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Chapter 1

Introduction

Let Rn+1 = Rn × R with coordinates (x1, . . . , xn, t). Let

P = P

(
x, t,

∂

∂x
,
∂

∂t

)
be a k-th order linear partial differential operator. Suppose that we want to
solve the partial differential equation

Pu = 0

with initial conditions

u(x, 0) = δ0(x),
∂i

∂ti
u(x, 0) = 0, i = 1, . . . , k − 1,

where δ0 is the Dirac delta function.
Let ρ be a C∞ function of x of compact support which is identically one

near the origin. We can write

δ0(x) =
1

(2π)n
ρ(x)

∫
Rn
eix·ξdξ.

Let us introduce polar coordinates in ξ space:

ξ = ω · r, ‖ω‖ = 1, r = ‖ξ‖

so we can rewrite the above expression as

δ0(x) =
1

(2π)n
ρ(x)

∫
R+

∫
Sn−1

ei(x·ω)rrn−1drdω

where dω is the measure on the unit sphere Sn−1.
Passing the differential operator under the integrals shows that we are in-

terested in solving the partial differential equation Pu = 0 with the initial
conditions

u(x, 0) = ρ(x)ei(x·ω)rrn−1,
∂i

∂ti
u(x, 0) = 0, i = 1, . . . , k − 1.

13
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1.1 The problem.

More generally, set

r = ~−1

and let

ψ ∈ C∞(Rn).

We look for solutions of the partial differential equation with initial conditions

Pu(x, t) = 0, u(x, 0) = ρ(x)ei
ψ(x)

~ ~−`,
∂i

∂ti
u(x, 0) = 0, i = 1, . . . , k − 1.

(1.1)
Here ` can be any integer; in the preceding example we had ` = 1− n.

1.2 The eikonal equation.

Look for solutions of (1.1) of the form

u(x, t) = a(x, t, ~)eiφ(x,t)/~ (1.2)

where

a(x, t, ~) = ~−`
∞∑
i=0

ai(x, t)~i. (1.3)

1.2.1 The principal symbol.

Define the principal symbol H(x, t, ξ, τ) of the differential operator P by

~ke−i
x.ξ+tτ

~ Pei
x.ξ+tτ

~ = H(x, t, ξ, τ) +O(~). (1.4)

We think of H as a function on T ∗Rn+1.

If we apply P to u(x, t) = a(x, t, ~)eiφ(x,t)/~, then the term of degree ~−k is
obtained by applying all the differentiations to eiφ(x,t)/~. In other words,

~ke−iφ/~Pa(x, t)eiφ/~ = H

(
x, t,

∂φ

∂x
,
∂φ

∂t

)
a(x, t) +O(~). (1.5)

So as a first step we must solve the first order non-linear partial differential
equation

H

(
x, t,

∂φ

∂x
,
∂φ

∂t

)
= 0 (1.6)

for φ. Equation (1.6) is known as the eikonal equation and a solution φ to
(1.6) is called an eikonal . The Greek word eikona εικωνα means image.
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1.2.2 Hyperbolicity.

For all (x, t, ξ) the function

τ 7→ H(x, t, ξ, τ)

is a polynomial of degree (at most) k in τ . We say that P is hyperbolic if this
polynomial has k distinct real roots

τi = τi(x, t, ξ).

These are then smooth functions of (x, t, ξ).

We assume from now on that P is hyperbolic. For each i = 1, . . . , k let

Σi ⊂ T ∗Rn+1

be defined by

Σi = {(x, 0, ξ, τ)|ξ = dxψ, τ = τi(x, 0, ξ)} (1.7)

where ψ is the function occurring in the initial conditions in (1.1). The classical
method for solving (1.6) is to reduce it to solving a system of ordinary differential
equations with initial conditions given by (1.7). We recall the method:

1.2.3 The canonical one form on the cotangent bundle.

If X is a differentiable manifold, then its cotangent bundle T ∗X carries a canon-
ical one form α = αX defined as follows: Let

π : T ∗X → X

be the projection sending any covector p ∈ T ∗xX to its base point x. If v ∈
Tp(T

∗X) is a tangent vector to T ∗X at p, then

dπpv

is a tangent vector to X at x. In other words, dπpv ∈ TxX. But p ∈ T ∗xX is a
linear function on TxX, and so we can evaluate p on dπpv. The canonical linear
differential form α is defined by

〈αp, v〉 := 〈p, dπpv〉 if v ∈ Tp(T ∗X). (1.8)

For example, if our manifold is Rn+1 as above, so that we have coordinates
(x, t, ξ, τ) on T ∗Rn+1 the canonical one form is given in these coordinates by

α = ξ · dx+ τdt = ξ1dx
1 + · · · ξndxn + τdt. (1.9)
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1.2.4 The canonical two form on the cotangent bundle.

This is defined as
ωX = −dαX . (1.10)

Let q1, . . . , qn be local coordinates on X. Then dq1, . . . , dqn are differential
forms which give a basis of T ∗xX at each x in the coordinate neighborhood U .
In other words, the most general element of T ∗xX can be written as p1(dq1)x +
· · ·+ pn(dqn)x. Thus q1, . . . , qn, p1, . . . , pn are local coordinates on

π−1U ⊂ T ∗X.

In terms of these coordinates the canonical one-form is given by

α = p · dq = p1dq
1 + · · ·+ pndq

n

Hence the canonical two-form has the local expression

ω = dq ∧ ·dp = dq1 ∧ dp1 + · · ·+ dqn ∧ dpn. (1.11)

The form ω is closed and is of maximal rank, i.e., ω defines an isomorphism
between the tangent space and the cotangent space at every point of T ∗X.

1.2.5 Symplectic manifolds.

A two form which is closed and is of maximal rank is called symplectic. A
manifold M equipped with a symplectic form is called a symplectic manifold.
We shall study some of the basic geometry of symplectic manifolds in Chapter
2. But here are some elementary notions which follow directly from the def-
initions: A diffeomorphism f : M → M is called a symplectomorphism if
f∗ω = ω. More generally if (M,ω) and (M ′, ω′) are symplectic manifolds then
a diffeomorphism

f : M →M ′

is called a symplectomorphism if

f∗ω′ = ω.

If v is a vector field on M , then the general formula for the Lie derivative of a
differential form Ω with respect to v is given by

DvΩ = i(v)dΩ + di(v)Ω.

This is known as Weil’s identity. See (14.2) in Chapter 14 below. If we take Ω
to be a symplectic form ω, so that dω = 0, this becomes

Dvω = di(v)ω.

So the flow t 7→ exp tv generated by v consists (locally) of symplectomorphisms
if and only if

di(v)ω = 0.
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1.2.6 Hamiltonian vector fields.

In particular, if H is a function on a symplectic manifold M , then the Hamil-
tonian vector field vH associated to H and defined by

i(vH)ω = dH (1.12)

satisfies
(exp tvH)∗ω = ω.

Also
DvHH = i(vH)dH = i(vH)i(vH)ω = ω(vH , vH) = 0.

Thus
(exp tvH)∗H = H. (1.13)

So the flow exp tvH preserves the level sets of H. In particular, it carries the
zero level set - the set H = 0 - into itself.

1.2.7 Isotropic submanifolds.

A submanifold Y of a symplectic manifold is called isotropic if the restriction
of the symplectic form ω to Y is zero. So if

ιY : Y →M

denotes the injection of Y as a submanifold of M , then the condition for Y to
be isotropic is

ι∗Y ω = 0

where ω is the symplectic form of M .
For example, consider the submanifold Σi of T ∗(Rn+1) defined by (1.7).

According to (1.9), the restriction of αRn+1 to Σi is given by

∂ψ

∂x1
dx1 + · · · ∂ψ

∂xn
dxn = dxψ

since t ≡ 0 on Σi. So
ι∗ΣiωRn+1 = −dxdxψ = 0

and hence Σi is isotropic.
Let H be a smooth function on a symplectic manifold M and let Y be an

isotropic submanifold of M contained in a level set of H. For example, suppose
that

H|Y ≡ 0. (1.14)

Consider the submanifold of M swept out by Y under the flow exp tvH . More
precisely suppose that

• vH is transverse to Y in the sense that for every y ∈ Y , the tangent vector
vH(y) does not belong to TyY and
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• there exists an open interval I about 0 in R such that exp tvH(y) is defined
for all t ∈ I and y ∈ Y .

We then get a map

j : Y × I →M, j(y, t) := exp tvH(y)

which allows us to realize Y × I as a submanifold Z of M . The tangent space
to Z at a point (y, t) is spanned by

(exp tvH)∗TYy and vH(exp tvHy)

and so the dimension of Z is dimY + 1.

Proposition 1. With the above notation and hypotheses, Z is an isotropic
submanifold of M .

Proof. We need to check that the form ω vanishes when evaluated on

1. two vectors belonging to (exp tvH)∗TYy and

2. vH(exp tvHy) and a vector belonging to (exp tvH)∗TYy.

For the first case observe that if w1, w2 ∈ TyY then

ω((exp tvH)∗w1, (exp tvH)∗w2) = (exp tvH)∗ω(w1, w2) = 0

since
(exp tvH)∗ω = ω

and Y is isotropic. For the second case observe that i(vH)ω = dH and so for
w ∈ TyY we have

ω(vH(exp tvHy), (exp tvH)∗w) = dH(w) = 0

since H is constant on Y . 2

If we consider the function H arising as the symbol of a hyperbolic equation,
i.e. the function H given by (1.4), then H is a homogeneous polynomial in ξ
and τ of the form b(x, t, ξ)

∏
i(τ − τi), with b 6= 0 so

∂H

∂τ
6= 0 along Σi.

But the coefficient of ∂/∂t in vH is ∂H/∂τ . Now t ≡ 0 along Σi so vH is
transverse to Σi. Our transversality condition is satisfied. We can arrange that
the second of our conditions, the existence of solutions for an interval I can be
satisfied locally. (In fact, suitable compactness conditions that are frequently
satisfied will guarantee the existence of global solutions.)

Thus, at least locally, the submanifold of T ∗Rn+1 swept out from Σi by
exp tvH is an n+ 1 dimensional isotropic submanifold.
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1.2.8 Lagrangian submanifolds.

A submanifold of a symplectic manifold which is isotropic and whose dimension
is one half the dimension of M is called Lagrangian. We shall study Lagrangian
submanifolds in detail in Chapter 2. Here we shall show how they are related
to our problem of solving the eikonal equation (1.6).

The submanifold Σi of T ∗Rn+1 is isotropic and of dimension n. It is transver-
sal to vH . Therefore the submanifold Λi swept out by Σi under exp tvH is
Lagrangian. Also, near t = 0 the projection

π : T ∗Rn+1 → Rn+1

when restricted to Λi is (locally) a diffeomorphism. It is (locally) horizontal
in the sense of the next section.

1.2.9 Lagrangian submanifolds of the cotangent bundle.

To say that a submanifold Λ ⊂ T ∗X is Lagrangian means that Λ has the same
dimension as X and that the restriction to Λ of the canonical one form αX is
closed.

Suppose that Z is a submanifold of T ∗X and that the restriction of π :
T ∗X → X to Z is a diffeomorphism. This means that Z is the image of a
section

s : X → T ∗X.

Giving such a section is the same as assigning a covector at each point of X, in
other words it is a linear differential form. For the purposes of the discussion we
temporarily introduce a redundant notation and call the section s by the name
βs when we want to think of it as a linear differential form. We claim that

s∗αX = βs.

Indeed, if w ∈ TxX then dπs(x) ◦ dsx(w) = w and hence

s∗αX(w) = 〈(αX)s(x), dsx(w)〉 =

= 〈s(x), dπs(x)dsx(w)〉 = 〈s(x), w〉 = βs(x)(w).

Thus the submanifold Z is Lagrangian if and only if dβs = 0. Let us suppose
that X is connected and simply connected. Then dβ = 0 implies that β = dφ
where φ is determined up to an additive constant.

With some slight abuse of language, let us call a Lagrangian submanifold Λ
of T ∗X horizontal if the restriction of π : T ∗X → X to Λ is a diffeomorphism.
We have proved

Proposition 2. Suppose that X is connected and simply connected. Then every
horizontal Lagrangian submanifold of T ∗X is given by a section γφ : X → T ∗X
where γφ is of the form

γφ(x) = dφ(x)

where φ is a smooth function determined up to an additive constant.
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1.2.10 Local solution of the eikonal equation.

We have now found a local solution of the eikonal equation! Starting with
the initial conditions Σi given by (1.7) at t = 0, we obtain the Lagrangian
submanifold Λi. Locally (in x and in t near zero) the manifold Λi is given as
the image of γφi for some function φi. The fact that Λi is contained in the set
H = 0 then implies that φi is a solution of (1.6).

