.7.4 and gives as an answer the union of the
Lagrangian manifolds

AT,E,‘,, CT*R,meZ,

where the T%s are the elements of the period spectrum of vy and Ap: is the
cotangent fiber at t = T. Moreover, each of these A7:’s is an element of the
enhanced symplectic category, i.e. is equipped with a %—density Vps, which we
computed to be Y

=t m—L 1
T ol —dfy)| " 2]dr|2 .

Tﬁm’p being the primitive period of the period trajectory of f through p (i.e., if
pi = fip) i = 1,...,m and p,p1,...,px_1 are all distinct but p = p; then

T Bmp = T?W) . Thus these expressions are just the symbols of the oscillatory
integrals
F e oIThmt/h
m,p ’
With @, = Th, [T — df?[3.

11.5 The Gutzwiller formula.

Let X be a smooth manifold and P € W28 (X) a self-adjoint semi-classical
pseudo-differential operator with leading symbol p(x,£(. As in 910.4, we will
assume that for some real interval [a,b], p~!([a,b]) is compact. Our goal in this
section is to show that for f € C§°(a,b) the operator

expit% - f(P) (11.29)

is compact, and to compute its trace. At first glance it would appear that the
techniques of Chapter 10, where we derived a trace formula for the operator
exp it Pp(hD) would translate more or less verbatim to this setting; i.e. that we
should be able to solve the equation

10
h-=U(t)— PU =0 11.30
-2 U1 (11.30)
with initial condition U(0) = f(P) by using the local symbol calculus of ¥DO’s
as in 910.2, and then patch there together to get a manifold result as in 410.10.
Unfortunately, however, since the operator %Ph is, semi-classically, a first
order WDO, functions of it are no longer WDO’s, so this result no longer works.



300 CHAPTER 11. FOURIER INTEGRAL OPERATORS.

What one can do, however, is to solve (11.30) modulo O(%°°) by the transport
equation techniques of §8.7.5 and then use “variation of constants” to get rid
of the O(%>°). Here are the details:

Let u(x,y,t, h) be the desired Schwartz kernel of U(t). To solve

(hlaat — P(x, Dy, h)) u(z,y,t,h) =0 (11.31)
i

modulo O(h™) with the given initial data, let
H=r1-p%)
be the leading symbol on the left of (11.31) and let Ay be the set of points
(x,&,y,mt,7) € T*(X x X xR)

where

(z,€) = (y,m), t=0, H(2,£0,7)=0, and (z,£) €p '(a,b).

Since p~*([a,b]) is compact and invariant under the flow of the Hamiltonian
vector field vy, the set of points (x,&,y,n,t,7) € T*(X x X x R) with

(z,€) = (exptvy) (y,m), 7 =p(x,&), and (y,n) € Ao

is well defined for all ¢ and is an embedded Lagrangian submanifold of T*(X x
X xR) on which H is equal to zero. Moreover, the Hamiltonian flow of vy = % —
v, is transverse to Ag, so we can solve (11.31) modulo O(h¥) for all k be induction
on k, at each stage of the induction solving a transport equation for vgy. We can
also prescribe arbitrarily the initial value of this solution on the surface Ay and
we can choose the initial values inductively so that p(z,y,0, k) is the Schwartz
kernel (10.?) modulo O(A*). Furhtermore, for fixed ¢, the microsupport of
p(z,y,t, k) is the graph of the symplectomorphism exp tv, and hence p(z, y,t, i)
is the Schwartz kernel of a Fourier integral operator of order zero quantizing this
symplectomorphism. We have achieved our first goal, namely the construction
of a solution to (11.31) modulo O(h>).

To get rid of the O(h™), we will briefly recall how the method of “variation
of constants” works, and show that it is applicable to our set-up:

Let $ be a a Hilbert space, @ a self-adjoint operator on $) and V' (¢) a family
of bounded operators on ) which satisfy

1d
v

P (t) = QV(t)+ R(t) (11.32)
and
V(0) = A. (11.33)
To convert V(¢) into a solution of
! iU(t) =QU(t) (11.34)

idt
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with intial data
U(0) = A, (11.35)

we note that by Stone’s theorem (see 912.3) ) generates a one-parrameter group
exp it@Q of unitary operators. Using this fact, set

Wi(t) := expitQ/O exp(—isQ)R(s)ds. (11.36)
Then 14
L = qwn) + )

and W(0) = 0. Then V — W satisfies (11.35) and 11.36).

Let us apply the formula (11.36) to our solution mod O(%*°) of (11.30) with
Q= %P. For each t this solution has microsupport in the set p~*([c, d]) where
[e,d] C (a,b) so we can choose functions g and h in C§°(a,b) such that g =h =1
on [¢,d] and h =1 on Supp(g). Multiplying the solutionwe obtained above fore
and aft by g(P) and h(P) we get a new solution of (11.30) mod O(A>) with
the same initial data as before, namely U(0) = f(P), but the remainder is now
of the form g(P)R(t)h(P) and the W(¢) in (11.36) has the form

/0 g(P) (expi(t — $)Q) R(s)h(P)ds. (11.37)

Now note that g(P) and h(P) are smoothing operat ors and that expi(t—s)Q is
unitary map of L?(X) into itself. Moreover, by Proposition 41, g(P) and h(P)
have Schwartz kernels of the form

> g (x, k), (y, h)

and

D B ()i (, ), (y, )

where the ¥; are semi-classical L? eigenfunctions of P.

Thus, since the Schwartz kernel of R has compact support, the expression
(11.37) is well defined. Moreover, since R(s, k) is O(h*°) and the “expi(t —
s)R(s)” factor in the integrand of (11.37) is multiplied fore and aft by operators
which are smoothing and smooth as functions of A, the integral (11.37) also has
this property. This justifies our application of variation of constants.

To recapitulate: We have prove the following (main theorem) of this section:

Theorem 67. For f € C5°(a,b) the Schwartz kernel of the operator (exp it%) f(P)
is an element of I=™(X x X, Lambda). In particular, for all t this operator
18 a semi-classical Fourier integral operator quantizing the symplectomorphism
exp tvy.

Let 1 be a C*° function on R whose Fourier transform is in C§°(R). In the
next section we will compute
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We will find that the above expression has a very interesting asymptotic ex-
pansion involving the periodic trajectories of the vector field v, on the energy
surface p = 0. For this we will need to be more explicit about the phase function
(in the sense of Chapter 4) of our flowout manifold.

11.5.1 The phase function for the flowout.

Let M =T*X, o = ax the canonical one form on M. Let
a=—pria++pria+7dt

be the canonical one form on M~ x M x T*R. We compute the restriction of

& to A:
Let tp : M xR — M~ x M x T*R be the map

(x,€,t) = ((z,8), exptoy(z,§), —t, 7).
This maps M x R diffeomorphically onto A. We claim that
UhG = —a+ (exptuy) o+ (exp tup)*t(vp)adt — pdt. (11.38)
Proof. Holding ¢ fixed, the restriction of (i & to M x {to} ~ M is
—LA DI} @+ L) Py
by the definition of &. But
priowpy =idpys and  pryowy = exptup.

So the preceding expression becomes the sum of the first two terms on the right
hand side of (11.38). So to verify (11.38) we need only check the value of & on
the tangent vector to the flowout curve

t = (g, exptup(q), —t,p(q))-

This tangent vector is

(0.0 exp (0~ 51,0
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and this accounts for the second two terms on the right hand side of (11.38).
|

Now define the function ¢ € C*°(M x R) by

t
= / (exp svp)" t(vp)ar ds — tp. (11.39)
0

We will now show that
UG = do. (11.40)

Proof. —a+ (exptvp)” O‘*fo L (exp svp)" ads

= / exp svp)” Ly, auds

o

t

¢
/ (exp svp) dML(vp)ads—i—/ (exp svp) ™ t(vp)dprads
0

[=)

t
/ exp Sup) dML(vp)ozds—F/ (exp svp)”* (—dp)ds
0

o

¢ ¢
= / exp svp)” dari(vp)ads — dp/ ds
0

[=)

/ exp Sup) dML(vp)ads—dp/ ds
= deR/ (exp svp) ™ dare(vy)ads
0
d t
_ (/ (exp svp)" L(’Up)OédS> dt — tdp
dt J,

t
= de]R/ (exp svp)" t(vp)ads — ((exp tvp)*t(vp)a) dt — tdp
0
= duxr¢ — ((exptvy) (vp)a) dt + pdt
proving (11.40). O

11.5.2 Periodic trajectories of v,,.

Suppose that t — 7(t) is a periodic trajectory of v, with (least) period T' so
that
q :=7(0) = +(T).

Then ¢ is a fixed point of the map expTv, : M — M. The differential of this
map, i.e.

dexpTvy, : ToM — T,M
maps the subspace W, C T;M determined by dp, = 0 into itself and maps
vp(q), which is an element of this subspace into itself. So we get a map, the
(reduced) Poincaré map

Py Wy /{vp} = Sq/{vp}-
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The trajectory -~ is called non-degenerate if
det(l — P,) # 0.

Let us define .
Se ::/ v a. (11.41)
0

11.5.3 The trace of the operator (11.29).

Suppose that there are only finitely many periodic trajectories, 1, ..., vn of v,
lying on the energy surface p = 0 whose periods T1,...,Ty lie in the interval
(a,b) and that they are all non-degenerate.

Let ¢ € C5°((a,b)). The Gutzwiller trace formula asserts that the trace of
the operator

[ otrenity rpyar

has an asymptotic expansion

N
h Z et E Z amhi.

r=1 i=0
Proof. Write this trace as [ 4 (t)u(z, z,t, h)dt, where
D)z, y, t,h) € I72(X x X x R, Ag).
In other words, it is the integral of ¢(t)u(x, y,t, h) over the submanifold
Y =Ax xR

of X x X xR. The conormal bundle of " of Y in M~ x M x T*R is the set of
points
(2, & y,m,t,7)
satisfying
z=y, {=n, 7=0
This intersects A in the set of points (x,&,y,n,t,7) where

(exptvp)(7,§) = (v,§), p=71=0.

For a < t < b this is exactly the union of the points on the periodic orbits in
this interval. The non-degeneracy condition implies that I" intersects A cleanly.
So the Gutzwiller formula above is a special case of our abstract lemma of
stationary phase, see Section 8.14. .

If we write the trace of the operator [, ¢(t)expitl f(P)dt as

S [ ottt e sonm)
k
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and use the Fourier inversion formula this becomes
A
var Y w (3] 1w

where 1 is the inverse Fourier transform of 1.

In this argument, there was nothing special about the zero level set of p We
can replace P by P — E. So the spectrum of P determines the integrals S, for
all non-degenerate period trajectories of vp,.

11.5.4 Density of states.

The density of states formula is a kind of degenerate version of the Gutzwiller
formula. It replaces the periodic trajectories of the bicharacteristic flow f; :=
exp tv, by fixed points of this flow:

More explicitly, let M = T*X, and suppose that for ¢ = (z,£) € M we
have v,(g) = 0, so that ¢ is a fixed point of f; for all t. Let us suppose that
for all 0 < t < tg this fixed point is non-degenerate in the sense of Section
11.3. In other words, we assume that the graph of f; intersects the diagonal
Apy € M x M, which is equivalent to the condition that the map

I—(dfy)y: TM, — TM,

is bijective. Let us also suppose that ¢ is the only fixed point of f; on the energy
surface
p=c where c¢:=p(q).

We can apply the results of Section 11.3 to the Fourier integral operator
it P
F, = exp %p(P), (11.42)

where p € C§°)R) is supported on a small neighborhood of ¢ and is identically
one on a still smaller neighborhood. For this choice p, the microsupport of Fy
intersects Ay only at ¢, Since this intersection is transversal, there is only one
summand in (11.8) so (11.8) gives the asymptotic expansion

it Py, n im Tl
tr (exp ! hr p(Ph)> = hiecaay(ht)e (11.43)

where o, is a Maslov factor and Tg = 1(q,t) where ® is defined by the identity
(11.19):
ax — ft*aX =di.

Since vp(g) = 0, we read off from (11.39) and (11.40) that

¥(g,t) = —tp(q).
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Hence from (11.41) we obtain, for 0 < ¢ < ¢y the density of states formula

it P n im .
tr <exp ! hhp(Ph)) = hEevaa,(h,t)e” P, (11.44)

Moreover, by (11.23)
aqg(0,t) = |det(I — (dft)q]? - (11.45)

We also note that since the left hand side of (11.44) depends smoothly on ¢, so
does aq(h, ).

11.6 The Donnelly theorem.

Let X be a compact manifold, M its cotangent bundle and P, a zero'™ order
self-adjoint elliptic pseudodifferential operator on X. Then for p € C§°, p(Py) is
a zero'™ order pseudodifferential operator with compact microsupport. Hence,
given a C* mapping, f : X — X the operator

F = f*p(Pn)

is, as we showed in §8.10, a semi-classical Fourier integral operator quantizing
the canonical relation, I'y, where

(xz,&,y,n) ey y=f(z) and = dfin. (11.46)

Therefore if I'; intersects Aps cleanly we get for the trace of F' an asymptotic
expansion of the form (11.17). This expansion can also be derived more directly
by simply applying stationary phase to the integral (11.10). (Moreover, this
approach gives one a lot more information about the individual terms in this
asymptotic expansion.)

The details: Let p(x,£) be the leading symbol of P. Then the Schwartz
kernel of p(P,) is given locally by an oscillatory integral having an asymptotic
expansion in powers of h:

(21h) th/ap,k(x,f)e% de (11.47)
k=0

where
4
apk(2,8) = D bro(,) ((Ci) p> (p(z,€)) (11.48)
<2k

and the leading order term in (11.48) is given by a, ¢ = p(p(x,&)). Hence

if(z)—2)-€
h

tr f*p(Pr) ~ (27rh)7d/ap(f(x),§,h)e dz d¢ . (11.49)

Let’s now apply the lemma of stationary phase to the integral (11.49) with
phase function

U(z,8) = (f(z) —x) - €. (11.50)
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To do so we have to compute Cy. But

a—w:()@x:f(x) and Z—ZJ:

5 0& (dfy —1)-£=0. (11.51)

Thus Cy is just the set (11.46). The method of stationary phase requires that
Cy be a submanifold of 7*X and that, for (x,&) € Cy, the Hessian

(d°)e,¢| Nz e Oy

be non-degenerate, and it is easy to see that these conditions are satisfied if
the fixed point set Xy of f is a submanifold of X and if the restriction map
T*X|Xy — T*X; maps (11.46) bijectively onto T*Xy. Finally, to compute
the leading order term in the asymptotic expansion of (11.49) using stationary
phase, one has to compute the determinant of the quadratic form (11.46). But

D% 9y Of
_— = — — I
oe? and B T ar 1
SO of
0 of _
d2¢z,£ = |: I3} oz :|
— a% — I
and hence

2
det(d®y ¢| Ny eCy) = — <det (g — I> | NzXf> .
pa

Note also that sgnd?t, ¢| N, ¢Cy = 0 and ¢|Cy = ((f(z) — z) - §)|Cy = 0 by
(11.49). Feeding these data into the stationary phase expansion of the integral
(11.49) and noting that a,(z,£,0) = p(p(z,&)), we get the following variant of
Donnelly’s theorem.

Theorem 68. Let X;, i =1,..., N, be the connected components of Xy and let
d; = dim X;. Then

trace f*p(Pp) ~ Z(27rh)_di Z a,ih".
k=0

Moreover,

0= [ plple €)1 D) ) dd
T X,
where dx d€ is the symplectic volume form and D(z) = det(df, — I|NX;).

Remark:

If we take P, to be —h?Ax and p(s) to be the function e=*%, s > 0, (which
takes a little justifying since this p is not in C§°), then this theorem reduces to
Donnelly’s theorem (with k2 playing the role of t).
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Chapter 12

Integrality in semi-classical
analysis.

12.1 Introduction.

The semi-classical objects that we have been studying in the last four chapters
can be thought of from the symplectic perspective as the quantizations of objects
and morphisms in the ezact symplectic “category”. Recall that in this category
an object is an exact symplectic manifold, which is a manifold M with a one form
a such that w = —da is symplectic. The point morphisms pt. — M, associated
with this object are pairs (A, ¢) where A C M is a Lagrangian submanifold and
¢ is a C'*° function on A such that

Lo = do. (12.1)

If My and M> are exact symplectic manifolds, a morphism of M; into Ms is a
point morphism of pt. to M; x M.

We discussed these categorical issues in Chapter 4. In particular, we showed
in §4.13.5 that this category sits inside a slightly larger category: the integral
symplectic category. In this “category” the objects are the same as above, but
the point morphisms pt. — M are pairs (A, f) where f : A — S is a C°° map
that satisfies, as a substitute for (12.1) the equation

1 df

o= i (12.2)
We can view (12.1) as a special case of (12.2) by setting f = €279,

One can show that if our exact symplectic manifolds are cotangent bundles,
then most of the semi-classical results that we obtained in the last four chapters
can be formulated as results in this larger category. Namely the functions f can
always be written locally as

f=e*9  ¢ec ). (12.3)

309
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Therefore, since the functions and operators that we have been dealing with in
the last four chapters have been defined by first defining them locally, and then
extending the local definitions into global definitions via partitions of unity, we
can do exactly the same same thing with exact Lagrangian manifolds replaced
by integral Lagrangian manifolds. But there is a hitch: the function ¢ in (12.3)
is not unique. It is only defined up to an additive constant ¢ € Z. So if we attach
to ¢ oscillatory integrals with phase factor ey, these oscillatory integrals will
only be well defined modulo factors of the form e*#°. There is a simple way
out - namely, to impose on A the constraint

h=—, meZ. (12.4)

This is the approach we will take below. Note for such A, we have e =1.

Our motives for introducing these integrality complications into semi-classical
analysis will become clearer later in this chapter. We will see in the discussion
of concrete examples, that the functions and operators we will use only become
well defined if we impose the integrality condition (12.4). What we can say at
this point, however, is that these examples, for the most part, have to do with
actions of Lie groups on manifolds.

For instance, suppose that X is a manifold and 7 : P — X a circle bundle.
We will show that if A is a classical pseudo-differential operator on P which
commutes with the action of S* on C°°(P), then one can think of A as a semi-
classical operator Ay on X, but this operator is only well-defined if h satisfies
(12.4).

Or, to cite a second example, suppose that G is a compact Lie group and
pm the irreducible representations of G with highest weight mS. We will show
that if v, € C°°(G) is the character of this representation, the ~,,’s define an
oscillatory function‘ys, i = 1/m living micro-locally on Ap C T*G where O is
the co-adjoint orbit in g* containing 8 and Ao its character Lagrangian. Thus,
in this example too, ~yy is only defined when 7 satisfies (12.4)

Here, as a road map, is a brief outline of the contents of this chapter:

In §12.2 we review standard facts about line bundles and connections. We
will need this material in order to explain in detail the correspondence between
classical and semi-classical pseudodifferential operators in the example we al-
luded to above.

In §12.3 we will discuss “integrality” in De Rham theory. In particular we
will describe its implications for cohomology classes [c] in H}, (X)) in dimension
s one and two. For instance, we will show that if A is a Lagrangian submanifold
of the exact symplectic manifold (M, a), the integrality of ¢}« in the DeRham
theoretic sense in just the integrality condition (12.2).

In §12.4 we will review the results of §4.13.5 on integrality in symplectic
geometry and discuss some examples of integral Lagrangian submanifolds that
we will encounter later in the chapter.
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In §12.5 and §12.6 we will develop the symplectic machinery that we will
need for applications to group actions that we alluded to above. In particular
we study the notion of “symplectic reduction” of the “moment Lagrangian”
and of the “character Lagrangian”. The first two of these topics were briefly
discussed in Chapter 4. We will discuss them in more detail here.

These five sections constitute the “symplectic half” of the this chapter. In the
remaining six sections we discuss the semi-classical applications of this material.

In §12.7 we will amplify on what we said above about the semi-classical
oscillatory functions and operators associated with integral Lagrangian sub-
manifolds.

In §12.8 and §12.9 we discuss our semi-classical formulation of the theory
of characters for representations of compact Lie groups. Our goal in these two
sections will be to show that the two classical character formulas for compact
Lie groups: the Weyl character formula and the Kirillov character formula are
special cases of a more general result, a character formula due to Gross-Kostant-
Ramond-Sternberg and to show that the machinery of semi-classical analysis:
half-densities, Maslov factors, etc. makes these formulas more transparent.

In §10 we will elaborate on the remark above abut classical pseudodifferential
operators on a circle bunlde P — X, i.e. that such operators can be viewed as
semi-classical pseudodifferential operators on X

In §11 and §12 we will state and prove the main result of this chapter: an
equivariant version of the trace formula that we proved in Chapter 10. In §11 we
will prove the S! version of this theorem and in §12 use the “character theorems”
of §12.8 and §12.9 to extend this result to arbitrary compact Lie groups.

12.2 Line bundles and connections.

Connections, connection forms, and curvature.

Let L — X be a complex line bundle over a smooth real manifold. A linear first
order differential operator V : C*°(L) - C*L ® T*X) is called a connection
if it satisfies

V(fs) = fVs+s®df, VseC=(L), feC®M). (12.5)

If U C X is open, and s : U — L vanishes nowhere, define the one form a(s) by

als) = %vis). (12.6)
By (12.5) we have
alfs) = a(s) + — & (12.7)

21 f
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for non-vanishing functions f. It follows from (12.7) that w defined by
wy = da(s) (12.8)

is independent of the choice of s and hence is globally defined. From its definition
it is clear that dw = 0. w is called the curvature form of V. Its cohomology
class is independent of the choice of V and is called the Chern class of L.

The condition that the curvature form be real valued.

In general w could be complex valued, but we suppose that we make the as-
sumption that w is real valued. It follows from (12.8) that Im («(s)) is closed,
and hence if U is simply connected that there is a real valued function h on U
with Im a(s) = dh. By (12.7)

1

“mhg) = afs) — gIma(s)

ale

which is real. So (with a change in notation) we may assume that all our
trivializing sections have the property that a(s) is real. We now examine some
consequences of this property.

Let U = {U,} be a good cover (meaning that all intersections are con-
tractible) with trivializing sections s, such that all the «a(s,) are real. If

fik € C=(U; NUk) (*)

are such that
Sj = fjksk,

then it follows from the reality of the a(s,) and (12.7) that

d (Im (;m.log(fjk)» -0

and since U; N Uy, is contractable, that

cjk = Im (;rilC’g(fjk))

are constants. Since fjxfrefejs; = 5 on Ujne := U; N U, N Up it follows that
fikfrefej =1 on Ujpp. Hence

¢k + cre + coj = Re log(fjufrefe;) =Relogl =0 on Ujge.

Thus the c;;, define a Cech one cycle.
If X is simply connected, this cocycle is a coboundary, so that there exist
constants ¢; such that if Ujy, := U; N Uy # 0,

Cjk = Cj — Cg.
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So if we modify our trivializing sections by replacing s; by €*%s;, we see that
we obtain trivializing sections such that the corresponding transition functions
satisify

| fixl = 1. (12.9)

This allows us to define a Hermitian inner product on L by defining, for any
section s of . and any U;

(s, ), = |s/s;[% (12.10)

Suppose that s is a non-vanishing section of I such that a(s) is real and we
have a Hermitian metric such that (s,s) = 1. Thus d(s,s) = 0. On the other
hand,

(Vs, s) + (s, Vs) = (2mi)(a(s) — a(s))

so if a(s) is real, we have
(Vs, ) + (s, Vs) = d(s, s),

since both sides vanish. By (12.7) this equality extends to all sections. Indeed,
if we have a section of the form fs then (fs, fs) = |f|? so d(fs, fs) = fdf + fdf.
On the other hand, from (12.7) we have

(V(fs). fs) +(fs,V(fs)) = |fI*((Vs,5) + (5, Vs)) + fdf + fdf = d|f|*.

So we have
d{u,u) = (Vu,u) + (u, Vu) (12.11)

for any section u of the form fs. Conversely, suppose that there is a Hermitian
metric on L for which (12.11) holds for all sections. We may choose our trivi-
alizing sections s; to satisfy (s;,s;) = 1, and then conclude that the a(s;) are
real. Of course, if we have trivializing sections such that all the «a(s;) are real,
then it follows from (12.8) that the curvature w is real.

In the case that X is simply connected, and our trivializing sections s; all
have the property that a(s;) is real, then for the Hermitian metric given by
(12.10), equation (12.11) holds for all sections of L.

The meaning of w = 0.

Having examined the implications of “w is real valued” we next examine the
implications of the much stronger assumption “w = 0”. This assumption implies
that for every trivializing section, s : U — L, a(s) is closed. Hence if U is simply
connected a(s) = —dh for some function h € C*(U), and if we replace s by
e?mihs this modified trivializing section satisfies Vs = 0. In other words s is
an “autoparallel” section of L|U. Suppose now that, as above, U = {U;, i =
1,2,...} is a good cover of X and s; : U; — L trivializing autoparallel sections
of L|U;. Then the transition functions that we defines above are constants, and,
as above, the constants

1
Cij = ——=1log fi;
21y —1
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define a Cech cocycle in C*(U,R). Thus if this cocycle is a coboundary, i.e. if
¢ij = ¢; — ¢; then
67271’\/71@-51_ _ 67271'\/710]- Sj .

In other words these manifold sections patch together to give a global trivializing
section of L with the property, Vs = 0. Thus, to summarize, we’ve proved

Theorem 69. If X is simply connected and curv(V) = 0 there exists a global
trivializing section, s, of I with Vs = 0.

Functorial properties of line bundles and connections.

Recall that if Y is a manifold and v : Y — X a C*> map then one can define a
line bundle v*LL on Y by defining its fiber v*IL at every point p € Y to be the
fiber, L, of L at the image point y(p) = ¢. Thus if s : X — L is a section of L
the composite, s oy, of the maps, v:Y — X and s : X — L can be viewed as
a section of v*IL and this give one a pull-back operation

v CO(L) = C®(y*L).

By combining this with the pull-back operation on forms: v* : Q}(X) — Q1(Y)
we get a pull-back operation

Y CPLRT X)) = C(H'LeT'Y)

and it is easily checked that there is a unique connection, v*A, on v*IL which is
compatible with these two pull-back operations, i.e. satisfies

v (Vs) =y A(v"s). (12.12)
Moreover by (12.8) the curvature form of this connection is

frw. (12.13)

One elementary application of these functioriality remarks is the following.
Suppose Y is just an open subinterval of the real line. Then v*w = 0, so
by the theorem above the line bundle v*IL has an autoparallel trivialization. In
particular for a,b € I, elements of L, at p = y(a) can be identified with elements
of Ly at ¢ =y(b) by “parallel transport along ”.

More generally, if Y is any simply-connected manifold and v*w = 0, then
the same is true for it: v*IL has a canonical parallel trivialization. (For instance
this is the case if w is a symplectic form, ¥ a Lagrangian submanifold of X, and
~v:Y — X the inclusion map.)

Line bundles and circle bundles.

We’ll conclude this brief review of the theory of connections by describing an
alternative way of thinking about line bundle—connection pairs. Let’s assume
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that w is real and that L has an intrinsic “autoparalle]” Hermitian inner product
(,). fU C X is asimply connected open set and s : U — L a trivializing section
we can assume without loss of generality, that (s,s) = 1 on U. Thus if we let
P C L be the circle bundle

{(P7v)§p€XaU€Lp7 <UaU>P:1}7

we can view s as being a trivialization section
s:U—P. (12.14)

Now let % be the infinitesimal generator of the circle action on P. We claim

Theorem 70. There exists a unique real-valued one-form, o € QY (P), such
that

(i) (55) = 2=

and
(i) For all sections, (12.14), of P, « has the reproducing property

s*a=a(s) (12.15)

Proof. The trivializing section (12.14) gives one a bundle isomorphism
P~UxS!

and if a has this property it’s clear that it has to correspond to the one-form:
a(s) + 2. Thus, if an o exists, it has to be umque and to show that it exists
has propertles (i) and (ii)

it sufﬁces to show that the form above: «(s) + Qﬂ,
2mihg b being any

on U x S*. However if we replace the section (5) by § = e
real-valued C*° function, then

do

(3)(als) + 5 ) = als) + dh = a(3)

by 3.

Remarks

1. Since the form «a(s) + % is S! invariant and the identification, P|U ~
U x S' is an S'-equivariant identification. The form « itself is an St
invariant form. In particular,

<;)daLaa (;>a0 (12.16)
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2. From property (ii) one gets the identity
Vs =vV-1s®s*a (12.17)
which can be viewed as an alternative way of defining Vv in terms of «.

3. Let 7 be the projection, P — X. Using the identity (12.15) one can
rewrite the identity: ds*a = da(s) = w, more intrinsically in the form

m"w =da. (12.18)

(Notation: We will henceforth refer to o as the connection form of the
connection, V.)

4. Of particular interest for us will be examples of line bundle—connection
pairs, (IL, V) for which the curvature form, w, is symplectic, i.e. for which
(X, w) is a symplectic manifold and (L, V) is a “pre-quantization” of this
manifold. In this case « is a contact form on P, i.e. for 2m = dim X the
2m + 1-form, a A (da))™ is nowhere vanishing. Moreover, one gets from «
an exact symplectic form

w# =d(ta), teRF (12.19)

on the product, P x RT. Denoting by L# the complement of the zero
section in IL one gets a natural identification

P xRt ~L# (z,v,t) = (z,tv)

via which we can think of w# as being an exact symplectic form, w# =
da#, o# = ta, on L#. In particular, L# is the symplectic cone associated
with the contact manifold, (P, «).

12.3 Integrality in DeRham theory.

A coholomogy class, ¢ € H¥(X,R) is integral if it is in the image of the map
H*(X,Z) — H*(X,R), mapping cohomology classes with integer coefficients
into cohomology classes with real coefficients. In this section we will describe
the implications of this integrality property in degrees k =1 and k = 2.

We begin with the case k = 1: Suppose a € Q' (X) is a closed one-form with
[a] = ¢ Let U={U;,i =1,2,...} be a good cover of X. Then, for every U,
there exists a function, h; € C°°(U;) with the property

dh; = « (12.20)
and hence on overlaps, U; N Uj, there exists constants ¢; ; satisfying

hi|UiﬁUj —hj|UiﬁU]’ =Cij- (12.21)
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Moreover if U; N U; N Uy, is non-empty
cijtejr+tceg; =0

and hence the ¢; ;’s define a Cech cocycle é € C'* (U,R); and the correspondence,
a — ¢, gives rise, at the level of cohomology, to the standard isomorphism,
H}DR(X) — H'(X,R). Suppose now that c is an integral Cech cocycle, i.e.
¢ijez - Then by equation (12.21)

6271'\/ 71hi — 6271’\/ 71}743'

on U; NUj, so these functions define a map f : X — S whose restriction to U;
is €2V =Thi and hence by (12.20)

_1 &

a=goT (12.22)

In other words we’ve proved (most of) the following assertion.

Theorem 71. A cohomology class, ¢ € H' (X, R) is integral iff it has a DeRham
representative of the form

1 *
= fdf (12.23)

where f is a map of X into S* and O the standard angle variable on S*.

Let us now turn to to the slightly more complicated problem of deciphering
the implications of integrality for cohomology classes, ¢, in H 2(X,7Z). fwe
02(X) is a closed 2-form representing this class, the Cech cocyle corresponding
to w can be constructed by a sequence of operations similar to (12.20)—(12.22).
Namely let

OJ‘UZ = dao; , ;€ QI(UZ) s (1224)
and on U; NUj let
Q; = Qj = dhj/’j (1225)
where h; j = —h;; is in C>°(U; N U;). Then by (12.25)

d(hi,j +hj’k +hkﬂ') = o —o;jtaj—ap+ta,—a;=0.
SO

Cigk = hij+hje+he (12.26)

is a constant. Moreover from this identity it is easy to see that the Cech cochain,
¢ € C*(U,R), defined by the c; ; ;’s satisfies dc(i, j, k, €) = c(j, k, ) — c(i, k, £) +
c(i,4,€) — c(i,j,k) = 0 and hence is a cocycle. Moreover, as above the corre-

spondence w — ¢, defines, at the level of cohomology, the standard isomorphism,
H%(X) = H*(X,R).
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Suppose now that ¢ is an integral cocyle, i.e. the ¢; ;s are integers. Then,
letting f; ; = e*™V~1hii one gets from (12.26) the identities

Jiilirfei=1, (12.27)

and it is easy to see from these identities that the f; ;’s are transition functions
for a line bundle . - X. Indeed this line bundle can be defined explicitly as
the union:

L=wU; xC (12.28)

modulo the identifications:
(x,¢i) ~ (x,¢) © ¢; = fi;(x)e; (12.29)
for z’s on the overlap U; N U;. Moreover the maps
5:U—»L, x— (1)

define trivializing sections, s; of L, and these have the f; ;’s as their associated
transition functions. In addition one can define a connection, v, on L by setting

1 Vs;
= oy 12.30
2my/ =1 8; ( )

where the «;’s are the «;’s in (12.24)—(12.25) and by (12.24) the curvature form
of this connection is w. Thus we’ve proved (most of) the following assertion.

Theorem 72. If ¢ € H?(X,R) is an integral cohomology class there exists a
line bundle connection pair L,V with ¢ = [curv(V)].

Remarks

1. One can define a Hermitian inner product on L by requiring that the s;’s
above satisfy (s;,s;) =1 on U.

2. This theorem is a key ingredient in the proof of the following purely topo-
logical result.

Theorem 73. There is a bijection between H*(X,Z) and the set of equivalence
classes of complex line bundles on X.

We won'’t prove this result here but a nice proof of it can be found in [Weil].