1.2.11 Caustics.

What can go wrong globally? One problem that might arise is with integrating
the vector field vH . As is well known, the existence theorem for non-linear
ordinary differential equations is only local - solutions might “blow up” in a
finite interval of time. In many applications this is not a problem because of
compactness or boundedness conditions. A more serious problem - one which
will be a major concern of this book - is the possibility that after some time the
Lagrangian manifold is no longer horizontal.

If Λ ⊂ T ∗X is a Lagrangian submanifold, we say that a point m ∈ Λ is a
caustic if

dπmTmΛ→ TxX. x = π(m)

is not surjective. A key ingredient in what we will need to do is to describe how
to choose convenient parametrizations of Lagrangian manifolds near caustics.
The first person to deal with this problem (through the introduction of so-called
“angle characteristics”) was Hamilton (1805-1865) in a paper he communicated
to Dr. Brinkley in 1823, by whom, under the title “Caustics” it was presented
in 1824 to the Royal Irish Academy.

We shall deal with caustics in a more general manner, after we have intro-
duced some categorical language.

1.3 The transport equations.

Let us return to our project of looking for solutions of the form (1.2) to the
partial differential equation and initial conditions (1.1). Our first step was to
find the Lagrangian manifold Λ = Λφ which gave us, locally, a solution of the
eikonal equation (1.6). This determines the “phase function” φ up to an overall
additive constant, and also guarantees that no matter what ai’s enter into the
expression for u given by (1.2) and (1.3), we have

Pu = O(~−k−`+1).

The next step is obviously to try to choose a0 in (1.3) such that

P
(
a0e

iφ(x,t)/~
)

= O(~−k+2).

In other words, we want to choose a0 so that there are no terms of order ~−k+1

in P
(
a0e

iφ(x,t)/~). Such a term can arise from three sources:
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1. We can take the terms of degree k−1 in P and apply all the differentiations
to eiφ/~ with none to a or to φ. We will obtain an expression C similar
to the principal symbol but using the operator Q obtained from P by
eliminating all terms of degree k. This expression C will then multiply a0.

2. We can take the terms of degree k in P , apply all but one differentiation
to eiφ/~ and the remaining differentiation to a partial derivative of φ. The
resulting expression B will involve the second partial derivatives of φ. This
expression will also multiply a0.

3. We can take the terms of degree k in P , apply all but one differentiation
to eiφ/~ and the remaining differentiation to a0. So we get a first order
differential operator

n+1∑
i=1

Ai
∂

∂xi

applied to a0. In the above formula we have set t = xn+1 so as to write
the differential operator in more symmetric form.

So the coefficient of ~−k+1 in P
(
a0e

iφ(x,t)/~) is

(Ra0) eiφ(x,t)/~

where R is the first order differential operator

R =
∑

Ai
∂

∂xi
+B + C.

We will derive the explicit expressions for the Ai, B and C below.
The strategy is then to look for solutions of the first order homogenous linear

partial differential equation
Ra0 = 0.

This is known as the first order transport equation.
Having found a0, we next look for a1 so that

P
(

(a0 + a1~)eiφ/~
)

= O(h−k+3).

From the above discussion it is clear that this amounts to solving an inhomoge-
neous linear partial differential equation of the form

Ra1 = b0

where b0 is the coefficient of ~−k+2eiφ/~ in P (a0e
iφ/~) and where R is the same

operator as above. Assuming that we can solve all these equations, we see that
we have a recursive procedure involving the operator R for solving (1.1) to all
orders, at least locally - up until we hit a caustic!

We will find that when we regard P as acting on 1
2 -densities (rather than

on functions) then the operator R has an invariant (and beautiful) expression
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as a differential operator acting on 1
2 -densities on Λ, see equation (1.21) below.

In fact, the differentiation part of the differential operator will be given by the
vector field vH which we know to be tangent to Λ. The differential operator
on Λ will be defined even at caustics. This fact will be central in our study of
global asymptotic solutions of hyperbolic equations.

In the next section we shall assume only the most elementary facts about
1
2 -densities - the fact that the product of two 1

2 -densities is a density and hence
can be integrated if this product has compact support. Also that the concept
of the Lie derivative of a 1

2 -density with respect to a vector field makes sense.
If the reader is unfamiliar with these facts they can be found with many more
details in Chapter 6.

1.3.1 A formula for the Lie derivative of a 1
2
-density.

We want to consider the following situation: H is a function on T ∗X and
Λ is a Lagrangian submanifold of T ∗X on which H = 0. This implies that
the corresponding Hamiltonian vector field is tangent to Λ. Indeed, for any
w ∈ TzΛ, z ∈ Λ we have

ωX(vH , w) = dH(w) = 0

sinceH is constant on Λ. Since Λ is Lagrangian, this implies that vH(z) ∈ Tz(Λ).
If τ is a smooth 1

2 -density on Λ, we can consider its Lie derivative with
respect to the vector field vH restricted to Λ. We want an explicit formula for
this Lie derivative in terms of local coordinates on X on a neighborhood over
which Λ is horizontal.

Let

ι : Λ→ T ∗X

denote the embedding of Λ as submanifold of X so we are assuming that

π ◦ ι : Λ→ X

is a diffeomorphism. (We have replaced X by the appropriate neighborhood
over which Λ is horizontal and on which we have coordinates x1, . . . , xm.) We

let dx
1
2 denote the standard 1

2 -density relative to these coordinates. Let a be a
function on X, so that

τ := (π ◦ ι)∗
(
adx

1
2

)
is a 1

2 -density on Λ, and the most general 1
2 -density on Λ can be written in

this form. Our goal in this section is to compute the Lie derivative DvH τ and
express it in a similar form. We will prove:

Proposition 3. If Λ = Λφ = γφ(X) then

DvH |Λ(π ◦ ι)∗
(
adx

1
2

)
= b(π ◦ ι)∗

(
dx

1
2

)
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where

b = DvH |Λ((π ◦ ι)∗a) + ι∗

1

2

∑
i,j

∂2H

∂ξi∂ξj

∂2φ

∂xi∂xj
+

1

2

∑
i

∂2H

∂ξi∂xi

 ((π ◦ ι)∗a).

(1.15)

Proof. Since Dv(fτ) = (Dvf)τ + fDvτ for any vector field v, function f
and any 1

2 -density τ , it suffices to prove (1.15) for the case the a ≡ 1 in which
case the first term disappears. By Leibnitz’s rule,

DvH (π ◦ ι)∗
(
dx

1
2

)
=

1

2
c(π ◦ ι)∗

(
dx

1
2

)
where

DvH (π ◦ ι)∗|dx| = c(π ◦ ι)∗|dx|.

Here we are computing the Lie derivative of the density (π ◦ ι)∗|dx|, but we get
the same function c if we compute the Lie derivative of the m-form

DvH (π ◦ ι)∗(dx1 ∧ · · · ∧ dxm) = c(π ◦ ι)∗(dx1 ∧ · · · ∧ dxm).

Now π∗(dx1 ∧ · · · ∧ dxm) is a well defined m-form on T ∗X and

DvH |Λ(π ◦ ι)∗(dx1 ∧ · · · ∧ dxm) = ι∗DvHπ
∗(dx1 ∧ · · · ∧ dxm).

We may write dxj instead of π∗dxj with no risk of confusion and we get

DvH (dx1 ∧ · · · ∧ dxm) =
∑
j

dx1 ∧ · · · ∧ d(i(vH)dxj) ∧ · · · ∧ dxm

=
∑
j

dx1 ∧ · · · ∧ d∂H
∂ξj
∧ · · · ∧ dxm

=
∑
j

∂2H

∂ξj∂xj
dx1 ∧ · · · ∧ dxm +

∑
jk

dx1 ∧ · · · ∧ ∂2H

∂ξj∂ξk
dξk ∧ · · · ∧ dxm.

We must apply ι∗ which means that we must substitute dξk = d
(
∂φ
∂xk

)
into the

last expression. We get

c =
∑
i,j

∂2H

∂ξi∂ξj

∂2φ

∂xi∂xj
+
∑
i

∂2H

∂ξi∂xi

proving (1.15). 2
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1.3.2 The total symbol, locally.

Let U be an open subset of Rm and x1, . . . xm the standard coordinates. We
will let Dj denote the differential operator

Dj =
1

i

∂

∂xj
=

1√
−1

∂

∂xj
.

For any multi-index α = (α1, . . . , αm) where the αj are non-negative integers,
we let

Dα := Dα1
1 · · ·Dαm

m

and
|α| := α1 + · · ·+ αm.

So the most general k-th order linear differential operator P can be written as

P = P (x,D) =
∑
|α|≤k

aα(x)Dα.

The total symbol of P is defined as

e−i
x·ξ
~ Pei

x·ξ
~ =

k∑
j=0

~−jpj(x, ξ)

so that
pj(x, ξ) =

∑
|α|=j

aα(x)ξα. (1.16)

So pk is exactly the principal symbol as defined in (1.4).
Since we will be dealing with operators of varying orders, we will denote the

principal symbol of P by

σ(P ).

We should emphasize that the definition of the total symbol is heavily coor-
dinate dependent: If we make a non-linear change of coordinates, the expression
for the total symbol in the new coordinates will not look like the expression in
the old coordinates. However the principal symbol does have an invariant ex-
pression as a function on the cotangent bundle which is a polynomial in the
fiber variables.

1.3.3 The transpose of P .

We continue our study of linear differential operators on an open subset U ⊂ Rn.
If f and g are two smooth functions of compact support on U then∫

U

(Pf)gdx =

∫
U

fP tgdx
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where, by integration by parts,

P tg =
∑

(−1)|α|Dα(aαg).

(Notice that in this definition, following convention, we are using g and not g
in the definition of P t.) Now

Dα(aαg) = aαD
αg + · · ·

where the · · · denote terms with fewer differentiations in g. In particular, the
principal symbol of P t is

ptk(x, ξ) = (−1)kpk(x, ξ). (1.17)

Hence the operator

Q :=
1

2
(P − (−1)kP t) (1.18)

is of order k− 1 The sub-principal symbol is defined as the principal symbol
of Q (considered as an operator of degree (k − 1)). So

σsub(P ) := σ(Q)

where Q is given by (1.18).

1.3.4 The formula for the sub-principal symbol.

We claim that

σsub(P )(x, ξ) = pk−1(x, ξ) +

√
−1

2

∑
i

∂2

∂xi∂ξi
pk(x, ξ). (1.19)

Proof. If pk(x, ξ) ≡ 0, i.e. if P is actually an operator of degree k − 1, then
it follows from (1.17) (applied to k− 1) and (1.18) that the principal symbol of
Q is pk−1 which is the first term on the right in (1.19). So it suffices to prove
(1.19) for operators which are strictly of order k. By linearity, it suffices to
prove (1.19) for operators of the form

aα(x)Dα.

By polarization it suffices to prove (1.19) for operators of the form

a(x)Dk, D =

k∑
j=1

cjDj , ci ∈ R

and then, by making a linear change of coordinates, for an operator of the form

a(x)Dk
1 .
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For this operator

pk(x, ξ) = a(x)ξk1 .

By Leibnitz’s rule,

P tf = (−1)kDk
1 (af)

= (−1)k
∑
j

(
k
j

)
Dj

1aD
k−j
1 f

= (−1)k
(
aDk

1f +
k

i

(
∂a

∂x1

)
Dk−1

1 f + · · ·
)

so

Q =
1

2
(P − (−1)kP t)

= − k
2i

(
∂a

∂x1
Dk−1

1 + · · ·
)

and therefore

σ(Q) =
ik

2

∂a

∂x1
ξk−1
1

=
i

2

∂

∂x1

∂

∂ξ1
(aξk1 )

=
i

2

∑
j

∂2pk
∂xj∂ξj

(x, ξ)

since pk does not depend on ξj for j > 1, in this case. 2

1.3.5 The local expression for the transport operator R.

We claim that

~ke−iφ/~P (ueiφ/~) = pk(x, dφ)u+ ~Ru+ · · ·

where R is the first order differential operator

Ru =

∑
j

∂pk
∂ξj

(x, dφ)Dju+

 1

2
√
−1

∑
ij

∂2pk
∂ξi∂ξj

(x, dφ)
∂2φ

∂xi∂xj
+ pk−1(x, dφ)

u.
(1.20)

Proof. The term coming from pk−1 is clearly the result of applying∑
|α|=k−1

aαD
α.
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So we only need to deal with a homogeneous operator of order k. Since the
coefficients aα are not going to make any difference in this formula, we need
only prove it for the differential operator

P (x,D) = Dα

which we will do by induction on |α|.
For |α| = 1 we have an operator of the form Dj and Leibnitz’s rule gives

~e−iφ/~Dj(ue
iφ/~) =

∂φ

∂xj
u+ ~Dju

which is exactly (1.20) as p1(ξ) = ξj , and so the second and third terms in (1.20)
do not occur.