12.4 Integrality in symplectic geometry.

In Chapter 4 we defined an exact symplectic manifold to be a pair (M, «) con-
sisting of a symplectic manifold (M,w) and a one-form, «, for which w = da.
We also defined an exact Lagrangian submanifold of (M, «) to be a pair, (A, ¢)
consisting of a Lagrangian submanifold, A of M and a real-valued function
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¢ € C*(A) for which ;o = dp. These were the building blocks of the “exact
symplectic category” that we discussed in §4.13. In this category the (M, a)’s
played the role of objects, the categorical points of (M, «) were its exact La-
grangian submanifolds; and given two objects (M7, 1) and (Mas, ag) we defined
the morphisms between them to be the categorical points of the product mani-
fold

M = M; x M (12.31)
equipped with the one-form

a = —(pri)ton +pryos. (12.32)

Recall from §4.13.5 that this category sits inside a slightly larger category which,
for lack of a better term, we called the integral symplectic category. In this
category the objects are the same as above: Exact symplectic manifolds: (M, ).
However morphisms between two objects (M,aq) and (Ma,as) are be pairs
(T, f) where I is a Lagrangian submanifold of the product (1) and f a C*> map,
I' — S! satisfying

.1 df

o= o R

Thus if (I, ) is a morphism in the exact symplectic category we can convert
it into a morphism in this category by setting f = e?™¥*. Note that the forms
t}a are integral one-forms (this being our reason for calling this the “integral”
symplectic category). Also as in Chapter 4 the term, category, continues to
mean “category-in-quotations marks”. To compose morphisms I'yMs — M;3
and I's : My — M3 we will have to assume that they are cleanly composible in
the sense of §4.2 and in particular that the map defined by :

(12.33)

kK:T9xI'y 5> T%0I

is a smooth fibration with connected fibers. Assuming this we defined the com-
position operation for morphisms (I'q, f1) and (T3, f2) in this new category in
more or less the same way as in §4.12. We will simply replaced the composition
law in the exact symplectic category by the composition law

(1, f1) o (T2, f2) = (T, f) (12.34)

if [ =Ty 0T and
K*f = pifipafa- (12.35)

Thus by this composition law our recipe for converting an exact canonical re-
lation, (T, @), into an integral canonical relation, (T, f) by letting f = e,
defines an imbedding of the exact symplectic category into the integral sym-
plectic category.

Given an exact symplectic manifold (M, «) its “categorical point”: the mor-
phisms, pt — M, are by definition pairs, (A, f) where A is a Lagrangian sub-
manifold of M and f a map of M into S! satisfying tja = 5 %. We'll devote

27
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the rest of this section to describing some examples of such point-morphisms
(example which will resurface in the last couple of sections of this chapter).

Example 1.

At the end of §12.2 we showed that if (X,w) is an integral symplectic man-
ifold and (L, V) a pre-quantization of X, we get an exact symplectic manifold
(L#,a*) by deleting the zero section from L. Moreover, if P is the unit circle
bundle in L and a € Q!(P) the connection form then, via the identification
L# = P x R*, a* becomes the one-form, ta. Now let A C X be a Lagrangian
submanifold and ¢ : A — X the inclusion map. Using the functorial properties
of line bundles described in §12.2 one gets a line bundle with connection on A

Ly =L and vy =3V.
Moreover, by the functorial property (12.13) of the curvature form
curv(Vy) = thw =10

since A is Lagrangian. Thus if 7 is the projection map of P onto X, and
A# = 771(A) then
eda=1"3w=0

so tj o is closed.

Definition 11. A satisfies the Bohr—Sommerfeld condition if this closed
form is integral.

There are a number of other formulations of this condition, the one of most
relevance for us being the following:

Proposition 42. Let s be a trivializing section of La. Then A satisfies Bohr—
Sommerfeld iff Re a(s) is integral.

Proof. Replacing s by (so, s)fés we can convert s into a trivializing section of
A# = P|A, giving us identifications

A* = Ax ST

and

U = oz(s)—&—ﬁ
Ad N 27

Therefore « is integral if and only if «(s) is integral.

Example 2.
In example 1 replace X by X~ x X and L by L* KL, and let f: X — X be a
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symplectomorphism. We will say that f is pre-quantizable if there exists a line
bundle automorphism

L ~ fL (12.36)

satisfying
Vf*s = f*Vs (12.37)
i (s,8) = (f*s,f"s) (12.38)

for all s € C*°(L). Now let the A in example 1 be the graph of f viewed
as a Lagrangian manifold of X~ x X. The conditions (12.36)—(12.38) can be
reformulated as saying that L* X LL|A had a canonical autoparallel trivializing
section. Hence by the proposition above A satisfies Bohr—Sommerfeld and the
A# sitting above it in (L* K L)# is integral.

Example 3. The character Lagrangian.
Let G be an n-dimensional torus and

X : G — Hom(V)

an irreducible unitary representation of G. For x to be irreducible and unitary
the vector space V has to be one dimensional and x(g) has to be multiplication
by an element, f(g) of ST, hence such a representation is basically a homomor-
phism, f : G — ST, and this homomorphism, is by definition the character of x.
As for the character Lagrangian, this is by definition the graph in T*G of the
one-form, o = %z % and hence is an integral Lagrangian submanifold of T*G.
We will show in the next section how to define an analogue of this object for G
non-abelian, and at the end of this chapter discuss some semi-classical results
in which it plays an important role.

We recalled at the beginning of this section that one way to generalize the
notion of “morphism” in the exact symplectic category was by replacing “ ex-
actness” by “integrality”. As we pointed out in §4.13.5, one can go in the oppo-
site direction and define a class of morphisms which are much more restrictive
than the exact morphisms but which play a prominent role in the applications
we’ve just alluded to. Let (M;, a;), i = 1,2, be exact symplectic manifolds and
I' C My x My a canonical relation. If M; and M, are cotangent bundles so is
My x Ms. Thus My x M, with its zero section deleted, is a symplectic cone,
and we will say that I' is conormal if it is a conic submanifold of this cone,
A simple condition for this to be the case is that for o the one-form (12.32) to
satisfy

tra =0, (12.39)

and this motivates the following:

Definition 12. Let (M;, ), i = 1,2, be exact symplectic manifolds and T’ C
M7 x My a canonical relations. We will say that I' is conormal if it satisfies
the condition (12.39).
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12.5 Symplectic reduction and the moment map.

Let M be a symplectic manifold, G a Lie group and 7 : G — Diff(M) a Hamil-
tonian action of G on M. From this action we get a moment map

¢: M — g (12.40)
with the defining property:
vy )w = d{g, v) (12.41)

for all v € g. (This identity only defines the (¢, v)’s up to additive constants;
however, the cases we will be interested in, we can choose these constants so
that the map (12.40) is G-equivariant. For instance suppose (M, «) is an exact

symplectic manifold and « is G invariant. Then L,,,a = 0, so
t(var)a = —du(vpr) (12.42)
so one can take as one’s definition of ¢
(¢, v) = =t om)ex (12.43)

giving one a “¢” that is patently G-equivariant.)
The identity (12.41), evaluated at p € M, says that

(6, v)p = (vns () - (12.44)
Therefore, since w,, is non-degenerate (d¢,,v) = 0 if and only if vy (p) = 0, i.e.
Image (do, : T,M — g*) = g (12.45)

where
g ={veg, vup)=0}. (12.46)

From this one gets the following pertinent fact:

Proposition 43. A point, a, of g* is a regular value of ¢ iff for everyp € ¢~ *(a)
gp = 0; in other words iff the action of G at p is locally free.

In particular, because of the G-equivariance of ¢, the set Z = ¢~1(0) is a
G-invariant closed subset of M, and if 0 is a regular value, is a G-invariant
submanifold on which G acts in a locally free fashion. Therefore, if we assume
in addition that G acts freely the quotient

B=2Z7/G (12.47)

is a manifold and the projection 7 : Z — B makes Z into a principal G-bundle
over B. Moreover the identity (12.44) tells us that at p € Z

((dpoiz)p, v) = vz (p))zwp-
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However ¢p otz =0, so
t(vz)iyw=0. (12.48)

This together with the fact that (7w is G-invariant tells us that (5w is basic
with respect to the fibration, 7 : Z — B. In other words there exists a unique
two-form, wpg, on B satisfying

mrwp = pw. (12.49)

A simple computation shows that wp is symplectic, and hence (12.49) implies
that Z is a coisotropic submanifold of M. From Section 4.6 we know that this
corresponds to a reduction morphism in the symplectic category. We recall how
this goes:

Let I" be the graph of w. By definition this sits in Z x B; but, via the
inclusion, Z — M, we can think of I' as a submanifold of M x B, and the
identity (12.49) can be interpreted as saying that I is a Lagrangian submanifold
of M~ x B i.e. a canonical relation

I' € Morph(M, B)

which is a reduction in the categorical sense. We will call this canonical relation
the reduction morphism associated with the action 7, and the pair (B,wpg) is
called the symplectic reduction of M with respect to the action, T.

Suppose now that M is an exact symplectic manifold and that w = da,
a € QY(M)C. Then, as we saw above the moment map associated with 7 is
given by (12.43) and hence, for p € Z, «(var)ay, = 0. This together with the G-
invariance of « tells us that ¢« is basic, and hence that there exists a one-form,
ap € QY(B), satisfying

wp = daB (1250)
and
Tap =ty (12.51)

These two identities, however, simply say that the canonical relation, I', is
conormal in the sense of Section 4.13.5. In other words:

Theorem 74. In the exact symplectic category the reduction morphism
rM-—aB

is an conormal canonical relation.

Example: Let M = T*G. Then from the right action of G on T*G one gets
a trivialization T*G = G x g* which is invariant with respect to the left action
of G on T*G and the moment map associated with this left action is the map,
(z,€) € G x g — —¢&. Thus, in this example, Z is the zero section in T*G, Z/G
is the point manifold, “pt.”, and I'f the point morphism, pt. — Z.
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As an application of these ideas we will come back to a notion that we
discussed in Chapter 4, the notion of “moment Lagrangian” and provide an
alternative perspective on it in terms of symplectic reduction: Consider the
product action of G on M x T*G. Its moment map is the map

(2,9,8) = o(z) — € (12.52)

hence the zero level set of this moment map: the set, Z, in the discussion above,
can be identified with M x G via the identification

(z,9) = (z,9,6(x)). (12.53)

Thus G acts freely on Z, a global cross-section for this action being given by
M x{e}. Moreover the restriction to this cross-section of the product symplectic
form on M x T*@G is the standard symplectic form on M so the symplectic
reduction of M x T*G by the product action of G is M itself. As for the
canonical relation, I', associated with this reduction: this is by definition the
graph of the fibration 7 : Z — M; therefore, identifying M with the cross-
section, M x {e} we see that the fiber above (x,e) in Z is the G orbit through
(z,e) i.e. the set, {(¢g x g7!),g € G} and hence the graph of T is the set of
all pairs (p,7(p)) where p = (x,g) and 7(p) = gx. Hence if we imbed Z into
M x T*G via the map (12.53) T’ becomes the set of points

(z,9z; g,0(x)), (x,9) €M xG (12.54)

in M x T*G, which by comparison with the description for I'; in §4.10.1 is seen
to be Weinstein’s moment Lagrangian. In other words the moment Lagrangian,
I, is just the reduction morphism associated with the action of G on M x T*G.
One consequence of this is that if M is an exact symplectic manifold I'; is
an conormal canonical relation.
In particular, suppose that M is the cotangent bundle T* X of an n-dimensional
manifold X, and that 7 is the lift to M of an action

XxG—X (12.55)

of G on X.
As we explained in §4.7, 7x defines a morphism

I :T"X - T(X x Q) (12.56)
i.e. a Lagrangian submanifold of
(T"X)” xT*X x T*G.
Claim:

Theorem 75. The T';, defined by (12.56) is identical with the moment La-
grangian (12.54).
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Proof. Recall that for any map f : Y — X, the Lagrangian manifold I'y consists
of the set of pairs ((y,7n), (x,&)) such that

z = f(y) and n=df,¢.

So we have to check that for Y = X x G and f = 7 this set coincides with
(12.54).
This follows from the following lemma:

Lemma 7. The moment map ¢ : T*X — g* of the lifting of 7x to T*X is
given by
(¢(2,8),v) = —({{,vx(2)), veEg. (12.57)

The proof of the lemma follows from the identity (12.43) and the fact that
at the point p = (x,£) € T*X the right hand side of (12.43) is (§,vx(z)) by the
defining property of the canonical one form a on T*X O

Thus, in this example, I'; is not only conormal, but is, in fact, just the
conormal bundle of the graph of 7x.

Let us return to the general formula (12.54): By rearranging factors we can
think of I" as a morphism

M~ xM-—=>TG.

If this morphism is composable with the diagonal, A, in M~ x M we get another
object that we studied in Chapter 4 the character Lagrangian, I'; o A, in T*G.
One consequence of the composition theorem that we proved in §112.3.4 is that
if I'; is conormal and A is an integral Lagrangian submanifold of M~ x M then
the character Lagrangian is an integral Lagrangian submanifold.

An example of this which we will encounter later in this chapter is the
following. Let (X,w) be a (not-necessarily-exact) symplectic manifold and 7 an
action of G on X. Suppose X is pre-quantizable and let I be its pre-quantum
line bundle and Vv and (, ) the pre-quantum connection and Hermitian inner
product on L. We will say that 7 is pre-quantizable if it lifts to an action of G
on L that preserves V and (, ). In this case it is easy to see that 7 has to be
a Hamiltonian action. In fact to see this let P be the unit circle bundle in L
and o € Q!(P) its connection form. Then the action of G on P satisfies, for all
veg

di(vp)a = —t(vp)da = —t(vp)T*w. (12.58)

But t(vp)m*w = 7*1(vx )w and t(vp)a is an S'-invariant C°° function on M and
hence is the pull-back by 7 of a C> function —(¢, v) on X. Thus we can rewrite
the identity above in the form, d{¢,v) = t(vx)w. Q.E.D.

Let M = P x Rt = (L)# be the symplectic cone associated with (P, ) and
ay; = ta its associated one-form. From the Hamiltonian action of S' on M
we get a Hamiltonian action of the two-torus T = S' x S on M~ x M and
associated with this action a reduction morphism
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' M~ xM-—>X" xX.

Moreover, this morphism can be factored into a product of two simpler mor-
phisms: From the line bundle, L, we get a pre-quantum line bundle, L* X I
over X~ x X and this comes equipped with a product connection and product
Hermitian structure. Let @ be the circle sub-bundle of this product bundle and
[ the connection form on ) and let

W=(L*RL)# =Q xR"

be the symplectic cone associated with @ and . In terms of these data the
factorization of I' that we alluded to above is the following. Factor the torus,
T, as a product, T} x Ty, where T} is the group of pairs, (¢??,e=%), ¢? ¢ §1
and T, the group of pairs (e?, e?®). Then if we reduce M~ x M by the action
of T we get a reduction morphism

'y M xM-—->W
and if we reduce W by the action of T5 we get a reduction morphism
e W= X" xX

and this “reduction in stages” factors I' into a composite reduction I' = T's o I'y.
Now let Ay be the diagonal in X~ x X. Then A# =T% o Ay is just the pre-
image of A in @) and hence, as we showed in §112.3.4 is an integral Lagrangian
submanifold of W. Moreover 'Y o A# =T o A; so it is just the diagonal Ay, in
M~ x M, and hence Ay is integral. Finally it is easy to check that the moment
Lagrangian associated with the action of G on M is just the composition of the
morphisms

' M xM=X xX
and

I, X" xX=TG.

Hence, as we showed above, this composite morphism is an conormal canonical
relation. Moreover the identity, “An; = I'! 0o Ax”, can be interpreted as saying
that Ax = I' o Ap;. Therefore if I'; and Ax are cleanly composable so are
I'-oT'oAps; and

lN,oAx =T,0l0Ay.

In other words the character Lagrangian associated with the action of G on M,
coincides with the character Lagrangian associated with the action of G on X,
and hence since the first of these is integral so is the second.

We conclude this discussion of symplectic reduction by pointing out that
the reduction morphism I" € Morph(M, B) can be equipped with a canonical
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half density and hence converted into a morphism in the enhanced symplectic
“category”.

Namely, by identifying I" with the zero level set Z of the moment map, we
can think of it as a principal G - bundle Z — B. From Haar measure on G and
the symplectic volume form on B one gets a non-vanishing smooth density on Z
whose square root is a non-vanishing half density o. Thus via the identification
of Z with T' this becomes a half density on I' and hence the pair (T',0) is a
morphism in the enhancedd symplectic “category”.

In particular, this remark applies to the moment Lagrangian

L,: M~ xM—T*G.

Moreover, from the sympletcic volume form on M, and the identification of M
with the diagonal in M~ x M one gets a volume form on A whose square root in
a non-vanishing half-density, . Thus, if I'; and A are cleanly composible, the
composition law for morphisms in the enhanced symplectic “category” converts
I'; o A into an enhanced Lagrangian (I'; o A o o ), i.e. equips I'; o A with a
canonical half-density o o p.

12.6 Coadjoint orbits.

To extend the character formula (3.6.7) to non-abelian groups we will have to
describe the analogues for these groups of the elements, «, of the weight lattice
of G and this will require a brief review of the theory of co-adjoint orbits. As
above let G be a connected Lie group, g its Lie algebra and (Ad)* : G — Aut(g*)
the co-adjoint action of G on g*. Let O be an orbit of G in g* and f a point on
this orbit. We claim that one can define an alternating bilinear form on 70O
by setting

wy(vo,wo) = (f, [v,w]) (12.59)
for v,w € g. To show that the left hand side is well-defined we note
(f, [v,w]) = {f, gd(v)w) = (ad(v)" f, w) (12.60)

and ad(v)*f = 0 if and only if vo(f) = 0 so the expression on the right only
depends on vp and, with the roles of v and w reversed, only depends on wo.
Suppose in addition that wy(vy,wo) = 0 for all wo. Then by (12.60),
(adw)*f = 0 and hence v)(f) = 0. Therefore since the vectors vo(f), v € g
span the tangent space to O at f, the bilinear form (12.59) is non-degenerate.
Let wo be the 2-form on O defined by the assignment, f — wy. It is clear
that this form is G-invariant. Moreover, if one lets ¢, € C*°(0O) be the function,

$o(f) = (f,v) then
dpy(wo)s = —dey((ad)"(w)f)
= —(ad(w)"f,v)
= —(f,ad(w)v) = (f, [v,w])
= )

t(vo)wy(wo
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and hence
t(vo)wo = do, . (12.61)

From this one easily deduces that the following are true:
1. The two-form, wp, is closed (and hence symplectic.)
2. The action of G on O is Hamiltonian.

3. The moment map associated with this action is the inclusion map, O —

*

g*.
Proof. Since wp is G-invariant
0 = Lvowo = t(vo) dwo + di(vo)w)

and by (12.61) the second summand on the right vanishes. Thus for all v € g,
t(vo dwo = 0) and since the vo(f)’s span the tangent space to O at each point,
f, of O, this implies that dwo = 0. Moreover if we denote by ¢ the inclusion
map of O into g* we can rewrite (12.61) in the form

t(vo)wy = d{¢p,v) . (12.62)
O

The next issue we’ll address is the question of whether O can be equipped
with G equivariant pre-quantum structure. Let L. be a line bundle on O and
suppose that the action of G on O can be lifted to an action of G on L by bundle
morphisms, that this action preserves a connection, V, and a Hermitian inner
product (, ) and, finally, that curv(V) = w. Then equivalently, the G-action on
L preserves the circle subbundle, P, of L defined by (, ) commutes with the S!
action on this bundle and preserves the connection form, o € Q!(P). Now let’s
fix a point, f, of O and let Gy C G be the stabilizer group of f in G. From the
action of G on L. we get the representation of Gy on L. Moreover, for v € g

a(UP) = <¢7U>(f) = <f,’U> (12'63)

by (12.62). Also, if v € gy, then vp is tangent to the fiber, Py of P above f.
However, on this fiber, a = df), so for every v € gy

(db,vp) = (f,v). (12.64)
Thus the character of the representation of G¢ on Ly is just the map
expv € Gy — i) (12.65)
In other words the weight of this representation is f. This proves

Theorem 76. If the action of G on O is prequantizable, then for f € O, flgf
is in the weight lattice of the group G¢.
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Remark For the groups we’ll be interested in: connected compact groups the
converse of this result is true. (See for instance Kostant Unitary representation
We will henceforth call a coadjoint orbit, O, integral if it has this property.
From this result one gets a description of the line bundle, L, as the quotient

}LZGXC/GJC

where the action of Gy on G x C is the product of its right action on G and the
action (12.63) on C. Moreover the connection is determined as well by these
data. Namely the connection form « on P satisfies

(8) -

a(UP)f = <¢’U>f = <f7v>

for all f € O and since the vp’s and % span the tangent space of P at each of
its points these conditions completely determine a.

We will next compute the character Lagrangian for the action of G on O.
By definition a point (g, f) € G x g* is in this character Lagrangian if there
exists a point € O such that gx = z and ¢(x) = f. However, since ¢ is just
the inclusion map of O into g*, this character Lagrangian, which we will denote
by Ap, is the set

and

Ao =A{(g,f) e Gx O, Ad(9)"f=[}. (12.66)

Thus the projection

is just a fiber mapping with fiber, G¢, above f. However the projection
Ao =G, (9.f)—yg (12.68)

is a lot more complicated. Over generic points of G the set of f’s in O for which
Ad(g)*f = f is finite and over these generic points (12.68) is just a covering
map. However, if ¢ is, for instance, the identity element of G then the fiber
above ¢ is all of O.

We will give a much more detailed description of this map in §12.8.

We conclude this discussion of coadjoint orbits by describing a generaliza-
tion, involving coadjoint orbits, of the symplectic reduction operation that we
discussed in §12.5. This generalization will play an important role in the analytic
applications of integrability the we will take up in Sections 7?7 and ?77.

Let M be a Hamiltonian G-manifold and ® : M — g* its moment map. If
O C g* is a coadjoint orbit, its pre-image

¥:=o"10)
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is a G-invariant subset of M. If G acts freely on this set, the by (12.45) the map
|Phi is transversal to O, and hence ¥ is a submanifold of M of codimension
equal to the dimension of O. Moreover, since G acts freely on 3, the quotient
B =3/G is a manifold of dimension

dimM — dimO — dim G

and the projection
m:3¥— B

makes Y into a principal G-bundle over B.

We call B the symplectic reduction of M with respect to O. To justify
this nomenclature, we show that B has an intrinsic symplectic structure. To see
this, we note that B has an alternative description: Consider the product action
of G on the symplectic manifold M x O~. This is a Hamiltonian G-action with
moment map

Uo: MxO0~ =g, (pt)— d(p)—L~L.

The zero level set of g is the set of (p,£) € M x O~ such that ®(p) = ¢. So
it can be identified with ¥ via the map ¥ 3 p — (p, ®(p)). This identification
is G-equivariant, so as G acts freely on X, it acts freely on this zero level set.
Hence the symplectic reduction

v50)/G

of M x O°— that we defined in §12.5 canbe identified with B. This allows us to
equip B with an intrinsic symplectic structure.

12.7 Integrality in semi-classical analysis

In chapter 8 we showed that if one is given a manifold, X, and an exact La-
grangian submanifold, (A, ¢) of T* X, then one can attach to these data a space
of oscillatory half-densities I(A; X). Let’s briefly recall the role of the function,
©, in the definition of this space. Given any A one can find, at least locally, a
fiber bundle, 7 : Z — X and a generating function for A, 1 € C*°(Z) whose
defining property is that critical set of ¢ with respect to the fibration, m, is
mapped diffeomorphically onto A by the map

Yo 1 Cyp = A,z = dxy. (12.69)
Given 9 one then defines the space I(A, 1) to be the set of oscillatory functions,
mea(z, h)e™  a€C®(Z x R*). (12.70)

One problem with this definition however is that there is an unspecified
additive constant involved in the choice of v¥: for every ¢ € R, 1 + ¢ doesn’t
change either the critical set Cy or the parametrization of A. It does however
have a discernible effect on the oscillatory behavior of the oscillatory integral
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(12.70), i.e. it multiplies it by the factor e’#. (This situation becomes ever worse
if one tries to define elements of I(X; A) by patching together contributions from
N local parametrizations of A in which case the elements of I(X;A) become
expressions of the form

N
3 () (akei%’“) i (12.71)

k=1

which for the c¢;’s arbitrary and N large can be made to have more or less
random oscillatory behavior.) The role of the ¢ in the exact pair (A, ) is to
avoid these complications by requiring that the generating function 1 satisfy

Ve =¥ICy (12.72)

and as we showed in chapter 8 this does avoid these complications and give one
a satisfactory global theory of oscillatory functions.
Suppose now that A = (A, f) is an integral Lagrangian submanifold of T*X.
In this case one can still to a certain extent avoid these complications by replac-
ing (12.72) by
o f =e". (12.73)

This does not entirely get rid of the ambiguity of an additive constant in the
definition of 1 but does force this constant to be of the form 27n, n a positive
integer. Thus “random sums” like the expression (12.71) can be eliminated by
the simple expedient of requiring that 1/h be an integer. In fact one can show
that if one imposes this condition the results that we proved in chapter 8 all
extend, more or less verbatim, to Lagrangian manifolds and canonical relations
which are integral. Moreover we can now define some objects which we weren’t
able to fit into our theory before:

Example: Let G be an n-torus and f : G — S! a function of the form f(x) =
e2me(®) where o € Zf, C g* is an element of the weight lattice of G. Then the
function
m 2mia(z) 1
fM=e *» |, h=— (12.74)
m
can be regarded as an element of I"(G; A, ) where A, is the character Lagrangian
associated with f, and f™ is the character of the representation of G with weight
mao.
This example turns out to be a special case of a larger class of examples
involving characters of representations of Lie groups, and we’ll discuss these
examples in the next three sections.

12.8 The Weyl character formula

In this section we will assume that G is a compact simply connected Lie group
and that for every 8 € O the isotropy group, Gg, is a subtorus of G, i.e. as
a homogeneous space, O, is the quotient, G/T, of G by the Cartan subgroup,
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T, of G. In addition we will assume that O is an integral coadjoint orbit: O =
Ad*(G) By where 3y is an integer lattice vector in the interior of the positive Weyl
chamber, ¢, of t*. Let 7, be the character of the irreducible representation
of G with highest weight, mfBy. We will show that the sequence of functions,
Ym, m = 1,2, ..., define, for h = 1/m, an element (g, h) of I°(Ap; G) and that
its symbol is Xpm|l/0‘% where |vo|? is the canonical 1-density on Ao that we
defined in §12.5, m is a Maslov factor and x, a conversion factor which effectively
converts |uo\% into a “%—form”. (For more about “%—forms” and their relation
to i-densities see [GS], chapter V, §4.)

We will in fact prove a stronger result. We will show that, with this “%—
form” correction, the recipe we give in chapter 8 for associating to m|1/o\% an
oscillatory %—density turns out to give, even for A = 1 an exact formula for
(g, ) (not, as one would expect, a formula that’s asymptotic in i). We will
verify this assertion by computing this %—density at regular points of the group,
G, and comparing it with the Weyl character formula for ,,. This computation
will require our reviewing a few basic facts about roots and weights, but in
principle is fairly easy since the projection, Ao — G, is just a finite-to-one
covering over the set of regular points in G. However, we will also show in the
next section that our recipe for quantizing §pm0% gives an exact answer in a
neighborhood of the identity element where the projection, Ap — G is highly
singular. (This will again be a proof by observational mathematics. We’ll show

that the recipe for computing the oscillatory function associated with §pmaé
by generating functions coincides with the Kirillov formula for v,,.) We will also
say a few words about the computation of 7, at arbitrary points of G, (in which
case the methods of chapter 8 turn out to give a generalized Kirillov formula
due toGross, Kostant, Ramond, Sternberg).

We'll start by describing a few elementary properties of the manifold Ao
and of the fibration, Ap — G.

Proposition 44. There is a canonical diffeomorphism of G spaces

ko:Ao > O xT. (12.75)
Proof. Ao is the subset
{(9,8) € G x 0O, (Ad)"(9)5 = B} (12.76)
of G x O; so the projection, p of Ao onto O is a fibration with fiber,
Gg={he G, (Ad)"(h)s =B} (12.77)

above 3. Thus if 8 = gBo, (Ad)*(g~thg)B = By and since By is the interior of
the positive Weyl chamber g~ 'hg € T. Thus the map

(h,B) € Ao — (8,9 'hg) (12.78)

is a G-equivariant diffeomorphism of Ap onto O x T.
O
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Another slightly more complicated description of Ao is in terms of the pro-
jection
m:Ao =G, (9,0)—g. (12.79)

For this projection

m(g) = {8 €0,(Ad)(9)8 = 5} (12.80)

so in particular if K = {a € G,a"'ga = g} is the centralizer of g in G then for
every 8 € 7 1(g) the (Ad)* orbit of K through 8 is in 7=*(g). We claim, in
fact, that 7=1(g) consists of a finite number of K orbits. To see this, we can
without loss of generality assume that g is in 7. Let N(T') be the normalizer of
T in G and W = N(T)/T the Weyl group. We claim that for g in T

1 (g) = UKwﬁo, weWw. (12.81)

Proof. Let 8 = hBy, h € G, be an element of 7~1(g). Then Ad*(g)3 = B,
so Ad*(gh)By = (Ad)*(h)Bo and hence since 3y is in Int t*, h=1gh is in T.
Therefore, h='gh = aga™' for some a € N(T') and hence ah is in K i.e. h is in
wK where w is the image of a=! in N(T)/T = W. O

Let G.cg be the set of regular elements of G: elements whose centralizers are
maximal tori. As a corollary of the result above we get the following:

Proposition 45. Over Gieg the map 7 : Ao — G is an N to 1 covering map
where N is the cardinality of W.

Proof. 1t suffices to verify this for g € Tieg in which case K =T and hence by
(12.81):
7 (g) ={wPo, w e W}. (12.82)

O

Thus over T}eg, Ao is the disjoint union of the Lagrangian manifolds
A, = graph ( > , wew (12.83)

where f,,(t) = e2™{wfo:t)  Moreover, the complement of G in G is an algebraic
subvariety of G of codimension > 2. Therefore since G is simply connected, Greg
is simply connected, and the covering map, Areg — Greg is a trivial covering
map mapping the connected components,

{(976) € G(reg; X O; 6 = Ad*(Q)w/BO}

of Ap bijectively onto Gieg.

Now let dg and dt be the standard Haar measure on G and 7' and po
the symplectic volume form on O. As we explained in Section 12.5 one gets
from po a canonical %-density on the character Lagrangian, Ap and a simple



334 CHAPTER 12. INTEGRALITY IN SEMI-CLASSICAL ANALYSIS.

computation (which we’ll spare the reader) shows that the square of this %—
density is given by
vo = kb (po ® dt) (12.84)

where ko is the mapping (12.75) and po ® dt is the product on O x T of the
densities, uo, and dt.

Let’s now come back to the goal of this section as enunciated above: to show
that if ~,, is in the character of the irreducible representation of G with highest
weight, m Sy, the oscillatory function

v(g:h) =m(g), h=1/m (12.85)

defines an element, v(g, fi)|dg| 2, in [° (Ao; G) and that its symbol is a %—density
on Ao of the form, §pm|1/o|% where &, is a “%—density—to—%—form” conversion
factor and m a Maslov factor (both of which will be defined shortly). Let
Aveg = ™ 1 (Greg). Then 7 : Aoz — Greg is an N to 1 covering map which
splits over Tyes into the union of Lagrangian manifolds, A,,. Let f, : T — S L
be the function, (12.83), and f the unique G-invariant function on A,., whose
restriction to A, is 7* f,,. We will prove that on A,ez (Where the mapping = is
locally a diffeomorphism at every point)

m(fEmlvo|?) = (g, h)|dg|2

by explicitly computing the push-forward on the left hand side and comparing it
with the expression for 7,,(g) given by the Weyl character formula. To perform
this computation we will first review a few elementary facts about the adjoint
representation of 7' on the Lie algebra, g of G.

Under this representations, g ® C, splits into T-invariant complex subspaces

neadteC (12.86)

where n is a nilpotent Lie subalgebra of g ® C. Moreover, n and 7 split into
direct sums of one-dimensional subspaces

n o= @ga, a=oag, k=1,....d (12.87)

and

n = &fa, a=—-ar,k=1,...,d (12.88)

where d = dim G/T, and « is the weight of the representation of T' on g,. The
ay’s are by definition the positive roots of g and the —ay’s the negative roots.
We'll denote the set of these roots by ¢ and the subset of positive roots by ¢¥.
For o € ¢T let Z, be a basis vector for g, and Z_, = Z, the corresponding
basis vector for g_, = go. Then for X € T

(X, Za] = 2mic(X) Z o (12.89)
and hence by Jacobi’s identity
(X, [Zu, Zg]] = 2mi(a + B)(X)[Za, Z3] - (12.90)
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Hence either [Z,, Zg] = 0 or a + 3 is again a root or, for § = —a, [Z4, z,] is in
t ® C. The sum )
p=3 Sk, areg¢t (12.91)
will play an important role in the computations below as will the identities
eQTrip H(l _ e—27riak> — H(eﬂ'iak _ e—ﬂ'iak) (1292)

and
Z (71)w627riwp —  g2mip H(l o 6727riak) ) (1293)
weW

(The first identity is obvious and the second a consequence of the fact that
w¢5+ = {:I:al, ey iak}

and that all possible combinations of plus and minus signs can occur.)
Now fix an element, i of T. We will begin our computation of the left hand
side of the character formula (12.85) by computing the derivative of the mapping

Y :G/T — G, gT = h~tg thg (12.94)

at the identity coset, pg = €T, of G/T. If we identify T}, ® C = g/t ® C with
n+n and let h = exp X we get

d
(dVn)po (Za) = ahfl(exp—tza)h(exptza)|t:0
= Ad(h)Zy — Za

and hence by (12.88):
(dVn)po (Za) = (2™ *X) —1)2Z, . (12.95)
Next consider the mapping
v:G/TxT =G, (¢gT,h) = g 'hg.