Suppose we have verified (1.20) for Dα and we want to check it for

DrD
α = Dα+δr .

So

~|α|+1e−iφ/~
(
DrD

α(ueiφ/~)
)

= ~e−iφ/~Dr[(dφ)αueiφ/~ + ~(Rαu)eiφ/~] + · · ·

where Rα denotes the operator in (1.20) corresponding to Dα. A term involving
the zero’th power of ~ can only come from applying the Dr to the exponential
in the first expression and this will yield

(dφ)α+δru

which p|α|+1(dφ)u as desired. In applying Dr to the second term in the square

brackets and multiplying by ~e−iφ/~ we get

~2Dr(Rαu) + ~
∂φ

∂xr
Rαu

and we ignore the first term as we are ignoring all powers of ~ higher than the
first. So all have to do is collect coefficients:

We have

Dr((dφ
α)u) = (dφ)αDru+

1√
−1

[
α1(dφ)α−δ1

∂2φ

∂x1∂xr
+ · · ·+ αm(dφ)α−δm

∂2φ

∂xm∂xr

]
u.

Also
∂φ

∂xr
Rαu =

∑
αi(dφ)α−δi+δrDiu+

1

2
√
−1

∑
ij

αi(αj − δij)(dφ)α−δi−δj+δr
∂2φ

∂xi∂xj
u.
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The coefficient of Dju, j 6= r is

αj(dφ)(α+δr−δj)

as desired. The coefficient of Dru is

(dφ)α + αr(dφ)α = (αr + 1)(dφ)(α+δr)−δr

as desired.

Let us now check the coefficient of ∂2φ
∂xi∂xj

. If i 6= r and j 6= r then the

desired result is immediate.

If j = r, there are two sub-cases to consider: 1) j = r, j 6= i and 2) i = j = r.

If j = r, j 6= i remember that the sum in Rα is over all i and j, so the

coefficient of ∂2φ
∂xi∂xj

in

√
−1

∂φ

∂xr
Rαu

is
1

2
(αiαj + αjαi) (dφ)α−δi = αiαj(dφ)α−δi

to which we add

αi(dφ)α−δi

to get

αi(αj + 1)(dφ)α−δi = (α+ δr)i(α+ δr)j(dφ)α−δi

as desired.

If i = j = r then the coefficient of ∂2φ
(∂xi)2

in

√
−1

∂φ

∂xr
Rαu

is
1

2
αi(αi − 1)(dφ)α−δi

to which we add

αi(dφ)α−δi

giving

1

2
αi(αi + 1)(dφ)α−δi

as desired.

This completes the proof of (1.20).
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1.3.6 Putting it together locally.

We have the following three formulas, some of them rewritten with H instead
of pk so as to conform with our earlier notation: The formula for the transport
operator R given by (1.20):

∑
j

∂H

∂ξj
(x, dφ)Dja+

 1

2
√
−1

∑
ij

∂2H

∂ξi∂ξj
(x, dφ)

∂2φ

∂xi∂xj
+ pk−1(x, dφ)

 a,
and the formula for the Lie derivative with respect to vH of the pull back
(π ◦ ι)∗(adx 1

2 ) given by (π ◦ ι) ∗ bdx 1
2 where b is

∑
j

∂H

∂ξj
(x, dφ)

∂a

∂xj
+

1

2

∑
i,j

∂2H

∂ξi∂ξj
(x, dφ)

∂2φ

∂xi∂xj
+

1

2

∑
i

∂2H

∂ξi∂xi

 a.
This is equation (1.15). Our third formula is the formula for the sub-principal
symbol, equation (1.19), which says that

σsub(P )(x, ξ)a =

[
pk−1(x, ξ) +

√
−1

2

∑
i

∂2H

∂xi∂ξi
(x, ξ)

]
a.

As first order partial differential operators on a, if we multiply the first expres-
sion above by

√
−1 we get the second plus

√
−1 times the third! So we can

write the transport operator as

(π ◦ ι)∗[(Ra)dx
1
2 ] =

1

i
[DvH + iσsub(P )(x, dφ)] (π ◦ ι)∗(adx 1

2 ). (1.21)

The operator inside the brackets on the right hand side of this equation is a
perfectly good differential operator on 1

2 -densities on Λ. We thus have two
questions to answer: Does this differential operator have invariant significance
when Λ is horizontal - but in terms of a general coordinate transformation?
Since the first term in the brackets comes from H and the symplectic form on
the cotangent bundle, our question is one of attaching some invariant significance
to the sub-principal symbol. We will deal briefly with this question in the next
section and at more length in Chapter 6.

The second question is how to deal with the whole method - the eikonal
equation, the transport equations, the meaning of the series in ~ etc. when we
pass through a caustic. The answer to this question will occupy us for the whole
book.

1.3.7 Differential operators on manifolds.

Differential operators on functions.

Let X be an m-dimensional manifold. An operator

P : C∞(X)→ C∞(X)
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is called a differential operator of order k if, for every coordinate patch (U, x1, . . . , xm)
the restriction of P to C∞0 (U) is of the form

P =
∑
|α|≤k

aαD
α, aα ∈ C∞(U).

As mentioned above, the total symbol of P is no longer well defined, but the
principal symbol is well defined as a function on T ∗X. Indeed, it is defined as
in Section 1.2.1: The value of the principal symbol H at a point (x, dφ(x)) is
determined by

H(x, dφ(x))u(x) = ~ke−i
φ
~ (P (uei

φ
~ )(x) +O(~).

What about the transpose and the sub-principal symbol?

Differential operators on sections of vector bundles.

Let E → X and F → X be vector bundles. Let E be of dimension p and
F be of dimension q. We can find open covers of X by coordinate patches
(U, x1, . . . , xm) over which E and F are trivial. So we can find smooth sections
r1, . . . , rp of E such that every smooth section of E over U can be written as

f1r1 + · · · fprp

where the fi are smooth functions on U and smooth sections s1, . . . , sq of F
such that every smooth section of F over U can be written as

g1s1 + · · ·+ gqsq

over U where the gj are smooth functions. An operator

P : C∞(X,E)→ C∞(X,F )

is called a differential operator of order k if, for every such U the restriction of
P to smooth sections of compact support supported in U is given by

P (f1r1 + · · · fprp) =

q∑
j=1

p∑
i=1

Pijfisj

where the Pij are differential operators of order k.
In particular if E and F are line bundles so that p = q = 1 it makes sense

to talk of differential operators of order k from smooth sections of E to smooth
sections of F . In a local coordinate system with trivializations r of E and s of
F a differential operator locally is given by

fr 7→ (Pf)s.

If E = F and r = s it is easy to check that the principal symbol of P is indepen-
dent of the trivialization. (More generally the matrix of principal symbols in the
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vector bundle case is well defined up to appropriate pre and post multiplication
by change of bases matrices, i.e. is well defined as a section of Hom(E,F ) pulled
up to the cotangent bundle. See Chaper II of [?] for the general discussion.)

In particular it makes sense to talk about a differential operator of degree k
on the space of smooth 1

2 -densities and the principal symbol of such an operator.

The transpose and sub-principal symbol of a differential operator on
1
2 -densities.

If µ and ν are 1
2 -densities on a manifold X, their product µ · ν is a density

(of order one). If this product has compact support, for example if µ or ν has
compact support, then the integral ∫

X

µ · ν

is well defined. See Chapter 6 for details. So if P is a differential operator of
degree k on 1

2 -densities, its transpose P t is defined via∫
X

(Pµ) · ν =

∫
X

µ · (P tν)

for all µ and ν one of which has compact support. Locally, in terms of a coordi-
nate neighborhood (U, x1, . . . , xm), every 1

2 -density can be written as fdx
1
2 and

then the local expression for P t is given as in Section 1.3.3. We then define the
operator Q as in equation (1.18) and the sub-principal symbol as the principal
symbol of Q as an operator of degree k − 1 just as in Section 1.3.3.

We have now answered our first question - that of giving a coordinate-free
interpretation to the transport equation: Equation (1.21) makes good invariant
sense if we agree that our differential operator is acting on 1

2 -densities rather
than functions.

1.4 Semi-classical differential operators.

Until now, we have been considering asymptotic solutions to (hyperbolic) partial
differential equations. The parameter ~ entered into the (approximate) solution,
but was not part of the problem. In physics, ~ is a constant which enters
into the formulation of the problem. This is most clearly seen in the study of
Schrödinger’s equation.

1.4.1 Schrödinger’s equation and Weyl’s law.

Consider the Schrödinger operator in n-dimensions:

P (~) : u 7→
(
−~2

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
+ V

)
u.
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In physics ~ is a constant closely related to Planck’s constant. But we want to
think of ~ as a small parameter. Weyl’s law says that, under appropriate growth
hypotheses on V , the operators P (~) have discrete spectrum (cf. Chapter 13,
especially Section ?? ) and that for any pair of real numbers a < b the number
of eigenvalues E(~) of P (~) between a and b can estimated by a certain volume
in phase space:

# {E(~) : a ≤ E(~) ≤ b}

=
1

(2π~)n
[
Vol

(
a ≤ ‖ξ‖2 + V (x) ≤ b

)
+ o(1)

]
. (1.22)

Physicists know Weyl’s law as the “formula for the density of states”.
We will give a proof of (1.22) in Chapter 9. For the moment, let us do two

special cases where we can compute the spectrum explicitly, and so verify Weyl’s
law.

1.4.2 The harmonic oscillator.

Here V is assumed to be a positive definite quadratic function of x. The following
exposition is taken from Evans and Zworski.

n = 1, ~ = 1.

This is taught in all elementary quantum mechanics courses. The operator
P = P (1) is

Pu =

(
− d2

dx2
+ x2

)
u.

We have

d

dx
e−x

2/2 = −xe−x
2/2 so

d2

dx2
e−x

2/2 = −e−x
2/2 + x2e−x

2/2

and hence e−x
2/2 is an eigenvector of P with eigenvalue 1. The remaining

eigenvalues are found by the method of “spectrum generating algebras”: Define
the creation operator

A+ := D + ix.

Here

D =
1

i

d

dx

and ix denotes the operator of multiplication by ix. Notice that D is formally
self-adjoint in the sense that integration by parts shows that∫

R
(Df)gdx =

∫
R
fDgdx

for all smooth functions vanishing at infinity. Even more directly the operator
of multiplication by ix is skew adjoint so we can write

A∗+ = A− := D − ix
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in the formal sense. The operator A− is called the annihilation operator.
Also

A+A−u = −uxx − (xu)x + xux + x2u

= −uxx − u+ x2u

= Pu− u
and

A−A+u = −uxx + (xu)x − xux + x2u

= Pu+ u.

So we have proved
P = A+A− + I = A−A+ − I. (1.23)

Notice that
A−

(
e−x

2/2
)

= ixe−x
2/2 − ixe−x

2/2 = 0

so the first equation above shows again that

v0(x) := e−x
2/2

is an eigenvector of P with eigenvalue 1. Let v1 := A+v0. Then

Pv1 = (A+A−+I)A+v0 = A+(A−A+−I)v0 +2A+v0 = A+Pv0 +2A+v0 = 3v1.

So v1 is an eigenvector of P with eigenvalue 3. Proceeding inductively, we see
that if we define

vn := An+v0

then vn is an eigenvector of P with eigenvalue 2n+ 1.
Also,

[A−, A+] = A−A+ −A+A− = P + I − (P − I) = 2I.

This allows us to conclude the (vn, vm) = 0 if m 6= n. Indeed, we may suppose
that m > n. Then (vn, vm) = (An+, v0, A

m
+ v0) = (Am−A

n
+v0, v0) since A− = A∗+.

If n = 0 this is 0 since A−v0=0. If n > 0 then

Am−A
n
+ = Am−1

− A−A+A
n−1
+ = Am−1

− (A+A− + 2I)An−1
+ .

By repeated use of this argument, we end up with a sum of expressions all being
left multiples of A− and hence give 0 when applied to v0.

We let

un :=
1

‖vn‖
vn

so that the un form an orthonormal set of eigenvectors. By construction, the
vn, and hence the un, are polynomials of degree (at most) n times v0. So we
have

un(x) = Hn(x)e−x
2/2
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and the Hn are called the Hermite polynomials of degree n. Since the un are
linearly independent and of degree at most n, the coefficient of xn in Hn can
not vanish.

Finally, the un form a basis of L2(R). To prove this, we must show that
if g ∈ L2(R) is orthogonal to all the un then g = 0. To see that this is so,

if, (g, un) = 0 for all n, then (g, pe−x
2/2) = 0 for all polynomials. Take p

to be the n-th Taylor expansion of eix. These are all majorized by e|x| and
e|x|e−x

2/2 ∈ L2(R). So from the Lebesgue dominated convergence theorem

we see that (g, eixe−x
2/2) = 0 which says that the Fourier transform of ge−x

2/2

vanishes. This implies that ge−x
2/2 ≡ 0. Since e−x

2/2 does not vanish anywhere,
this implies that g = 0.

~ = 1, n arbitrary.

We may identify L2(Rn) with the (completed) tensor product

L2(R)⊗̂ · · · ⊗̂L2(R) n− factors

where ⊗̂ denotes the completed tensor product.
Then the n-dimensional Schrödinger harmonic oscillator has the form

P ⊗̂I⊗̂ · · · ⊗̂I + I⊗̂P ⊗̂ · · · ⊗̂I + · · ·+ I⊗̂ · · · ⊗̂P

where P is the one dimensional operator. So the tensor products of the u’s
form an orthonormal basis of L2(Rn) consisting of eigenvectors. Explicitly, let
α = (α1, . . . , αn) be a multi-index of non-negative integers and

uα(x1, . . . , xn) :=

n∏
j=1

Hαj (xj)e
− 1

2 (x2
1+···+x2

n).

Then the uα are eigenvectors of the operator

u 7→ −
(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
u+ ‖x‖2u

with eigenvalues
2|α|+ n

where
|α| := α1 + · · ·+ αn.

Furthermore the uα form an orthonormal basis of L2(Rn).

n = 1, ~ arbitrary.

Consider the “rescaling operator”

S~ : u(x) 7→ ~−
1
4u

(
x

~ 1
2

)
.
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This is a unitary operator on L2(R) and on smooth functions we have

d

dx
◦ S~ = ~−

1
2S~ ◦

d

dx

and
x2S~u = ~S~(x2u).

So (
−~2 d

2

dx2
+ x2

)
S~u = ~S~

(
− d2

dx2
+ x2

)
u.

This shows that if we let
uj,~(x) = S~(uj)

Then the uj,~ form an orthonormal basis of L2(R) and are eigenvectors of P (~)
with eigenvalues ~(2j + 1).

n and ~ arbitrary.

We combine the methods of the two previous sections and conclude that

uα,~(x) := ~−n/4
n∏
1

Hαj

(
xj

~ 1
2

)
e−
‖x‖2
2~

are eigenvectors of P (~) with eigenvalues

Eα(~) = (2|α|+ n)~, (1.24)

and the uα,~ form an orthonormal basis of L2(Rn).

Verifying Weyl’s law.

In verifying Weys’ law we may take a = 0 so

# {E(~)|0 ≤ E(~) ≤ b} =

{
α|0 ≤ 2|α|+ n ≤ b

~

}

=

{
α|α1 + · · ·+ αn ≤

b− n~
2~

}
,

the number of lattice points in the simplex

x1 ≥ 0, . . . xn ≥ 0, x1 + · · ·xn ≤
b− n~

~
.

This number is (up to lower order terms) the volume of this simplex. Also, up
to lower order terms we can ignore the n~ in the numerator. Now the volume
of the simplex is 1/n!× the volume of the cube. So

# {E(~)|0 ≤ E(~) ≤ b} =
1

n!

(
b

2~

)n
+ o

(
1

~n

)
.
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This gives the left hand side of Weyl’s formula. As to the right hand side,

Vol
({
‖x‖2 + ‖ξ‖2 ≤ b

})
is the volume of the ball of radius b in 2n-dimensional space which is πnbn/n!,
as we recall below. This proves Weyl’s formula for the harmonic oscillator.

Recall about the volume of spheres in Rk.

Let Ak−1 denote the volume of the k − 1 dimensional unit sphere and Vk the
volume of the k-dimensional unit ball, so

Vk = Ak−1

∫ 1

0

rk−1dr =
1

k
Ak−1.

The integral
∫∞
−∞ e−x

2

dx is evaluated as
√
π by the trick

(∫ ∞
−∞

e−x
2

dx

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy = 2π

∫ ∞
0

re−r
2

dr = π.

So

πk/2 =

(∫ ∞
−∞

e−x
2

dx

)k
= Ak−1

∫ ∞
0

rk−1e−r
2

dr.

The usual definition of the Gamma function is

Γ(y) =

∫ ∞
0

ty−1e−tdt.

If we set t = r2 this becomes

Γ(y) = 2

∫ ∞
0

e−r
2

r2y−1dr.

So if we plug this back into the preceding formula we see that

Ak−1 =
2πk/2

Γ(k2 )
.

Taking k = 2n this gives

A2n−1 =
2πn

(n− 1)!

and hence

V2n =
πn

n!
.
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1.5 The Schrödinger operator on a Riemannian
manifold.

As a generalization of the Schrödinger operator we studied above, we can con-
sider the operator

~2∆ + V

where ∆ is the Laplacian of a Riemann manifold M . For example, if M is
compact, then standard elliptical engineering tells us that this operator has
discrete spectrum. Then once again Weyl’s law is true, and the problem of
estimating the “remainder” is of great interest.

We saw that Weyl’s law in the case of a harmonic oscillator on Euclidean
space involved counting the number of lattice points in a symplex. The problem
of counting the number of lattice points in a polytope has attracted a lot of
attention in recent years.

1.5.1 Weyl’s law for a flat torus with V = 0.

Let us illustrate Weyl’s law for the Schrödinger operator on a Riemannian man-
ifold by examining what you might think is an “‘easy case”. Let M be the torus
M = (R/(2πZ) × (R/(2πZ) and take the flat (Euclidean) metric so that the
Laplacian is

∆ = −
(
∂2

∂x2
+

∂2

∂y2

)
and take V ≡ 0! For simplicity in notation I will work with ~ = 1. The
eigenvectors of ∆ are the functions φm,n where

φm,n(x, y) = eimx+ny

as m,n range over the integers and the corresponding eigenvalues are m2 + n2.
So the number of eigenvalues ≤ r2 is the number of lattice points in the disk of
radius r centered at the origin.

The corresponding region in phase space (with a slight change in notation)
is the set of all (x, y, ξ, η) such that ξ2 + η2 ≤ r2. Since this condition does not
involve x or y, this four dimensional volume is (2π)2× the area of the disk of
radius r. So we have verified Weyl’s law.

But the problem of estimating the remainder is one of the great unsolved
problems of mathematics: Gauss’ problem in estimating the error term in count-
ing the number of lattice points in a disk of radius r.

In the 1920’s van der Corput made a major advance in this problem by
introducing the method of stationary phase for this purpose, as we will expain
in Chapter 15.
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1.6 The plan.

We need to set up some language and prove various facts before we can return to
our program of extending our method - the eikonal equation and the transport
equations - so that they work past caustics.

In Chapter 2 we develop some necessary facts from symplectic geometry. In
Chapter 3 we review some of the language of category theory. We also present a
“baby” version of what we want to do later. We establish some facts about the
category of finite sets and relations which will motivate similar constructions
when we get to the symplectic “category” and its enhancement. We describe
this symplectic “category” in Chapter 4. The objects in this “category” are
symplectic manifolds and the morphisms are canonical relations. The quota-
tion marks around the word “category” indicates that not all morphisms are
composible.

In Chapter 5 we use this categorical language to explain how to find a local
description of a Lagrangian submanifold of the cotangent bundle via “generating
functions”, a description which is valid even at caustics. The basic idea here
goes back to Hamilton. But since this description depends on a choice, we
must explain how to pass from one generating function to another. The main
result here is the Hormander-Morse lemma which tells us that passage from one
generating function to another can be accomplished by a series of “moves”. The
key analytic tool for proving this lemma is the method of stationary phase which
we explain in Chapter 15. In Chapter 6 we study the calculus of 1

2 -densities,
and in Chapter 7 we use half-densities to enhance the symplectic “category”. In
Chapter 8 we get to the main objects of study, which are oscillatory 1

2 -densities
and develop their symbol calculus from an abstract and functorial point of
view. In Chapter 9 we show how to turn these abstract considerations into local
computations. In Chapter 14 we review the basic facts about the calculus of
differential forms. In particular we review the Weil formula for the Lie derivative
and the Moser trick for proving equivalence. In Chapter 13 we summarize, for
the reader’s convenience, various standard facts about the spectral theorem for
self-adjoint operators on a Hilbert space.



Chapter 2

Symplectic geometry.

2.1 Symplectic vector spaces.

Let V be a (usually finite dimensional) vector space over the real numbers. A
symplectic structure on V consists of an antisymmetric bilinear form

ω : V × V → R

which is non-degenerate. So we can think of ω as an element of ∧2V ∗ when V
is finite dimensional, as we shall assume until further notice. A vector space
equipped with a symplectic structure is called a symplectic vector space.

A basic example is R2 with

ωR2

((
a
b

)
,

(
c
d

))
:= det

(
a b
c d

)
= ad− bc.

We will call this the standard symplectic structure on R2.
So if u, v ∈ R2 then ωR2(u, v) is the oriented area of the parallelogram

spanned by u and v.

2.1.1 Special kinds of subspaces.

If W is a subspace of symplectic vector space V then W⊥ denotes the symplectic
orthocomplement of W :

W⊥ := {v ∈ V | ω(v, w) = 0, ∀w ∈W}.

A subspace is called

1. symplectic if W ∩W⊥ = {0},

2. isotropic if W ⊂W⊥,

3. coisotropic if W⊥ ⊂W , and

39



40 CHAPTER 2. SYMPLECTIC GEOMETRY.

4. Lagrangian if W = W⊥.

Since (W⊥)⊥ = W by the non-degeneracy of ω, it follows that W is symplec-
tic if and only if W⊥ is. Also, the restriction of ω to any symplectic subspace
W is non-degenerate, making W into a symplectic vector space. Conversely,
to say that the restriction of ω to W is non-degenerate means precisely that
W ∩W⊥ = {0}.

2.1.2 Normal forms.

For any non-zero e ∈ V we can find an f ∈ V such that ω(e, f) = 1 and so
the subspace W spanned by e and f is a two dimensional symplectic subspace.
Furthermore the map

e 7→
(

1
0

)
, f 7→

(
0
1

)
gives a symplectic isomorphism of W with R2 with its standard symplectic
structure. We can apply this same construction to W⊥ if W⊥ 6= 0. Hence, by
induction, we can decompose any symplectic vector space into a direct sum of
two dimensional symplectic subspaces:

V = W1 ⊕ · · ·Wd

where dim V = 2d (proving that every symplectic vector space is even dimen-
sional) and where the Wi are pairwise (symplectically) orthogonal and where
each Wi is spanned by ei, fi with ω(ei, fi) = 1. In particular this shows that
all 2d dimensional symplectic vector spaces are isomorphic, and isomorphic to
a direct sum of d copies of R2 with its standard symplectic structure.

2.1.3 Existence of Lagrangian subspaces.

Let us collect the e1, . . . , ed in the above construction and let L be the subspace
they span. It is clearly isotropic. Also, e1, . . . , en, f1, . . . , fd form a basis of V .
If v ∈ V has the expansion

v = a1e1 + · · · aded + b1f1 + · · ·+ bdfd

in terms of this basis, then ω(ei, v) = bi. So v ∈ L⊥ ⇒ v ∈ L. Thus L is
Lagrangian. So is the subspace M spanned by the f ’s.

Conversely, if L is a Lagrangian subspace of V and if M is a complementary
Lagrangian subspace, then ω induces a non-degenerate linear pairing of L with
M and hence any basis e1, · · · ed picks out a dual basis f1, · · · .fd of M giving a
basis of V of the above form.

2.1.4 Consistent Hermitian structures.

In terms of the basis e1, . . . , en, f1, . . . , fd introduced above, consider the linear
map

J : ei 7→ −fi, fi 7→ ei.
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It satisfies

J2 = −I, (2.1)

ω(Ju, Jv) = ω(u, v), and (2.2)

ω(Ju, v) = ω(Jv, u). (2.3)

Notice that any J which satisfies two of the three conditions above auto-
matically satisfies the third. Condition (2.1) says that J makes V into a d-
dimensional complex vector space. Condition (2.2) says that J is a symplectic
transformation, i.e acts so as to preserve the symplectic form ω. Condition (2.3)
says that ω(Ju, v) is a real symmetric bilinear form.