If we let TG = G x g be the right invariant trivialization of T'G and identify
the complexified tangent spaces to G/T x T at (po,h) and to G at h with
n@®n+t® C the determinant of (dv),, is equal, by (12.95) to |D(h)|* where
D(h) is the Weyl product

() = 0 (1 = =209, (1290

Hence at (po, h)
v*dg = |D(h)|*pe/r @ dt (12.97)

where pi/7 is the unique G-invariant density on G//T whose integral over G /T
is 1. Thus if we make the trivial identifications, G/T" = O and g 7 = pio, note
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that v. ko = 7 and recall that by definition, vo = k§ (puo @ dt) we obtain from
(12.97) the formula
7 dg = |D(h)|*vo (12.98)

at points on Ap above h. Therefore at reqular points, h, of T'
m.vo = |W||D(h)| 2 dg (12.99)

since there are exactly N = |W| preimage points of h in Ap. Thus if we take
the square root of (12.99) at each of these points we also get, for the :-density,

. 2
|VO‘§7
1
melvol = [W|[D(h)|""|dg|* (12.100)

at regular points, h, of T.
Now let m be the function on 7! (Treg) whose restriction to A,, is the pull-
back to A, of the function

1D, e
W D(h)( 1) (12.101)

and let &, be the function on a1 (Treg) whose restriction to A, is the pull-back
to A, of the function
e2rilweX) (12.102)

These functions extend to G-invariant functions on A,e, and by (12.100)—(12.102)
we get for W*fpmfm|l/o|% the expression

D(h)_l Z(_l)w€27\'i(w(ﬂ+mﬁoax>)|dg|% (12103)

at points, h = exp X in T}¢g; and by the Weyl character formula the expression
(12.103) is Y| dg|2 .

Remarks

1. Another corollary of the formula (12.97) is the Weyl integration theorem
which asserts that for f € LY(G)

/f(g) dg = ”;//G/T flg™"tg) dugr|A)|* dt (12.104)

and, in fact, one can give a simple direct proof of the Weyl character
formula itself based solely on this identity and the identity (12.93). (See

§ )

2. Moreover the identity (12.93) has a nice interpretation in terms of the
Weyl character formula, It says that with Sy = 0 the expression (12.102)
is equal to 1, i.e. the character of the trivial representation of G is 1.



12.9. THE KIRILLOV CHARACTER FORMULA 337

3. We will briefly explain what the function (12.102) has to do with Maslov
indices: At X € tyeq, A(h)/|A(R)| is equal to the product

e sin <+ (X) — wd(—1)7X)
11 8 () (—1) (12.105)
where
o(X) = #{k, aw(X) > O} — #{k, ax(X) < O}

and we will see in the next section that the function
X € treg — i%(=1)70)

can be interpreted as a section of the Maslov line bundle on Ap|T.

12.9 The Kirillov character formula

The fibration, 7 : Ao — G is just a finite-to-one covering map over points of
Gheg, 50 locally, at any point, g € Greg, €ach sheet, A, of this covering map is
the graph of a one-form, dy,,, and this ¢,, can be taken to be the generating
function for Ap in a neighborhood of g. However over the identity element, m
degenerates and the pre-image of e becomes the whole orbit, O so this naive
recipe no longer works. Nonetheless, there is still a simple description of Ao at
e in terms of generating functions.

Theorem 77. Let ¢ : O x g — R be the function o(8,X) = B(X). Then via
the identification

Oxg—0xG, (8,X)— (B,expX) (12.106)

@ becomes a generating function for Ao, locally near e, with respect to the

fibration, O x G — G.

Remark

The qualification “locally near e” is necessary because exp is only a diffeo-
morphism in a neighborhood of e; however the open set on which this theorem
is true turns out, in fact, to be a rather large open neighborhood of e.

To prove this result fix an X € g and let /x : O — R be the function,
Ix(B) = p(B,X) = B(X). We will first prove

Lemma 8. (x is a Bott—Morse function whose critical set is the set
{€0, ad(X)"=0}. (12.107)
Proof. (dlx)sg=0iff, forallY € g

ad(Y)*B(X) =0. (12.108)
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But ad(Y)*8(X) = —38([Y, X]) and —3([Y, X]) = ad(X)*B(Y"). This proves the
lemma.

To prove the theorem let C,, be the critical set of this generating function.
Then C, intersects the fiber above g = exp X in the critical set of £x which, by
the lemma is just the set

{80, (Ad)*(9)8 =5}. (12.109)

Hence by (12.80) the inclusion map C, — T*G maps C, onto Ao.
O

Let po be the symplectic volume form on O. Then since A, (g) = (g, k),
h = 1/m, is in the space of oscillatory functions, I°(Ap,G) there exists an
amplitude, a(8, X, k), defined locally near X = 0 such that

Ym(exp X) = /a(B,X, h)e?mime(B:X) 5 (12.110)

Kirillov’s theorem ([Ki]) is the following explicit formula for this amplitude.
Let 7, : O x g — S! be the function

To(B, X) = e2miAdle)" 2. ) (12.111)

where the “g” in the expression on the right is the unique element of G mod T’
satisfying 8 = Ad(g)*Bo. Also let v(«), for a € t*, be the symplectic volume of
the coadjoint orbit through a and let j(X) be the square root of the Jacobian
at X of the exponential map, g — G. Then for h = 1/m

(8, X,1) = (X)L (5, ). (12.112)
Note by the way that
W — (14 O(h) (12.113)

where 2d = dim O and hence by (8.1) the oscillatory integral (12.110) is in fact
in I°(Ao; G). We won’t attempt to prove this result but we will show how to
get from it a concrete description of the Maslov factor in the symbol of (g, /)
on Ao.

We first note that for X € t,eg, the critical points of £x are, by (12.82) and
the lemma, just the points, wBy, w € W. Identifying the tangent space to O at
Bo with g/t we will prove

Lemma 9. The Hessian, (d*(x)gs,, of {x at By is the bilinear form

(Y, Z) € g/t = Bo([Y,[Z, X])) - (12.114)
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Remark

Since Ad(X)*Bo =0
0 = Bo(lY, 2], X)
= Bo([Y,[2,X]]) = Bo([Z, Y, X]))

so the bilinear form (12.114) is symmetric.
Proof of the lemma: By definition

(d*x)5, (Y. Z) = (ad(Y)" ad(Z)"Bo)(X)
fo(ad(Z)(ad Y) X)
= Bo([Z,[Y,Al]).

d

By (12.86) we can identify g/t ® C with n @ 7 and take as basis vectors of
n the vectors, Z,, a € ¢T. We then get by (12.86)

(d*0x)py(Zar Zs) =0 (12.115)
if a # p and )
(d*0x) o (Zas Zar) = 2w X) Bo(X o) (12.116)
where
Xo=V—=1[Za,Zs) € t. (12.117)

However (see for instance [FH])
Bo € It} & fp(Xq) >0 forall aco”.
Hence by (12.116) we get for the signature of (d*(x)g, the expression
2(#{a € ¢, a(X) >0} — #{a € ¢?,a(X) < 0}) (12.118)
and hence )
S

for points X € t,..4 close to X = 0. But for ¢ = exp X, the right hand side is
D(g)/|D(g)| where D(g) is the Weyl denominator (12.96). Thus finally

(12.119)

T 5 D(g)
exp — sgn(d“/ = . 12.120
A similar computation shows that
i 2 D(g) w
exp — sgn(d“lx )wp, = (=1)v. (12.121)
4 %~ D(g)]

Thus the right hand side of (12.121) is just the value of the function m (in our
formula in §12.8) for the symbol of y(g,h)|dg|Z) at the points (g, Bo) of Ao
above g € Tz and the left hand side is the formula for the Maslov factor in
this symbol at these points as defined in § refsec8.5
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12.10 The GKRS character formula.

We will next show that Kirillov’s theorem gives a generating function description
of Ao at arbitrary points of Ap. To see this let kg be an element of G (which,
without loss of generality we can assume to be in T') and let K be its centralizer
in G. Then T is contained in K and the normalizer, Ng(T) of T in K is
contained in the normalizer, N(T'), of T' in G; so one gets an inclusion of Weyl
groups:

Wx =Ng(T)/T - N(T)/T =W

and to each right coset, Wxw, in W a K-orbit
0% = Kuwf (12.122)

in O. As we saw in §12.8 the union of these K orbits is the preimage of kg
in Ap. We will, for the moment, view (12.122) as sitting inside €¢* and apply
(a slightly modified version of) the Kirillov theorem to it. More explicitly: the
mapping, X € ¢ — (exp X)ko € K, is a diffeomorphism of a neighborhood of 0
in ¢ onto a neighborhood, Uy of kg in K, and since kg is in the center of K the
function

Y 0% x Uy — R (12.123)

defined by the pairing

¢ (B,k) = (B,exp~" (kkg 1)) (12.124)

is a generating function for the character Lagrangian, Aow — K over the neigh-
borhood, Uy of k. Now let C(kg) be the conjugacy xlass of kg in G and for each
g € C(ko) let K4 be the group gKg~!, let OY = Ad(g)*O}% be the coadjoint
orbit of K, corresponding to O% , let U, = gUpg ™', let Zy =0y x Uy and let

YL ZY 5 R (12.125)

be the function, ¢¥(8,u) = ¢ (Ad*(¢7")B, 9" ug). Then @Y is a generating
function for the character Lagrangian of O with respect to the fibration

ZY =0y x Uy ™ U, . (12.126)

One can easily amalgamate all these data into a single set of generating data
for Ap on a neighborhood, U, in G of C(kg). Namely let Z* be the disjoint
union of the Z7'’s, let U be the disjoint union of the Uy’s, let 7% : Z* — U
be the fiber mapping whose restriction to Z; is the projection (12.126) and let
¢" : Z* — R be the function whose restriction to Z;’ is the function (12.125).
We claim that

Theorem 78. ¢©v is a generating function for the component of Ao above U
containing wly.
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Proof. This is an immediate consequence of the fact that, restricted to the set,
(U, = Oy x Ug, ¢" is a generating function for the character Lagrangian

of the coadjoint orbit, O, in €. O

Example

If we take kg to be an element of Ty.q, K =T, O% = wfp, and the description
of Ay that we get from this theorem is just our description of A,es in §12.8.

This result can be viewed as a semi-classical formulation of a well-known
result of Gross—Kostant—-Ramond-Sternberg. (See [GKRS] and [Ko].) To de-
scribe their result and its connection with the construction above, we will begin
by making a careful choice of the representative, “w” in the right coset, Wxw, of
W \W; i.e. the w involved in the definition of the coadjoint K-orbit (12.122).
If wp is any element of this coset, then there exists a unique w; € Wg such
that wiwofy is a dominant weight of the group, K, i.e. sits inside the interior
of the positive Weyl chamber (¢,)" of t*. Thus letting w = wywy, there exists
a unique w in the coset Wixw such that wpy is a dominant weight of K. In fact
the same is true for the weights

mwfy + wp — px (12.127)

where 2pk is the sum of the positive roots of K and m = 1/h is a positive
integer. Let v} (k, i) be the character of the irreducible representation of K
with weight (12.127). Then the GKRS theorem asserts that for k € T the
character of the irreducible representation of G with highest weight, m/fg, is
expressible in terms of these characters by the simple identity

1k ) = 5 31 k) (12.128)

where

A=JJem™—e ™, acot (12.129)

and ¢T is the set of positive roots of G that are not positive roots of K. Thus,
locally near k = ko in T, the summands in (12.128) are given by oscillatory
integrals associated with the fibration (12.123) and the generating functions
(12.112), and the amplitudes in the oscillatory integrals are given by K ana-
logues of the amplitude (12.112) in the Kirillov formula.

12.11 The pseudodifferential operators on line
bundles

In their article, “Sur la formule des traces”,[PU] Thierry Paul and Alejandro
Uribe develop an approach to the theory of semi-classical pseudodifferential op-
erators which involves identifying the algebra of semi-classical pseudodifferential
operators on a manifold, X, with the algebra of S'-invariant classical pseudodif-
ferential operators on X x S'. Their idea is the following: Let X, for simplicity,
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be R™ and let A (:r, %, a%) be an invariant m'™ order pseudodifferential differ-
ential operator having, as in §9.2, a polyhomogeneous symbol

a(z,&,7) =Y _aj(x,6,7), 00 <j<m, (12.130)

T being the dual variable to the angle variable, § on S'. Then, for functions of
the form, f(z)e’*?

K A(fett?) = <Ah <x 51) f) eth? (12.131)

where h = 1/k and

%) w1\ ie—y)€
(g ) 1= (57) [ategname s sy apae 1213
is a zeroth order semi-classical pseudodifferential operator with leading symbol
am(x,€,1) (12.133)

where anm,(z,&,7) is the leading symbol of A. The definitions (12.131) and
(12.132) set up a correspondence between classical pseudodifferential operators
on R™ x S! and semi-classical pseudodifferential operators on R™, and in [PU],
Paul and Uribe use this correspondence to give a classical proof of the semi-
classical trace formula that we discussed in §11.5.3.

We will show below that their approach adapts nicely to the theory of pseu-
dodifferential operators on line bundles: Let . — X be a complex line bundle
on X, (,): L — R, a Hermitian inner product on L, and P C L the unit
circle bundle associated with (, ). Let I'(L) denote the space of smooth sec-
tions of L. Then the correspondence (12.131)—(12.132) can be converted into a
correspondence which associates to an S'-invariant classical pseudodifferential

operator
A:T(L) = T(L) (12.134)

(a family of classical pseudodifferential operators
Ay T(LF) = DY), (12.135)

and these, in turn, can be viewed as a semi-classical pseudo-differential operator
Ay, h=1/k.

To see this, we will begin by identifying T'(L*) with the space C°(P) of
functions on P which have the transformation properties

F(e®p) =™ f(p),. (12.136)

Now let A be an m™ order S'-invariant classical pseudodifferential operator on
P and define Ay to be the operator

Ap = BmAICE(P), k= 1/h. (12.137)
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Locally the operators, A and Ay look like the operators (12.131) and (12.132).
Namely let U be an open subset of X and P|U = U x S! a trivialization of
P over U. Then on U, A is a classical pseudodifferential operator of the form
(12.131), Ay, is the operator (12.131), and its symbol is defined by the expression
(??). The global definition of its symbol, however, is a little trickier: From the
action of S' on P one gets a Hamiltonian action of S* on 7P with moment
map

(p,n) € T*P % (n, (;e) ). (12.138)

Let
(T*P)rea = ¢~ (1)/S" (12.139)

be the symplectic reduction of T*P at ¢ = 1. Then since A is S! invariant its
leading symbol, o(A) : T*P — C, is also S! invariant so the restriction

a(A)|¢~ (1) = o (A4s) (12.140)

is in fact a function on (T*P),eq and this we will define to be the symbol
of Ap. (Note that if Py = U x S! is a trivialization of P then by (12.138)
, (T*Py)rea = T*U and the definition, (12.140) coincides with the definition
(77),

This correspondence between A and Apy, is particularly easy to describe if A
is a differential operator. In this case the restriction of A to U is of the form

1o\
— — 2
A= > aM,T(x)(iaa> DF (12.141)
|ul+r=m
and Ay, is the operator
Sont Y aur(hDx)". (12.142)

=0 |p[+r+j=m

One can get a more intrinsic description of these operators by equipping I with

a connection
V:CP¥L) = C*LeTX). (12.143)

This connection extends to a connection

V:C®(LF) - c(LF @ T*X) (12.144)
with the property: Vs* = ks*~1vs, and in particular if s : U — P is a trivial-
izing section of L. and v a vector field on U, the operator

%vv 1 C®(L%) — C°°(L%) (12.145)

is given locally on U by the expression:

?vask = h(va + ka, f)s" (12.146)

1
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where by (12.2 ) and (12.7)

1 Vs
Ay = f(i

- , 0y =27 (s a, v) . (12.147)

More generally, every semi-classical differential operator of order m
Ap:C®(LF) —» (%), k=1/h

can be written, intrinsically, or a coordinate patch, U as an operator of this

form:
UL A p
Ap = Z 1 Z apr(2) (iva/ax) (12.148)
j=0  p+jt+r=m
as one can see by letting s : U — P be a local trivialization of P and comparing

the operator

sTRApst = Z i Z a,r(ARDx + (s*a,0/0x))H (12.149)

=0 |ul+jtr=m

with the operator (12.142).

We have seen that the symbols of these semi-classical operators live globally
on (T*P);eq; however, we will show below that these symbols can be thought
of as living on the usual tangent bundle of X. However, the price we will
have to pay for this is that we will have to equip this tangent bundle with a
non-standard symplectic form. We first observe that the zero level set of the
moment mapping (12.138) is just the pull-back, 7*T* X, of T*X with respect
to the fibration, 7 : P — X, i.e. each point (p,n) on this level set is of the
form, n = (dm);¢ for some £ € T7 - Thus the reduced space ¢~ 1(0)/S* can be
canonically identified with T X.

Now let « be the connection form on P, let 8 = 27« and let

vg: T*P — T*P (12.150)

be the map,
(p,n) = (p,n+ Bp) -

Since (8, 0/06) = 1 this map maps the zero level set of the moment map (12.138)
onto the level set, ¢ = 1. Moreover if w is the symplectic form on T* P

Ypw = w + 7p dB (12.151)

where mp : T*P — P is the cotangent fibration. Thus if curv(V) is the curvature
form of the connection, V, and vx = 27 curv(V), df = n*vx and

Ypw = w+ (Tomp)rx. (12.152)

Moreover, since yg is S? invariant and maps the level set ¢=1(0) onto the level
set »~1(1), it induces a map of ¢~1(0)/S* onto ¢~1(1)/S?, i.e. a diffeomprphism

pPs - "X — (T*P)red (12.153)
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and by (12.152) this satisfies
PiWred = WX + TXVX (12.154)

where wy is the standard symplectic form on T*X and wx : T*X — X is the
cotangent fibration of X. In other words (T P);eq with its natural “reduced”
symplectic form is symplectomorphic to T*X with its “a-twisted” symplectic
form (12.154). Via this isomorphism we can think of the symbol of a semi-
classical pseudodifferential operator of type (12.141) as being a function on
T* X ; however if we want to compute the Hamiltonian flow associated with this
symbol we will have to do so with respect to the symplectic form, (12.154), not
with respect to the usual symplectic form on T*X.

12.12 Spectral properties of the operators, A

In the last two sections of this chapter we will describe some applications of
the results of earlier sections to spectral theory. In this section we will show
how to extend the trace formula of chapter 10 to operators of the form (12.137)
and in the next section show how to reformulate this result as a theorem in
“equivariant” spectral theory for circle actions on manifolds. We will then make
use of the semi-classical version of the Weyl character formula that we proved
in §12.8 to generalize this theorem to arbitrary compact Lie groups. As above
let A : C®(P) — C>(P) be a classical m'" order pseudodifferential operator.
We will assume in this section that A is selfadjoint and elliptic and we will also
assume, for simplicity, that X is compact. Since A is selfadjoint its symbol is
real valued and ellipticity implies that, for fixed z, |o(A(z,£))| — +o0o as £ tends
to infinity. Therefore if Py = U x S then on U, the leading terms, ao(z, &, 7),
in (12.130) satisfies

lao(@, &,7)| = C(I€]? + |22 (12.155)

for some positive constant C'. Hence since the operator
Ay = hR"EA|ICY (P) (12.156)

is a standard semi-classical pseudodifferential operator of the form (12.132) on
U with symbol ag(x,&, 1) its symbol satisfies an estimate of the form

jo(An)(@, €] > C(I* + )™/ (12.157)

on U. Finally, the assumption that X is compact implies that A has discrete
spectrum: there is an orthonormal basis, ¢;, of L?(X) with ¢; € C*°(X) and

the A;’s tending to infinity as j tends to infinity. Thus, if f is in C§°(R) the
operator f(A) is the finite rank smoothing operator

F(A)er = f(A\k)er - (12.159)
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It follows that similar assertions are true for the restriction of A to C;°(P)
and hence for the semi-classical operator

Ap = RMA|ICE(P), h=1/k.
In particular the operator
f(AR) = (R A)|CE(P) (12.160)

is a finite rank smoothing operator. Moreover, the restriction to U of f(Ap)
has to coincide with the operator f(A;|U) so by the results of §10, its Schwartz
kernel is of the form

(271rh> /f(U(A(x’f)))“U(f”vf»h)ei(zgy)'s ds (12.161)

with
(z,&h) ~ Zaw z,E)h (12.162)

and ay(x,&£,0) = 1.

Now let Uj, 7 =1,..., N be an open cover of X by coordinate patches such
that, for each j, P|U; ~ U; x S* and let p; and x; be functions in C°(U;)
with the property, > p; = 1, and x; = 1 on the support of p;. Then, by
pseudolocality,

=D X3 f(AnlUj)p; (12.163)
mod O(A™); so modulo O(h*°), the trace of f(A) is given by the sum

(2wh)~ Z/f (2,8))p;(x)av, (x,€) dr dE (12.164)
and hence admits an asymptotic expansion
trace f(Ap) ~ (27h)~ ZC e (12.165)

with leading term

co = /(T . flo(A)p (12.166)

where p is the symplectic volume form on (7% P),eq. In particular one easily
deduces from this the Weyl estimate

Nu(I) ~ (27h) "™ vol(a(A) (1)) (12.167)

where I is any bounded sub-interval of R, and N (I) the number of eigenvalues
of Ap on I. Translating this back into an assertion about A this gives us the
estimate (12.167) for the number of eigenvalues of the operator, A|C;°(P) lying
on the interval, k™1.
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12.13 Equivariant spectral problems in semi-
classical analysis

Let X be a manifold, G a compact connected Lie group and 7 : G — Dif f(X)
a C* action of G on X. Suppose that

A C(X) — C®(X)

is a self-adjoint operator, e.g. a classical or semi-classical pseudodifferential
operator which commutes with this action, and suppose, for simplicity, that the
spectrum of A is discrete. Then for each eigenvalue A, one gets a representation
Px, of G on the corresponding eigenspace

W={pelC*(X), Ap=Mp}, (12.168)
and the equivariant spectrum of A is, by definition, the set of data
{(A\,pr); A€ Spec(A)}. (12.169)

For instance if G is S' the equivariant spectrum consists of the eigenvalues of
A plus, for each eigenvalue, A, a list

mA\ k), —oo<k<oo (12.170)

of the multiplicities with which the irreducible representations, p;, = €%, of S*
occur as subrepresentations of py. An example is the operator, A : C*(P) —
C>(P), in §12.12 whose equivariant spectrum is the spectrum

A(h) Aa(h), ..., h=1/k

of the operator A|Ci°(P), i.e. a formatted version of the usual spectrum of A
in which we keep track of the dependence on k.

In equivariant spectral theory one is concerned with the same basic problem
as in ordinary spectral theory: to extract geometric information from the data,
(12.169); however, one has a larger arsenal of weapons at one’s disposal for doing
so; for instance, for A a semi-classical pseudodifferential operator of order zero,
one has twisted versions:

trace(Tg*e_tAh), geaqG

of the heat trace invariants that we discussed in chapter 10, and twisted versions
iAp
trace (T;@T) , 9g€G
of the wave trace invariants that we discussed in chapter 11. To cite another

example: for the operator, A, in §11, one can consider in addition to its usual
heat-trace invariants the more sophisticated heat trace invariants (12.165).
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The goal of this section will to be to generalize the trace formula (12.165)-
(12.166) viewed in this light (i.e. viewed as a theorem about equivariant spectra)
to groups other than S'. More explicitly we will let X be a compact G-manifold,
Ap : C®(X) — C*(X), a G-equivariant semi-classical pseudodifferential opera-
tor of order zero and py,, the irreducible representation of G with highest weight,
ko, and will prove an analogue of the formulas (12.165)-(12.166) involving the
spectral data,

A, m(ka, A), X € Spec(Ap) (12.171)

where h = 1/k and m(ka, A) is the multiplicity with which pg, occurs in V.
Our main result will be a trace formula for the operator

/ 7y (An)ra(g) dg (12.172)

where g, is the Weyl character of the representation, pr,. To prove this result
we will make crucial use of the fact that v, can be viewed as an element

’71‘1(9) GIO(G7A0)7 h:1/k

where O is the coadjoint orbit through «. To keep the exposition below from
getting too unwieldy we will henceforth make the following simplifying assump-
tions.

1. Ap is self-adjoint as an operator on L?(X).
2. For some open subinterval, I, of R o(Ap)~1(I) is compact.
3. O is a generic coadjoint orbit of G, i.e. dim O =dim G — dimT'.

4. Let @ : T* X — g be the moment map associated with the lifted action of
G on T*X. Then G acts freely on the preimage

Y =o"10). (12.173)

Concerning this last hypothesis we note that if G acts freely on 3 then the
reduced space

(T*X)o = %/G (12.174)

is well-defined. We will denote by no its symplectic volume form and by o(A);eq
the reduced symbol of Ap: the function on (7% X)o defined by

150 (An) = 150 (Ap)red (12.175)
where t5~ is the inclusion of ) into T*X and 7y~ the projection of } onto

(T*X)©. (This is well-defined since o(A) is G-invariant.) With this notation
we will prove
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Theorem 79. For f € C3°(I) the trace of the operator (12.171) admits an
asymptotic expansion

(2wh)™™ > " exh® (12.176)
k=0
where m = dim X — 1(dim7 + dim G) and

co = / F(0(An)rea)ftrea - (12.177)
(T*X)o

As a first step in the proof we will prove

Lemma 10. Let Q € V°(X) be a semi-classical zeroth order pseudodifferential
operator with compact microsupport. The the Schwartz kernel of the operator,
7, Q, viewed as an oscillatory function on X x X x G, is an element of the space
I™™(;; X x X X G) where T'; is the moment Lagrangian associated with the
lifted action of G on T*X.

Proof. We recall that if X and Y are manifolds and f : X — Y a C* map, this
map lifts to a canonical relation

T;:T"X - TY

with the defining property: (z,§,y,n) € I'y iff y = f(z) and & = (df;)*v. We
pointed out in §12.5 that for the map

T: XxG—=X, (z,9)— 14(x)

I'; is just the moment Lagrangian, and we get the lemma above by applying

this observation to 7*Q.
O

We now turn to the proof of the theorem:

Proof. Let M = T*X, and, by rearranging factors, regard I'- as being the usual
moment canonical relation

I, M~ xM-—TG. (12.178)
Then by the lemma the operator
Lg:C*®(G) - C*(X x X) (12.179)

mapping ¢ to [ T;ng(g) dg is a semi-classical Fourier integral operator quan-
tizing the canonical relation

r.7G—-M" xM,

and the trace operator

trace : k(z,y) € C°(X x X) — /k(m,x) dz
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is a semi-classical Fourier integral operator quantizing the canonical relation,
AT M x M = pt. .

Thus with @ = f(A) the expression (12.171) can be interpreted as the operator,
traceoLq applied to yx(g) € I°(Ap,G). But a point (p,q) € M x M is in
I't o Ap iff

(a) g=7,p
(b) #(p) € O
and

(c) Ad(g)*¢(p) = o(p)
and such a point is in AT : M x M — pt. iff, in addition

dp=q
However, by (b), p is in ¢~1(0), and since G acts freely on ¢~1(0O)

(e)g=e.
Thus the canonical relations

IMoAp:pt. > M~ x M

and
AT M~ x M — pt.

compose cleanly and by the clean composition formula of chapter 8 §8.13, the
expression

trace/T;Qh(g) dg (12.180)

is an element of I~™(pt.) i.e. a formal power series
c(h) = (2rh)™™ > " cxh* (12.181)

whose leading symbol can be computed by the “clean” symbol calculus of chap-
ter 8, i.e. as a symbolic integral over the fibers of the fibration

(AHY % (TToAp) = AToTToAp. (12.182)

But since A*oT'*oAp = pt., this becomes an integral over the space ATx(ToAp)
itself, i.e. over the set

{lp,p)e M~ xM, peXj. (12.183)
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In other words the symbol, ¢g, of the series (12.181) can be computed by a
symbolic computation only involving the symbols of @ restricted to the set, ¥
and of v restricted to the set

{9€G,7;p=p, forsome pecX}, (12.184)

and by condition (e) this is just the set {e}. Thus this symbolic integral over
(12.182) only involves the symbol of v restricted to the fiber, O, of Ao above
e € G; and by the Kirillov formula this is just the symplectic volume form,
1o, on O; i.e. doesn’t involve the complicated Maslov factors in the expression
(12.105). From this one easily deduces that the integral over At x (I'f o Ap) in
the clean composition formula for symbols that we cited above gives us for the
symbol of the expression

trace [ 75 Q (o) dg
the integral
/Z 1520(Q) dg(ms>)" firea (12.185)
which in the case of @ = f(A;) reduces the integral (12.177). O

From this result we get the following generalization of the Weyl law (12.167):

Theorem 80. Let A\;(h),i = 1,...,¢ be the eigenvalues of Ay lying on the in-
terval I and let Vi be the sum of the corresponding eigenspaces and Ny(I) the
multiplicity with which the representation pma, m = 1/ occurs as a subrepre-
sentation of the representation of G on Vi. Then

Np(I) ~ (21h) ™ vol (orea(A) (1)) . (12.186)



352 CHAPTER 12. INTEGRALITY IN SEMI-CLASSICAL ANALYSIS.



Chapter 13

Spectral theory and Stone’s
theorem.

In this chapter we gather various facts from functional analysis that we use, or
which motivate our constructions in Chapter ??. All the material we present
here is standard, and is available in excellent modern texts such as Davies, Reed-
Simon, Hislop-Sigal, Schecter, and in the classical text by Yosida. Our problem
is that the results we gather here are scattered among these texts. So we had to
steer a course between giving a complete and self-contained presentation of this
material (which would involve writing a whole book) and giving a bare boned
listing of the results.

We also present some results relating semi-classical analysis to functional
analysis on Lo which allow us to provide the background material for the results
of Chapters 9-11. Once again the material is standard and can be found in the
texts by Dimassi-Sjostrand, Evans-Zworski, and Martinez. And once again we
steer a course between giving a complete and self-contained presentation of this
material giving a bare boned listing of the results.

The key results are:

e The spectral theorem for self-adjoint operators. We will recall the
somewhat subtle definition of a self-adjoint operator on a Hilbert space
below. The spectral theorem then (in functional calculus form) allows the
construction of an operator f(A) for any self-adjoint operator A, and for
a reasonable class of functions f on R. The map f — f(A) is to be linear,
multiplicative, and take complex conjugation into adjoint, i.e. f > f(A)*.
(The map f — f(A) should be non-trivial and unique in an appropriate
sense.) For the full spectral theorem, we want the class of functions to
include the bounded Borel measurable functions on R. For our purposes it
is enough to have such a functional calculus for functions belonging to the
Schwartz space S(R), or even for smooth functions of compact support.

e Stone’s theorem. This has two parts: 1) Given any self-adjoint operator
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A, the family U(t) = expitA is a unitary one parameter group of trans-
formations. This is an immediate consequence of the spectral theorem
if the class of functions in the functional calculus includes the functions
x — €' as is the case for the full spectral theorem. 2) Conversely, given
a unitary one parameter group U (t), its infinitesimal generator (see below
for the definition) is self-adjoint.

Starting from Stone’s theorem, one can get the functional calculus for
functions in the Schwartz space S(R) by a straightforward generalization
of the formula for the inverse Fourier transform, namely by setting

f(4) = o= [ Fovta

where f is the Fourier transform of f. So it is desirable to have a proof
(and formulation) of Stone’s theorem independent of the spectral theo-
rem. In fact, Stone’s theorem is a special case of the Hille-Yosida theorem
about one-parameter semi-groups on Frechet spaces and their infiinites-
imal generators. So we discuss the Hille-Yosida theorem and its proof
below.

One of the main efforts and tools in Chapters ?7 is to provide and use a
semi-classical version of Stone’s theorem.

The Dynkin-Helffer-Sjostrand formula. We stated this formula,
namely

f(P) = 1[Cg]7jR(z,P)dxdy, (10.2)

™

in Chapter 10. In fact, it is an immediate consequence of the multiplication
version of the spectral theorem.

The Dynkin- Helffer-Sjosrand formula allows one to show that if H is a
self adjoint operator associated to a pseudo-differential operator with real
Weyl symbol p, then for f € C§°(R), the operator f(H) provided by the
functional calculus is associated to f(p).

The Calderon-Vallaincourt theorem. This says that if P is a semi-
classical pseudo-differential operator satisfying appropriate conditions, it
extends to a family of bounded operator on L, whose Ly bounds are given
in terms of the sup norms of a finite number of derivatives of p.

13.1 Unbounded operators, their domains, their

spectra and their resolvents.

13.1.1 Linear operators and their graphs.

Let B and C' be Banach spaces. We make B @ C into a Banach space via

Iz, 3 = [l + [lyll-
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Here we are using {z,y} to denote the ordered pair of elements z € B and
y € C so as to avoid any conflict with our notation for scalar product in a
Hilbert space. So {z,y} is just another way of writing « @ y. A subspace

rcBedC
will be called a graph (more precisely a graph of a linear transformation) if

{0,y} el = y=0.

Another way of saying the same thing is
{z,y1} €T and {z,y2} €T = y1 = yo.
In other words, if {z,y} € T then y is determined by z.

In the language of § 3.3.5 I is a graph if it co-injective as a relation.

The domain and the map of a graph.

So let
D(T") denote the set of all x € B such that there is a y € C with {z,y} € T.

Then D(T') is a linear subspace of B, but, and this is very important, D(T") is
not necessarily a closed subspace. We have a linear map

T(T): D) > C, Trx=y where {z,y} €T.

The graph of a linear transformation.

Equally well, we could start with the linear transformation: Suppose we are
given a (not necessarily closed) subspace D(T") C B and a linear transformation

T:D(T)— C.
We can then consider its graph T'(T') C B @ C which consists of all
{z, Tz}, xeD(T).

Thus the notion of a graph, and the notion of a linear transformation defined
only on a subspace of B are logically equivalent. When we start with T' (as
usually will be the case) we will write D(T) for the domain of T and I'(T') for
the corresponding graph.