All three conditions (really any two out of the three) say that ( , ) = ( , )ω,J
defined by

(u, v) = ω(Ju, v) + iω(u, v)

is a semi-Hermitian form whose imaginary part is ω. For the J chosen above
this form is actually Hermitian, that is the real part of ( , ) is positive definite.

2.2 Lagrangian complements.

The results of this section will be used extensively, especially in Chapter 5.
Let V be a symplectic vector space.

Proposition 4. Given any finite collection of Lagrangian subspaces M1, . . . ,Mk

of V one can find a Lagrangian subspace L such that

L ∩Mj = {0}, i = 1, . . . k.

Proof. We can always find an isotropic subspace L with L∩Mj = {0}, i =
1, . . . k, for example a line which does not belong to any of these subspaces.
Suppose that L is an isotropic subspace with L ∩ Mj = {0}, ∀j and is not
properly contained in a larger isotropic subspace with this property. We claim
that L is Lagrangian. Indeed, if not, L⊥ is a coisotropic subspace which strictly
contains L. Let π : L⊥ → L⊥/L be the quotient map. Each of the spaces
π(L⊥ ∩Mj) is an isotropic subspace of the symplectic vector space L⊥/L and
so each of these spaces has positive codimension. So we can choose a line ` in
L⊥/L which does not intersect any of the π(L⊥ ∩Mj). Then L′ := π−1(`) is an
isotropic subspace of L⊥ ⊂ V with L′ ∩Mj = {0}, ∀ j and strictly containing
L, a contradiction. 2

In words, given a finite collection of Lagrangian subspaces, we can find a
Lagrangian subspace which is transversal to all of them.

2.2.1 Choosing Lagrangian complements “consistently”.

The results of this section are purely within the framework of symplectic linear
algebra. Hence their logical place is here. However their main interest is that
they serve as lemmas for more geometrical theorems, for example the Weinstein
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isotropic embedding theorem. The results here all have to do with making
choices in a “consistent” way, so as to guarantee, for example, that the choices
can be made to be invariant under the action of a group.

For any a Lagrangian subspace L ⊂ V we will need to be able to choose
a complementary Lagrangian subspace L′, and do so in a consistent manner,
depending, perhaps, on some auxiliary data. Here is one such way, depending
on the datum of a symmetric positive definite bilinear form B on V . (Here B
has nothing to do with with the symplectic form.)

Let LB be the orthogonal complement of L relative to the form B. So

dimLB = dimL =
1

2
dimV

and any subspace W ⊂ V with

dimW =
1

2
dimV and W ∩ L = {0}

can be written as

graph(A)

where A : LB → L is a linear map. That is, under the vector space identification

V = LB ⊕ L

the elements of W are all of the form

w +Aw, w ∈ LB .

We have

ω(u+Au,w +Aw) = ω(u,w) + ω(Au,w) + ω(u,Aw)

since ω(Au,Aw) = 0 as L is Lagrangian. Let C be the bilinear form on LB

given by

C(u,w) := ω(Au,w).

Thus W is Lagrangian if and only if

C(u,w)− C(w, u) = −ω(u,w).

Now

Hom(LB , L) ∼ L⊗ LB∗ ∼ LB∗ ⊗ LB∗

under the identification of L with LB∗ given by ω. Thus the assignment A↔ C
is a bijection, and hence the space of all Lagrangian subspaces complementary
to L is in one to one correspondence with the space of all bilinear forms C on
LB which satisfy C(u,w) − C(w, u) = −ω(u,w) for all u,w ∈ LB . An obvious
choice is to take C to be − 1

2ω restricted to LB . In short,
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Proposition 5. Given a positive definite symmetric form on a symplectic vector
space V , there is a consistent way of assigning a Lagrangian complement L′ to
every Lagrangian subspace L.

Here the word “consistent” means that the choice depends only on B. This
has the following implication: Suppose that T is a linear automorphism of V
which preserves both the symplectic form ω and the positive definite symmetric
form B. In other words, suppose that

ω(Tu, Tv) = ω(u, v) and B(Tu, Tv) = B(u, v) ∀ u, v ∈ V.

Then if L 7→ L′ is the correspondence given by the proposition, then

TL 7→ TL′.

More generally, if T : V →W is a symplectic isomorphism which is an isometry
for a choice of positive definite symmetric bilinear forms on each, the above
equation holds.

Given L and B (and hence L′) we determined the complex structure J by

J : L→ L′, ω(u, Jv) = B(u, v) u, v ∈ L

and then
J := −J−1 : L′ → L

and extending by linearity to all of V so that

J2 = −I.

Then for u, v ∈ L we have

ω(u, Jv) = B(u, v) = B(v, u) = ω(v, Ju)

while
ω(u, JJv) = −ω(u, v) = 0 = ω(Jv, Ju)

and
ω(Ju, JJv) = −ω(Ju, v) = −ω(Jv, u) = ω(Jv, JJu)

so (2.3) holds for all u, v ∈ V . We should write JB,L for this complex structure,
or JL when B is understood

Suppose that T preserves ω and B as above. We claim that

JTL ◦ T = T ◦ JL (2.4)

so that T is complex linear for the complex structures JL and JTL. Indeed, for
u, v ∈ L we have

ω(Tu, JTLTv) = B(Tu, Tv)

by the definition of JTL. Since B is invariant under T the right hand side equals
B(u, v) = ω(u, JLv) = ω(Tu, TJLv) since ω is invariant under T . Thus

ω(Tu, JTLTv) = ω(Tu, TJLv)
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showing that

TJL = JTLT

when applied to elements of L. This also holds for elements of L′. Indeed every
element of L′ is of the form JLu where u ∈ L and TJLu ∈ TL′ so

JTLTJLu = −J−1
TLTJLu = −Tu = TJL(JLu). 2

Let I be an isotropic subspace of V and let I⊥ be its symplectic orthogonal
subspace so that I ⊂ I⊥. Let

IB = (I⊥)B

be the B-orthogonal complement to I⊥. Thus

dim IB = dim I

and since IB ∩ I⊥ = {0}, the spaces IB and I are non-singularly paired under
ω. In other words, the restriction of ω to IB ⊕ I is symplectic. The proof of
the preceding proposition gives a Lagrangian complement (inside IB ⊕ I) to I
which, as a subspace of V has zero intersection with I⊥. We have thus proved:

Proposition 6. Given a positive definite symmetric form on a symplectic vector
space V , there is a consistent way of assigning an isotropic complement I ′ to
every co-isotropic subspace I⊥.

We can use the preceding proposition to prove the following:

Proposition 7. Let V1 and V2 be symplectic vector spaces of the same dimen-
sion, with I1 ⊂ V1 and I2 ⊂ V2 isotropic subspaces, also of the same dimension.
Suppose we are given

• a linear isomorphism λ : I1 → I2 and

• a symplectic isomorphism ` : I⊥1 /I1 → I⊥2 /I2.

Then there is a symplectic isomorphism

γ : V1 → V2

such that

1. γ : I⊥1 → I⊥2 and (hence) γ : I1 → I2,

2. The map induced by γ on I⊥1 /I1 is ` and

3. The restriction of γ to I1 is λ.

Furthermore, in the presence of positive definite symmetric bilinear forms B1

on V1 and B2 on V2 the choice of γ can be made in a “canonical” fashion.
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Indeed, choose isotropic complements I1B to I⊥1 and I2B to I⊥2 as given by
the preceding proposition, and also choose B orthogonal complements Y1 to I1
inside I⊥1 and Y2 to I2 inside I⊥2 . Then Yi (i = 1, 2) is a symplectic subspace
of Vi which can be identified as a symplectic vector space with I⊥i /Ii. We thus
have

V1 = (I1 ⊕ I1B)⊕ Y1

as a direct sum decomposition into the sum of the two symplectic subspaces
(I1⊕I1B) and Y1 with a similar decomposition for V2. Thus ` gives a symplectic
isomorphism of Y1 → Y2. Also

λ⊕ (λ∗)−1 : I1 ⊕ I1B → I2 ⊕ I2B
is a symplectic isomorphism which restricts to λ on I1. 2

2.3 Equivariant symplectic vector spaces.

Let V be a symplectic vector space. We let Sp(V ) denote the group of all
all symplectic automorphisms of V , i.e all maps T which satisfy ω(Tu, Tv) =
ω(u, v) ∀ u, v ∈ V .

A representation τ : G → Aut(V ) of a group G is called symplectic if in
fact τ : G→ Sp(V ). Our first task will be to show that if G is compact, and τ
is symplectic, then we can find a J satisfying (2.1) and (2.2), which commutes
with all the τ(a), a ∈ G and such that the associated Hermitian form is positive
definite.

2.3.1 Invariant Hermitian structures.

Once again, let us start with a positive definite symmetric bilinear form B. By
averaging over the group we may assume that B is G invariant. (Here is where
we use the compactness of G.) Then there is a unique linear operator K such
that

B(Ku, v) = ω(u, v) ∀ u, v ∈ V.
Since both B and ω are G-invariant, we conclude that K commutes with all
the τ(a), a ∈ G. Since ω(v, u) = −ω(u, v) we conclude that K is skew adjoint
relative to B, i.e. that

B(Ku, v) = −B(u,Kv).

Also K is non-singular. Then K2 is symmetric and non-singular, and so V can
be decomposed into a direct sum of eigenspaces of K2 corresponding to distinct
eigenvalues, all non-zero. These subspaces are mutually orthogonal under B
and invariant under G. If K2u = µu then

µB(u, u) = B(K2u, u) = −B(Ku,Ku) < 0

so all these eigenvalues are negative; we can write each µ as µ = −λ2, λ > 0.
Furthermore, if K2u = −λ2u then

K2(Ku) = KK2u = −λ2Ku
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so each of these eigenspaces is invariant under K. Also, any two subspaces
corresponding to different values of λ2 are orthogonal under ω. So we need only
define J on each such subspace so as to commute with all the τ(a) and so as to
satisfy (2.1) and (2.2), and then extend linearly. On each such subspace set

J := λK−1.

Then (on this subspace)
J2 = λ2K−2 = −I

and
ω(Ju, v) = λω(K−1u, v) = λB(u, v)

is symmetric in u and v. Furthermore ω(Ju, u) = λB(u, u) > 0. 2

Notice that if τ is irreducible, then the Hermitian form ( , ) = ω(J ·, ·) +
iω(·, ·) is uniquely determined by the property that its imaginary part is ω.

2.3.2 The space of fixed vectors for a compact group of
symplectic automorphisms is symplectic.

If we choose J as above, if τ(a)u = u then τ(a)Ju = Ju. So the space of fixed
vectors is a complex subspace for the complex structure determined by J . But
the restriction of a positive definite Hermitian form to any (complex) subspace
is again positive definite, in particular non-singular. Hence its imaginary part,
the symplectic form ω, is also non-singular. 2 This result need not be true
if the group is not compact. For example, the one parameter group of shear
transformations (

1 t
0 1

)
in the plane is symplectic as all of these matrices have determinant one. But
the space of fixed vectors is the x-axis.

2.3.3 Toral symplectic actions.

Suppose that G = Tn is an n-dimensional torus, and that g denotes its Lie
algebra. Then exp:g → G is a surjective homomorphism, whose kernel ZG is a
lattice.

If τ : G → U(V ) as above, we can decompose V into a direct sum of one
dimensional complex subspaces

V = V1 ⊕ · · · ⊕ Vd

where the restriction of τ to each subspace is given by

τ|Vk(exp ξ)v = e2πiαk(ξ)v

where
αk ∈ Z∗G,

the dual lattice.
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2.4 Symplectic manifolds.

Recall that a manifold M is called symplectic if it comes equipped with a
closed non-degenerate two form ω. A diffeomorphism is called symplectic if it
preserves ω. We shall usually shorten the phrase “symplectic diffeomorphism”
to symplectomorphism

A vector field v is called symplectic if

Dvω = 0.

Since Dvω = dι(v)ω + ι(v)dω = dι(v)ω as dω = 0, a vector field v is symplectic
if and only if ι(v)ω is closed.

Recall that a vector field v is called Hamiltonian if ι(v)ω is exact. If θ is
a closed one form, and v a vector field, then Dvθ = dι(v)θ is exact. Hence if v1

and v2 are symplectic vector fields

Dv1ι(v2)ω = ι([v1, v2])ω

so [v1, v2] is Hamiltonian with

ι([v1, v2])ω = dω(v2, v1).

2.5 Darboux style theorems.

These are theorems which state that two symplectic structures on a manifold
are the same or give a normal form near a submanifold etc. We will prove them
using the Moser-Weinstein method. This method hinges on the basic formula
of differential calculus: If ft : X → Y is a smooth family of maps and ωt is a
one parameter family of differential forms on Y then

d

dt
f∗t ωt = f∗t

d

dt
ωt +Qtdωt + dQtωt (2.5)

where
Qt : Ωk(Y )→ Ωk−1(X)

is given by

Qtτ(w1, . . . , wk−1) := τ(vt, dft(w1), . . . , dft(wk−1))

where

vt : X → T (Y ), vt(x) :=
d

dt
ft(x).

If ωt does not depend explicitly on t then the first term on the right of (2.5)
vanishes, and integrating (2.5) with respect to t from 0 to 1 gives

f∗1 − f∗0 = dQ+Qd, Q :=

∫ 1

0

Qtdt. (2.6)

We give a review of all of this in Chapter 14. We urge the reader who is
unfamiliar with these ideas to pause here and read Chapter 14.

Here is the first Darboux type theorem:
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2.5.1 Compact manifolds.

Theorem 1. Let M be a compact manifold, ω0 and ω1 two symplectic forms
on M in the same cohomology class so that

ω1 − ω0 = dα

for some one form α. Suppose in addition that

ωt := (1− t)ω0 + tω1

is symplectic for all 0 ≤ t ≤ 1. Then there exists a diffeomorphism f : M →M
such that

f∗ω1 = ω0.

Proof. Solve the equation
ι(vt)ωt = −α

which has a unique solution vt since ωt is symplectic. Then solve the time
dependent differential equation

dft
dt

= vt(ft), f0 = id

which is possible since M is compact. Since

dωt
dt

= dα,

the fundamental formula (2.5) gives

df∗t ωt
dt

= f∗t [dα+ 0− dα] = 0

so
f∗t ωt ≡ ω0.

In particular, set t = 1. 2

This style of argument was introduced by Moser and applied to Darboux
type theorems by Weinstein.

Here is a modification of the above:

Theorem 2. Let M be a compact manifold, and ωt, 0 ≤ t ≤ 1 a family of
symplectic forms on M in the same cohomology class.

Then there exists a diffeomorphism f : M →M such that

f∗ω1 = ω0.

Proof. Break the interval [0, 1] into subintervals by choosing t0 = 0 < t1 < t2 <
· · · < tN = 1 and such that on each subinterval the “chord” (1− s)ωti + sωti+1

is close enough to the curve ω(1−s)ti+sti+1
so that the forms (1− s)ωti + sωti+1

are symplectic. Then successively apply the preceding theorem. 2
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2.5.2 Compact submanifolds.

The next version allows M to be non-compact but has to do with with behavior
near a compact submanifold. We will want to use the following proposition:

Proposition 8. Let X be a compact submanifold of a manifold M and let

i : X →M

denote the inclusion map. Let γ ∈ Ωk(M) be a k-form on M which satisfies

dγ = 0

i∗γ = 0.

Then there exists a neighborhood U of X and a k− 1 form β defined on U such
that

dβ = γ

β|X = 0.

(This last equation means that at every point p ∈ X we have

βp(w1, . . . , wk−1) = 0

for all tangent vectors, not necessarily those tangent to X. So it is a much
stronger condition than i∗β = 0.)

Proof. By choice of a Riemann metric and its exponential map, we may find
a neighborhood of W of X in M and a smooth retract of W onto X, that is a
one parameter family of smooth maps

rt : W →W

and a smooth map π : W → X with

r1 = id, r0 = i ◦ π, π : W → X, rt ◦ i ≡ i.

Write
drt
dt

= wt ◦ rt

and notice that wt ≡ 0 at all points of X. Hence the form

β := Qγ

has all the desired properties where Q is as in (2.6). 2

Theorem 3. Let X,M and i be as above, and let ω0 and ω1 be symplectic forms
on M such that

i∗ω1 = i∗ω0
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and such that
(1− t)ω0 + tω1

is symplectic for 0 ≤ t ≤ 1. Then there exists a neighborhood U of M and a
smooth map

f : U →M

such that
f|X = id and f∗ω0 = ω1.

Proof. Use the proposition to find a neighborhood W of X and a one form α
defined on W and vanishing on X such that

ω1 − ω0 = dα

on W . Let vt be the solution of

ι(vt)ωt = −α

where ωt = (1 − t)ω0 + tω1. Since vt vanishes identically on X, we can find
a smaller neighborhood of X if necessary on which we can integrate vt for
0 ≤ t ≤ 1 and then apply the Moser argument as above. 2

A variant of the above is to assume that we have a curve of symplectic forms
ωt with i∗ωt independent of t.

Finally, a very useful variant is Weinstein’s

Theorem 4. X,M, i as above, and ω0 and ω1 two symplectic forms on M such
that ω1|X = ω0|X . Then there exists a neighborhood U of M and a smooth map

f : U →M

such that
f|X = id and f∗ω0 = ω1.

Here we can find a neighborhood of X such that

(1− t)ω0 + tω1

is symplectic for 0 ≤ t ≤ 1 since X is compact. 2

One application of the above is to take X to be a point. The theorem
then asserts that all symplectic structures of the same dimension are locally
symplectomorphic. This is the original theorem of Darboux.

2.5.3 The isotropic embedding theorem.

Another important application of the preceding theorem is Weinstein’s isotropic
embedding theorem: Let (M,ω) be a symplectic manifold, X a compact mani-
fold, and i : X →M an isotropic embedding, which means that dix(TX)x is an
isotropic subspace of TMi(x) for all x ∈ X. Thus

dix(TX)x ⊂ (dix(TX)x)⊥
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where (dix(TX)x)⊥ denotes the orthogonal complement of dix(TX)x in TMi(x)

relative to ωi(x). Hence

(dix(TX)x)⊥/dix(TX)x

is a symplectic vector space, and these fit together into a symplectic vector
bundle (i.e. a vector bundle with a symplectic structure on each fiber). We will
call this the symplectic normal bundle of the embedding, and denote it by

SNi(X)

or simply by SN(X) when i is taken for granted.
Suppose that U is a neighborhood of i(X) and g : U → N is a symplec-

tomorphism of U into a second symplectic manifold N . Then j = g ◦ i is an
isotropic embedding of X into N and f induces an isomorphism

g∗ : NSi(X)→ NSj(X)

of symplectic vector bundles. Weinstein’s isotropic embedding theorem asserts
conversely, any isomorphism between symplectic normal bundles is in fact in-
duced by a symplectomorphism of a neighborhood of the image:

Theorem 5. Let (M,ωM , X, i) and (N,ωN , X, j) be the data for isotropic em-
beddings of a compact manifold X. Suppose that

` : SNi(X)→ SNj(X)

is an isomorphism of symplectic vector bundles. Then there is a neighborhood
U of i(X) in M and a symplectomorphism g of U onto a neighborhood of j(X)
in N such that

g∗ = `.

For the proof, we will need the following extension lemma:

Proposition 9. Let
i : X →M, j : Y → N

be embeddings of compact manifolds X and Y into manifolds M and N . suppose
we are given the following data:

• A smooth map f : X → Y and, for each x ∈ X,

• A linear map AxTMi(x) → TNj(f(x)) such that the restriction of Ax to
TXx ⊂ TMi(x) coincides with dfx.

Then there exists a neighborhood W of X and a smooth map g : W → N such
that

g ◦ i = f ◦ i

and
dgx = Ax ∀ x ∈ X.
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Proof. If we choose a Riemann metric on M , we may identify (via the expo-
nential map) a neighborhood of i(X) in M with a section of the zero section of
X in its (ordinary) normal bundle. So we may assume that M = NiX is this
normal bundle. Also choose a Riemann metric on N , and let

exp : Nj(Y )→ N

be the exponential map of this normal bundle relative to this Riemann metric.
For x ∈ X and v ∈ Ni(i(x)) set

g(x, v) := expj(x)(Axv).

Then the restriction of g to X coincides with f , so that, in particular, the
restriction of dgx to the tangent space to Tx agrees with the restriction of Ax
to this subspace, and also the restriction of dgx to the normal space to the zero
section at x agrees Ax so g fits the bill. 2

Proof of the theorem. We are given linear maps `x : (I⊥x /Ix) → J⊥x /Jx
where Ix = dix(TX)x is an isotropic subspace of Vx := TMi(x) with a similar
notation involving j. We also have the identity map of

Ix = TXx = Jx.

So we may apply Proposition 7 to conclude the existence, for each x of a unique
symplectic linear map

Ax : TMi(x) → TNj(x)

for each x ∈ X. We may then extend this to an actual diffeomorphism, call it
h on a neighborhood of i(X), and since the linear maps Ax are symplectic, the
forms

h∗ωN and ωM

agree at all points of X. We then apply Theorem 4 to get a map k such that
k∗(h∗ωN ) = ωM and then g = h ◦ k does the job. 2

Notice that the constructions were all determined by the choice of a Riemann
metric on M and of a Riemann metric on N . So if these metrics are invariant
under a group G, the corresponding g will be a G-morphism. If G is compact,
such invariant metrics can be constructed by averaging over the group.

An important special case of the isotropic embedding theorem is where the
embedding is not merely isotropic, but is Lagrangian. Then the symplectic
normal bundle is trivial, and the theorem asserts that all Lagrangian embeddings
of a compact manifold are locally equivalent, for example equivalent to the
embedding of the manifold as the zero section of its cotangent bundle.

2.6 The space of Lagrangian subspaces of a sym-
plectic vector space.

Let V = (V, ω) be a symplectic vector space of dimension 2n. We let L(V )
denote the space of all Lagrangian subspaces of V . It is called the Lagrangian
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Grassmannian.

If M ∈ L(V ) is a fixed Lagrangian subspace, we let L(V,M) denote the
subset of L(V ) consisting of those Lagrangian subspaces which are transversal
to M .

Let L ∈ L(V,M) be one such subspace. The non-degenerate pairing between
L and M identifies M with the dual space L∗ of L and L with the dual space
M∗ of M . The vector space decomposition

V = M ⊕ L = M ⊕M∗

tells us that any N ∈ L(V,M) projects bijectively onto L under this decompo-
sition. In particular, this means that N is the graph of a linear map

TN : L→M = L∗.

So

N = {(TNξ, ξ), ξ ∈ L = M∗}.

Giving a map from a vector space to its dual is the same as giving a bilinear form
on the original vector space. In other words, N determines, and is determined
by, the bilinear form βN on L = M∗ where

βN (ξ, ξ′) =
1

2
〈TNξ′, ξ〉 =

1

2
ω(TNξ

′, ξ).

This is true for any n-dimensional subspace transversal to M . What is the
condition on βN for N to be Lagrangian? Well, if w = (TNξ, ξ) and w′ =
(TNξ

′, ξ′ are two elements of N then

ω(w,w′) = ω(TNξ, ξ
′)− ω(TNξ

′, ξ)

since L and M are Lagrangian. So the condition is that βN be symmetric. We
have proved:

Proposition 10. If M ∈ L(V ) and we choose L ∈ L(V,M) then we get an
identification of L(V,M) with S2(L), the space of symmetric bilinear forms on
L.

So every choice of a a pair of transverse Lagrangian subspaces L and M
gives a coordinate chart on L(V ) which is identified with S2(L). In particular,
L(V ) is a smooth manifold and

dimL(V ) =
n(n+ 1)

2

where n = 1
2 dimV .
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Description in terms of a basis.

Suppose that we choose a basis e1, . . . , en of L and so get a dual basis f1, . . . , fn
of M . If N ∈ L(V,M) then we get a basis g1, . . . , gn of N where

gi = ei +
∑
j

Sijfj

where

Sij = βN (ei, ej).

For later use we record the following fact: Let N and N ′ be two elements of
L(V,M). The symplectic form ω induces a (possibly singular) bilinear form on
N ×N ′. In terms of the bases given above for N and N ′ we have

ω(gi, g
′
j) = S′ij − Sij . (2.7)

Sp(V ) acts transitively on the space of pairs of transverse Lagrangian
subspaces but not on the space of triples of Lagrangian subspaces.

Suppose that L1 and L2 are elements of L(V ). An obvious invariant is the
dimension of their intersection. Suppose that they are transverse, i.e. that
L1 ∩ L2 = {0}. We have seen that a basis e1, . . . , en of L1 determines a (dual)
basis f1, . . . , fn of L2 and together e1, . . . , en, f1, . . . , fn form a symplectic basis
of V . Since Sp(V ) acts transitively on the set of symplectic bases, we see that
it acts transitively on the space of pairs of transverse Lagrangian subspaces.