There is a certain amount of abuse of language here, in that when we write
T, we mean to include D(T) and hence T'(T) as part of the definition.
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13.1.2 Closed linear transformations.

A linear transformation is said to be closed if its graph is a closed subspace of
BaoC.

Let us disentangle what this says for the operator T'. It says that if f,, € D(T)
then
fn—=f and Tf, -9 = fe€D(T) and Tf=g.

This is a much weaker requirement than continuity. Continuity of T" would say
that f,, — f alone would imply that T'f,, converges to T'f. Closedness says that
if we know that both

fn converges and g, =T f,, converges to g

then we can conclude that f = lim f,, lies in D(T") and that T'f = g.

13.1.3 The resolvent, the resolvent set and the spectrum.
The resolvent and the resolvent set .

Let T : B — B be an operator with domain D = D(T). A complex number z
is said to belong to the resolvent set of T if the operator

zI =T

maps D onto all of B and has a bounded inverse. We denote this bounded
inverse by R(z,T) or R,(T) or simply by R, if T is understood. So
R(z,T) := (21 — T)"* maps B — D(T)

and is bounded. R(z,T) is called the resolvent of T' at the complex number z.

The spectrum.

The complement of the resolvent set is called the spectrum of 7" and is denoted
by spec(T).

Theorem 81. The set spec(T) is a closed subset of C. In fact, if z & spec(T)
and ¢ := ||R(z,T)|| then the spectrum does not intersect the disk

{weC| |(w-2)] <c

For w in this disk

o0

R(w,T) =Y (—(w—2))"R(z,T)"*!
0

and so is an analytic operator valued function of w. Differentiating this series
term by term shows that

d _ 2
aR(@T) =—R(%,T)".
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Proof, part 1. The series given in the theorem certainly converges in
operator norm to a bounded operator for w in the disk. For a fixed w in the
disk, let C' denote the operator which is the sum of the series. Then

C=R(z2,T)— (w—2)R(zT)C.

This shows that C maps B to D(T) and has kernel equal to the kernel of R(z,T')
which is {0}. So C is a bounded injective operator mapping B into D. Also

C=R(2,T)— (w—2)CR(z,T)

which shows that the image of R(z,T) is contained in the image of C' and so
the image of C is all of D.

Proof, part 2.

oo

C:= Z(—(w —2))"R(z, T)" .
0
IffeDandg=(2I—-T)f then f = R(2,T)g and so Cg = f — (w—2z)Cf and
hence

Clef =Tf)=f—(w-2)Cf
or

C(-Tf)=f—-wCf so ClwlI-T)f=Ff

showing that C is a left inverse for wl —T. A similar argument shows that it
is a right inverse. So we have proved that the series converges to the resolvent
proving that the resolvent set is open and hence that the spectrum is closed.
The rest of the theorem is immediate. O

A useful lemma.

Lemma 11. If T : B — B is an operator on a Banach space whose spectrum
18 not the entire plane then T is closed.

Proof. Assume that R = R(z,T) exists for some z. Suppose that f, is a
sequence of elements in the domain of T with f, — f and Tf, — ¢g. Set
hy = (I = T)f, so

hp —2zf —g.
Then R(zf — g) = lim Rh,, = lim f,, = f. Since R maps B to the domain of

T this shows that f lies in this domain. Multiplying R(zf —g) = f by 2I —= T
gives

2f—g=z2f-Tf
showing that T'f = g. O
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13.1.4 The resolvent identities.
The first resolvent identity.

Let z and w both belong to the resolvent set. We have
wl —T=(w—-2)I+(zI -T).
Multiplying this equation on the left by R, gives
I=(w—2)Ry+ Ry(zI =T),
and multiplying this on the right by R, gives
R, — R, =(w—2)Ry,R..
It follows (interchanging z and w) that R, R, = R, R., in other words
all resolvents R, commute with one another.
So we can write the preceding equation as
R, — Ry = (w—2)R.Ry. (13.1)

This equation, known as the first resolvent equation (or identity), dates back
to the theory of integral equations in the 19th century.

Relation with the Laplace transform.

Let L denote the Laplace transform:

LGN = /0 T NGt

Here, say, G is a bounded continuous function with values in a Banach space.
So L(G)(A) is defined for Re A > 0.

If we take G to be C valued, given by G(t) = e** where Re z < 0 we have

More generally, suppose that G(t) = e* where A is a bounded operator on a
Banach space and e“? is given by the usual exponential series. Assume that A
is such that e* is uniformly bounded (in the operator norm) in ¢ so that the
Laplace transform L(G) is defined for Re A > 0. Then

(M — A)L(G)(\) = A OO(M — A)eM=Mtgp — 1,

In other words,
L(G)(A\) = R(A\,A) for Re A > 0.
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One of our tasks will be to generalize this to a broader class of operators.

Let us return to the general Laplace transform.
Integration by parts shows that  L(G’)(A) = AL(G)(A\) — G(0). Apply this
to G given by

G(t):/o et g(s)ds.

Then
G'(t) = g(t) — cG(t), G(0)=0,

so L(g)(A) = L(G")(A\) + ¢cL(G)(A) = (¢ + A\)L(G)(\). Thus the Laplace trans-
form of G is given by
1

Atc

L&) = ——L()(N. (13.2)

Let F be the Laplace transform of f. Then we claim that
F
/ / e =nt (s 4 pydsdt — LU = FQ) (13.3)
A—p
when A # p.
Proof. We may assume (by analytic continuation) that A and p are real, and,

without loss of generality, that A > u. Write the integral with respect to ¢
as e fooo e Mt f(s + t)dt. Make the change of variables w = s + t so that

JoT e f(s + t)dt

_ oo / " e (w)dw — e F () — e / e f(w)dw.
s 0

Then apply the Laplace transform with respect to s and use (13.2) with ¢ = —p
for the second term O

Suppose that f takes values in a Banach algebra. Then (by uniqueness of
the Laplace transform) we see that f satisfies the identity

f(s+1t) = f(s)f(t)
if and only if its Laplace transform F' satisfies the identity

Pl - FO)

PO - F(w) = ==

In other words, the first resolvent identity is a reflection of the semigroup prop-
erty f(s+1t) = f(s)f(t) in case f(s) = e** when e*4 is uniformly bounded in
s.
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The second resolvent identity.

The first resolvent identity relates the resolvents of a fixed operator at two
different points in the resolvent set. The second resolvent identity relates the
resolvents of two different operators at the same point. Here is how it goes:
Let a and b be operators whose range is the whole space and with bounded
inverses. Then
at=bt=atb-ap !

assuming that the right hand side is defined. For example, if A and B are closed
operators with D(B — A) D D(A) we get

Ra(z) — Rp(z2) = Ra(2)(B — A)Rp(2). (13.4)

This is the second resolvent identity. It also dates back to the 19th century.

13.1.5 The adjoint of a densely defined linear operator.
Suppose that we have a linear operator T : D(T) — C and let us make the
hypothesis that

D(T) is dense in B.

Any element of B* is then completely determined by its restriction to D(T).
Now consider
NT)" c C* & B*

defined by
{{,m} e T(T)* < {,Tx)= (m,x) Ve D). (13.5)

Since m is determined by its restriction to D(T), we see that I'* = I'(T™) is
indeed a graph. (It is easy to check that it is a linear subspace of C* & B*.) In
other words we have defined a linear transformation

T :=T((T)")
whose domain consists of all £ € C* such that there exists an m € B* for which

€, Tx)y = (m,x) Vaxe€ D).

The adjoint of a linear transformation is closed.

If £,, — £ and m,, — m then the definition of convergence in these spaces implies
that for any = € D(T') we have

(¢, Tz) = lim(¢,,, Tz) = lim(m,,, x) = (m, ).

If we let & range over all of D(T') we conclude that I'* is a closed subspace of
C* @ B*. In other words we have proved
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Theorem 82. IfT : D(T) — C is a linear transformation whose domain D(T')
is dense in B, it has a well defined adjoint T* whose graph is given by (13.5).
Furthermore T is a closed operator.

13.2 Self-adjoint operators on a Hilbert space.

13.2.1 The graph and the adjoint of an operator on a
Hilbert space.

Now let us restrict to the case where B = C = §) is a Hilbert space, so we may
identify B* = C* = $* with $) via the Riesz representation theorem which says
that the most general continuous linear function on §) is given by scalar product
with an element of §.

If T:D(T) — % is an operator with D(T') dense in $ we may identify the
graph of T* as consisting of all {g,h} € H & $ such that

(Tw,g) = (x,h) Vo€ D(T)
and then write
(Tz,g9) = (z,T"g) Vze€ D), ge D(T").

Notice that we can describe the graph of T as being the orthogonal complement
in & H of the subspace

M :={{Tz,—z} ze D)}

The domain of the adjoint.

The domain D of T™* consists of those g such that there is an h with (T'z, g) =
(z,h) for all = in the domain of T. We claim that D is dense in $). Suppose
not. Then there would be some z € $) with (z,9) = 0 for all g € D(T*). Thus
{z,0} L M+ = D(T*). But (M=+)" is the closure M of M. This means that
there is a sequence z,, € D(T) such that T'z,, — z and z,, — 0. So if we assume
that T is closed, we conclude that z = 0. In short, if T is a closed densely
defined operator so is T*.

13.2.2 Self-adjoint operators.

We now come to the central definition: An operator A defined on a domain
D(A) C 9 is called self-adjoint if

e D(A) is dense in 9,
e D(A) = D(A*), and
o Ax = A*x Vx € D(A).
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The conditions about the domain D(A) are rather subtle. For the moment we
record one immediate consequence of the theorem of the preceding section:

Proposition 46. Any self adjoint operator is closed.

13.2.3 Symmetric operators.

A densely defined operator S on a Hilbert space is called symmetric if
e D(S) C D(S*) and
o Sz =S8* VxeD(S).

Another way of saying the same thing is: S is symmetric if D(S) is dense and
(Sz,y) = (z,Sy) ¥V x,y € D(S).

Every self-adjoint operator is symmetric but not every symmetric operator is

self adjoint. This subtle difference will only become clear as we go along.

A sufficient condition for a symmetric operator to be self-adjoint.

Let A be a symmetric operator on a Hilbert space $). The following theorem
will be very useful:

Theorem 83. If there is a complex number z such that A+ zI and A+ZI both
map D(A) surjectively onto $) then A is self-adjoint.

We must show that if 1) and f are such that

(f,¢) = (¥, Ad) V ¢ € D(A)

then
Y € D(A) and Ay = f.

Once we show that ¢ € D(A) then, since D(A) is assumed to be dense and
(v, Ad) = (A, @) for ¥, ¢ € D(A) and this equals (f,%) by hypothesis, we
conclude that Ay = f. So we must prove that ¥ € D(A).

Proof. Choose w € D(A) such that (A+zI)w = f+Z. Then for any ¢ € D(A)
(¢, (A+20)¢) = (f + 7, ¢) = (Aw + Zw, ) = (w, Ad + 2¢).

Then choose ¢ € D(A) such that (A+21)¢p = —w. So (Y, —w) = (w, ) —w)
and hence ||t — wl[]? =0, i.e ¢ = w, so

¥ € D(A).

Here is an important application of the theorem we just proved.
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Multiplication operators.

Let (X,F,u) be a measure space and let ) := Lo(X,u). Let a be a real
valued F measurable function on X with the property that a is bounded on any
measurable subset of X of finite measure. Let

D= {u €N ‘/ (1 + a®)|ul?du < oo} .
X
Notice that D is dense in ). Let A be the linear operator
U au
defined on the domain D. Notice that A is symmetric.

Proposition 47. The operator A with domain D is self-adjoint.

Proof. The operator consisting of multiplication by

1
1+ a

is bounded since ‘H%a‘ < 1 and clearly maps $) to D. Its inverse is multiplication

by ¢ + a. Similarly multiplication by —i + a maps D onto §). So we may take
z =t in Theorem 83. O

Notice that for any bounded measurable function f on R, we may define
the operator f(A) to consist of multiplication by f(a). It is clear that the
map f — f(A) satisfies all the desired properties of the functional calculus. In
particular

R(z, A) consists of multiplication by (13.6)

zZ—aQ

when Im 2z # 0.

The Dynkin-Helffer-Sjostrand formula for multiplication operators.

Recall that if f € C§°(R, a function f € C§°(C) is called an almost analytic
extension of f if

‘5JF‘ < CpImz|N YN €N and fg = f.

It is easy to show that almost analytic extensions always exist. For a proof,
see Davies or Dimassi-Sjostrand. We will reproduce the proof from Dimassi-
Sjostrand at the end of this chapter.

Recall also that for any g € C§°(C) we have the formula

w=—[% 1
gu) = T Jc0Z z—w

dxdy.
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Applied to the function f and w € R we have

_Ljor 1
T Jc0Z z—w

flw) = dxdy.

Letting w = a(m), m € X we see that the function f(a) is given by

_Lfor 1
T Je0Z z—a

fla) = dzdy.

Hence the operator f(A) is given by

£ = -2 [ pes Myaway.  (10.2)
™ Jc 82’
This proves the Dynkin-Helffer-Sjostrand formula (10.2) for the case of mul-
tiplication operators. A bit later we will prove the multiplication version of
the spectral theorem which says that any self-adjoint operator on a separable
Hilbert space is unitarily equivalent to a multiplication operator. This implies
that (10.2) is true in general.

Using the Fourier transform.

The Fourier transform is a unitary operator on Ly(R™) (Plancherel’s theorem) ,
and carries constant coefficent partial differential operators into multiplication
by a polynomial. So

Proposition 48. If D is a constant coefficient differential operator which is
carried by the Fourier transform into a real polynomial, then D is self-adjoint.

An example is the Laplacian, which goes over into multiplication by ||k||?
under the Fourier transform. The domain of the Laplacian consists of those
f € Ly whose Fourier transform f have the property that ||k||2f(k) € Lo.

We shall see below that there is a vast generalization of this fact. Namely
for a broad class of real Weyl symbols, p, the associated operators P, (originally
defined, say as maps from S(R™) — S(R™)) in fact define self adjoint operators
on Ly(R™) when passing to the closure of these operators.

13.2.4 The spectrum of a self-adjoint operator is real.

The following theorem is central. Once we will have stated and proved the
spectral theorem, the following theorem will be an immediate consequence. But
we will proceed in the opposite direction, first proving the theorem and then
using it to prove the spectral theorem:

Theorem 84. Let A be a self-adjoint operator on a Hilbert space $) with domain
D = D(A). Let
c=A+ip, p#0
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be a complex number with non-zero imaginary part. Then
(cI—A):D(A)— 9
18 bijective. Furthermore the inverse transformation
(cI —A)':H— D(A)

s bounded and in fact

(eI — A)~Y)| < ﬁ (13.7)

We will prove this theorem in stages:

We show that [|f[2 = (A — A)g|]? + s |g|> for g € D(A).
Let g € D(A) and set f:= (cI — A)g = [\ — Alg+ipg. Then ||f||? = (f, f) =
1A = Algll* + u2llgl* + (I — Alg,ing) + (ing, M — Alg).

The last two terms cancel: Indeed, since g € D(A) and A is self adjoint we have

(1g, (M — Alg) = (u[M — Alg, g) = (M — Alg, pg)

since p is real. Hence

(M — Alg,ing) = —i(ug, [\ — Alg).
We have thus proved that

I£112 = AT = A)gll* + 2|l g]I*. (13.8)

We show that |[(c] — A)7'|| < &

]
It follows from (13.8) that
I£11? = r*llgll?
for all g € D(A). Since || > 0, we see that f =0 = g = 0so (cI — A) is

injective on D(A), and furthermore that (¢ — A)~! (which is defined on the
image of (¢ — A)) satisfies

1
cl — A7 < —.
Il( )l P

We must show that the image of (¢I — A) is all of §.
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‘We show the image of (¢/ — A) is dense in $.

For this it is enough to show that there is no h # 0 € $) which is orthogonal to
im (cI — A). So suppose that

(el — Alg,h) =0 Vg e D(A).
Then
(g,¢h) = (cg,h) = (Ag,h) Vg € D(A)

which says that h € D(A*) and A*h = ¢h. But A is self adjoint so h € D(A)
and Ah = ch. Thus

¢(h,h) = (ch, h) = (Ah, h) = (h, Ah) = (h,h) = c(h, ).

Since ¢ # ¢ this is impossible unless h = 0. We have now established that the
image of ¢I — A is dense in $).

‘We show that image of (¢ — A) is all of §), completing the proof of the
theorem.

Let f € $. We know that we can find

The sequence f,, is convergent, hence Cauchy, and from

el — A7t i
(eI — A) HSM (13.7)

applied to elements of im D(A) we know that

Hgm - gn“ < |M|71an - fm“

Hence the sequence {g,} is Cauchy, so g, — g for some g € ). But we know
that A is a closed operator. Hence g € D(A) and (¢ — A)g=f. O

13.3 Stone’s theorem.

As indicated in the introduction to this chapter, we will present a generalization
of Stone’s theorem due to Hille and Yosida. The setting will be the study of a one
parameter semi-group on a Frechet space. A Frechet space F is a vector space
with a topology defined by a sequence of semi-norms and which is complete. An
important example is the Schwartz space S. Let F be such a space.
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13.3.1 Equibounded continuous semi-groups.

We want to consider a one parameter family of operators T; on F defined for
all t > 0 and which satisfy the following conditions:

[ ] TO = [
e TioTl, = :rtJrs
o limy ¢, Tix =Ti,x Vip > 0and x € F.

e For any defining seminorm p there is a defining seminorm ¢ and a constant
K such that p(Tix) < Kq(zx) for all t > 0 and all € F.

We call such a family an equibounded continuous semigroup. We will
usually drop the adjective “continuous” and even “equibounded” since we will
not be considering any other kind of semigroup.

The treatment here will essentially follow that of Yosida, Functional Analysis
especially Chapter IX.

13.3.2 The infinitesimal generator.

We are going to begin by showing that every such semigroup has an “infinites-

imal generator”, i.e. can be written in some sense as T, = et

The definition of A.
We define the operator A as

1
Az = lim —(T; — I)z.
t\O t

That is, A is the operator so defined on the domain D(A) consisting of those x
for which the limit exists.

Our first task is to show that D(A) is dense in F. For this we begin with a
“putative resolvent”

R(z) := /000 e A Tydt (13.9)

which is defined (by the boundedness and continuity properties of T;) for all z
with Re z > 0.

One of our tasks will be to show that R(z) as defined in (13.9) is in fact the
resolvent of A. We begin by checking that every element of im R(z) belongs to
D(A) and that (2 — A)R(z) = I: We have

1 1 [~ 1 [
E(Th —DR(z)x = E/ e ATy padt — 7 / e M Tadt =
0 0

1 [ 1 [
f/ e 2 =MT adr — f/ e AT adt
h Jy h Jo
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zh __ 1 o0 1 h
_° / e A Tadt — 7/ e AT adt
h h 0

h
1 h
— E A 67ZtTtZL'dt.

If we now let h — 0, the integral inside the bracket tends to zero, and the
expression on the right tends to  since Ty = I. We thus see that

e — 1
h

h
R(z)xf/ e ATydt
0

R(z)x € D(A)

and
AR(z) = zR(z) — I,

or, rewriting this in a more familiar form,
(21 —A)R(z) =1. (13.10)

This equation says that R(z) is a right inverse for zI — A. It will require a lot
more work to show that it is also a left inverse.

‘We show that D(A) is dense in F .
We will prove that D(A) is dense in F by showing that, taking s to be real, that

lim sR(s)r=x Vax¢€F. (13.11)

S§— 00
oo
/ se”stdt =1
0

for any s > 0. So we can write

Indeed,

sR(s)r—xz=s /00 e Ty — x)dt.
0
Applying any seminorm p we obtain
p(sR(s)x —x) <s /Oo e *'p(Tyx — x)dt.
0
For any € > 0 we can, by the continuity of T, find a § > 0 such that

p(liz—z)<e V 0<t<d.

Now let us write

oo 5 o0
s/ e 'p(Tyx — x)dt = s/ e *'p(Tia — x)dt + 5/ e *'p(Tiw — x)dt.
0 0 J
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The first integral is bounded by

§ 00
es/ e Stdt < es/ e Stdt = e.
0 0

As to the second integral, let M be a bound for p(T;z) + p(z) which exists by
the uniform boundedness of T;. The triangle inequality says that p(Tix — ) <
p(Tyz) + p(z) so the second integral is bounded by

M / e Stdt = Me°.

This tends to 0 as s — oo, completing the proof that sR(s)x — z and hence
that D(A) is dense in F.

The differential equation.

Theorem 85. If x € D(A) then for any t > 0

1
lim — h [Tt+h — n]l’ = ATtIB = TtAIZ'

h—0

In colloquial terms, we can formulate the theorem as saying that

d
—T, = AT, =T, A
gt T A t
in the sense that the appropriate limits exist when applied to x € D(A).

Proof. Since T} is continuous in t, we have
.1 1
T, Az =T, lim —[T}, — Ix = lim —[T; T}, — Ti)x
RNO R R\O R
.1 1
fl}\(mo E[THh — Tz = %1{% E[Th — Tz
for z € D(A). This shows that Tz € D(A) and
11{‘1'1 A [Tt+h - Tt].’I} = ATt.T} = TtAJ?

To prove the theorem we must show that we can replace h \,0 by h — 0. Our
strategy is to show that with the information that we already have about the
existence of right handed derivatives, we can conclude that

t
Tix —x = / T, Axds.
0
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Since t +— T} is continuous, this is enough to give the desired result. In order
to establish the above equality, it is enough, by the Hahn-Banach theorem to
prove that for any £ € F* we have

UTyx) — b(x) = /0 L(TsAx)ds.

In turn, it is enough to prove this equality for the real and imaginary parts of £.
So it all boils down to a lemma in the theory of functions of a real variable:

A lemma in the theory of functions of a real variable.

Lemma 12. Suppose that f is a continuous real valued function of t with the
property that the right hand derivative

exists for all t and g(t) is continuous. Then f is differentiable with f' = g.

Proof of the lemma. We first prove that %f > 0 on an interval [a, b]
implies that f(b) > f(a). Suppose not. Then there exists an € > 0 such that

f(0) = fa) < —€(b—a).

Set
F(t):=f(t)— f(a) + et — a).

Then F'(a) =0 and
+

d
2 Fso.
al

At a this implies that there is some ¢ > a near a with F(c) > 0. On the other
hand, since F(b) < 0, and F is continuous, there will be some point s < b
with F'(s) = 0 and F(t) < 0 for s < ¢ < b. This contradicts the fact that

[%F](s) > 0. Thus if %f > m on an interval [t1,%2] we may apply the above

result to f(t) — mt to conclude that
ft2) = f(tr) = m(t2 — t1),

and if %f(t) < M we can apply the above result to M+t — f(t) to conclude that
ft2) — f(t1) < M(t2—t1). So if m = min g(t) = min < f on the interval [t1, 5]
and M is the maximum, we have

< fl) = 1) _ M
<= T <

Since we are assuming that g is continuous, this is enough to prove that f is
indeed differentiable with derivative g. O.
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13.3.3 The resolvent of the infinitesimal generator.

We have already verified that
oo
R(z) = / e A Tydt
0

maps F into D(A) and satisfies
(21 -—A)R(z) =1

for all z with Re z > 0, cf (13.10).
We shall now show that for this range of z

(21 —A)x=0 = =0 Vae DA

so that (21 — A)~! exists, and that it is given by R(z):
Suppose that
Az =zzx 1z € D(A)

and choose ¢ € F* with ¢(x) = 1. Consider

By Theorem 85 we know that ¢ is a differentiable function of ¢ and satisfies the
differential equation

@' (t) = (T, Az) = U(Tyzx) = 24(Tyx) = 29(t), ¢(0) = 1.

So
o(t) = e

which is impossible since ¢(t) is a bounded function of ¢ and the right hand
side of the above equation is not bounded for ¢ > 0 since the real part of z is
positive.

We have from (13.10) that

(21 —A)R(2)(z] — A)x = (2] — A)x

and we know that R(z)(zI — A)x € D(A). From the injectivity of zI — A we
conclude that R(z)(zI — A)z = .

From (zI — A)R(z) = I we see that zI — A maps im R(z) C D(A) onto F so
certainly zI — A maps D(A) onto F bijectively. Hence

im(R(z)) = D(A), im(zI —A)=F

and

R(z) = (2 — A)~ 1.
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Summary of where we are.

The resolvent R(z) = R(z, A) := [ e *'T;dt is defined as a strong limit for
Re z > 0 and, for this range of z:

D(A) = im(R(z,A4)) (13.12)

AR(z, A)x =
R(z,A)Az = (2R(z,A)—I)z, x € D(A) (13.13)
AR(z,A)x = (zR(2,A)— Dz, Vxe€F (13.14)
Zl}rgo zR(z,A)x =« for z real Vz € F. (13.15)

The operator A is closed.

We claim that
Theorem 86. The operator A is closed.

Proof. Suppose that z, € D(A), x, — = and y, — y where y,, = Az,
We must show that « € D(A) and Ax = y. Set

zn = — Az, so z, >z —y.
Since R(1,A) = (I — A)~! is a bounded operator, we conclude that
r=lima, =lim(l — A) "'z, = (I - Az —v).

From (13.12) we see that x € D(A) and from the preceding equation that
(I-Azx=xz—-—yso Az =y. O

13.3.4 Application to Stone’s theorem.

We now have enough information to prove one half of Stone’s theorem, namely
that any continuous one parameter group of unitary transformations on a Hilbert
space has an infinitesimal generator which is skew adjoint:

Suppose that U(t) is a one-parameter group of unitary transformations on
a Hilbert space . We have (U(t)z,y) = (x,U(t)"'y) = (z,U(-t)y) and so
differentiating at the origin shows that the infinitesimal generator A, which we
know to be closed, is skew-symmetric:

(A$,y):*($,Ay) V(Z?,y€D(A)

Also the resolvents (21 — A)~! exist for all z which are not purely imaginary,
and (zI — A) maps D(A) onto the whole Hilbert space ).

Writing A = iT we see that T is symmetric and that +il + T is surjective.
Hence T is self-adjoint. This proves that every one parameter group of unitary
transformations is of the form e7* with T self-adjoint.
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We now want to turn to the other half of Stone’s theorem: We want to start
with a self-adjoint operator T, and construct a (unique) one parameter group
of unitary operators U(t) whose infinitesimal generator is 7. As mentioned
in the introduction to this chapter, this fact is an immediate consequence of
the spectral theorem. But we want to derive the spectral theorem from Stone’s
theorem, so we need to provide a proof of this half of Stone’s theorem which is
independent of the spectral theorem. We will state and prove the Hille-Yosida
theorem and find that this other half of Stone’s theorem is a special case.

13.3.5 The exponential series and sufficient conditions for
it to converge.

In finite dimensions we have the formula

etB — HBk
0 .

with convergence guaranteed as a result of the convergence of the usual expo-
nential series in one variable. (There are serious problems with this definition
from the point of view of numerical implementation which we will not discuss
here.)

In infinite dimensional spaces some additional assumptions have to be placed
on an operator B before we can conclude that the above series converges. Here
is a very stringent condition which nevertheless suffices for our purposes:

Let F be a Frechet space and B a continuous map of F — F. We will assume
that the B* are equibounded in the sense that for any defining semi-norm p
there is a constant K and a defining semi-norm ¢ such that

p(B*z) < Kq(z) Yk=1,2,... VxeF.

Here the K and g are required to be independent of k and x.
Then

p(z HB%) < Z HP(B%) < Kq(x) Z ]
and so
n tk-
yBkm
- k!

is a Cauchy sequence for each fixed ¢t and = (and uniformly in any compact
interval of t). It therefore converges to a limit. We will denote the map z +—

o %ka by
exp(tB).

This map is linear, and the computation above shows that

p(exp(tB)x) < K exp(t)q(x).
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The usual proof (using the binomial formula) shows that ¢ — exp(tB) is a one
parameter equibounded semi-group. More generally, if B and C' are two such
operators then if BC'= CB then exp(¢(B + C)) = (exptB)(exp tC).

Also, from the power series it follows that the infinitesimal generator of
exptB is B.

13.3.6 The Hille Yosida theorem.

Let us now return to the general case of an equibounded semigroup 7; with
infinitesimal generator A on a Frechet space F where we know that the resolvent
R(z,A) for Re z > 0 is given by

R(Z,A)x:/ e A Tyadt.
0

This formula shows that R(z, A)x is continuous in z. The resolvent equation
R(z,A) — R(w,A) = (w — 2)R(z, A)R(w, A)

then shows that R(z, A)z is complex differentiable in z with derivative —R(z, A)2z.
It then follows that R(z, A)x has complex derivatives of all orders given by

d"R(z, A)x

on (—=1)"n!R(z, A)"Ta.

On the other hand, differentiating the integral formula for the resolvent n- times
gives

d"R(z,A)x

dzm N

/ e *(—t)"Tydt
0

where differentiation under the integral sign is justified by the fact that the T
are equicontinuous in t.
Putting the previous two equations together gives

n+1 [ee]
(2R(z, A))"Hla = 2 / Tzt
nJo

This implies that for any semi-norm p we have

n+1 oS}
p((zR(z, A))"Tlz) < : ' / e~ *4" sup p(Tyx)dt = sup p(Tix)
nJo >0 >0

T eetngy = M
o - Zn+1 :

Since the T} are equibounded by hypothesis, we conclude

since

Proposition 49. The family of operators {(zR(z, A))"} is equibounded in Re
z>0andn=20,1,2,....
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Statement of the Hille-Yosida theorem.

Theorem 87. [Hille -Yosida.] Let A be an operator with dense domain D(A),
and such that the resolvents

R(n,A) = (nI — A)~!

exist and are bounded operators for n = 1,2,.... Then A is the infinitesimal
generator of a uniquely determined equibounded semigroup if and only if the
operators

{(I—ntA)™™}
are equibounded in m =0,1,2... andn=1,2,....

If A is the infinitesimal generator of an equibounded semi-group then we
know that the {(I — n=tA)~™} are equibounded by virtue of the preceding
proposition. So we must prove the converse. Our proof of the converse will be
in several stages:

The definition of J,.
Set
Jp=I-n"tA)""
so J, =n(nl — A)~! and so for x € D(A) we have
Jn(nI — A)x = nx
or
JnAx =n(J, — Ix.
Similarly (nI — A)J,, = nl so AJ,, = n(J, — I). Thus we have

Adpx = J,Ax =n(J, — Iz V¥V x € D(A). (13.16)

Idea of the proof.

The idea of the proof is now this: By the results of the preceding section on
the exponential series, we can construct the one parameter semigroup s —
exp(sJy). Set s = nt. We can then form e~ exp(nt.J,,) which we can write as
exp(tn(Jn, — I)) = exp(tAJ,) by virtue of (13.16). We expect from

lim sR(s)xr=2 VazeF

§—00

that
lim J,x=2 V xze€kF. (13.17)

n—oo

This then suggests that the limit of the exp(tA.J,) be the desired semi-group.
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Proof that lim, , J,x =2 V ze€F. (13.17).

So we begin by proving (13.17). We first prove it for « € D(A). For such x we
have (J, — I)x = n=J, Az by (13.16) and this approaches zero since the J,
are equibounded. But since D(A) is dense in F and the J,, are equibounded we
conclude that (13.17) holds for all z € F.

Now define
Tt(”) = exp(tAJ,) = exp(nt(J, — I)) = e " exp(ntJ,).
We know from our study of the exponential series that

(nt)k k nt
p(exp(ntJ,)z) < Z o p(Jyx) < e™Kg(x)

which implies that
p(T ™) < Kq(x). (13.18)

Thus the family of operators {Tt(")} is equibounded for allt > 0 andn =1,2,....

The {Tt(n)} converge as n — oo uniformly on each compact interval of
t.

We next want to prove that the {Tt(n)} converge as n — oo uniformly on each
compact interval of ¢: The J, commute with one another by their definition,

and hence J,, commutes with Tt(m). By the semi-group property we have
d

S = AT T2 = T™ Ad

SO

n m d
Tt( )x—Tt( )x:/ ]

t t
*(Tt(ins)Ts(n))de = / Tt(ins) (AJ, — AJm)Ts(n)$d8.
o as 0

Applying the semi-norm p and using the equiboundedness we see that
p(TM e — T x) < Ktg((Jn — Jm) A).

From (13.17) this implies that the T, t(n)ac converge (uniformly in every compact

interval of t) for x € D(A), and hence since D(A) is dense and the Tt(") are

equicontinuous for all x € F. The limiting family of operators T; are equicon-

)

tinuous and form a semi-group because the Tt(" have this property.

‘We show that the infinitesimal generator of this semi-group is A.

Let us temporarily denote the infinitesimal generator of this semi-group by B,
so that we want to prove that A = B. Let « € D(A).
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We know that
p(T™Mx) < Kq(z).  (13.18).
We claim that

n—oo

uniformly in in any compact interval of ¢. Indeed, for any semi-norm p we have

p(TiAx — Tt(n)Az) + p(Tt(")Ax - Tt(n)AJn:E)
p((Ty = T{V) Az) + Kq(Az — J, Ax)

p(TiAx — Tt(n)AJnx) <
<

where we have used (13.18) to get from the second line to the third. The second
term on the right tends to zero as n — oo and we have already proved that
the first term converges to zero uniformly on every compact interval of ¢t. This
establishes (13.19).

—r = i (")
Tz —x nlgr;o(ﬂ x—x)

t
= lim T AJ, zds

n—oo 0

¢
= /(lim T AJ,x)ds
0

n—oo

t
/ T, Axds
0

where the passage of the limit under the integral sign is justified by the uniform
convergence in ¢t on compact sets. It follows from Tyx — z = fg TsAxds that x
is in the domain of the infinitesimal operator B of T; and that Bx = Ax. So B
is an extension of A in the sense that D(B) D D(A) and Bx = Az on D(A).

But since B is the infinitesimal generator of an equibounded semi-group, we
know that (I — B) maps D(B) onto F bijectively, and we are assuming that
(I — A) maps D(A) onto F bijectively. Hence D(A) = D(B).

This concludes the proof of the Hille-Yosida theorem.

13.3.7 The case of a Banach space.

In case F is a Banach space, so there is a single norm p = || ||, the hypotheses
of the theorem read: D(A) is dense in F, the resolvents R(n, A) exist for all
integers n = 1,2,... and there is a constant K independent of n and m such
that

|(I-ntA)™| <K Vn=12,..., m=1,2,.... (13.20)

Contraction semigroups.

In particular, if A satisfies

(I —n"tA) <1 (13.21)



378 CHAPTER 13. SPECTRAL THEORY AND STONE’S THEOREM.

condition (13.20) is satisfied, and such an A then generates a semi-group. Under
this stronger hypothesis we can draw a stronger conclusion: In (13.18) we now
have p=¢q = |- || and K = 1. Since lim,_,cc T{*x = Tyx we see that under the
hypothesis (13.21) we can conclude that

T <1 Vvi¢>o.
A semi-group T; satisfying this condition is called a contraction semi-group.

13.3.8 The other half of Stone’s theorem.

We have already given a direct proof that if S is a self-adjoint operator on a
Hilbert space then the resolvent exists for all non-real z and satisfies

[R(z,9)| < [om ()]

This implies (13.21) for A = iS and —iS giving us a proof of the existence of
U(t) = exp(iSt) for any self-adjoint operator S, a proof which is independent
of the spectral theorem.

13.4 The spectral theorem.

13.4.1 The functional calculus for functions in S.

The Fourier inversion formula for functions f whose Fourier transform f belongs
to Ly (say for f € S, for example) says that

1 R itx
@) = <= / ft)et=at.

If we replace z by A and write U(t) instead of e®4 this suggests that we define
1 A

A)=— YU (t)dt. 13.22

1) = o= [ fove (13.22)

Checking that (fg)(A) = f(A)g(A).
To check that (fg)(A) = f(A)g(A) we use the fact that (fg) = f* § so

1 2 .
(a)(A) = 5= [ [ Fe=9ats)veyasar
1 P A~
:%/R/Rf(r)g(s)U(r—i—s)drds

1 o
:%/R/Rf(r)g(s)U(r)U(s)drds
= f(A)g(A).
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Checking that the map f + f(A) sends f +— (f(A))*.

For the standard Fourier we know that the Fourier transform of f is given by

F© =f(-9).
Substituting this into the right hand side of (13.22) gives

— [7 L [ Fgu o= (- [ Founa)
E/Rf(ft)U(t)dtfﬁ/Rf(ft)U (—t)dt (@/Rf( HU( t)dt>
= (f(4))"

by making the change of variables s = —t.

Checking that ||f(A)] < || f]lco-
Let || f]loo denote the sup norm of f, and let ¢ > || f]|oo. Define g by
g(s) ==c— /e = [f(s)].

So g is a real element of S and

@ = A—-2csyR—|f2+E—|f)?
= 2e9—ff
s0
ff=2cg+9> = 0.

So by our previous results,

FA)f(A) = cg(A) — c(9(A)" + g(A)g(A) =0

FLA) F(A) + (e = g(A)*(c — g(A) = ¢

So for any v € ) we have
£ (AP < (1 (A)]? + [I(c — g(A)oll* = lv]?

proving that
AN < 1l (13.23)

Enlarging the functional calculus to continuous functions vanishing
at infinity.

Equation (13.23) allows us to extend the functional calculus to all continuous
functions vanishing at infinity. Indeed if f is an element of L; so that its
inverse Fourier transform f is continuous and vanishes at infinity (by Riemann-
Lebesgue) the formula (13.22) applies to f.

We will denote the space of continuous functions vanishing at infinity by
Co(R).
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Checking that (13.22) is non-trivial and unique.

We checked above that for z not real the function r, given by

has the property that
r.(A) = R(z,A) = (21 — A)~!

is given by an integral of the type (13.22). This involved some heavy lifting but
not the spectral theorem. This shows that (13.22), is not trivial. Once we know
that 7,(A) = R(z, a) the Stone-Weierstrass theorem gives uniqueness.

Still missing one important item.

We still need to prove:
Proposition 50. If Supp(f) Nspec(A) =0 then f(A) = 0.

We will derive this from the multiplication version of the spectral theorem.

13.4.2 The multiplication version of the spectral theorem.

In this section we follow the treatment in Davies.

The cyclic case.

A vector v € §) is called cyclic for A if the linear combinations of all the vectors
R(z, A)v as z ranges over all non-real complex numbers is dense in §. Of course
there might not be any cyclic vectors.

But suppose that v is a cyclic vector. Consider the continuous linear function
£ on Cy(R) given by

U(f) = (f(A)v,v).

If f is real valued and non-negative, then ((f) = (fz(A)v, fz(A)v) > 0.
In other words, ¢ is a non-negative continuous linear functional. The Riesz
representation theorem then says that there is a non-negative, finite, countably
additive measure p on R such that

“«f) = /R fd.

In fact, from its definition, the total measure u(R) < ||v]/?.
Let us consider Cy(R) as a (dense) subset of Lo(R, 1), and let (-, )2 denote
the scalar product on this Ly space. Then for f,g € Cyo(R) we have

(f:9)2 = £(gf) = (9(A)" f(A)v,v) = (f(A)v, g(A)v),
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(where the last two scalar products are in $). This shows that the map

[ (A

is an isometry from Cp(R) to the subspace of $ consisting of vectors of the form
f(A)v. The space of vectors of the form f(A)v is dense in $) by our assumption
of cyclicity (since already the linear combinations of vectors of the form r,(A),
z ¢ R are dense). The space Cp(R) is dense in Ly (R). So the map above extends
to a unitary map from Lo(R, 1) to $ whose inverse we will denote by U.

So U : $H — Ly(R, u) is a unitary isomorphism such that

U(f(A) =f, VYV feCoR).
Now let f,g,h € Co(R) and set
¢:=g(A)v, ¢ :=h(Aw.
Then
(F)6.) = [ fohdn = (FU(6).U ()2

where, in this last term, the f denotes the operator of multiplication by f.
In other words,
Uf(AHUu—!
is the operator of multiplication by f on La(R, i). In particular, U of the image
of the operator f(A) is the image of multiplication by f in Ls.
Let us apply this last fact to the function f =1r,, z € R, i.e.

1
z—x
We know that the resolvent r,(A) maps $ onto the domain D(A), and that
multiplication by r,, which is the resolvent of the operator on Ly maps Lo to

the domain of the operator of multiplication by z. This latter domain is the set
of k € Ly such that zk(z) € Ly. Now (21 — A)r,(A) =1, so

Ar,(A) =zr(A) —I.

r.(z) =

Applied to U=1g, g € La(R, i) this gives .
Ar (AU g =2r (AU g —-Ug.

So
AUUr, (AU g = 2UUr, (AU g - Uy,

and multiplying by U gives
UAU r,-g=2r,-g—g.
So if we set h =1, - g so zr, - g — g = xh we see that
UAU *h=x-h. (13.24)

If y & Supp(p) then multiplication by r, is bounded on Ly (R, 1) and conversely.
So the support of i is exactly the spectrum of A.
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The general case.

Now for a general separable Hilbert space $) with a self-adjoint operator A we
can decompose §) into a direct sum of Hilbert spaces each of which has a cyclic
vector. Here is a sketch of how this goes. Start with a countable dense subset
{z1,22,...} of H. Let £; be the cyclic subspace generated by z1, i.e. £ is the
smallest (closed) cyclic subspace containing x1. Let m(1) be the smallest integer
such that x,,(1) € £1. Let yp,(1) be the component of x,,(;) orthogonal to £,
and let £ be the cyclic subspace generated by y,,(1). Proceeding inductively,
suppose that we have constructed the cyclic subspaces £;, ¢ =1,...,n and let
m(n) be the smallest integer for which x,,.,) does not belong to the (Hilbert
space direct sum) £ © £o @ --- © £,. Let yy,(n) be the component of x,,,)
orthogonal to this direct sum and let £, 11 by the cyclic subpace generated by
y(m). At each stage of the induction there are two possibilities: If no m(n)
exists, the § is the finite direct sum £1 & £5 @ --- ® £,,. If the induction
continues indefinitely, then the closure of the infinite Hilbert space direct sum
L1BL P - L, & contains all the x; and so coincides with $).

By construction, each of the spaces £; is invariant under all the R(z, A) so
we can apply the results of the cyclic case to each of the £;. Let us choose the
cyclic vector v; € £; to have norm 27" so that the total measure of R under
the corresponding measure f; is 272". Recall that S denotes the spectrum of
A and each of the measures p; is supported on S. So we put a measure g on
S x N so that the restriction of u to S x {n} is p,. Then combine the U, given
above in the obvious way.

We obtain the following theorem:

Theorem 88. Let A be a self-adjoint operator on a separable Hilbert space $
and let S = spec(A). There exists a finite measure p on S X N and a unitary
isomorphism

U:ﬁ—)LQ(SXN,ﬂ)

such that UAU ™! is multiplication by the function a(s,n) = s. More precisely,
U takes the domain of A to the set of functions h € Lo such that ah € Ly and
for for all such functions h we have
UAU 'h = ah.
For any f € Co(R) we have
Uf(AU™Y = multiplication by f.

In particular, if supp(f) NS =0 then f(A) = 0.

The general version of the Dynkin-Helffer-Sjostrand formula is true.

As a corollary of the preceding theorem, we conclude, as mentioned above, that
the Dynkin-Helffer-Sjostrand formula (10.2) is true in general.
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Enlarging the functional calculus to bounded Borel functions.

We can now use the preceding theorem to define f(A) where f is an arbitrary
bounded Borel function, in such a way that it extends the preceding functional
calculus. Here is how it goes: Let B denote the space of bounded Borel functions
on R. We say that f,, € B increases monotonically to f € B if f,(z) increases
monotonically to f(z) for every z € R. In particular the

[fnll = [[fnllo = sup | fr ()]
zeR

are uniformly bounded.

Theorem 89. There exists a map from B to to bounded operators on %, f —
f(A) extending the map defined in Section 13.4.1 on S having all of the same
properties (including the property that if Supp(f) NS = 0 then f(A) = 0.)
This map is unique subject to the additional condition that whenever f, € B
converges monotonically to f € B then

fn(A) = f(4)
in the sense of strong limits.

Proof. We may identify $ with Lo(S x N, ) and A with the multiplication
operator by a where a(s,n) = s by the preceding theorem. Then for any f € B
define f(A) to be multiplication by foa. This has all the desired properties. The
monotone convergence property is a consequence of the monotone convergence
theorem in measure theory. This establishes the existence of the extension of
the map f — f(A) to B.

For the uniqueness we use a monotone class argument. We have the unique-
ness of the extension to Cy(R). So let C denote the class on which two putative
extension agree. Then C is mbonotone class containing Cp(R). But the smallest
such class is B. O

Corollary 2. The spectrum of A equals the essential range of a defined as the
set of all A € R such that

i (ala({z} x N) = A) < ¢ >0
for all e > 0. If A & spec(A) then
I = A) ] = IR\, A)l| = [dist (A, )"
By the multiplicative form of the spectral theorem it is enough to prove this

when A = a is a multiplication operator, and we will leave the details in this
case to the reader, or refer to Davies page 17.
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The projection valued measure form of the spectral theorem.

Let us return to Theorem 89. If B is any Borel subset of R and 15 denotes the
indicator function of B (i.e. the function which equals 1 on B and zero else-
where) then 15(A) is a self-adjoint projection operator which we will sometimes
denote by Pp (where the operator A is understood). We have:

Theorem 90. If B is any Borel subset of R then 15(A) is a projection which
commutes with A. If By and By € B and By N By = (0 then 1p,up,(A4) =
1p,(A) +1p,(A). If (a,b) is an open interval and f, is an increasing sequence
of continuous functions which converge to 1,y then fn(A) converge strongly
to the projection Pqp) := 1(qp). We have P p)A =0 <= (a,b)NS = 0.

13.5 The Calderon-Vallaincourt theorem.

In Chapters 9-11 we considered operators associated to symbols a = a(z, &, h),
namely

(O, 1D, 0) 1= g [ [ He=0 ot 41— e Mo

If (for each fixed A) the function a(-,-, i) belongs to S(R?") then this operator
is given by a kernel K = K5, € S(R*"):

(Oprau)(x) = . Kn(x, y)u(y)dy

where
1

#(@—y)-€ _
(271-5)n /]R" en a(t$ + (1 t)ya€> h)df

As an operator, K maps S'(R™) — S(R™). At the other extreme, if a € S’(R?")
the above formula for K = K}, shows that K € S'(R?"). Hence Op;a is defined
as an operator from S to &’ given by

Kh(x7y) -

(Opi(a)u,v) = (K,u @ v).

The Schwartz kernel theorem guarantees that a continuous map from § — &’
is in fact given by a kernel K € &'(R?") and the above relation between K and
a shows that every such map is of the form Op;(a) for a unique a.

The Calderon-Vallaincourt theorem imposes conditions on a to guarantee
that Op.a gives a family of bounded operators on Lo. For simplicity we state
for the case t = %, i.e Weyl quantization.

The conditions are: For each o and 3 there are constants C s such that

10507 allc < Cap-

Here ||[|sc denotes the sup norm on R™ x R x R,. Then
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Theorem 91. [Calderon-Vallancourt.] Under the above hypotheses, the op-
erators Op‘éva are continuous in the Lo norm and so extend to bounded operators
on Lo. Furthermore, there exists a positive constant M, depending only on n,
and a positive constant C,, depending only on n and hy such that

lopYall, <Cu | Y 11020/ all
|a|+|B| <M,

The proof of this important theorem can be found in Evans-Zworski, Sjostrand-
Dimassi, or in Martinez.

For a fixed i (so that a is now a function of just z and &) the change of
variables £ — h¢ converts Op}Y a into Op}Y a(x, hE) and

05 0¢ a(w, he) = W90 a)(w, he)

which is bounded by #? ||3§‘8? a|loc- So as long as fi lies in a bounded interval,
it is enough to prove the theorem for i = 1. In other words, if a = a(z, &) is
bounded with all its derivatives on R™ x R™ and we define the operator A on
C5°(R™) by

Au(z) = //a (x _2|— y,f,h) u(y)e! @S dyde

then

Theorem 92. Calderon-Vaillancourt A is bounded as an operator on L?

with bound
Ch Z [0%alloo

|| <M,
where Cy, and M, depend only on n.

The proof consists of a partition of unity argument followed by an application
of a lemma in Hilbert space theory known as the Cotlar-Stein lemma. We refer
to Martinez pp. 43-49 for an exceptionally clear presentation of this proof.

13.5.1 Existence of inverses.

In this section we present an important application of the Calderon-Vallaincourt
theorem. We follow the exposition in Martinez. We begin by imposing some
growth conditions on symbols.

A function g : R?* — R is called an order function if

929 =0(g)
for any a € N?" and uniformly on R?". For us, the key examples are

9(@: &) = (O™ = (L+ |y
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and
g(x,&) = (1 + ||=[* + 1&]1*)™>

for various values of m.

Notice that it follows from Leibnitz’s rule that if g is an order function then
so is 1/g.

A function a = a(x, &, h) defined on R?™ x (0, k) for some hg > 0 is said to
belong to S(g) if it depends smoothly on (z,¢) and for any o € N24

9%a(z,&,h) = O(g)

uniformly with respect to (z,&,h) € R*™ x (0, hg).

For example, if g = 1 then S(1) consists of C° functions on R?" parametrized
by % € (0, fig] which are uniformly bounded together with all their derivatives.

If g = (€)™ then the condition for a to belong to S(g) is different from
the condition on symbols that we imposed in Chapter 9 in that we are now
demanding uniform bounds on all of R?” whereas in Chapter 9 we allowed the
bounds to depend on compact subsets of R”. On the other hand, in Chapter 9
we imposed the condition that locally 97 Ofa = O((¢)™~ el where here we are
demanding that 858?61 =0((&)™).

Notice that if g; and go are order functions then so is g1 g2, and if @ € S(g1)
and b € S(go) then ab € S(g192).

Here is an unfortunate definition which seems to be standard in the subject:
A symbol a € S(g) is called elliptic if there is a positive constant Cy such that

o > =
4 L
,Cog

uniformly on R?" x (0, ig] for some Ay > 0.
For example, if

a({E,g, h) = CL()(I,E) + hal(xaf) et hN?laN—l(zvf) + th(xvga h)
with ¢ € S(g), and if there is a constant C; such that

1
lag| > =g
Cq

then a is elliptic.
From Leibniz’s rule it follows that if a € S(g) is elliptic, then 1/a € S(1/g).
But more is true: using the symbolic calculus of Chapter 9:

Proposition 51. Let a € S(g) be elliptic. Then there exists b € S(1/g) such
that

Opr(a) o Opr(b) = 1+ Opg(r)
Opp(b) o Opr(a) = 1+ Opu(r')

with r,r" € O(h>) in S(1).
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Proof. Let by := 1/a. We know that by € S(1/g). Looking for b ~ > hib; we
solve for b; € S(1/g) recursively so that

afb=14+0(k*) in S(1).
Similarly, find &’ such that

Vta=14+0(R®) in S(1).
So

Opn(a) o Opp(b) = 1+ Opp(r)

Opn(b') o Opp(a) = 14 Opu(r')

with 7,7/ = O(h*°) in S3,(1). So
(1+ Opp(r')) o Opu(b) = Op(¥')(1 + Opx(r)).
Multiplying out gives
Opr(b) = Opp(b') + Opp(b") o Opr(r) — Opr(r') o Opr(b).

The last two terms together are of the form Opy(r1) with r1 = O(A*) in S(1).
So
Opn(b) © Opr(a) = Opr(b') o Opu(a) + Opp(r1) o Opn(a)

=1+ Opp(rz)
with 72 = O(h*°) in S(1). So b does the trick. O

Let A be be the (family of) operator(s) Opp(a). (say defined on C§°(R™) C
L2 (R™)) Suppose that g > 1 so that 1/g < 1 and hence B = Opy,(b) is a family
of bounded operators on Ly = Lo(R™) for suffficiently small by the Calderon-
Vallaincourt theorem, and let Ry := Opy(r) and Ry := Opy(r'). Again by the
Calderon-Vallaincourt theorem, R; and Ry define bounded operators on Lo and
their norms as Lo operators satisfy

[B1]| + [[Rell = O(R%).

In particular, the Neumann series for (1+Rg)~! converges for i small enough
and hence (1 + R2)™'B is a left inverse for A. (In case A were a bounded
operator, so defined on all of Ly we could similarly construct a right inverse and
then the two inverses would coincide.) We wish to know that the inverse we
constructed belongs to S(g~1).

For this we apply Beal’s characterization of operators C = Cp, :— S — &’
which are of the form C = Opp(c) for ¢ € S(1). Here is a statement of Beal’s
theorem: First some notation: If £ = £(x,&) is a linear function of (z,¢) we
denote the corresponding operators Opy(¢) by ¢(hD).
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Theorem 93. [Semi-classical form of Beal’s theorem.] Let C = Cy: S —
S’ be a continuous (family of) linear operators and so is of the form Oppc for
c € S'(R?™. The following conditions are equivalent:

1. ce S(1).

2. For every N € N and every collection {1,...,¢Nn of linear functions on
R2" the operators ad(¢1(z,hD))o---oad({x(x, AD))C are bounded in the
Ly operator norm and their operator norm is O(RY).

For a proof of Beal’s theorem, see Dimassi-Sjostrand pp. 98-99 or Evans-
Zworski (Theorem 8.13).

Let us go back to our construction of the inverse the operator Op(p) cor-
responding to an elliptic p € S(g). If we define ¢ = 1/p then our functional
calculus tells us that pfg = 1 — hr with » € S(1). So 1 — Air satisfies condition 2
in Beal’s theorem. But

ad(?) ((1 - hr)_l) =— ((1 - hr)_l) (ad(0)(1 — hr)) ((1 — hr)_l) )

Repeated application of this identity shows that (1 — Ar)~* € S(1) so q :=
Gt ((1 — hr)*l) € S(1) and the corresponding operator is the inverse of Op(p).

13.6 The functional calculus for Weyl operators.

Let g > 1 be an order function, and let p € S(g) be real valued. Let p*(z, hD, h)
be the corresponding Weyl operators, so initially all we know is that p* (z, AD, k)
maps S — &’. The main result of this section is that if g = O((1+]|z|*+||€]|*)™)
for some m, then p* defines an essentially self-adjoint operator on Ls.

We begin by sketching the fact that if g = O((1 + ||z]|* + [|€]|*)™) for some
m, and a € S(g) then Op(a) : S — S. The idea is to use integration by parts to
rewrite the operator Op(a) for a € S(R?*" using integration by parts, and then
to approximate a € S(g) by elements of S(g). We use the operators

_1-h¢-D,

I - 1+h($—y)D§
Y14

d Ls =
St ey ey

Both operators satisfy
e=u)€ je—)e
h = e h

e

Integration by parts p times with respect to y using L,gives

1

COn / T o, y, €, Muly)dédy

1

= @y [ o audgay

for a € S(R?". But this last integral makes sense when m —p < —n for
a € S(g), and so, by continuity, we see that Op(a) maps S into functions, in
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fact C*° functions on R™ and Op(a) has the above form. We then integrate by
parts with respect to & using L¢ to conclude that 2297 (Op(a))u lies in S. For
details, see Martinez pages 24-25.
We now know that
pw :S—>S8C Lo.

We will let P = p* when thought of as an operator on Ly. We may (initially)
consider P as a symmetric operator with domain & = S(R™) C Ls.

Also assume that p=i is elliptic, so that we can construct their inverses as in
the preceding section, and the symbols corresponding to them as above which
we shall denote by (p£i)~! € S(g~!) for small enough A, and the corresponding
bounded operators on Lo which we denote by (p* 414)~ 1.

The following discussion is taken directly from Dimassi-Sjostrand page 101:

It is easy to check that (p* 4= i)~! Ly is independent of the choice of 4+-. We
denote it by Dp.

Proposition 52. The closure P of P has domain Dp and is self-adjiont.

Proof. To say that u is in the domain of P means that there exists a sequence
u; — u with v; = Pu; converging to some v (both in the Ly norm). (In
particular this converges as elements of S’ and p¥u = v as elements of S’ and
hence as elements of Ls). We have

(P +i)u; = vj + iy

and hence u; = (p* +1i)~!(vj +1iu;), and since (p* +i)~! is a bounded operator
on Ly we conclude that u = (p® +14) "1 (v + iu) € Dp.

Conversely, suppose that u € Dp, so that u = (p® +1i)~tw for some w € L.
Choose f; € S with f; — w in Lo, and let u; = (p* +14)~'f;. So u; € S and
uj; — u. Also (p* + i)u; = f; so p”u; — v — su. This shows that u € Dp. So
we have proved that P has domain Dp and coincides with p* there.

Suppose that « is in the domain of P* and P*u = v. From the formal self-
adjointness of p¥ it follows that p*u = v as elements of S’ and hence as elements
of Ly and hence that (p*+i)u = v+iu and therefore u = (p*+1i) "' (v+iu) € Dp.
So we have shown that the domain of P* is Dp and P = P*. O

In fact we have proved that P has a unique self-adjoint extension (with
domain Dp) which we will now write simply as P instead of P.

For example, consider the operators h2A +V where V > 0 is a real function
with V' € S({z)™) for some m and such that 1+ V is an order function. This
operator corresponds to the symbol ||£||? +V (z) which belongs to S(1+&2+V).
So the operator 1+ A2A + V (and hence the operator h2A + V) is essentially
self-adjoint.

(Of course, for the case of the Schrédinger operator, much weaker conditions
guarantee that it is essentially self adjoint; for example that the potential be
> 0 and locally L. See for example, Hislop-Segal page 86.)
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We know from the preceding paragraph (via Beal’s theorem) that the re-
solvent R(z, P) is a Weyl operator for Im z # 0 (Proposition 8.6 of Dimassi-
Sjostrand). Then using the Dynkin-Helffer-Sjostrand formula we obtain

Theorem 94. [Theorem 8.7 of Dimassi-Sjostrand.] If f € C5°(R) then
f(P) € Opn(g~F) for any k € N. Furthermore, the two leading terms in the

symbol of f(P) are ag = f(po) and ar = p1f'(po).

13.6.1 Trace class Weyl operators.

Suppose that J C R is an interval such that py 1(J ) = (0. Then for any smaller
interval I C J (say with compact closure), the inverse of rI — P exists for all
r € I and sufficiently small h. In other words, spec(P)NI = 0. Soif f € C§°(R
has support in I then f(P) = 0.

Now suppose only that py 1(J) is contained in a compact subset K C R?",
and suppose that f has support in I. We will conclude that f(P) is of trace
class by the following beautiful argument due to Dimassi-Sjostrand page 115:

Let p be a real symbol which coincides with p outside some larger compact set
and p takes no values in J. So a := p—p compact support and its corresponding
operator A is of trace class with

A= (2i)n / / a(, €, ) dwde

as can easily be checked. 3
Now apply the second resolvent identity to P = p* and P = p" which says
that

R(z,P) = R(z, P) + R(z,P)(P — P)R(z, P).
Plug this into the Dynkin-Helffer-Sjostrand formula to obtain

f(P) = f(P)— % + / OfR(z, P)(P — P)R(z, P)dz.

The first term vanishes since the support of f lies in I and p~(J) = (). In the
second term, the two resolvents blow up to order [Im z|~*| while 8f vanishes to
infinite order in |Im z|. Since P — P is a trace class operator we conclude that
f(P) is a trace class operator!

13.7 Kantorovitz’s non-commutative Taylor’s for-
mula.

13.7.1 A Helffer-Sjostrand formula for derivatives.

Recall that if f € C§°(R) and if f is an almost holomorphic extension of f then
for any w € R we have

f(w):—%/cgf- L dzdy.

zZ—w
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The term 8f vanishes to infinite order along the real axis. So we may differen-
tiate under the integral sign as often as we like and conclude that

()
f] /6 Jdedy.

We may now apply the multiplication form of the spectral theorem as above to
conclude

Proposition 53. Let f € C°(R) andf an almost holomorphic extension of f.
Then for any self-adjoint operator A we have

% FO(4) = —% / GFR(z, A+ dzdy. (13.25)

Let B be another self-adjoint operator. We will use the above proposition to
obtain a formula (due to Kantorovitz) which expresses f(B) in terms of f(A)
as a sort of “Taylor expansion” about A.

13.7.2 The exponential formula.

Before proceeding to the general case, we illustrate it in a very important special
case. Let 2 be a Banach algebra (say the algebra of bounded operators on a
Hilbert space), and let a,b € 2. The usual formula for the exponential series
converges, so we have

1
eta:1+ta+§t2a2+~~

with a similar formula for e*’. We can regard the exponential formula as an

asymptotic series if we like, i.e.
ta 1 n_.n n+1
e =I+tat- -+ t"a" +O(t""").
nl

The special case of Kantorovitz’s non-commutative Taylor formula that we study
in this section expresses e'® in terms of e*® as follows: Define

XO ;:I, )(1:[)—0,7 X2 Z:b2—2ba+@2,

and, in general,
X, :=b" —nb"la+ (g) b 20 . £a". (13.26)

In other words, X,, looks like the binomial expansion of (b— a)™ with all the b’s
moved to the left and all the a’s to the right. The formula we want says that

1
= <I + X1+ 5152X2 + - > et (13.27)
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Proof. If a and b commute, this is simply the assertion that e?® = et(b=%)¢tq,
But in trying to verify (13.27) all the a’s lie to the right of all the b’s, and we
never move an a past a b, so (13.27) is true in general. O

An asymptotic consequence of (13.27) is
tb 1 2 1 n ta n+1
o = (T +1X0+ G Xa oo "X, ) '+ O, (13.28)
n!

Polterovitch’s idea.

Notice that we can obtain the X, inductively as Xy = I and
Xpns1 = (b—a)X, + [a, X, (13.29)
Suppose that a and b are themselves asymptotic series in A:
an~ag+ah+ah®>+---, b=Dby+bihi+bh®+---.

Suppose that a —b = O(h) and that bracket by a raises degree, i.e if Y = O(h)
then [a,Y] = O(R/*1). Then it follows from the inductive definition (13.29)
that

X, = O(h"™).

Polterovich and Hilkin-Polterovitch use this idea to greatly simplify an old for-
mula of Agmon-Kannai about the asymptotics of the resolvents of elliptic oper-
ators. See our discussion in Chapter 11.

13.7.3 Kantorovitz’s theorem.

We continue with the above notations, so 2 is a Banach algebra and a,b € .
We let o(a), o(b) denote the spectra of a and b and R(z,a), R(z,b) denote the
resolvents of a and b.

Let L, denote the operator of left multiplication by a and R; denote the
operator of right multiplication by b and

C(a,b) := L, — Ry.
S0
C(a,b)x = ax — xb.

Since right and left multiplications commute (by the associative law) we have
the “binomial formula”

n

C(a,b)™ = L* —nL" 'Ry + (2

>Lg—2R§+-~-.

1 C C denotes an open set containing o(a) U o(b) and I' denotes a finite
union of closed curves lying in © and containing o(a) U o (b) in its interior.

Finally, f is a complex function defined and holomorphic on 2.
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Theorem 95. [Kantorovitch Forn=0,1,2,...

n

) = Y (=17 f9%a)[C(a,b)1]/5! + Lu(f, a,b) (13.30)
j=0
= Y [Ck.ay1]- f9(a)/j!+ Ru(f,a,) (13.31)
=0
where
L.(f a,b) := ”+12m/f a)" " C(a,b)" 1] - R(z,b\d3.32)
R.(f,a,b) := 2m/f [C(b,a)1] - R(z,a)" ' dz. (13.33)

Example. In (13.31) take f(z) = e'* so that
f9a) = t7e'

(and letting n = oo and ignoring the remainder) we get the formula of the
preceding section for exponentials.

Proof. Let ¢ and 1 be invertible elements of a Banach algebra. Clearly
v=¢+ (07t =Ty
Suppose that z is in the resolvent set of a and b and take
¢ = R(z,a) = (2 —a)™ !, Y = R(z,b) = (2I — b)*
in the above formula. We get
R(z,b) = R(z,a) + R(z,a)(b— a)R(z,b).
This is our old friend, the second resolvent identity. Now let

Q=0 —¢7) =gy -

S0
I+Q) =gy~ =
so I4+Q=¢y~! isinvertible and
(I+Q) " =vo".

On the other hand, from high school algebra (the geometric sum) we know that
for any integer n > 0 we have

n

T4Q)" =S (1@ + () Q1+ Q)

=0
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as can be verified by multiplying on the right by I + Q. Multiplying this geo-
metric sum on the right by ¢ gives

v=>"[6@ " = H)]" o+ (-1 [pw -] v
=0

Substituting
¢ = R(z,a), v = R(z,b)

gives Kantorovitz’s extension of the second resolvent identity:

R(z,b) =

> (-1 (a—b) R(z,a)+(=1)""" [R(z,a)(a — b)]" " R(z,b). (13.34)
7=0

In case a and b commute, the expression
> (-1 (a =B R(z,a) + (~1)"* [R(z,a)(a — )" R(2,b)
7=0

simplifies to
Z R(z,a) ™ (a —b) + (=1)" "' R(z,a)" "' R(2,b)(a — b)" .

Now L, and R, always commute and L.+ = (L.)~! for any invertible ¢ and
similarly R,-1 = (R.)~!. So the above equation with a replaced by L, and b
replaced by R, becomes

n

Rppy) = Y (Lr(za) T C(a, ) + (=1)" N (Lr(z0)” T Ry Cla, b)" .
=0

If we apply this operator identity to the element 1 € A we get
n
Z 1) R(z,a)’ T C(a,b) -
7=0

+(=1)""'R(z,a)" " [C(a,b)" " - 1] R(2,b). (13.35)
If we replace a by R, and b by L; in

> R(z,a) ™ (a—b) + (-1)"" R(z,0)" " R(z,b)(a — b)" !
j=0

and apply to I we obtain

R(z,b) = > X;R(z,a)*" + R(2,b)Xp1R(2,0)" ™ (13.36)
7=0
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where, we recall, X; = [C(b,a)’]I.
The Riesz-Dunford functional calculus (which is basically an extension to
Banach algebras of the Cauchy integral formula) says that for a function f

analytic in (Q,
1
=5 /Ff(z)R(z b)dz

7f(J =5 /f (2,a) J+1dz
i

Applied to (13.35) thls gives (13.30) and (13.32).
A similar argument using (13.36) gives (13.31) and (13.33).

and

13.7.4 Using the exended Helffer-Sjostrand formula.

For possibly unbounded operators we have to worry about domains. So the
operators C(a,b)?I (where I is the identity operator) will be defined on the
domain ‘
j
D, :=D [(C(a,b)’1] = () D(a*b’~F)
k=0
and (13.35) holds as an operator with domain D, 1.
If we multiply this equation by 0 f and integrate over C we obtain, as an

analogue of Kantorovitz’s first formula, for f € C§°(R):

n

fO) = > (=17 f9(a)[C(a,b)1]/5! + Ln(f, a,b)

=0

[C(b,a)1] - f9)(a)/5! + Ru(f,a,b)
=0

J

where

Lo(fiab) = ZY" /C 3F(2)R (2, a)" ' [C(a,b)" 1] - R(=, b)dady.  (13.37)

s

A similar expression holds for the right remainder.