But Sp(V ) does not act transitively on the space of all (ordered, pairwise
mutually transverse) triplets of Lagrangian subspaces. We can see this already
in the plane: Every line through the origin is a Lagrangian subspace. If we
fix two lines, the set of lines transverse to both is divided into two components
corresponding to the two pairs of opposite cones complementary to the first two
lines:
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We can see this more analytically as follows: By an application of Sl(2,R) =
Sp(R2) we can arrange that L1 is the x-axis and L2 is the y-axis. The subgroup
of Sl(2,R) which preserves both axes consists of the diagonal matrices (with
determinant one), i.e. of all matrices of the form(

λ 0
0 λ−1

)
.

If λ > 0 such a matrix preserves all quadrants, while if λ < 0 such a matrix
interchanges the first and third and the second and fourth quadrants.

In any event, such a matrix carries a line passing through the first and third
quadrant into another such line and the group of such matrices acts transitively
on the set of all such lines. Similarly for lines passing through the second and
fourth quadrant.

2.7 The set of Lagrangian subspaces transverse
to a pair of Lagrangian subspaces

The situation depicted in the figure above has an n-dimensional analogue. Let
M1 and M2 be Lagrangian subspaces of a symplectic vector space V . For the
moment we will assume that they are transverse to each other, i.e., M1 ∩M2 =
{0}. Let

L(V,M1,M2) = L(V,M1) ∩ L(V,M2)

be the set of Lagrangian subspaces, L of V which are transverse both to M1 and
to M2. Since M1 and M2 are transverse, V = M1 ⊕M2, so L is the graph of a
bijective mapping: TL : M1 →M2, and as we saw in the preceding section, this
mapping defines a bilinear form, βL ∈ S2(M1) by the recipe

βL(v, w) =
1

2
ω(v, Lw) .

Moreover since TL is bijective this bilinear form is non-degenerate. Thus,
denoting by S2(M1)non-deg the set of non-degenerate symmetric bilinear forms
on M1, the bijective map

L(V,M1)→ S2(M1)

that we defined in §2.6 gives, by restriction, a bijective map

L(V,M1,M2)→ S2(M1)non-deg . (2.8)

The connected components of S2(M1)non-deg are characterized by the signa-
ture invariant

β ∈ S2(M1)non-sing → sgnβ ,

so, via the identification (2.8) the same is true of L(V,M1,M2): its connected
components are characterized by the invariant L→ sgnβL. For instance in the
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two-dimensional case depicted in the figure above, sgnβL is equal to 1 on one
of the two components of L(V,M1,M2) and −1 on the other. Let

σ(M1,M2, L) =: sgnβL (2.9)

This is by definition a symplectic invariant of the triple, M1, M2, L, so this
shows that just as in two dimensions the group Sp(V ) does not act transitively
on triples of mutually transversal Lagrangian subspaces.

Explicit computation of sgnβL.

We now describe how to compute this invariant explicitly in some special cases.
Let x1, . . . , xn, ξ1, . . . , ξn be a system of Darboux coordinates on V such that
M1 and M2 are the spaces, ξ = 0 and x = 0. Then L is the graph of a bijective
linear map ξ = Bx with B† = B and hence

σ(M1,M2, L) = sgn(B) . (2.10)

Next we consider a slightly more complicated scenario. Let M2 be, as above,
the space, x = 0, but let M1 be a Lagrangian subspace of V which is transverse
to ξ = 0 and x = 0 , i.e., a space of the form x = Aξ where A† = A and A is
non-singular. In this case the symplectomorphism

(x, ξ)→ (x, ξ −A−1x)

maps M1 onto ξ = 0 and maps the space

L : ξ = Bx

onto the space

L1 : ξ = (B −A−1)x.

and hence by the previous computation

σ(M1,M0, L) = sgn(B −A−1) . (2.11)

Notice however that the matrix [
A I
I B

]
can be written as the product[

I 0
A−1 I

] [
A 0
0 B −A−1

] [
I 0
A−1 I

]†
(2.12)

so

sgnA+ sgn(B −A−1) = sgn

[
A I
I B

]
. (2.13)
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Hence

σ(M1,M2, L) = sgn

[
A I
I B

]
− sgnA . (2.14)

In particular if L1 and L2 are Lagrangian subspaces of V which are transverse
to M1 and M2 the difference,

σ(M1,M2, L1)− σ(M1,M2, L2)

is equal to

sgn

[
A I
I B1

]
− sgn

[
A I
I B2

]
.

In other words the quantity

σ(M1,M2, L1, L2) = σ(M1,M2, L1)− σ(M1,M2, L2)

is a symplectic invariant of M1,M2, L1, L2 which satisfies

σ(M1,M2, L2, L2) = sgn

[
A I
I B1

]
− sgn

[
A I
I B2

]
. (2.15)

In the derivation of this identity we’ve assumed that M1 and M2 are trans-
verse, however, the right hand side is well-defined provided the matrices[

A I
I Bi

]
i = 1, 2

are non-singular, i.e., provided that L1 and L2 are transverse to the Mi. Hence
to summarize, we’ve proved

Theorem 6. Given Lagrangian subspaces M1,M2, L1, L2 of V such that the
Li’s are transverse to the Mi’s the formula (2.15) defines a symplectic invariant
σ(M1,M2, L1, L2) of M1,M2, L1, L2 and if M1 and M2 are transverse

σ(M1,M2, L1, L2) = σ(M1,M2, L1)− σ(M1,M2, L2) . (2.16)

2.8 The Maslov line bundle

We will use the results of the previous two sections to define an object which
will play an important role in the analytical applications of the results of this
chapter that we will discuss in Chapters 8 and 9.

Let X be an n-dimensional manifold and let W = T ∗X be its cotangent
bundle. Given a Lagrangian submanifold, Λ, of W one has, at every point
p = (x, ξ), two Lagrangian subspaces of the symplectic vector space V = TpW ,
namely the tangent space, M1 to Λ at p and the tangent space M2 at p to the
cotangent fiber T ∗xX.

Let Op = L(V,M1,M2) and let Lp be the space of all functions

f : Op → C
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which satisfy for L1, L2 ∈ Op

f(L2) = e
iπ
4 σ(M1,M2,L2,L1)f(L1) . (2.17)

It is clear from (2.15) that this space is non-zero and from (2.16) that it
is one-dimensional, i.e., is a complex line. Thus the assignment, Λ 3 p → Lp,
defines a line bundle over Λ. We will denote this bundle by LMaslov and refer
to it henceforth as the Maslov line bundle of Λ. (The definition of it that we’ve
just given, however, is due to Hörmander. An alternative definition, also due
to Hörmander, will be described in §5.1.3. For the tie-in between these two
definitions and the original definition of the Maslov bundle by Arnold, Keller,
Maslov, see [[?]], Integrable Operators I, §3.3.)

2.9 A look ahead - a simple example of Hamil-
ton’s idea.

2.9.1 A different kind of generating function.

Let us go back to the situation described in Section 2.7. We have a symplectic
vector space V = M ⊕M∗ = T ∗M and we have a Lagrangian subspace N ⊂ V
which is transversal to M . This determines a linear map TN : M∗ → M and
a symmetric bilinear form βN on M∗. Suppose that we choose a basis of M
and so identify M with Rn and so M∗ with Rn∗. Then T = TN becomes a
symmetric matrix and if we define

γN (ξ) :=
1

2
βN (ξ, ξ) =

1

2
Tξ · ξ

then

Tξ = TNξ =
∂γN
∂ξ

.

Consider the function φ = φN on M ⊕M∗ given by

φ(x, ξ) = x · ξ − γN (ξ), x ∈M, ξ ∈M∗. (2.18)

Then the equation
∂φ

∂ξ
= 0 (2.19)

is equivalent to
x = TNξ.

Of course, we have

ξ =
∂φ

∂x
and at points where (2.19) holds, we have

∂φ

∂x
= dφ,

the total derivative of φ in the obvious notation. So
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Proposition 11. Let M be a vector space and V = T ∗M = M ⊕ M∗ its
cotangent bundle with its standard symplectic structure. Let N be a Lagrangian
subspace of T ∗M which is transversal to M . Then

N = {(x, dφ(x, ξ))}

where φ is the function on M ×M∗ given by (2.18) and where (x, ξ) satisfies
(2.19).

The function φ is an example of the type of (generalized) generating func-
tion that we will study in detail in Chapter 5. Notice that in contrast to the
generating functions of Chapter I, φ is not a function of x alone, but depends
on an auxiliary variable (in this case ξ). But this type of generating function
can describe a Lagrangian subspace which is not horizontal. At the extreme,
the subspace M∗ is described by the case βT ≡ 0.

We will show in Chapter 5 that every Lagrangian submanifold of any cotan-
gent bundle can locally be described by a generating function, when we allow
dependence on auxiliary variables.

2.9.2 Composition of symplectic transformations and ad-
dition of generating functions.

Let V = (V, ω) be a symplectic vector space. We let V − = (V,−ω). In other
words, V is the same vector space as V but with the symplectic form −ω.

We may consider the direct sum V − ⊕ V (with the symplectic form Ω =
(−ω, ω). If T ∈ Sp(V ), then its graph Γ := graph T = {(v, Tv), v ∈ V } is a
Lagrangian subspace of V − ⊕ V . Indeed, if v, w ∈ V then

Ω((v, Tv), (w, Tw)) = ω(Tv, Tw)− ω(v, w) = 0.

Suppose that V = X ⊕X∗ where X is a vector space and where V is given the
usual symplectic form:

ω

((
x
ξ

)
,

(
x′

ξ′

))
= 〈ξ′, x〉 − 〈ξ, x′〉.

The map ς : V → V

ς

((
x
ξ

))
=

(
x
−ξ

)
is a symplectic isomorphism of V with V −. So ς ⊕ id gives a symplectic isomor-
phism of V − ⊕ V with V ⊕ V .

A generating function (either in the sense of Chapter I or in the sense of
Section 2.9.1 for (ι⊕id)(Γ) will also (by abuse of language) be called a generating
function for Γ or for T .

Let us consider the simplest case, where X = R. Then

V ⊕ V = R⊕ R∗ ⊕ R⊕ R∗ = T ∗(R⊕ R).
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Let (x, y) be coordinates on R ⊕ R and consider a generating function (of the
type of Chapter I) of the form

φ(x, y) =
1

2
(ax2 + 2bxy + cy2),

where
b 6= 0.

Taking into account the transformation ς, the corresponding Lagrangian sub-
space of V − ⊕ V is given by the equations

ξ = −(ax+ by), η = bx+ cy.

Solving these equations for y, η in terms of x, ξ gives

y = −1

b
(ax+ ξ), η =

(
b− c

b

)
x− c

b
ξ.

In other words, the matrix (of) T is given by −ab − 1
b

b− ca
b − cb

 .

(Notice that by inspection the determinant of this matrix is 1, which is that
condition that T be symplectic.)

Notice also that the upper right hand corner of this matrix is not zero.
Conversely, starting with a matrix

T =

(
α β
γ δ

)
of determinant one, with β 6= 0 we can solve the equation −ab − 1

b

b− ca
b − cb

 =

(
α β
γ δ

)

for a, b, c in terms of α, β, γ, δ. So the most general two by two matrix of
determinant one with the upper right hand corner 6= 0 is represented by a
generating function of the above form.

Suppose we have two functions

φ1(x, y) =
1

2
[ax2 + 2bxy + cy2], φ2(y, z) =

1

2
[Ay2 + 2Byz + Cz2],

with b 6= 0 and B 6= 0, and consider their sum:

φ(x, z, y) = φ1(x, y) + φ2(y, z).
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Here we are considering y as an “auxiliary variable” in the sense of Section 2.9.1,
so we want to impose the constraint

∂φ

∂y
= 0, (2.20)

and on this constrained set let

ξ = −∂φ
∂x
, ζ =

∂φ

∂z
, (2.21)

and use these equations to express

(
z
ζ

)
in terms of

(
x
ξ

)
.

Equation (2.20) gives

(A+ c)y + bx+Bz = 0. (2.22)

There are now two alternatives:

• If A + c 6= 0 we can solve (2.22) for y in terms of x and z. This then
gives a generating function of the above type (i.e. quadratic in x and
z). It is easy to check that the matrix obtained from this generating
function is indeed the product of the corresponding matrices. This is an
illustration of Hamilton’s principle that the composition of two symplectic
transformations is given by the sum of their generating functions. This
will be explained in detail in Chapter 5, in Sections 5.6 and 5.7. Notice
also that because ∂2φ/∂y2 = A+c 6= 0, the effect of (2.20) was to allow us
to eliminate y. The general setting of this phenomenon will be explained
in Section 5.8.