13.8 Appendix: The existence of almost holo-
morphic extensions.
We follow the discussion in Dimassi-Sjostrand.

Let f € C°(R), o € C§°(R), with ¢» = 1 on Supp(f), and x € C*(R)
with x = 1 near 0. Define

fla+iy): m / ity (ye) f(€) e,
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where f is the Fourier transform of f. By the Fourier inversion formula

fr=1 (13.38)
With @ := 1(9, + id,) we have
5 = 5sd [t 9 e (ue) + X EER €
s [ etmtienuenfieas + 5D [ ety e) fe)ae
=30 [ ewrmoyeeieas+ 3 LD [ e fiede
Define

() ==t~V (1).
We can insert and extract a factor of "V in the first integral above and write
this first integral as

7’ w( ) i(x zy){) £
2O [ ey ()™ fe)ae

and so get a bound on this first integral of the form

CulyMIEN T ()

For the second integral we put in the expression of f as the Fourier transform

of f to get
3o [ [ ey pirarae

Now ¢’ = 0 on Supp(f) so x —r # 0 on Supp(¢)’(z) f(r)) so this becomes

Lt [ [ o (et 20D pyarge

T—r+y

Integration by parts turns this into

/ / ita—rrine X WY F(r)drde.

T —r+y

We can insert and extract a factor of ¥V and also of (¢ +i)? so that the double
integral becomes

N ei(zfr y)€ i2 XN(yg)y r\dr
J [t g e s
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_ yN//<Z — D)2(~Dy)N (ei(x—r+iy)§) (XN(yf)y £(r)

x—r—+iy)

€+ Z‘)2d7°cl§.

Integration by parts again brings the derivatives over to the the term I

r—r4iy
and shows that the second integral is also O(|y|"). So we have proved that
0f(2)] < On|Imz|~. (13.39)

Thus for any f € C§°(R) we have produced an “almost holomorphic” extension
f satisfying (13.39) and (13.38).
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Chapter 14

Differential calculus of
forms, Weil’s identity and
the Moser trick.

The purpose of this chapter is to give a rapid review of the basics of the calculus
of differential forms on manifolds. We will give two proofs of Weil’s formula for
the Lie derivative of a differential form: the first of an algebraic nature and then
a more general geometric formulation with a “functorial” proof that we learned
from Bott. We then apply this formula to the “Moser trick” and give several
applications of this method.

14.1 Superalgebras.
A (commutative associative) superalgebra is a vector space
A= Acven ® Avdd
with a given direct sum decomposition into even and odd pieces, and a map

AxA— A

which is bilinear, satisfies the associative law for multiplication, and

Aeven X Aeven — Aeuen
Aeven X Aodd — Aodd
Aodd X Aeven — Aodd
Aodd X Aodd — Aeven
w-o = o -w if either w or ¢ are even,
w-o = —o-wif both w and o are odd.

399
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We write these last two conditions as

WO — (_1)degadegwa W

Here deg 7 = 0 if 7 is even, and deg 7 = 1 (mod 2) if 7 is odd.

14.2 Differential forms.

A linear differential form on a manifold, M, is a rule which assigns to each
p € M a linear function on T'M,. So a linear differential form, w, assigns to
each p an element of TM;. We will, as usual, only consider linear differential
forms which are smooth.

The superalgebra Q(M) is the superalgebra generated by smooth functions
on M (taken as even) and by the linear differential forms, taken as odd.

Multiplication of differential forms is usually denoted by A. The number of
differential factors is called the degree of the form. So functions have degree
zero, linear differential forms have degree one.

In terms of local coordinates, the most general linear differential form has
an expression as ajdry + - - - + apdx, (where the a; are functions). Expressions
of the form

ar2dzy Ndxo + ajzdry Adxg + -+ ap—1 pdTn—1 A dzy,
have degree two (and are even). Notice that the multiplication rules require
dz; N\ dl‘j = —d.’L‘j ANdz;

and, in particular, dz; A dr; = 0. So the most general sum of products of two
linear differential forms is a differential form of degree two, and can be brought
to the above form, locally, after collections of coefficients. Similarly, the most
general differential form of degree k < n on an n dimensional manifold is a sum,
locally, with function coefficients, of expressions of the form

dl‘il/\-"/\d(ﬂik, 1 <o <.

There are ( ") such expressions, and they are all even, if k is even, and odd

k
if k is odd.

14.3 The d operator.

There is a linear operator d acting on differential forms called exterior differ-
entiation, which is completely determined by the following rules: It satisfies
Leibniz’ rule in the “super” form

d(w- o) = (dw) - o + (=1)3¢8% . (do).
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On functions it is given by

_of of
df = 0x1 doi -+ Oxy,

dz.,

and, finally,

Since functions and the dx; generate, this determines d completely. For example,
on linear differential forms

w=ardxy + - apdx,

we have
dw = day Ndxy +---+da, \Ndz,
o 3a1 8&1
= (amldx1+~-~axndxn) ANdxy + -
<8a"dx1 + e+ 8a”dxn> A d.’I}n
0x1 Tn
Odas day Oan, dan—1
= — — — |dz1 Nd — dxp_1 Ndx,.
(3331 3$2) e (ax Dz, ) o e

In particular, equality of mixed derivatives shows that d?f = 0, and hence that
d?w = 0 for any differential form. Hence the rules to remember about d are:

dw-0) = (dw) o+ (~1)98 & (do)
2 =0
_ of 9f
af = axldxl—i— —I—axndaﬁn.

14.4 Derivations.

A linear operator £ : A — A is called an odd derivation if, like d, it satisfies
I Ae'uen — Aodd7 l: Aodd — Aeven

and
lw-0)=(tw) o+ (fl)deg‘” w - Lo.

A linear map £: A — A,

£ Aeven — Ae'uen; ¢ Aodd — Aodd

satisfying
lw-0)=(tw) -0+ w- (bo)

is called an even derivation. So the Leibniz rule for derivations, even or odd, is

lw-0)=(lw)- o+ (_1)deg£degw w-Lo.
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Knowing the action of a derivation on a set of generators of a superalgebra
determines it completely. For example, the equations

implies that

op Ip

dp = a—gjldx1+-~-+ oz,

for any polynomial, and hence determines the value of d on any differential form

with polynomial coefficients. The local formula we gave for df where f is any

differentiable function, was just the natural extension (by continuity, if you like)
of the above formula for polynomials.

The sum of two even derivations is an even derivation, and the sum of two
odd derivations is an odd derivation.

The composition of two derivations will not, in general, be a derivation, but

an instructive computation from the definitions shows that the commutator

dz,

[61,62] = 51 o EQ — (71)degeldeg£2 62 o él

is again a derivation which is even if both are even or both are odd, and odd if
one is even and the other odd.
A derivation followed by a multiplication is again a derivation: specifically,
let ¢ be a derivation (even or odd) and let 7 be an even or odd element of A.
Consider the map
w — Tlw.

We have
(Tlw) - o + (71)degzdegw7_w Ao
= (Tlw) o+ (71)(degz+degr)degww (Tlo)

Tl (wo)

so w — Tlw is a derivation whose degree is

degT + degf.

14.5 Pullback.

Let ¢ : M — N be a smooth map. Then the pullback map ¢* is a linear map
that sends differential forms on N to differential forms on M and satisfies

P (wAho) = PwAdo
o*dw = do*w
(¢°f) = foo.

The first two equations imply that ¢* is completely determined by what it
does on functions. The last equation says that on functions, ¢* is given by



14.6. CHAIN RULE. 403

“substitution”: In terms of local coordinates on M and on N ¢ is given by

gy o= Szt 2™ i=1,....n

where the ¢; are smooth functions. The local expression for the pullback of a
function f(y*,...,y") is to substitute ¢’ for the y's as into the expression for f
so as to obtain a function of the z's.

It is important to observe that the pull back on differential forms is de-
fined for any smooth map, not merely for diffeomorphisms. This is the great
advantage of the calculus of differential forms.

14.6 Chain rule.
Suppose that ¢ : N — P is a smooth map so that the composition
Yoop: M — P
is again smooth. Then the chain rule says
(hod)" ="y

On functions this is essentially a tautology - it is the associativity of composition:
fo(wod)=(fow)o¢. But since pull-back is completely determined by what
it does on functions, the chain rule applies to differential forms of any degree.

14.7 Lie derivative.

Let ¢; be a one parameter group of transformations of M. If w is a differential
form, we get a family of differential forms, ¢;w depending differentiably on ¢,
and so we can take the derivative at t = 0:

« N
%((btw)‘t:o:%l:rgz[@w—w].

Since ¢ (w A o) = ¢pjw A ¢;o it follows from the Leibniz argument that

d . .
ly: wr 7 (Prw) 1o

is an even derivation. We want a formula for this derivation.
Notice that since ¢;d = d¢; for all ¢, it follows by differentiation that

lyd = db,

and hence the formula for {4 is completely determined by how it acts on func-
tions.
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Let X be the vector field generating ¢;. Recall that the geometrical signifi-
cance of this vector field is as follows: If we fix a point z, then

t— ¢t(l‘)

is a curve which passes through the point x at £ = 0. The tangent to this curve
at t = 0 is the vector X (z). In terms of local coordinates, X has coordinates
X = (X1,..., X") where X*(z) is the derivative of ¢!(t, 2", ..., 2™) with respect
to t at t = 0. The chain rule then gives, for any function f,

d
£¢f = %f(asl(t?xla"'7xn)7"‘7¢n(t,$17"'axn))|t=0

of of
fr— 17 ... ni
= X 0z totX 0xy

For this reason we use the notation

0 0
f— 17 .. 7L7
X=X 6I1 + +X a:En

so that the differential operator
f=Xf

gives the action of /4 on functions.
As we mentioned, this action of ¢4 on functions determines it completely. In
particular, £4 depends only on the vector field X, so we may write

ly =Dx
where Dy is the even derivation determined by

Dxf=Xf, Dxd=dDx.

14.8 Weil’s formula.

But we want a more explicit formula for Dyx. For this it is useful to introduce
an odd derivation associated to X called the interior product and denoted by
i(X). It is defined as follows: First consider the case where

x- 2
3xj

and define its interior product by

for all functions while
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0

The fact that it is a derivation then gives an easy rule for calculating i(0/0x;)
when applied to any differential form: Write the differential form as

and

wHdr; Ao

where the expressions for w and ¢ do not involve dz;. Then

[0
z(a%) w+dz;j No]=o.

, 0
Js _
XZ<5%‘>

which means first apply i(9/0z;) and then multiply by the function X7 is again
an odd derivation, and so we can make the definition

i(X) = X% ((,;) +o+ XM <8in>. (14.1)

It is easy to check that this does not depend on the local coordinate system
used.
Notice that we can write

The operator

Xf=i(X)df.
In particular we have
Dxdl‘j = dDXxj
= dX;
= di(X)dx;.

We can combine these two formulas as follows: Since i(X)f = 0 for any function
f we have
Dx f =di(X)f +i(X)df.

Since ddx; = 0 we have
Dxdz; = di(X)dx; +i(X)ddz;.

Hence
Dx =di(X)+i(X)d = [d,i(X)] (14.2)

when applied to functions or to the forms dz;. But the right hand side of the
preceding equation is an even derivation, being the commutator of two odd
derivations. So if the left and right hand side agree on functions and on the
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differential forms dx; they agree everywhere. This equation, (14.2), known as
Weil’s formula, is a basic formula in differential calculus.

We can use the interior product to consider differential forms of degree k as
k—multilinear functions on the tangent space at each point. To illustrate, let
o be a differential form of degree two. Then for any vector field, X, i(X)o is
a linear differential form, and hence can be evaluated on any vector field, Y to
produce a function. So we define

o(X,Y) :=[i(X)o] (V).

We can use this to express exterior derivative in terms of ordinary derivative
and Lie bracket: If 0 is a linear differential form, we have

dO(X,Y) = [i(X)do](Y)
i(X)d0 = Dx6—d(i(X))
d(i(X)0)(Y) = YI[0(X)]

[Dx0](Y) = Dx[0(Y)]—-0(Dx(Y))
= X[O(Y)]-0(X,Y])

where we have introduced the notation DxY =: [X, Y] which is legitimate since
on functions we have

(DxY)f=Dx(Y[f)-YDxf=X(Y[f)-Y(Xf)

so DxY as an operator on functions is exactly the commutator of X and Y.
(See below for a more detailed geometrical interpretation of DxY".) Putting the
previous pieces together gives

dO(X,Y) = X0(Y) — YO(X) — 0(|X,Y]), (14.3)

with similar expressions for differential forms of higher degree.

14.9 Integration.

Let
w= fdxy N---Ndz,

be a form of degree n on R™. (Recall that the most general differential form of
degree n is an expression of this type.) Then its integral is defined by

/w::/ fdxy - dxy
M M

where M is any (measurable) subset. This, of course is subject to the condition
that the right hand side converges if M is unbounded. There is a lot of hidden
subtlety built into this definition having to do with the notion of orientation.
But for the moment this is a good working definition.
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The change of variables formula says that if ¢ : M — R™ is a smooth
differentiable map which is one to one whose Jacobian determinant is everywhere

positive, then
/ ¢*w:/ w.
M (M)

14.10 Stokes theorem.

Let U be a region in R™ with a chosen orientation and smooth boundary. We
then orient the boundary according to the rule that an outward pointing normal
vector, together with the a positive frame on the boundary give a positive frame
in R™. If o is an (n — 1)—form, then

/ J:/da.
U U

A manifold is called orientable if we can choose an atlas consisting of charts
such that the Jacobian of the transition maps ¢, oqul is always positive. Such a
choice of an atlas is called an orientation. (Not all manifolds are orientable.) If
we have chosen an orientation, then relative to the charts of our orientation, the
transition laws for an n—form (where n = dim M) and for a density are the same.
In other words, given an orientation, we can identify densities with n—forms
and n—form with densities. Thus we may integrate n—forms. The change of
variables formula then holds for orientation preserving diffeomorphisms as does
Stokes theorem.

14.11 Lie derivatives of vector fields.

Let Y be a vector field and ¢; a one parameter group of transformations whose
“infinitesimal generator” is some other vector field X. We can consider the
“pulled back” vector field ¢;Y defined by

Y () = doi{Y (o)}

In words, we evaluate the vector field Y at the point ¢;(z), obtaining a tangent
vector at ¢¢(x), and then apply the differential of the (inverse) map ¢_; to
obtain a tangent vector at x.

If we differentiate the one parameter family of vector fields ¢; Y with respect
to t and set t = 0 we get a vector field which we denote by DxY":

d *
DxY := %@ Yji=o-
If w is a linear differential form, then we may compute (Y )w which is a

function whose value at any point is obtained by evaluating the linear function
w(zx) on the tangent vector Y (x). Thus

i(97Y)prw(z) = ((d(¢r)e) w(@r), dp—iY (¢rx)) = {i(Y)w} (rz).
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In other words,

¢i{i(Y)w} =i(¢;Y)ojw.
We have verified this when w is a differential form of degree one. It is trivially
true when w is a differential form of degree zero, i.e. a function, since then both
sides are zero. But then, by the derivation property, we conclude that it is true
for forms of all degrees. We may rewrite the result in shorthand form as

¢; 0i(Y) = i(67Y) o 97
Since ¢fd = d¢; we conclude from Weil’s formula that
d)z ODY =D¢:y OQSI

Until now the subscript ¢ was superfluous, the formulas being true for any fixed
diffeomorphism. Now we differentiate the preceding equations with respect to ¢
and set t = 0. We obtain,using Leibniz’s rule,

Dx o Z(Y) = Z(DXY) + ’L(Y) oDx

and
Dx oDy = DDXY + Dy o Dx.

This last equation says that Lie derivative (on forms) with respect to the vector
field DxY is just the commutator of Dx with Dy:

DDXY = [Dx,Dy}.

For this reason we write
[X,Y]:=DxY

and call it the Lie bracket (or commutator) of the two vector fields X and Y.
The equation for interior product can then be written as

i([X,Y]) = [Dx,i(Y)).

The Lie bracket is antisymmetric in X and Y. We may multiply Y by a function
g to obtain a new vector field gY. Form the definitions we have

91 (gY) = (¢79)¢7 Y.
Differentiating at t = 0 and using Leibniz’s rule we get
(X, gY] = (Xg)Y + g[X,Y] (14.4)

where we use the alternative notation Xg for Dxg. The antisymmetry then
implies that for any differentiable function f we have

[fX,Y]=-Y )X+ fIX,Y]. (14.5)

From both this equation and from Weil’s formula (applied to differential forms
of degree greater than zero) we see that the Lie derivative with respect to X at
a point x depends on more than the value of the vector field X at x.
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14.12 Jacobi’s identity.

From the fact that [X,Y] acts as the commutator of X and Y it follows that
for any three vector fields X,Y and Z we have

(X, [V, 2] + 12, [ X, Y] + [V, [2, X]] = 0.

This is known as Jacobi’s identity. We can also derive it from the fact that
[Y, Z] is a natural operation and hence for any one parameter group ¢; of dif-
feomorphisms we have

¢ ([Y, 2]) = [97Y, ¢, Z].

If X is the infinitesimal generator of ¢; then differentiating the preceding equa-
tion with respect to t at t = 0 gives

[X’ [Yv Z]] = [[Xv Y],Z] + [Y7 [X7 Z”

In other words, X acts as a derivation of the “mutliplication” given by Lie
bracket. This is just Jacobi’s identity when we use the antisymmetry of the
bracket. In the future we we will have occasion to take cyclic sums such as
those which arise on the left of Jacobi’s identity. So if F' is a function of three
vector fields (or of three elements of any set) with values in some vector space
(for example in the space of vector fields) we will define the cyclic sum Cyc F
by
Cyc F(X,)Y,2) =F(X,Y,2)+ F(Y,Z,X)+ F(Z,X,Y).

With this definition Jacobi’s identity becomes

Cyc [X,[Y, Z]] = 0. (14.6)

14.13 A general version of Weil’s formula.

Let W and Z be differentiable manifolds, let I denote an interval on the real
line containing the origin, and let

o WxI—Z
be a smooth map. We let ¢, : W — Z be defined by
oe(w) 1= d(w, t).

We think of ¢, as a one parameter family of maps from W to Z. We let &
denote the tangent vector field along ¢;. In more detail:

thW—>TZ

is defined by letting &;(w) be the tangent vector to the curve s — ¢(w,s) at
s =1.
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If o is a differential form on Z of degree k+ 1, we let the expression ¢}i(&)o
denote the differential form on W of degree k whose value at tangent vectors
M,...,Nk at w € W is given by

Gri(€)o(m, - k) = (&) (W) o) (d(De)wnm, - - (Dt )win)- (14.7)

It is only the combined expression ¢;i(¢;)o which will have any sense in general:
since & is not a vector field on Z, the expression i(£;)o will not make sense as
a stand alone object (in general).

Let 04 be a smooth one-parameter family of differential forms on Z. Then

¢f0t

is a smooth one parameter family of forms on W, which we can then differentiate
with respect to t. The general form of Weil’s formula is:

d d
GE0ioe = S+ 07i(&)do + doji(E)o. (148)

Before proving the formula, let us note that it is functorial in the following
sense: Suppose that that F': X — W and G : Z — Y are smooth maps, and
that 7 is a smooth family of differential forms on Y. Suppose that oy = G* 74
for all . We can consider the maps

Ye: X =Y, Yp:=Go¢poF
and then the smooth one parameter familiy of differential forms
w: Tt
on X. The tangent vector field (; along 1, is given by

Ci(2) = dGo,(r(a)) (&(F(2))).

So
?/J;i(Ct)Tt =Fr (¢ri(§t)G*Tt) :

Therefore, if we know that (14.8) is true for ¢; and o, we can conclude that
the analogous formula is true for ¢; and 7.
Consider the special case of (14.8) where we take the one parameter family
of maps
foWxIT—=WxI, fi(w,s)=(w,s+1).

Let
G WxI—=Z

be the map ¢, and let
F:W—>WxI

be the map
F(w) = (w,0).
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Then
(Go fioF)(w)= ¢(w).

Thus the functoriality of the formula (14.8) shows that we only have to prove
it for the special case ¢ = f; : W x I — W x I as given above!

In this case, it is clear that the vector field & along ; is just the constant
vector field % evaluated at (z, s+t). The most general differential (¢-dependent)
on W x I can be written as

dsNa+b

where a and b are differential forms on W. (In terms of local coordinates

s,z ..., x™ these forms a and b are sums of terms that have the expression

edx™ A - A da

where c is a function of s, ¢ and x.) To show the full dependence on the variables
we will write
or =ds Na(z, s, t)dx + b(x, s, t)dx.

With this notation it is clear that
p;oc =ds Na(x,s+t,t)de + b(z, s + t,t)dz

and therefore

dojo; Oa ol
e ds A s (x,s+t, t)dz + s (x,s+t,t)dx
da ab
+ds A a(w, s+t t)dr + a(:c, s+t t)d.
S0 o d 2 b
t0t @0t _ ga >z
i o} o ds N\ 95 (x,s+t,t)dx + s (x,s+t,t)dx.
Now p
1 (85) oy = adx
SO
¢7i(&)or = ax, s + t,t)dx.
Therefore
deri(&)oy = ds A %(az, s+ t,t)dx + dw(a(z, s + ¢, t)dx).
Also b
doy = —ds N\ dy (adzx) + ads A dz + dybdx
SO

(0 b
i (35) doy = —dw (adz) + gdac
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and therefore
s b
¢71(&)doy = —dwa(x, s+ t, t)dx + %(JZ, s+t t)du.
So
- . da ob
do;i(&)or + ¢ri(&)dor = ds A a(x, s+t t)dr + %(.’L‘, s+t t)dx

_ dgioy —(b*@
dt todt

proving (14.8).
A special case of (14.8) is the following. Suppose that W = Z = M and ¢
is a family of diffeomorphisms f; : M — M. Then &; is given by

& (p) = ve(fie(p))
where v; is the vector field
w(F) = S 5i).

In this case i(v;)o; makes sense, and so we can write (14.8) as

d(b;kat - *dO't «
dr (oH at + ¢y Dy, 0. (14~9)

14.14 The Moser trick.

Let M be a differentiable manifold and let wy and w; be smooth k-forms on
M. Let us examine the following question: does there exist a diffeomorphism
f: M — M such that f*w; = wq?

Moser answers this kind of question by making it harder! Let w;, 0 <t <1
be a family of k-forms with w; = wg at t =0 and wy = wy at t = 1. We look for
a one parameter family of diffeomorphisms

fi:M—M, 0<t<1
such that
fiwe =wo (14.10)

and
fo=1id.
Let us differentiate (14.10) with respect to ¢ and apply (14.9). We obtain

frwe + fiDywy =0

where we have written w; for %. Since f; is required to be a diffeomorphism,

this becomes the requirement that

Day,wi = —y. (14.11)
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Moser’s method is to use “geometry” to solve this equation for v; if possible.
Once we have found vy, solve the equations

910 =wh), folo) = (14.12)

for f;. Notice that for p fixed and v(t) = f;(p) this is a system of ordinary
differential equations

LAl = ubr(0), 2(0)=p.

The standard existence theorems for ordinary differential equations guarantees
the existence of of a solution depending smoothly on p at least for |t| < e. One
then must make some additional hypotheses that guarantee existence for all
time (or at least up to ¢ = 1). Two such additional hypotheses might be

e M is compact, or

e (' is a closed subset of M on which vy = 0. Then for p € C' the solution
for all time is f;(p) = p. Hence for p close to C solutions will exist for a
long time. Under this condition there will exist a neighborhood U of C
and a family of diffeomorphisms

fi:U—>M
defined for 0 <t <1 such
fo=id, fyo=idVt
and (14.10) is satisfied.

We now give some illustrations of the Moser trick.

14.14.1 Volume forms.

Let M be a compact oriented connected n-dimensional manifold. Let wg and
w1 be nowhere vanishing n-forms with the same volume:

/WOZ/ w1.
M M

Moser’s theorem asserts that under these conditions there exists a diffeomor-
phism f: M — M such that
f*w1 = wq-

Moser invented his method for the proof of this theorem.
The first step is to choose the w;. Let

wi = (1 — t)wo + tw.
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Since both wy and w; are nowhere vanishing, and since they yield the same
integral (and since M is connected), we know that at every point they are either
both positive or both negative relative to the orientation. So w; is nowhere
vanishing. Clearly w; = wg at t = 0 and wy = wy at ¢ = 1. Since dw; = 0 as w;
is an n-from on an n-dimensional manifold,

thwt = di(vt)wt

by Weil’s formula. Also
CL.)t = W1 — Wop-

Since [, wo = [,,; w1 we know that
wo —wy = dv
for some (n — 1)-form v. Thus (14.11) becomes
di(vy)wy = dv.
We will certainly have solved this equation if we solve the harder equation
i(vp)we = v.

But this equation has a unique solution since w; is no-where vanishing. QED

14.14.2 Variants of the Darboux theorem.
We present these in Chapter 2.

14.14.3 The classical Morse lemma.

Let M = R"™ and ¢; € C*°(R™), ¢ = 0,1. Suppose that 0 is a non-degenerate
critical point for both ¢¢ and ¢1, suppose that ¢¢(0) = ¢1(0) = 0 and that they
have the same Hessian at 0, i.e. suppose that

(d®¢0) (0) = (d°¢1) (0).

The Morse lemma asserts that there exist neighborhoods Uy and U; of 0 in R™
and a diffeomorphism
f:Uo— U,  f(0)=0

such that
[ o1 = ¢o.
Proof. Set
¢r = (1 —t)¢o + t1.

The Moser trick tells us to look for a vector field v; with

’Ut(O) = O7 Vit
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and _

Dy, ¢ = =1 = ¢o — ¢1.
The function ¢, has a non-degenerate critical point at zero with the same Hessian
as ¢g and ¢; and vanishes at 0. Thus for each fixed ¢, the functions

Oy
oxt
form a system of coordinates about the origin.
If we expand v; in terms of the standard coordinates

0
vy = Zvj(m,t)@
J

then the condition v;(0,t) = 0 implies that we must be able to write
Oy
vj(z,t) = zi:vij(x’t)%'

for some smooth functions v;;. Thus

Z 9 0
th¢t = Ulj(x,t)ax:aix;
ij

Similarly, since —gz'St vanishes at the origin together with its first derivatives, we

can write 96, 00
), — it ]
—h = Z his Ozt Oxd
ij
where the h;; are smooth functions. So the Moser equation D, ¢: = —dﬁt is

satisfied if we set
'Uij (SL’, t) = hij (1’7 t)

Notice that our method of proof shows that if the ¢; depend smoothly on
some paramters lying in a compact manifold S then the diffeomorphism f can
be chosen so as to depend smoothly on s € S.

In Section 5.11 we give a more refined version of this argument to prove the
Hormander-Morse lemma for generating functions.

In differential topology books the classical Morse lemma, is usually stated as
follows:

Theorem 96. Let M be a manifold and ¢ : M — R be a smooth function.
Suppose that p € M is a non-degenerate critical point of ¢ and that the signature
of d*¢, is (k,n — k). Then there exists a system of coordinates (U, x1,...,Ty)
centered at p such that in this coordinate system

k n
b=t Y- 30
i=1

i=k+1
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Proof. Choose any coordinate system (W, y,...y,) centered about p and
apply the previous result to

h=9¢—c
and
b0 =Y _ hijyiy;
where
9%
v yidyi

This gives a change of coordinates in terms of which ¢ — ¢ has become a non-
degenerate quadratic form. Now apply Sylvester’s theorem in linear algebra
which says that a linear change of variables can bring such a non-degenerate
quadratic form to the desired diagonal form.



Chapter 15

The method of stationary
phase

15.1 Gaussian integrals.

We recall a basic computation in the integral calculus:

1 [ .
— 20y =1 15.1
(& X . .

\/27T/—oo ( )

This is proved by taking the square of the left hand side and then passing to

polar coordinates:
1> e 2
—x /2d _
e e | =
{ V2T /,Oo ]

= i/ / e_(z2+y2)/2dxdy
2m —o0 J —oo

1 2m o] 3 2/2
= — e~ " rdrdd
27T 0 0

= / e~ 2 rdy
0

= 1

15.1.1 The Fourier transform of a Gaussian.

Now ) -
2
— e ey
V 21 /—oo
converges for all complex values of 7, uniformly in any compact region. Hence
it defines an analytic function which may be evaluated by taking n to be real

417
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and then using analytic continuation. For real n we complete the square and
make a change of variables:

2

e ——:E dr =
\/ﬂ/ <P )

= \/ﬂ/ eXP (=@ +n)* +n°)dz
- expm?/mTZ7r / exp(— (2 + 1) /2)de

= exp(n’/2).

As we mentioned, this equation is true for any complex value of 7. In
particular, setting n = —i£ we get

exp(—?/2 +ix)dr = exp(—£2/2). (15.2)

V2T /
In short,

1. The Fourier transform of the Gaussian function x + exp(—x2/2) is &
—£2/2
e .

If f is any smooth function vanishing rapidly at infinity, and f denotes its
Fourier transform, then the Fourier transform of z — f(cx) is £ — 1f(¢/c). In

particular, if we take A > 0, ¢ = A2 we get

Vﬂ/ exp( )\x2/2+i£a:)d:v_<i> ep(—€2/2)).  (15.3)

We proved this formula for A real and positive. But the integral on the left
makes sense for all A with Re A > 0, and hence this formula remains true in the
entire open right hand plane Re A > 0, provided we interpret the square root
occurring on the right as arising by analytic continuation from the positive real
axis.

We can say more: The integral on the left converges uniformly (but not
absolutely) for A in any region of the form

Re A>0, |A>d>0.

To see this, observe that for any S > R > 0 we have

2 1 d
—Az*/2 2 < p <
e =\ dr exp(—Az“/2) for R<z<S§

so we can apply integration by parts to get

S
/ e—)\zz/Qei{mdx —
R
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V(1 arepeier L —s2ppvies | [0 —anrjp d (€5
A (Re s LT T\ )

and integrate by parts once more to bound the integral on the right. We conclude

that
S
/ e—)\:cz/QeiExdx
R

15.2 The integral [ e *"/?h(z)dx.

1

= Ol

This same argument shows that

/e‘“z/zh(x)dx

is convergent for any h with two bounded continuous derivatives. Indeed,

S
/ e_’\xz/Zh(x)dat =
R

_ 1 § h($> ie_)\wz/2d$

_XR x dx

- —A_le_Amz/Q(h(x)/x)‘i

+5 / S 2 L 0y )
/\ R e d{b X))/ x)jaxr

S

= ARG ) — (1) (@) )|

S
1A /R = 2[(1 /2 (h() /) ] da.

This last integral is absolutely convergent, and the boundary terms tend to zero
as R — oo.

This argument shows that if M is a bound for h and its first two derivatives,
the above expressions can all be estimated purely in terms of M. Thus if
h depends on some auxiliary parameters, and is uniformly bounded together
with its first two derivatives with respect to these parameters, then the integral
ffooo h(zx) exp(—Ax?/2)dx converges uniformly with respect to these parameters.

Let us push this argument one step further. Suppose that h has derivatives
of all order which are bounded on the entire real axis, and suppose further that
h = 0 in some neighborhood, |z| < €, of the origin. If we do the integration by
parts

s 2
/ e M2 h(2)da
R
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C1 g s 1 (% 2,5 d h(z
— e /Q(h(x)/x)‘R—I—X/R e /2%(%)@,

choose R < € and let S — oo. We conclude that

oo R 1 o) ) d
—Az“/2 i —Az“/2
[me h(x)dx )\/ e dx(h(x)/x)dm.

— 00

The right hand side is a function of the same sort as h. We conclude that
/ e 2h(z)de = O(AN)
R

for all N if h vanishes in some neighborhood of the origin has derivatives of all
order which are each bounded on the entire line.

15.3 Gaussian integrals in n dimensions.

Getting back to the case h = 1, if we take A = Fir, r > 0 and set £ = 0 in
(15.3) then analytic continuation from the positive real axis gives A2 = eT7/4

and we obtain
1
o o7\ 2 )
/ ei“‘tz/zdx:<7r) etmi/4, (15.4)

—0o0 r

Doing the same computation in n - dimensions gives

n 1
. 27\ 2 1 2
/ez‘rQ/2dy _ <7T) < > 6zsgnQ7r/4 (155)
T T1 -T2 ""Tp

Qly) = +ri(y')*.

if

Now 71 - 791, = | det Q|. So we can rewrite the above equation as

. or\ 2 1 ,
/eer/Qdy _ (W) ezsgnQ'n’/4 (156)

T V| det Q]

We proved this formula under the assumption that @) was in diagonal form. But
if @ is any non-degenerate quadratic form, we know that there is an orthogonal
change of coordinates which brings @) to diagonal form. By this change of
variables we see that

2. (15.6) is valid for any non-degenerate quadratic form.
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15.4 Using the multiplication formula for the
Fourier transform.

Recall that in one dimension this says that if f,¢g € S(R) and f, 9 denote their
Fourier transforms then

/ F(€)g(€)de = / f(@)i(@)dz.
R R

In this formula let us take

Nm
> N

9(§) =€
where Re A > 0 so that ) )
glx) = Az /2
where the square root is given by the positive square root on the positive axis

and extended by analytic continuation. So the multiplication formula yields

Take
A=¢—ia, €>0, acR—-{0}

and let € \, 0. We get

iaz?

~ ig2 P
[ F©e E —late oo [ fa)et da
R R
which we can rewrite as
cax? i ~ ig2
[ @ o= o te? [ foe Fae
R R

We can pass from this one dimensional formula to an n - dimensional formula
as follows: Let A = (age¢) be a non-singular symmetric nxn matrix and let sgn A
denote the signature of the quadatic form

Q(z) = (Az,z) = Zaijxixj.

Let
B:=A""'.

Then for any ¢t > 0 we have

(2)e'2(Amo) gy — t=5 | det A|"2eT 5 A [ f(&)e 2 (BEOGe.  (15.7)
R® R
The proof is via diagonalization as before. We may make an orthogonal change
of coordinates relative to which A becomes diagonal. Then if f is a product
function

[l oan) = f@1) - faz) - flan)

the formula reduces to the one dimensional formula we have already proved.
Since the linear combination of these functions are dense, the formula is true in
general.
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15.5 A local version of stationary phase.

In order to conform with standard notation let us set t = A~! in (15.7). The
right hand side of (15.7) becomes

h | det |7 e %8 Aq(h)

where

a(h) = | f(&)e 3P0 ge,
Rn

Let us now use the Taylor formula for the exponential:

with an error that is bounded by

w3 L

In the “Taylor expansion”

(BE, &)™ f(©)] de.

a(h) = Z aph®

we can interpret the coefficient

w= (1) [ met s

as follows: Let b(D) be the constant coefficient differential operator
b(D) = b DiDy

where 18
Dy = -~ ——.
k 1 c’)xk

Then <B§,§>’{f(g) is the Fourier transform of the function b(D)*f. So by the
Fourier inversion formula,

UD0(0) = (2m) ™ [ (B0 Fepde

We can thus state our local version of the stationary phase formula as follows:
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Theorem 97. If f € S(R™) and

. (Ax,x)

I(h) := f(x)e' 2n dx
R’n
then .
B\Z
1 = (52 aatr)
where

va = |det A| Tz A

and a € C*(R). Furthermore a has the asymptotic expansion

ol ~ (exp(-i5UD)S ) 0

The next step in our program is to use Morse’s lemma.

15.6 The formula of stationary phase.

15.6.1 Critical points.

Let M be a smooth compact n-dimensional manifold, and let ¥ be a smooth
real valued function defined on M. Recall that a point p € M is called a critical
point of ¥ if dip(p) = 0. This means that (Xv)(p) = 0 for any vector field X on
M, and if X itself vanishes at p then X ¢ vanishes at p “to second order” in the
sense that Y X vanishes at p for any vector field Y. Thus (Y Xv¢)(p) depends
only on the value X (p). Furthermore

(XY9)(p) — (Y X¢)(p) = ([X, Y])(p) = 0

so we get a well defined symmetric bilinear form on the tangent space T'M,
called the Hessian of ¢ at p and denoted by df,z/J. For any pair of tangent
vectors v, w € T'M, it is given by

Ay (p) (v, w) := (XY)(p)
where X and Y are any vector fields with
X(p)=v, Y(p)=w.

Recall that a critical point p is called non-degenerate if this symmetric bi-
linear form is non-degenerate. We can then talk of the signature of the quadratic
form df)z/J — i.e. the number of +’s minus the number of -’s when we write df)w
in canonical form as a sum of &(2%)? where the z* form an appropriate basis of
TM,. We will write this signature as sgn df,z/J or more simply as sgn, . The
symmetric bilinear form df)i/J determines a symmetric bilinear form on all the
exterior powers of T'M,, in particular on the highest exterior power, A"T M,,.
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This then in turn defines a density at p, assigning to every basis v1,...,v, of
T'M,, the number

Nl=

\dﬁ(w)(vl Ao Avp,v1 Ao Avy)|2.

Replacing vy, ...,v, by Avi,..., Av, has the effect of multiplying the above
number by |det A| which is the defining property of a density. In particular, if
we are given some other positive density at p the quotient of these two densities
is a number, which we will denote by

| det d2y|?,
the second density being understood. The reason for this somewhat perverse

notation is as follows: Suppose, as we always can, that we have introduced
coordinates 4!, ..., y" at p such that our second density assigns the number one

to the the basis
= (o), = (a5)
1= —_ I n — 7,”4 .
9yt p Iy P

Oyt oy’
0%
det (3yi8yj ) ®)

Then

SO
1
2

| det d2| =

15.6.2 The formula.

With these notations let us first state a preliminary version of the formula of
stationary phase. Suppose we are given a positive density, €2, on M and that all
the critical points of ¥ are non-degenerate (so that there are only finitely many
of them). Then for any smooth function @ on M we have

; 2\ ® 1 e Pl (p) n
iTY O=(2= F7isgn, ¥ 19) —2-1 15.8
/M e"%a < - ) g e —— 4+ 0(7 ) ( )

T
pldu(p)=0 | det diy]

|

as T — o0.

In fact, we can be more precise. Around every critical point we can introduce
coordinates such that the Hessian of 1 is given by a quadratic form. We can also
write = b(y)dy for some smooth function b. We can also pull out the factor
e'™¥() and set 77! = h. We may then get the complete asymptotic expansion
as given by Theorem 97.

We will prove the stationary phase formula by a series of reductions. Given
any finite cover of M by coordinate neighborhoods, we may apply a partition
of unity to reduce our integral to a finite sum of similar integrals, each with the
function a supported in one of these neighborhoods.
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By partition of unity, our proof of the stationary phase formula thus reduces
to estimating integrals over Euclidean space of the form

/ e”w(y)a(y)dy

where a is a smooth function of compact support and where either

1. dv # 0 on supp a so that
o 2 oY 2
2'— [ P [
|da| .—(y1> + +<y"> >e>0

2. 1 is a non-degenerate quadratic form, which, by Sylvester’s theorem in
linear algebra, we may take to be of the form

ey) =z (W) 4+ ) =)= = (™)?)

(with, of course, the possibility that & = 0 in which case all the signs
are negative and k = n in which case all the signs are positive). The
number 2k — n is the signature of the quadratic form 1 and is what we
have denoted by sgn(d3) in the stationary phase formula.

on supp a, or

We treat each of these two cases separately:

The case of no critical points.

In this case we will show that

/em’”ady =0 (15.9)
for any k.
Consider the vector field
N
T oyl oyt Oyn Oym’

This vector field does not vanish, and in fact
X (e”d’) = ir|d|?e’™Y.

So we can write

. 1 - a 1 ;
iTY _ X iTY [ iTY
/e ady iT / (e ) |d'l/J|2 dy T /e bdy

. a
b= (w)

by integration by parts. Repeating this integration by parts argument proves(15.9).
This takes care of the case where there are no critical points.

where
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The case near a critical point.

We assume that p is an isolated critical point, and we have chosen coordinates
y about p such that p has coordinates y = 0 and that ¢ = ¥ (p) + %Q(y) in these
coordinates where Q(y) is a diagonal quadratic form. We now have a single
summand on the right of (15.8) and by pulling out the factor e (®) we may
assume that ¢(p) = 0. Now apply Theorem 97. O

15.6.3 The clean version of the stationary phase formula.
Suppose now that the phase function, %, on the left hand side of (15.8) is a

Bott-Morse function: i.e. satisfies

1. The critical set,
Cy ={pe M, dip(p) =0}

is a submanifold of M, and

2. For every p € Cy, the quadratic form d*, on the normal space N,Cy, is
non-degenerate.

Then for every connected component, W of Cy the restriction of 1 to W
has to be constant, and we will denote this constant by ~y .
Also as explained in §14.6.1 The Hessian, d?1), gives rise to a density
on N,W. Hence since
T,M =T,W & N,W

the quotient of the density (p) by this density is now a density | det d2¢,|~2 Qu (p)
on T,W. The clean version of stationary phase asserts that for Bott-Morse func-

tions the integral
/ €5 dQ
M

on the left hand side of (15.8) is equal to the sum over the connected components,
W of Cy of the expressions

o\ [ 1, . )
(77) <e4msg“(W)e”"W/ | det d®¢| ™2 aQw —I—O(T_l)) (15.10)
w

T

where ny is the codimension of W and sgn(W) the signature of d* 1), at points,
peW.
Remark: As in (15.8) one can replace the O(7~!) by an asymptotic

expansion
o0
71 g a;wT "
i=0

where the a; w77"’s are integrals over W of derivatives of a.
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Proof. By localizing we can assume, as above, that M = R"™, that W is defined
by the equation xx11 = z, = 0 and that Q = dx; - - - dx,,. Then by integration

by parts
/e”waﬂ = / dxpyq ... dxy, </ e™adx . .. dxk>

and (15.10) follows by applying the version of stationary phase proved in §14.5
to the inner integral.
O

We now turn to various applications of the formula of stationary phase.

15.7 Group velocity.

In this section we describe one of the most important applications of stationary
phase to physics. Let i be a small number (eventually we will take i = h/27
where h is Planck’s constant, but for the moment we want to think of A as
a parameter which approaches zero, so that 7 := (1/h) — o0). We want to
consider a family of “traveling waves”

o~ /M) (B@)t—pz)

For simplicity in exposition we will take p and z to be scalars, but the discussion
works as well for z a vector in three (or any) dimensional space and p a vector
in the dual space. For each such wave, and for each fixed time ¢, the wave
number of the space variation is h/p. Since we allow F to depend on p, each
of these waves will be traveling with a possibly different velocity. Suppose we
superimpose a family of such waves, i.e. consider an integral of the form

/ a(p)e=l/ME@—2) g, (15.11)

Furthermore, let us assume that the function a(p) has its support in some neigh-
borhood of a fixed value, pg. Stationary phase says that the only non-negligible
contributions to the above integral will come from values of p for which the
derivative of the exponent with respect to p vanishes, i.e. for which

E'(p)t —x = 0.

Since a(p) vanishes unless p is close to pg, this equation is really a constraint on
z and t. It says that the integral is essentially zero except for those values of x
and t such that

x = FE'(po)t (15.12)

holds approximately. In other words, the integral looks like a little blip called a
wavepacket when thought of as a function of z, and this blip moves with velocity
E'(po) called the group velocity.
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Let us examine what kind of function E can be of p if we demand invariance
under (the two dimensional version of) all Lorentz transformations, which are
all linear transformations preserving the quadratic form c?t? — z2. Since (E, p)
lies in the dual space to (t,z), the dual Lorentz transformation sends (E, p)
(E',p') where

E2 _ C2p2 _ (E/)Z _ C2(p/)2

and given any (E,p) and (E’, p’) satisfying this condition, we can find a Lorentz
transformation which sends one into the other. Thus the only invariant relation
between E and p is of the form

E? — (pc)? = constant.

Let us call this constant m?c* so that E? — (pc)? = m2c? or

E(p) = ((pe)* + 77"&264)1/2 .

Then
2
o
®)= 5 = M

where M is defined by

2 1/2
E(p) = Mc* or M:(m2+(c) ) .
Notice that if p/c is small in comparison with m then M = m. If we think of M
as a mass, then the relationship between the group velocity E’(p) and p is pre-
cisely the relationship between velocity and momentum in classical mechanics.
In this way have associated a wave number k = p/h to the momentum p and if
we think of F as energy we have associated the frequency v = E/h to energy.
We have established the three famous formulas

1/2

E = ¢ (m2 + (%)2) = mc? Einstein’s mass energy formula
A= % = & de Broglie’s formula

P
E = hv Einstein’s energy frequency formula.

In these formulas we have been thinking of h or A as a small parameter
tending to zero. The great discovery of quantum mechanics is that h should
not tend to zero but is a fundamental constant of nature known as Planck’s
constant. In the energy frequency formula it occurs as a conversion factor from
inverse time to energy, and hence has units energy x time. It is given by

h =6.626 x 10734J s.
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15.8 The Fourier inversion formula.

We used the Fourier transform and the Fourier inversion formula to derive the
lemma of stationary phase. But if we knew stationary phase then we could
derive the fourier inversion formula as follows:

Consider the function p = p(z,£) on R™ @ R™ given by

p(z,&) =z (E—n)
where n € R™. This function has only one critical point, at
r=0,{=n

where its signature is zero. We conclude that for any such function a = a(z,§) €
S(R™ @ R™ we have

//em(ﬁ*")a(z,g)dzdg = <2:)na(o,n) +O(r= ("),

Let us choose a(z,£) = f(x)g(€) where f and g are smooth functions vanishing
rapidly with their derivatives at infinity. We get

1 1 ,
= ) F0)g(n) = m—= / / e ) f(2)g(§)dad€ + O(r~ D).
T 2m)"

Let us set w = 7z in the integral, so that dr = 77 "du. Multiplying by 7" we
get

So if we define

1019 = gz [ [ 1/(2) s(@e™ € aude + o)
1

o) = s [ o€

we have proved that

G |1 (5) dweau+ 06,

1O9(0) = G

If we choose f such that f(0) = 1 and let 7 — oo we obtain the Fourier inversion

formula:
1

g(n) = W/Rg(u)ei“'"du.

15.9 Fresnel’s version of Huygen’s principle.

15.9.1 The wave equation in one space dimension.

As a warm up to the study of spherical waves in three dimensions we study the
homogeneous wave equation
0?u  0%u _

o2 ox2
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where u = u(z,t) with « and ¢ are real variables.

If we make the change of variables p = z +t,q = x —t this equation becomes

0%u B
opdq

and so by integration
u = u1(p) +u2(q)

where u; and ug are arbitrary differentiable functions. Reverting to the original
coordinates this becomes

u(z,t) = ur(z +t) + uz(x —1). (15.13)

Any such function is clearly a solution. The function ug(z — t) can be thought
of dynamically: At each instant of time ¢, the graph of x — us(x — t) is given
by the graph of z — wus(z) displaced ¢ units to the right. We say that ug(z —t)
represents a traveling wave moving without distortion to the right with unit
speed.

Thus the most general solution of the homogeneous wave equation in one
space dimension is given by the superposition of two undistorted traveling wave,
one moving to the right and the other moving to the left.

15.9.2 Spherical waves in three dimensions.

In three space dimensions the wave equation (in spherical coordinates) is

Pu_10 00, 1 0 0n Lo
o2 r29r Or  r2sinf 00 99 r2sin®6 0¢%

If u = u(r,t) the last two terms on the right disappear while

r _ -
r20r Or r

10 oL [ ] 10
ar o2 | T T a2

Thus v := ru satisfies the wave equation in one space variable, and so the general
spherically symmetric solution of the wave equation in three space dimensions
is given by

S+t glr—1)

u(r,t) =
(r) = = -

The first term represents and incoming spherical wave and the second term an
outgoing spherical wave. In particular, if we take f = 0 and g(s) = €*** then

eik(rft)

wyi(r,t) = .

is an outgoing spherical sinusoidal wave of frequency k.
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15.9.3 Helmholtz’s formula

Recall Green’s second formula (a consequence of Stokes’ formula) which says
that if v and v are smooth functions on a bounded region V' C R? with piecewise
smooth boundary 9V then

/ (u*dv—v*du):/(vAu—uAv)dx/\dy/\dz.
v %

In particular, if u and v are both solutions of the reduced wave equation A¢p —
k?¢ = 0 the right hand side vanishes, and we get

/ (u*dv—vxdu)=0.
v

ikr ikr 1
d (e ) =< [zk - J dr. (15.14)

r r

Now

Let D be a bounded domain with piecewise smooth boundary, let rp denote the
distance from a point P interior to D, and take V to consist of those points of
D exterior to a small sphere about P. Then if v is a solution to the reduced
wave equation and we take u = e’*" /r we obtain Helmhotz’s formula

1 ikrp ikrp
v(P):—/ [6 s dv — v % dS }
47 oD rp rp

by shrinking the small sphere to zero.

Green’s formula also implies that if P is exterior to D the integral on the
right vanishes.

Now let D consist of all points exterior to a surface S but inside a ball of
radius R centered at P. If ¥p denotes the sphere of radius R centered at P,
then the contribution to Helmhotz’s formula coming from integrating over og
will be the integral over the unit sphere

[ (2 ) o]

where dw is the area element of the unit sphere. This contribution will go to
zero if the Sommerfeld radiation conditions

/|v|dw =o0(1), and / ’gz —iku

are satisfied (where the integrals are evaluated at r = R).
Assuming these conditions, we see that if P is exterior to .S then

1 |: eik'rp eik:rp :|

dw
r=R

dw = o(R™1)

*xdv—vxd

v(P) TP TP

= — 15.1
=/ (15.15)

while the integral vanishes if P is inside S.
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Huyghens had the idea that propagated disturbances in wave theory could
be represented as the superposition of secondary disturbances along an inter-
mediate surface such as S. But he did not have an adequate explanation as
to why there was no “backward wave”, i.e. why the propagation was only in
the outward direction. Fresnel believed that if all the original sources of radi-
ation were inside S, the integrand in Helmholtz’s formula would vanish due to
interference. The above argument due to Helmholtz was the first rigorous math-
ematical treatment of the problem, and shows that the internal cancellation is
due to the total effect of the boundary.

However, we will see, by using stationary phase, that Fresnel was right up
to order 1/k.

15.9.4 Asymptotic evaluation of Helmholtz’s formula

We will assume that near S the v that enters into (15.15) has the form
v = ae'*?

where a and ¢ are smooth and | grad¢|| = 1. For example, if v represent
radiation from some point @ interior to S then this would hold with ¢ = rq.

We assume that P is sufficiently far from S so that 1/rp is negligible in com-
parison with k, and we also assume that a and da are negligible in comparison
with k. As P will be held fixed, we will write r for rp. Then inserting (15.14)
into (15.15) shows that the leading term in(15.15) (in powers of k) is

. |
j?r /S %em@ﬁ“) (kdp — *dr).

We want to apply stationary phase to this integral. The critical points are those
points y on S at which the restriction of d¢ + dr to S vanishes. This says that
the projection of grad ¢(y) onto the tangent space to S at y is the negative of the
projection of grad r(y) onto this tangent space. Since || grad ¢|| = || gradr| = 1,
this implies that the projections of grad ¢(y) and grad r(y) onto the normal have
the same absolute value. There are thus two possibilities:

1. grad ¢(y) = — grad r(y). In this case xdp(y) = — * dr(y) when restricted
to the tangent space to S at y.

2. grad ¢(y) = 2(grad ¢(y),n)n — gradr(y). In this case xdd(y) = xdr(y)
when restricted to the tangent space to S at y.

Let us assume for the moment that the critical points are non-degenerate.
(We will discuss this condition below.)

Suppose we are in case 2). Then the leading term in the integral in (15.15)
vanishes, and hence the contribution from (15.15) is of order 1/k. If S wre
convex and grad ¢ pointed outward, then for any P insised S we would be
in case 2). This justifies Fresnel’s view that there is local cancellation of the
backward wave (at least up to terms of order 1/k).
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15.9.5 Fresnel’s hypotheses.
Suppose we are in case 1). Then the leading term in (15.15) is

k[ ik, gy

Am Jg 7
This shows that up to terms of order 1/k the “induced secondary radiation”
coming from S behaves as if it

e has amplitude equal to 1/X times the amplitude of the primary wave where
A =27 /k is the wave length, and

e has phas one quarter of a period ahead of the primary wave. (This is one
way of interpreting the factor i.)

Fresnel made these two assumptions directly in his formulation of Huyghen’s
principle leading many to regard them as ad hoc. We see that it is a consequence
of Helmholtz’s formula and stationary phase.

15.10 The lattice point problem.

Let D be a domain in the plane with piecewise smooth boundary. The high
school method of computing the area of D is to superimpose a square grid on
the plane and count the number of squares “associated” with D. Since some
squares may intersect D but not be contained in D, we must make a choice: let
us choose to count all squares which intersect D. Furthermore, in order to avoid
unnecessary notation, let us assume that D is taken to include its boundary, i.e.
D is closed: D = D. If we let Z? denote the lattice determined by the corners
of our grid, then our procedure is to count the number of points in

DnNZ2.

Of course this is only an approximation to the area of D. To get better and
better approximations we would shrink the size of the grid. Our problem is to
find an estimate for the error in this procedure.

For notational reasons, it is convenient to keep the lattice fixed, and dilate
the domain D. That is, we want to count the number of lattice points in AD
where ) is a (large) positive real number. So we set

NE(A) == #(AD N Z?). (15.16)

Equally well, if x” denotes the indicator function (sometimes called the char-
acteristic function) of D:

xP(x) =1 ifx € D, xP(x)=0ifx ¢ D,

then
NL) =D xR W), (15.17)

vEZ?
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where
T

wo=x (%)
(Frequently, in what follows, we will drop the D when D is fixed. Also, we

will pass from 2 to n with the obvious minor changes in notation.)
Now it is clear that

Né()\) = A% Area(D) + error.

Our problem is to estimate the error. Without any further assumptions, it is
relatively easy to see that we can certainly say that the error can be estimated
by a constant times A where the constant involves only the length of dD. In
general, we can not do better, especially if the boundary of D contains straight
line segments of rational slope: For the worst possible scenario, consider the
case where D is a square centered at the origin. Then every time that A is such
that the vertices of AD lie in Z2, then the number of boundary points lying
in Z? will be proportional to A times the length of the perimeter of D. But
a slightly larger or small value of \ will yield no boundary points in Z2. We
might expect that if the boundary is curved everywhere, we can improve on the
estimate of the error.

The main result of this section, due to Van der Corput, asserts that if D
is convex, with smooth boundary whose curvature is everywhere positive (we
will give more precise definitions later) then we can estimate the error terms as
being

O(A3).

In fact, Van der Corput shows that this result is sharp if we allow all such
strongly convex smooth domains, although we will not establish this result here.

15.10.1 The circle problem.
Suppose that we take D to be the unit disk. In this case

NH(A) = N())

where
N\ = #{v = (m,n) € Z*Im* +n? < \?*}. (15.18)

In this case, there will only be lattice points on the boundary of AD if A2 is an
integer which can be represented as a sum of two squares, and the number of
points on the boundary will be the number of ways of representing A\? as a sum
of two squares.

The number of ways of representing an integer N as the sum of two integer
squares is closely related to the number of prime factors of IV of the form 4k +1
and the number of prime square factors of the form 4k + 3. In fact, as we shall
remind you later on, if () denotes the number of ways of writing N as a sum
of two squares then (V) can be evaluated as follows: Suppose we factorize N
into prime powers, collect all the powers of 2, collect all the primes congruent
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to 1 (mod 4), and collect all the primes which are congruent to 3 (mod 4). In
other words, we write

N =2/N\N, (15.19)

where
Ny = Hp’” p = 1(mod 4)

and
Ny = Hqs q = 3(mod 4).

Then r(N) =0 if any s is odd. If all the s are even, then
r(N) = 4d(Ny). (15.20)

So there are relatively few points on the boundary of AD when D is the unit
disk, and we might expect special results in this case. Of course our problem is
to estimate the number of lattice points close to a given circle, not necessarily
exactly on it.
Let us set
ti= A% (15.21)

as the square of X is the parameter used frequently in the number theoretical
literature. Let us define R(t) as the error in terms of ¢, so

> r(n) =mt+ R(1). (15.22)

n<t
Then the result of Van der Corput cited above asserts that
R(t) = O(t3). (15.23)

In fact, later work of Van der Corput himself in the twenties and early thirties,
involving the theory of “exponent pairs” improves upon this estimate. For
example, one consequence of the method of “exponent pairs” is that

R(t) = O(t%). (15.24)

In fact, the long standing conjecture (going back to Gauss, I believe) has
been that

R(t) = O(t17) for any €> 0. (15.25)

Notice the sequence of more and more refined results: trivial arguments, valid
for any region with piecewise smooth boundary give an estimate R(t) = O(t”)
where p = % The Van der Corput method valid for all smooth strongly convex
domains gives p = . The method of exponent pairs gives p = (k + ¢)/(2k + 2)
whenever (k,¢) is an exponent pair, but although this method improved on %,
it did not yield the desired conjecture - that we may take p = % + € for any

e > 0.
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15.10.2 The divisor problem.

Let d(n) denote the number of divisors of the positive integer n. Using elemen-
tary arguments, Dirichlet (1849) showed that

> d(n) = t(logt + 2y — 1) + O(t?) (15.26)

n<t

where v is Euler’s constant

1
v:= lim fologN
n

N—o0
n<N

Dirichlet’s argument is as follows: First of all observe that we can regard
the divisor problem as a lattice point counting problem. Indeed, consider the
region, T}, in the (z,y) plane bounded by the hyperbola zy = t and the straight
line segments from (1,1) to (1,¢) and from (1,1) to (¢,1). So Ty is a “triangle”
with the hypotenuse replaced by a hyperbola. Then d(n) is the number of lattice
points on the “integer hyperbola” xy =n, n <t, and so >, _, d(n) is the total
number of lattice points in T;. The area of T; is tlogt — t 4+ 1, which has the
same leading term as above. To count the number of lattice points in T}, observe
that T} is symmetric about the line y = z, and there are [v/] lattice points in
T; on this line. For each integer d < [v/t] the number of lattice points on the
horizontal line) y = d in T} to the right of the diagonal is

-

Sdmy =2 % (M —d) +[vi].

n<t d<vi

SO

Since [s] = s + O(1) we can write this as

Vi(VE+1)
2t27—2 5 +O(V1).

The formula leading to Euler’s constant has error term 1/s:

1 1
Zg =logs+7+0(3) (15.27)

n<s

as follows from Euler MacLaurin (see later on). So setting s = v/# in the above
we get (15.26).
Once again we may ask if this estimate can be improved: Define

=Y d(n) — t(logt + 2y — 1) (15.28)

n<t
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and ask for better o such that
A(t) =O0(t%) (15.29)

It turns out, that the method of exponent pairs yields the same answer as in
the circle problem case: If (k,¢) is an “exponent pair” then

o= (k+0)/(2k +2)

is a suitable exponent in (15.29). Once again, the conjectured theorem has been
that we may take o = % + € for any positive e.

These “lattice point problems” are closely related to studying the growth of
the Riemann zeta function on the critical line, i.e. to obtain power estimates
for ¢ (% +it). Furthermore, the Riemann hypothesis itself is known to be closely
related to somewhat deeper “approximation” problems. See, for example, the
book Area, Lattice Points, and Exponential Sums by M.N Huxley, page 15.

15.10.3 Using stationary phase.

Van der Corput revolutionized the study of the lattice point problem in the
1920’s by bringing to bear two classical tools of analysis - the Poisson summation
formula and the method of stationary phase.

Our application will be of the following nature: Recall that a subset of R is
convex if it is the intersection of all the half spaces containing it. Suppose that
D is a (compact) convex domain with smooth boundary, containing the origin
and that u is a unit vector. Then the function y — -y achieves a maximum m™
and a minimum m~ on D and the condition that these be taken on at exactly
one point each is what is usually meant by saying that D is strictly convex. We
want to impose the stronger condition that restriction of the function y — u -y
to the boundary is non-degenerate having only two critical points, the maximum
and the minimum, for all unit vectors. This has the following consequence: Let
K be a compact subset of R™ — {0} and consider the Fourier transform of the
indicator function y = x? evaluated at T for z € K:

)A((T{E):/ e T dy.
D

(For today it will be convenient to use this definition of the Fourier transform
so that
X(0) = vol (D)

without the factors of 27.)
Holding z fixed, we have (as differential forms in y)

d (em”'yxldy2 A A dy") = iT(m1)2eim'ydy1 A dy”

SO

ei‘rm-ydy — ei‘rm-ydyl A A dyn — d (ei‘rat-yw)

iT|x|?
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where
wi=aldy? A Ady™ —22dyt AdyP o ANdy™ + - Eadyt A Ady™ T

By Stokes,

1 .
x(tz) = 7/ e T,
irlz|* Jop

The integral on the right is O(T_anl) by stationary phase, and hence

nt1

x(tx) =0(r" 2 ) (15.30)

uniformly for € K where K is any compact subset of R™ — {0}. As this is the
property we will use, we might as well take this as the definition of a strongly
convex region.

15.10.4 Recalling Poisson summation.

The second theorem from classical analysis that goes into the proof of Van der
Corput’s theorem is the Poisson summation formula. This says that if f is a
smooth function vanishing rapidly with its derivatives at infinity on R™ then
(in the current notation)

S fem =Y f0) (15.31)

peZn vezn

We recall the elementary proof of this fact :

Set
W) = 3 fla+v)

vEZ"

so that h is a smooth periodic function with period the unit lattice, Z™. By

definition
h0)= Y f).

vezZnr

Since h is periodic, we may expand it into a Fourier series
_ —2mip-x
h(z) = E cpe
HEZ™
where
1 1 1 1
_ 2T _ 2T
c#—/u-/ h(xz)e ™" dx—/~~-/ E flz+v)e*™H*de.
0 0 0 0 yczn

We may interchange the order of summation and integration and make the
change of variables x + v +— = to obtain

Cp = f@2rp).
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Setting = 0 in the Fourier series

gives

ho)= 3 Fmp).

HEZ™

Equating the two expressions for h(0) is (15.31).

15.11 Van der Corput’s theorem.

In n-dimensions this says:

Theorem 98. Let D be a strongly conver domain. Then
NE(A) = A vol(D) + O(A" 2+ 75T (15.32)

Proof. Let x = x? be the indicator function of D so that y, defined by

is the indicator (characteristic) function of AD. Thus

N )= 3 )

vEZ™

where we have written N*# for NﬁD. The Fourier transform of x, is given in
terms of the Fourier transform of x by

Xa(z) = A" (Az).

Furthermore,
x(0) = vol(D).

If we could apply the Poisson summation formula directly to x» then the con-
tribution from 0 would be A" vol(D), and we might hope to control the other
terms using (15.30). (For example, if we could brutally apply (15.30) to control
all the remaining terms in the case of the circle, we would be able to estimate
the error in the circle problem as A2~3/2 = \1/2 which is the circle conjecture.)
But this will not work directly since x» is not smooth. We must first regularize
X and the clever idea will be to choose this regularization to depend the right
way on \.

So let p be a non-negative smooth function on R™ supported in the unit ball
with integral one. Let

L oy
Pe (y) = (7>

en €
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S0 p. is supported in the ball of radius € and has total integral one. Thus

Pe() = plex)

and

Define
NI =) (oaxpd)(v)

veZnr

where * denotes convolution. If v lies a distance greater than e from the bound-
ary of AD, then (xx * pe)(¥) = xa(v). Thus

N¥(X = Ce) < N¥(\) < NF(X\ + Ce)

where C' is some constant depending only on D. Suppose we could prove that
N satisfies an estimate of the type (15.32). Then we could conclude that

(A — Ce)" vol(D) + O(A"~2+751) < NE(X) < (A + Ce)™ + O(A" "2+ a81),

Suppose we set
= (15.33)

Then
A+ Ce)™ = A" 4 O(\"~2F )

and we obtain the Van der Corput estimate for N*(\). So it is enough to prove
the analogue of (15.32) with N watching out for the dependence on e.
Since x * pe is smooth and of compact support, and since

(Xa* pe) "= X - pe
we may apply the Poisson summation formula to conclude that

NIA) =A"vol(D) + Y A"R(2mAv)p(2mev)
veZr—{0}

and we must estimate the sum on the right hand side. Now since p is of compact
support its Fourier transform vanishes faster than any inverse power of (1+|z|?).
So, using (15.30) we can estimate this sum by

RS T A le)
veZn—{0}

were K is large, or, what is the same by

n— 1
/\zl/m(1+|ez|2)Kd:c
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where K is large. Making the change of variables x = ez this becomes
n—-1 _n—1 1 _K
)\ 2 € 2 T(1+ |Z‘) dZ
|z| 2

The integral does not depend on anything, and if we substitute (15.33) for e,
the power of A that we obtain is

2 2

+ n—2+
n+1

n—1 n-—1 2 n—1 n—1 n+1 2 2
2 2 n+1l n+1 n+1

proving (15.32). O
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Chapter 16

The Weyl Transform.

A fundamental issue lying at the interface of classical and quantum mechanics
is to choose a means of associating an operator H on a Hilbert space, the “quan-
tum Hamiltonian”, to a function H, the “classical Hamiltonian” on phase space.
The celebrated Groenwald - van-Hove theorem shows that Dirac’s original idea
- to associate operators to all functions in such a way that Poisson brackets
go over into operator brackets - can not work. Indeed, if the phase space is a
symplectic vector space, and if one insists that linear functions are “quantized”
in such a way that the Heisenberg commutation relations hold, then these de-
termine how to “quantize” all polynomials of degree two or less (the metaplectic
representation) but we can not add any polynomial of higher degree to our col-
lection of functions we wish to “quantize” without running into a violation of
Dirac’s prescription. The method of “geometric quantization” is to take the
Dirac prescription as primary, but apply it to a Lie subalgebra of the algebra
of all functions (under Poisson bracket), a subalgebra which will not include all
linear functions. For the physicist faced with the problem of finding a quantum
model corresponding to a classical approximation given by a Hamiltionian H,
this involves finding an appropriate (and sufficiently large) group of symmetries
(canonical transformations) whose Lie algebra contains H.

Another approach, suggested by Hermann Weyl is to take the Heisenberg
commutation relations as primary, and give up on the Dirac program.

The Weyl transform thus associates to “any” function (or generalized func-
tion) on phase space an operator on Hilbert space. To describe its structure,
consider the following: If ¢ is a unitary representation of a (locally compact,
Hausdorff, toplogical) group G on a Hilbert space $), and ¢ is a continuous
function of compact support on G then we can define

where dg is Haar measure. This associates an operator R(¢) to each continuous
function of compact support on G in such a way that convolution goes over into
operator multiplication: R(¢ x ¢) = R(¢)R(¢)).

443
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For the Weyl transform, the group G is the Heisenberg group V x R or
V x (R/(27Z). For a more detailed description of these groups see Section 16.4
below. The Haar measure has the form u x dt where p is the Liouville measure.

For each non-zero value of h there is a unique (up to equivalence) irre-
ducible representation gy characterized by the image of the center. This is the
Stone - von-Neumann theorem, originally conjectured by Weyl, see below. Let
Pls---yPnyq1s- - -5 qn & symplectic basis of V', so we can write the most general
element of V' as

p+ng=Epr+-Epp 0t + 0"

Then the Weyl transform is given by
W(9) :/ 0(&p + na)$(&, m)dédn (16.1)
v

where ¢~> is the Fourier transform of ¢ and we have have suppressed the depen-
dence on h. In other words, instead of o(¢) we have something that looks like

0(¢) except that the integral is over V' and not over all of G.
Unfortunately, this is not how the Weyl transform is written either in the
physics or in the mathematics literature.

16.1 The Weyl transform in the physics litera-
ture.

The representation p induces a representation ¢ of the Lie algebra g of G which
can be identified with V' x R. Let exp : ¢ — G denote the exponential map. So

€p + g = exp({P +1Q)
where (P, Q) = (p, ¢) but thought of as elements of the Lie algebra g. Then
o(&p +nq) = exp(§(P) +no(Q))
where the exponential on the right is the exponential of skew adjoint operators
in Hilbert space.

The physicists like self-adjoint operators rather than skew adjoint operators,
so set

Then (16.1) can be written as

W (o) = / expli(p + 1)) (€, n)dedn. (16.2)
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16.1.1 The Weyl transform and the Weyl ordering.

Let us apply (16.2) to the generalized function ¢*p in two dimensions whose
Fourier transform is (up to factors of 27 and £1 in front of the ¢ depending on

convention)
AVAAN
i— ) [i=— ] .
(1 a£> < 8n)
Then (16.2) with i =1 gives

(Z‘i) (157) " expli(e+ nd)

Only the cubic term in the expansion of the exponential contributes, and we get

£§=0,n=0

This (and its generalization to an arbitrary monomial) is a version of the famous
Weyl ordering.

In fact, the Weyl ordering in the physics literature is also presented somewhat
differently, e.g.

But straightforward manipulations of the commutation relations shows that this
definition of W (¢?p) is the same as that given above, and that this is true for
arbitrary polynomials in p and q.

16.2 Definition of the semi-classical Weyl trans-
form.
In the mathematical literature, especially in the literature of semi-classical anal-

ysis, the Weyl transform is usually defined as follows: Assume (temporarily) that
o € S(R*). Define the Weyl transform Weyl, , acting on S(R™) by

(Weyly0) (2) = g [ 5070 (T3 ) st (103

When 7 = 1 we will sometimes write Weyl,, instead of Weyl, ;. We will also
use various other notations (as found in the literature) for Weyl,, ,. We will see
below in Section 16.11.2 that this is in fact the same as (16.1), see, in particular,
equation (16.25).
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16.3 Group algebras and representations.

16.3.1 The group algebra.

If G is a locally compact Hausdorff topological group with a given choice of
Haar measure, we define the convolution of two continuous functions of compact
support on G by

(61 % 62)(g) := /G o1 (u) (=" g)du.

If ¢ is another continuous function on G' we have

/ (61 % 62)(9)b(g)dg = / 61 (1) ba(h) b (uh)dudh.
G

GxG

This right hand side makes sense if G is a Lie group, ¢; and ¢- are distributions
of compact support and v is smooth. Also the left hand side makes sense if ¢
and ¢ belong to L1(G) and % is bounded, etc.

16.3.2 Representing the group algebra.

If we have a continuous unitary representation 7 of G on a Hilbert space $), we
can define

(9) == /G 6(9)(9)dg

which means that for v and v € H
(r(é)u.0) = [ 6lo)(rlg)us v)dg (16.4)
G

This integral makes sense if ¢ is continuous and of compact support, or if G is
a Lie group, if u is a C* vector in the sense that 7(g)u is a C* function of g
and ¢ is a distribution. In either case we have

7(p1 * ¢2) = T(¢1)7(P2).

If the left invariant measure is also invariant under the map ¢ — ¢~! and so
right invariant, and if we define

9" (9) == o(g™") (16.5)
then

T(¢") = 7(¢)" (16.6)

A group whose Haar measure is both left and right invariant is called uni-
modular.
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16.3.3 Application that we have in mind.

We are going to want to apply this construction to the case where G is the
Heisenberg group and where 7 = p;, is the Schrédinger representation (see Sec-
tion 16.10) associated with the parameter & (thought of as “Planck’s constant”).
So we need to make some definitions:

16.4 The Heisenberg algebra and group.
16.4.1 The Heisenberg algebra.

Let V be a symplectic vector space. So V' comes equipped with a skew symmetric
non-degenerate bilinear form w. We make

h:=VeR
into a Lie algebra by defining
[X,Y]:=w(X,Y)E
where £ =1 € R and
[E,E]=0=[E,X] VXeV.

The Lie algebra h is called the Heisenberg algebra. It is a nilpotent Lie
algebra. In fact, the Lie bracket of any three elements is zero.

16.4.2 The Heisenberg group.

We will let N denote the simply connected Lie group with this Lie algebra.
We may identify the 2n + 1 dimensional vector space V + R with N via the
exponential map, and with this identification the multiplication law on N reads

1
exp(v + tE) exp(v' + 'E) = exp <v +o +(t+t + iw(v, v’))E) . (16.7)

Let dv be the Euclidean (Lebesgue) measure on V. Then the measure dvdt is
invariant under left and right multiplication. So the group N is unimodular.

It will be useful to record a commutator computation in N: Let z,y € V
Then

exp(~)(expy) = exply — 7 — 5w(z,9)E)

while 1
exp(y) exp(—z) = exp(y — = — §W(y, 7)E)

so, since w is antisymmetric, we get

(exp(—2))(expy) = (expy)(exp(—2)) exp(—w(z, y)E). (16.8)
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16.4.3 Special representations.

Schur’s lemma says that if 7 is an irreducible (unitary) representation of a group
G on a Hilbert space $ and T : ) — § is a bounded operator such that

Tr(g9)=71(9)T VYVgeGqG

then T" must be a scalar multiple of the identity.

For the Heisenberg group, this implies that any irreducible unitary repre-
sentation must send the elements exp(tF) into scalar multiples of the identity
where the scalar has absolute value one. So there are two alternatives, either
this scalar is identically one, or not. It turns out that the first case corresponds
to certain finite dimensional represetntions. It is the second case that is inter-
esting:

Let & be a non-zero real number. So we are interested in unitary represen-
tations of N which have the property that

exp(tE) — e"'1d.

The Stone-von-Neumann theorem asserts that for each non-zero i there
exists a unique such irreducible representation p; up to unitary equiva-
lence. This theorem was conjectured by Hermann Weyl in the 1920’s and proved
(independently) by Stone and von-Neumann in the early 1930’s.

16.5 The Stone-von-Neumann theorem.

In fact, to be more precise, the theorem asserts that any unitary representation
of N such that }
exp(tE) — e"'1d

must be isomorphic to a multiple of py in the following sense:

Let 71 and $- be Hilbert spaces. We can form their tensor product as vector
spaces, and this tensor product inherits a scalar product determined by

(u@v,z®y) = (u)(v,y).

The completion of this (algebraic) tensor product with respect to this scalar
product will be denoted by $;®$2 and will be called the (Hilbert space) tensor
product of $; and 5. If we have a representation 7 of a group G on £; we get
a representation

g— T(g) ® Idez

on 1 %% which we call a multiple of the representation 7.

Theorem 99. [The Stone-von-Neumann theorem.] Let i be a non-zero
real number. Up to unitary equivalence there exists a unique irreducible unitary
representation py satisfying

pr(eE) = et Id. (16.9)
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Any representation such that exp(tE) v+ e1d is isomorphic to a multiple of
Ph-

Here is an outline of the proof: The first step is to explicitly construct a
model for the representation p; by the method of induced representations. The
second step is to prove that it is irreducible by showing that the image of the
group algebra will contain all Hilbert-Schmidt operators. From this the rest of
the theorem will follow. We follow the presentation in [?].

We will do the first step now and postpone the second step until later in this
chapter.

16.6 Constructing ps.

Fix h # 0. If £ is a Lagrangian subspace of V', then /®R is an Abelian subalgebra
of h, and in fact is maximal Abelian. Similarly

L:=exp({ ®R)

is a maximal Abelian subgroup of N.
Define the function
f=f: N=T

(where T! is the unit circle) by

f(exp(v +tE)) := ™. (16.10)
We have
f ((exp(v + tE))(exp(v’ + t'E))) = M+t +50(v) (16.11)
Therefore
f(hiha) = f(h1)f(h2)
for

hi, hg € L.

We say that the restriction of f to L is a character of L.
Consider the quotient space
N/L

which has a natural action of N (via left multiplication). In other words N/L
is a homogeneous space for the Heisenberg group N. Let ¢’ be a Lagrangian
subspace transverse to £. Every element of N has a unique expression as

(expy)(exp(x + sE)) wherey € ¢/ x € L.
This allows us to make the identification

N/L ~ ¢
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and the Euclidean measure dv’ on ¢ then becomes identified with the (unique
up to scalar multiple) measure on N/L invariant under N.
Consider the space of continuous functions ¢ on N which satisfy

p(nh) = f(h)*p(n) YneN hel (16.12)
and which in addition have the property that the function on N/L

n = [p(n)]

(which is well defined on N/L on account of (16.12)) is square integrable on
N/L. We let (¢, 1) denote the Hilbert space which is the completion of this
space of continuous functions relative to this Ly norm. So ¢ € H(¢,h) is a
“function” on N satisfying (16.12) with norm

]2 = /N |l

where dn is left invariant measure on N/L.
Define the representation py, of N on $(¢) by left translation:

(pen(m)¢)(n) :=¢ (m~'n). (16.13)

This is an example of the standard method of constructing an induced repre-
sentation from a character of a subgroup.

For the rest of this section we will keep £ and A fixed, and so may write £
for $(¢, ) and p for pg . Since exptE is in the center of N, we have

plexptE)p(n) = 6 ((exp —tE)n) = 6 (n(exp —LE)) = e™6(n).

In other words
p(exptE) = eMdy. (16.14)

Suppose we choose a complementary Lagrangian subspace £’ and then iden-
tify N/L with ¢’ as above. Condition (16.12) becomes

o ((expy)(exp(x))(exptE)) = d(expy)e .

So ¢ € § is completely determined by its restriction to exp ¢’. In other words
the map

¢, h(y) = dlexpy)
defines a unitary isomorphism

R:H— Lg(fl)

and if we set
o:=RpR™}
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th

. o (expa)vlly) = eMEVYy) zel, yel
[olexpu)y](y) = P(y—u) y,uel (16.15)
o(exp(tE)) = eMIdp, .

The first of these equations follows from (16.8) and the definition (16.13) and
the last two follow immediately from (16.13).

We can regard the three equations of (16.15) as an “integrated version” of
the Heisenberg commutation relations.

16.7 The “twisted convolution”.

Let @ denote the collection of continuous functions on N which satisfy

d(nexptE) = e Me(n).
Let
B = Bh = N/Fh
where
'y ={expkE, k€ (2rn/h)Z||.
The effect of replacing N by B is to replace the center of N which is R with the
circle T = T}, = R/(2n/h)Z.

Every ¢ € ® can be considered as a function on B, and every n € B has a
unique expression as n = (expv)(exptE) with v € V and ¢t € T. We take as our
left invariant measure on B the measure dvdt where dv is Lebesgue measure on
V' and dt is the invariant measure on the circle T with total measure one. The
set of elements of ® are then determined by their restriction to exp(V). Then
for ¢1, 2 € ® of compact support (as functions on B) we have (with x denoting
convolution on B)

(¢1 % ¢2)(expv)

/V /T 61 ((exp ) (exp L))y ((— exp u)(exp(—tE))(exp v))dudt

— [ or(expujga((exp —u)(expo)du
1%

/ @1 (expu)da(exp(v — u) exp(—%w(u, v)E))du
%

= / (bl (eXp u)¢2(exp(v _ u))e%ihw(u,v)du.
\%4

So if we use the notation
¥(u) = ¢p(expu)
and ¥y * 1o for the ¥ corresponding to ¢ x ¢o we have

(1 % ¥h2) (v) = /Vw1<u>wz<v — w)ebih ) gy, (16.16)

We thus get a “twisted” convolution on V.
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16.8 The group theoretical Weyl transform.

If ¢ € ® and if we define ¢* as in (16.5), then ¢* € ® and the corresponding
transformation on the v’s is

¢"(expv) = P(—v

~

We now define
W, () = 7(6) = /B H(b)r (b)db = /V $(v)r(expv)dv.

The last equation holds because of the opposite transformation properties of 7
and ¢ € .
If ¢ € ® then §,, x ¢ is given by

(0 % ¢)(n) = ¢(m™"n)
which belongs to ® if ¢ does and if m = exp(w) then
(6m * @) (expu) = ™) (y — w).

Similarly, ‘
(¢ % O (exp ) = e~ ™ (W) (4 — ).

Let us write w x ¢ for the function on V corresponding to 4, * ¢ under our
correspondence between elements of ® and functions on V.
Then the facts that we have proved such as

7(p1 % ¢2) = T(¢1)7(d2)

translate into

W (1h1 * 12) W (1)W(1h2) (16.17)
Wr(¥*) = Wr(¥)" (16.18)
Wo(wxv) = 7(expw)W,(v) (16.19)
Wo(pxw) = Wr(¢¥)T(expw). (16.20)

We now temporarily to leave this group theoretical side of the Weyl trans-
form and turn our original subject which is the semi-classical Weyl transform.
For the completion of the proof of the Stone - von-Neumann theorem, the reader
can skip ahead to Section 16.16.

16.9 Two two by two matrices.

In studying semi-classical Weyl transform we will be frequently making certain
changes of variables, so let us put these up front:
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G A)-61)

and both matrices on the left have determinant —1. So if we define the operators
T and T~! on L?(R*) = L2(R")®L?(R") by

‘We have

= o=

(TF)(z,y) == F (m—l— %x - %) . (T7'F)(z,y) = F (x;—yx —y)

then T and T~! are inverses of one another and are both unitary.

16.10 Schrodinger representations.

Define
(R™)(q,p,t)(f) () = eMaa+5ap430) f(g 4 p).

It is easy to check that this is a representation of the Heisenberg group where
the symplectic form on R™ & R"™ is

w((g,p), (")) =2(d p—q-p)

and that it is unitary and irreducible. So it is a model for the Stone - von-
Nuemann representation with parameter f/4.
We will let

Qh(Qap) = Rn(va7 0)
and Vi (f,9)(g,p) = 1/(27)"/?x the matrix element of gy, for f,g € L*(R") so

Vi(f,9)(q.p) = (275"/2 /eih(q~m+%q-p)f(;p + p)g(x)de.

Under the change of variables y = = + § this becomes

Vi(f,9)(a,p) == W /e“‘“l'yf (v+ g) g(y- g)dy. (16.21)

We let Wy, = Wi(z,€) = Wi(f,9)(z,&) denote the Fourier transform of Vi (f, g)
(in 2n variables) so

Wh(x,€) = o 3n/2/// —iwq—itptihgy ¢ <y+ ) (y—f)dydqdp

Doing the ¢ integration first (with the usual distributional justification) this
gives

st (v 2o~ D= [ s (5 2) o (7 D)
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So let Dy, denote the unitary operator on L?(R™)

(Dnf)(@) =127 ()

and set p = hp’. Then the above equation gives

Wi(f,9)(@,§) = W(Dnf, Drg) <a~ fi) (16.22)

where we have written W for W7. So we can work with 2 = 1. We will work
with a slightly different “rescaling” later. In any event, we will work for the
moment with

W(f,9)(x,€) = W /e—i€~pf (m + 123) g (3: - g)dp. (16.23)

A direct computation using Plancherel shows that if fi, g1, f2,92 € S(R™)
then W(f1,91) and W(fa,g2) are in S(R*") and

(W (f1,91), W(f2,92)) 2 (gen = (f1; f2)r2®n) (91, 92) L2(Rn

so W extends to a map

L*(R") x L*(R") — L*(R*").

16.11 The Weyl transform.

16.11.1 Repeat of the definition of the semi-classical Weyl
transform.

Assume (temporarily) that o € S(R*"). We defined the Weyl transform Weyl,, j,
acting on S(R™) by (16.3):

(Weyl,., ) (2) = ﬁ / chr Ve (”“” : y,s> O(y)dyde.

When h = 1 we will sometimes write Weyl, instead of Weyl, ;. We will also
use various other notations (as found in the literature) for Weyl, .

16.11.2 Weyl and the Schrodinger representation of the
Heisenberg group.

1 i(rx—y)- T+ Y
o [ [ e (e atwaae

By definition,

(Weyl, () (z) =
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We claim that the matrix coefficients of Weyl, . are given by

(Weyl, f.g) = / / o, OW (S, ) (x, €)dd. (16.24)

Indeed, the double integral on the right is the triple integral

(2r n/z/// (2.9 7f (2 +2) g (x—f)dpdxdg

(where we have interchanged the order of integration). If we set u =z + 8, v =

x — £ (see our two by two matrices above) this becomes

2
o) //// (“”,5) 0006 f(u)g(0)dudédy

proving (16.24).
Since W (f, g) is the Fourier transform of the matrix coefficient of o(q,p) =
01 (q,p) we can use the theorem

/FG:/FC:

(in 2n dimensions) to conclude that

(Weyl, £.9) = ooy (( [ o@nata.aads ) (1).5). (16.25)

In other words, we see that the Weyl transform is the extension to S(R?") of
the Schrodinger representation applied to the Fourier transform of o:

Weyl / (q,p)p1/4(q, p)dgdp. (16.26)

1
7 (2m)n
We will see by suitable “rescaling” that the Weyl transform Weyl,, ;, is associated
to the Stone - von-Neumann representation with parameter %/4.

Also, we can use the right hand side of (16.24) to define the Weyl transfor-
mation of an element of S’'(R?") as a map from S(R") to §’(R™): For f € S(R")
we define Weyl_(f) € S'(R"™) by

1
———=0 (W(f,9)), € S(R").
(zﬂ)n/gv( (£,9), geSR")
In particular this applies when o is a symbol. We will want to define various
subspaces of &’(R?") and describe the properties of the corresponding operators.

(Weyl, (f)) (9) =

16.12 Weyl transforms with symbols in L?(R?*").

Again we are working with a fixed i and so may assume that z = 1. We wish
to show that the set of all Weyl transforms with symbols o € L?(R?") coincides
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with the set of all Hilbert Schmidt operators on L?(R™). For the definition and
elementary properties of Silbert-Schmidt operators see Section 16.16 below.

We will let F denote the Fourier transform on R™ and /7, F> denote the par-
tial Fourier transforms on L?(R?*") with respect to the first and second variables
so that

Flfog=(Ff)oyg F(feg)=[fo(F).

Since the linear combinations of the f ® g are dense in L?(R?"), these equations
determine F; and F5. If we go back to the definition of the operator T in
Section 16.9 and the definition (16.23) of W we see that

W(f.g9) = F2T(f ®37).

So if o € L?(R?") then (16.24) says that

1
(Weylo' f’ g) = 7”/2 (‘FQT(f ® g)’ E)LQ(R2"

1
ooz W(59),0) L2 wen = o

(2m)

1

== W(‘f ®§7T_1f;1(E)L2(R271>

This shows that W, is given by the integral kernel K, € L?(R?") where

1

WT_l}—2U(y» $)

Ky(x,y) =

and hence is Hilbert-Schmidt. Since all this is reversible, we see that every
Hilbert-Schmidt operator comes in this fashion from a Weyl transform.

16.13 Weyl transforms associated to linear sym-
bols and their exponentials.

16.13.1 The Weyl transform associated to £ is (RD)*.
When a = 0 this says that

ulz) = ﬁ [ [ < atapae.

Under the change of variables £ = finy the right hand side becomes u(x) by the
inversion formula for the Fourier transform.

Differentiating under the integral sign then proves the formula stated in the
title of this subsection.

16.13.2 The Weyl transform associated to a = a(z) is mul-
tiplication by a.

This again follows from the Fourier inversion formula.
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16.13.3 The Weyl transform associated to a linear func-
tion.

If ¢ = (j,k) € (R*)* ®R" = (R" @ (R™)*)" then combining the two previous
results we see that the Weyl transform associated to £ is the first order linear
differential operator

u(z) = j(z)u(z) + (k(AD)u)(z).

We will write this as
L =/{(x,hD)

where we are using A to denote the Weyl operator Weyl, , associated to a.
Another notation in use (and suggested by the above formulas) is

a(z, hD)

for Weyl, ;, for a general a.

16.13.4 The composition Lo B.

We want to prove the following formula
LoB=C

where

c=/0b+ %{E, b} (16.27)
where {a, b} denotes Poisson bracket on R™ @ (R™)*:
{a,b} = (O¢a, Oyb) — (0ya, Ocb)
For the case that a = ¢ = (j, k) is a linear function the Poisson bracket becomes
{€,0} = k(0:b) — j(0¢b).

We will prove (16.27) under the assumption that b € S(R?"). It will then
follow that it is true for any tempered function on R2". It suffices to prove
(16.27) separately for the cases k = 0 and j = 0 since the general result follows
by linearity.

e k= 0. In this case L is the operator of multiplication by the linear function
j=j(x)so

((L o B)u) (x) = ﬁ /j(x)e%@—y)fb (x ;L y.g) u(y)dyde.

i =i (5Y) i (55Y).

Write




458 CHAPTER 16. THE WEYL TRANSFORM.

The first term has the effect of replacing b by ¢b. As to the second term,

we have

LY et = Mg ke

2 2i
so integration by parts gives (16.27).

e j =0s0 L = k(hD). Differentiation under the integral sign gives (16.27). O

16.14 The one parameter group generated by L.
Let ¢ = (j,k) as above and consider the operators Uy(t) on S(R™) defined by

(Ue(t)) () := et 02y — ).
A direct check shows that
Ue(s +1t) = Us(s) o Up(t)

and

d
i h— =1L .
ZhdtUg(t) o Ug(t)

So as operators we can write
1
U(t) = exp <_ﬁtL> .

Also, it is clear that the Uy(t) are unitary with respect to the L? norm on S(R")
and hence extend uniquely to a one parameter group of unitary transformations
on L?(R"™). By Stone’s theorem this shows that L (with domain S(R")) is
essentially self adjoint and so extends to a unique self adjoint operator on L?(R™)
which we can continue to write as L. ,

On the other hand, consider the operator associated to the symbol e~ wt,
call it temporarily V;(¢). Then

R d 1 D (o). xr+y _ ity xty
el — #(@—y)-§) (Y€
i () 660 = g [ [ R0 (T2 ) e RCE Dy anae

{E, e%z} =0
we see from (16.27) that this is L o V()1 so Vi(t) = Ue(t).

In other words, the operator associated to e~ #¢ is e~ #L. Since L = L(z, hD) =
j(x) + k(hD) we see from taking ¢ = 1 in the definition of U,(t) that

Since

e il = (efﬁm) 0Ty op (az%@*@) . (16.28)

Here p denotes the operator of multiplication: u(f)u = fu and T denotes the
translation operator:
Tru(z) = u(x — k).
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From this we see that

e~ it Lo—iEf M _ 5z {tm} —if (L+M)

which brings us back to a Schrodinger representation of the Heisenberg group.

Let me here follow (approximately and temporarily) the conventions of
Dimassi-Sjostrand and Evans-Zworsky and define the i Fourier transform of
a € S(R?™) by

an(0) z//ef%e(x’g)a(x,f)dxdf.

Writing z = (z, £) this shortens to

an(0) = / e 7% q(2)dz.

So the Fourier inversion formula gives

1 g ) A
a(z) = (27Th)2n/€h<e’ >ah€d€

So we get the Weyl quantization A of a as the superposition

1 . i
A= G /ah(é)enLdz. (16.29)
D-S and E-Z write this as
1
@"(@hD) = Gz [ an(0ed A Par
™

Since the e#! are unitary, this convergence is also in the operator norm on

L?(R"™ and we conclude that

1 R
[Afl2 < WHGHU(R%% (16.30)

We shall make some major improvements on this estimate.

16.15 Composition.

The decomposition (16.29) allows us to (once again) get the formula for the
composition of two Weyl operators by “twisted convolution”:

AoB=C

where
1 -
A - A 7{3;7"}
en(r) O /Hm_rah(@)bh(m)ef de. (16.31)



460 CHAPTER 16. THE WEYL TRANSFORM.

This can also be expressed as follows: Let z = (z, ) and similarly zq, w1, ws
denote points of R?”. The claim is that

1 i 1 ~
= — £(l(z)+m(z)+3{e;m}) 4
() (4w h)*n /R% /Rz"eﬁ : a(f)b(m)dedm. (16.32)

To check that this is so, we need to check that the Fourier transform of the ¢
given by (16.32) is the ¢ given in (16.31). Taking the Fourier transform of the ¢
given by (16.32) and interchanging the order of integration gives the following
function of 7:

e 7(6('2) (w) T(Z) 7({67 }
(2 )271, // ((2 )271 /eh ' dz) ehr Ydldm.

The inner integral is just (¢ +m —r) giving (16.31) as desired. If we insert the
definition of the Fourier transform into (16.32) we get

]. @ 1
- + ((z—w1)+m(z—w2)+5{L,m})
en 2 a(wq)b(ws)dldmdw; dws.
(271'7‘1)4” /Rzn /]RZn /Rzn Azn,

We will make some changes of variable in this four-fold integral. First set
W3 = 2 — W1, Wq = 2 — Wz SO we get

]. 2 1
- % (U(wz)+m(wa)+zw(,m)) _ _
en 2 a(z—ws)b(z—wy4)dldmdwsdwy.
(27Th)4n /R2n /Rzn /Rzn /]Rzn

Next write the symplectic form in terms of the standard dot product on R?”

w(l,m)="L-Jm.

So
1
(ws) + gw(f,m) =/ (ws+Jm).

So doing the integral with respect to ¢ gives

(2mh)?"6

w3+%m'

The integral with respect to m becomes
(2mh)?" /RM e%m'w45u)3+%dem.
Make the change of variables m’ = ws + %J m in the above integral. We get
(2mh)?" /R2 e%(w(w?’_m/)'w“é(m’)dm’

where now the delta function is at the origin. So this integral becomes

(27Th)2n22ne%2Jw3~w4 _ (2ﬂ_h>2n22ne—%w(w3,w4).
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Putting this back into the four-fold integral above and replacing 3,4 by 1,2 gives

1 i
afb(z) = COER /RQR /Rzn 6_%“’(“’1’1”2%(,2 — w1)b(z — we)dwydwy,  (16.33)

where we let affb denote the ¢ such that C = Ao B.

BACK TO THE STONE-VON-NEUMANN THEOREM.

16.16 Hilbert-Schmidt Operators.

Let $ be a separable Hilbert space. An operator A on $) is called Hilbert-
Schmidt if in terms of some orthonormal basis {e;} we have

Z | Ae;||* < oo.
Ae; = Z(Aei,ej)ej

this is the same as the condition

Z |(Aei,e;)* < 00
j

Since

or

Z |aij\2 < o0

Aij = (Aei, ej)

where

is the matrix of A relative to the orthonormal basis. This condition and sum
does not depend on the orthonormal basis and is denoted by

1Al
This norm comes from the scalar product
(A,B)us =trB*A = (B"Ae;,e;) = Y _(Ae;, Bey).
Indeed,
(A*Aej e;) = (Ae;, Aey)

Z(A@i, ej)ej, Aei
J
Z(Aei, ej)(ej, Ael)
J
> aia;

J
> lagl,
i
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and summing over i gives || Al|%.
The rank one elements

Eij; EH(ZL') = (1’7€j)6i

form an orthonormal basis of the space of Hilbert-Schmidt operators. We can
identify the space of Hilbert-Schmidt operators with the completed tensor prod-
uct HRH where § is the space $) with scalar multiplication and product given
by the complex conjugate, e.g multiplication by ¢ € C is given by multiplication
by ¢ in .

If § = Lo(M,dm) where (M, dm) can be any measure space with measure
dm, we can describe the space of Hilbert-Schmidt operators as being given by
integral operators with Ly kernels: Indeed, let {e;} be an orthonormal basis of
$) = La(M,dm) so that the e;; € Lo(M x M)

eij(r,y) = ei(z)e;(y)

form an orthonormal basis of Lo(M x M). Consider the rank one operators E;
introduced above. Then

(Eijb) (z) = (¢, e)ei(x) = | p(v)e;(y)ei(x)dy

|4

=/ Kij(z,y)¢(y)dy

where

Kij(w,y) = ei(x)e;(y).

This has norm one in Lo(M x M) and hence the most general Hilbert-Schmidt
operator A is given by the Ly(M x M) kernel

K = Z a'inij

with a;; the matrix of A as above.

16.17 Proof of the irreducibility of py .

We go back to our earlier notation.

Let us consider the case where 7 = p = pp . We claim that the map W,
defined on the elements of ® of compact support extends to an isomorphism
from Lo (V) to the space of all Hilbert-Schmidt operators on $(¢). Indeed,
write

W, () = /V (0)plexpv)dV

and decompose
V=t(tal
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v=y+z, scl, ycl

SO
exp(y + x) = exp(y) exp(z) exp(—%w(y, z))
SO
plexp(y + ) = p(y)p(w)e 2" W)
and hence

Wp(w) = //1/1(y + x)p(exp y)p(exp I)e*%ﬁiw(y,z)dxdy'

So far the above would be true for any 7, not necessarily p. Now let us use
the explicit realization of p as o on Ly(R™) in the form given in (16.15).
We obtain

W (6)()](€) = / / e~ ROy 1 )M @ED) [ (¢ — y)dudy.

Making the change of variables y +— ¢ — y this becomes

[ [ et mmatetmnye -y 4 o) fg)dody.

so if we define
Ku(€y) = [ AMrOu(e -yt )da

we have

Walh)NIE) = [ Koln) )y,

Here we have identified ¢ with R™ and V = ¢ + £ where £ is the dual space of
¢ under w. So if we consider the partial Fourier transform

Fu: LQ(E/ @f) — Lg(fl EBEI)

(Fath) (3, €) = / @O Yy 4 2)de

(which is an isomorphism) we have

Kyl&w) = (Fd)(E — 9.~ 50+ ).
We thus see that the set of all K, is the set of all Hilbert-Schmidt operators on
Lo (R™).

Now if a bounded operator C' commutes with all Hilbert-Schmidt operators
on a Hilbert space, then CE;; = E;;C implies that c;; = cd;;, i.e. C = cld. So
we have proved that every bounded operator that commutes with all the p,(n)
must be a constant. Thus p(¢) is irreducible.
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16.18 Completion of the proof.

We fix £, ¢’ as above, and have the representation p realized as o on Lo (¢') which
is identified with Lo (R™) all as above. We want to prove that any representation
7 satisfying (16.14) is isomorphic to a multiple of o.

We consider the “twisted convolution” (16.16) on the space of Schwartz
functions S(V). If ¢ € S(V') then its Weyl kernel K (&, y) is a rapidly decreasing
function of (¢, y) and we get all operators with rapidly decreasing kernels as such
images of the Weyl transform W, sending ¢ into the kernel giving o ().

Consider some function u € S(¢') with

llull £y = 1.

Let P; be the projection onto the line through u, so P; is given by the kernel

pi(z,y) = u(y)u(z).
We know that it is given as
p1 = Wy(v) for some ¢ € S(V).
We have P = Py, P} = P, and
Pio(n)P; = a(n)Py with  a(n) = (o(n)u,u).

Recall that ¢ — o(¢) takes convolution into multiplication, and that Ky, is
the kernel giving the operator W, (¢)) = o(¢) where ¢ € ® corresponds to
¢ € S(V). Then in terms of our twisted convolution x given by (16.16) the
above three equations involving P; get translated into

Vrp =9, U =1, Yxnky = a(n)y. (16.34)

Now let 7 be any unitary representation of N on a Hilbert space $) satisfying
(16.14). We can form W, (v)).

Lemma 13. The set of linear combinations of the elements
TM)W.(¢)x, xz€H, neN
is dense in H.

Proof. Suppose that y € H is orthogonal to all such elements and set
n = expw. Then for any x € H

0= (y, 7(MW-(¥)7(n)"'z) :/V(y,T(expw)T(exp(v)T(exp(*w)w(v)dv

:/(y,T(exp(v—l—w(w,v)E)x)z/J(v)dv:/(y,T(expv)x)e_%i“(“”“)w(v)dv
1%

1%
= Fl(y, 7(expv)x)y].
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The function is square brackets whose Fourier transform is being taken is con-
tinuous and rapidly vanishing. Indeed, z and y are fixed elements of H and 7
is unitary, so the expression (y, 7(expv)z) is bounded by ||y||||x| and is contin-
uous, and ¥ is a rapidly decreasing functions of v. Since the Fourier transform
of the function

v = (y, 7(exp(v))z) ¥ (v)

vanishes, the function itself must vanish. Since ¥ does not vanish everywhere,
there is some value vy with ¥(vg) # 0, and hence

(y,T(expvg)x) =0 Vo € H.

Writing 2 = 7(expvg) 'z we see that y is orthogonal to all of H and hence
y=0. QED
Now from the first two equations in (16.34) we see that W, () is an orthog-
onal projection onto a subspace, call it $; of . We are going to show that $
is isomorphic to H(¢) ® $H, as a Hilbert space and as a representation of N.
We wish to define

I 9 @9 — H, pn)u®b— 7(n)b

where b € 9.
We first check that if

b1 = WT('I/J)$1 and b2 = WT(’IZJ)ZEQ
then for any ni,ny € N we have
(T(n)Wr ()1, 7(n2)Wr () z2)5 = (p(n1)u, p(n2)u)se) - (b1,b2)s,. (16.35)

Proof. Since 7(n) is unitary and W, (v) is self-adjoint, we can write the left
hand side of (16.35) as

(r(n)We ()21, T(n2)Wr ()a2) i = (Wr (9)7(ng ' na)We ()1, 22)
and by the last equation in (16.34) this equals
= a(ny 'n1)(Wr ()21, 22)5.
From the definition of a we have
a(ny 'ni) = (p(ng 'na)u, w)ge) = (p(n)u, p(na)u)e

since p(ng) is unitary. This is the first factor on the right hand side of (16.35).
Since W, (1) is a projection we have

(Wr()z1,22)5 = (Wr()x1, Wr(¥)22) 6 = (b1,b2) 6,5

which is the second factor on the right hand side of (16.35). We have thus
proved (16.35). O
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Now define
N

i=1

This map is well defined, for if

N
> p(ni)u@b; =0
i=1
then
N
| Z p(ni)u @ bl r@yem, =0
=1

and (16.35) then implies that

N N
1D p(ni)u @ billaeyom, = 1> 7(na)billu = 0.
i=1 i=1

Equation (16.35) also implies that the map I is an isometry where defined. Since
p is irreducible, the elements Zfil p(n;)u are dense in $(£), and so I extends to
an isometry from $(¢) ® $; to $. By Lemma 13 this map is surjective. Hence
I extends to a unitary isomorphism (which clearly is also a morphism of N
modules) between $(¢) ® $; and $. This completes the proof of the Stone - von
Neumann Theorem.