• If A+c = 0, then (2.22) imposes no condition on y but does give bx+Bz =
0, i.e

z = − b

B
x

which means precisely that the upper right hand corner of the correspond-
ing matrix vanishes. Since y is now a “free variable”, and b 6= 0 we can
solve the first of equations (2.21) for y in terms of x and ξ giving

y = −1

b
(ξ + ax)

and substitute this into the second of the equations (2.21) to solve for ζ
in terms of x and ξ. We see that the corresponding matrix is − b

B 0

−aBb −
Cb
B −Bb

 .

Again, this is indeed the product of the correpsonding matrices.
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Chapter 3

The language of category
theory.

3.1 Categories.

We briefly recall the basic definitions:

A category C consists of the following data:

(i) A family, Ob(C), whose elements are called the objects of C ,

(ii) For every pair (X,Y ) of Ob(C) a family, Morph(X,Y ), whose elements are
called the morphisms or arrows from X to Y ,

(iii) For every triple (X,Y, Z) of Ob(C) a map from Morph(X,Y )×Morph(Y,Z)
to Morph(X,Z) called the composition map and denoted (f, g) ; g ◦ f.

These data are subject to the following conditions:

(iv) The composition of morphisms is associative

(v) For each X ∈ Ob(C) there is an idX ∈ Morph(X,X) such that

f ◦ idX = f, ∀f ∈ Morph(X,Y )

(for any Y ) and

idX ◦ f = f, ∀f ∈ Morph(Y,X)

(for any Y ).

It follows from the definitions that idX is unique.

63
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3.2 Functors and morphisms.

3.2.1 Covariant functors.

If C and D are categories, a functor F from C to D consists of the following data:

(vi) a map F : Ob(C)→ Ob(D)

and

(vii) for each pair (X,Y ) of Ob(C) a map

F : Hom(X,Y )→ Hom(F (X), F (Y ))

subject to the rules

(viii)

F (idX) = idF (X)

and

(ix)

F (g ◦ f) = F (g) ◦ F (f).

This is what is usually called a covariant functor.

3.2.2 Contravariant functors.

A contravariant functor would have F : Hom(X,Y )→ Hom(F (Y ), F (X)) in
(vii) and F (f) ◦ F (g) on the right hand side of (ix).)

3.2.3 The functor to families.

Here is an important example, valid for any category C. Let us fix an X ∈ Ob(C).
We get a functor

FX : C → Set

(where Set denotes the category whose objects are all families, and morphisms
are all maps) by the rule which assigns to each Y ∈ Ob(C) the family FX(Y ) =
Hom(X,Y ) and to each f ∈ Hom(Y,Z) the map FX(f) consisting of compo-
sition (on the left) by f. In other words, FX(f) : Hom(X,Y ) → Hom(X,Z) is
given by

g ∈ Hom(X,Y ) 7→ f ◦ g ∈ Hom(X,Z).
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F (X)
m(X)

G(X)

F (f) G(f)

F (Y )
m(Y ) G(Y )

-

? ?-

Figure 3.1:

3.2.4 Morphisms

Let F and G be two functors from C to D. A morphism, m , from F to G
(older name: “natural transformation”) consists of the following data:

(x) for each X ∈ Ob(C) an element m(X) ∈ HomD(F (X), G(X)) subject to the
“naturality condition”

(xi) for any f ∈ HomC(X,Y ) the diagram in Figure 3.1 commutes. In other
words

m(Y ) ◦ F (f) = G(f) ◦m(X) ∀ f ∈ f ∈ HomC(X,Y ).

3.2.5 Involutory functors and involutive functors.

Consider the category V whose objects are finite dimensional vector spaces (over
some given field K) and whose morphisms are linear transformations. We can
consider the “transpose functor” F : V → V which assigns to every vector space
V its dual space

V ∗ = Hom(V,K)

and which assigns to every linear transformation ` : V →W its transpose

`∗ : W ∗ → V ∗.

In other words,
F (V ) = V ∗, F (`) = `∗.

This is a contravariant functor which has the property that F 2 is naturally
equivalent to the identity functor. There does not seem to be a standard name
for this type of functor. We will call it an involutory functor.

A special type of involutory functor is one in which F (X) = X for all objects
X and F 2 = id (not merely naturally equivalent to the identity). We shall
call such a functor a involutive functor. We will refer to a category with an
involutive functor as an involutive category, or say that we have a category
with an involutive structure.



66 CHAPTER 3. THE LANGUAGE OF CATEGORY THEORY.

For example, let H denote the category whose objects are Hilbert spaces
and whose morphisms are bounded linear transformations. We take F (X) = X
on objects and F (L) = L† on bounded linear transformations where L† denotes
the adjoint of L in the Hilbert space sense.

3.3 Example: Sets, maps and relations.

The category Set is the category whose objects are (“all”) families and and
whose morphisms are (“all”) maps between families. For reasons of logic, the
word “all” must be suitably restricted to avoid contradiction.

We will take the extreme step in this section of restricting our attention to
the class of finite sets. Our main point is to examine a category whose objects
are finite sets, but whose morphisms are much more general than maps. Some
of the arguments and constructions that we use in the study of this example will
be models for arguments we will use later on, in the context of the symplectic
“category”.

3.3.1 The category of finite relations.

We will consider the category whose objects are finite sets. But we enlarge the
set of morphisms by defining

Morph(X,Y ) = the collection of all subsets of X × Y.

A subset of X × Y is called a relation. We must describe the map

Morph(X,Y )×Morph(Y,Z)→ Morph(X,Z)

and show that this composition law satisfies the axioms of a category. So let

Γ1 ∈ Morph(X,Y ) and Γ2 ∈ Morph(Y,Z).

Define
Γ2 ◦ Γ1 ⊂ X × Z

by

(x, z) ∈ Γ2 ◦ Γ1 ⇔ ∃ y ∈ Y such that (x, y) ∈ Γ1 and (y, z) ∈ Γ2. (3.1)

Notice that if f : X → Y and g : Y → Z are maps, then

graph(f) = {(x, f(x)} ∈ Morph(X,Y ) and graph(g) ∈ Morph(Y,Z)

with
graph(g) ◦ graph(f) = graph(g ◦ f).

So we have indeed enlarged the category of finite sets and maps.
We still must check the axioms. Let ∆X ⊂ X ×X denote the diagonal:

∆X = {(x, x), x ∈ X},
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so

∆X ∈ Morph(X,X).

If Γ ∈ Morph(X,Y ) then

Γ ◦∆X = Γ and ∆Y ◦ Γ = Γ.

So ∆X satisfies the conditions for idX .

Let us now check the associative law. Suppose that Γ1 ∈ Morph(X,Y ),Γ2 ∈
Morph(Y,Z) and Γ3 ∈ Morph(Z,W ). Then both Γ3 ◦(Γ2 ◦Γ1) and (Γ3 ◦Γ2)◦Γ1

consist of all (x,w) ∈ X ×W such that there exist y ∈ Y and z ∈ Z with

(x, y) ∈ Γ1, (y, z) ∈ Γ2, and (z, w) ∈ Γ3.

This proves the associative law.

Let us call this category FinRel.

3.3.2 Categorical “points”.

Let us pick a distinguished one element set and call it “pt.”. Giving a map
from pt. to any set X is the same as picking a point of X. So in the category
Set of sets and maps, the points of X are the same as the morphisms from our
distinguished object pt. to X.

In a more general category, where the objects are not necessarily sets, we
can not talk about the points of an object X. However if we have a distin-
guished object pt., then we can define a “point” of any object X to be an
element of Morph(pt., X). For example, later on, when we study the symplec-
tic “category” whose objects are symplectic manifolds, we will find that the
“points” in a symplectic manifold are its Lagrangian submanifolds. This idea
has been emphasized by Weinstein. As he points out, this can be considered as
a manifestation of the Heisenberg uncertainty principle in symplectic geometry.

In the category FinRel, the category of finite sets and relations, an element
of Morph(pt., X) , i.e a subset of pt.×X, is the same as a subset of X (by
projection onto the second factor). So in this category, the “points” of X are
the subsets of X. Many of the constructions we do here can be considered as
warm ups to similar constructions in the symplectic “category”.

Suppose we have a category with a distinguished object pt.. A morphism
Γ ∈ Morph(X,Y ) yields a map from “points” of X to “points” of Y . Namely,
a “point” of X is an element p ∈ Morph(pt., X) so if f ∈ Morph(X,Y ) we can
form

f ◦ p ∈ Morph(pt., Y )

which is a “point” of Y . So f maps “points” of X to “points” of Y .

We will sometimes use the more suggestive language f(p) instead of f ◦ p.
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3.3.3 The universal associative law.

Consider three objects X,Y, Z. Inside

X ×X × Y × Y × Z × Z

we have the subset
∆3 = ∆3

XY Z = ∆X ×∆Y ×∆Z

consisting of all points of the form

(xxyyzz).

Let us move the first X factor past the others until it lies to immediate left of
the right Z factor, so consider the subset

∆̃3 = ∆̃3
XY Z ⊂ X × Y × Y × Z ×X × Z, ∆̃3

XY Z = {(x, y, y, z, x, z)}.

By introducing parentheses around the first four and last two factors we can
write

∆̃3
XY Z ⊂ (X × Y × Y × Z)× (X × Z).

In other words,

∆̃3
XY Z ∈ Morph(X × Y × Y × Z,X × Z).

Let Γ1 ∈ Morph(X,Y ) and Γ2 ∈ Morph(Y, Z). Then

Γ1 × Γ2 ⊂ X × Y × Y × Z

is a “point” of X × Y × Y × Z. We identify this “point” with an element of

Morph(pt., X × Y × Y × Z)

so that we can form
∆̃3
XY Z ◦ (Γ1 × Γ2)

which consists of all (x, z) such that

∃(x1, y1, y2, z1, x, z) with

(x1, y1) ∈ Γ1,

(y2, z1) ∈ Γ2,

x1 = x,

y1 = y2,

z1 = z.

Thus
∆̃3
XY Z ◦ (Γ1 × Γ2) = Γ2 ◦ Γ1. (3.2)
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Suppose we have four sets X,Y, Z,W . We can form

∆̃3
XY Z ./ ∆2

ZW ⊂ X × Y × Y × Z × Z ×W ×X × Z × Z ×W

consisting of all points of the form

(xyyzz′wxzz′w).

By inserting parentheses about the first six and last four positions we can regard
∆̃3
XY Z ./ ∆2

ZW as an element of

Morph((X × Y × Y × Z × Z ×W ), (X × Z × Z ×W )).

If we compose ∆̃3
XY Z ./ ∆2

ZW with

Γ1 × Γ2 × Γ3 ∈ Morph(pt., X × Y × Y × Z × Z ×W )

we obtain
(Γ2 ◦ Γ1)× Γ3 ⊂ (X × Z)× (Z ×W ).

Now let us consider
∆̃3
XZW ◦

(
∆̃3
XY Z ./ ∆2

ZW

)
.

It consists of all pairs (xyyzz′w), (xw) such that (xzz′w) = (xzzw) i.e. such
that z = z′. Removing the parentheses we obtain

∆̃4
XY ZW ⊂ X × Y × Y × Z × Z ×W ×X ×W,

given by
∆̃4
XY ZW = {(xyyzzwxw)}.

So putting in some parentheses shows that we can regard ∆̃4
XY ZW as an element

of
Morph(X × Y × Y × Z × Z ×W,X ×W ).

If Γ1 ∈ Morph(X,Y ), Γ2 ∈ Morph(Y,Z), and Γ3 ∈ Morph(Z,W ) then we can
compose ∆̃4

XY ZW with Γ1 × Γ2 × Γ3 to obtain an element of Morph(X,W ).
Thus the equation

∆̃4
XY ZW = ∆̃3

XZW ◦
(

∆̃3
XY Z ./ ∆2

ZW

)
(3.3)

is a sort of universal associative law in the sense that if we compose (3.3) with
Γ1 × Γ2 × Γ3 regarded as an element of Morph(pt. ., X × Y × Y × Z × Z ×W )
we obtain the equation

Γ3 ◦ (Γ2 ◦ Γ1) = ∆̃4
XY ZW (Γ1 × Γ2 × Γ3).

Similar to (3.3) we have an equation of the form

∆̃3
XZW ◦

(
∆XY ./ ∆̃3

Y ZW

)
= ∆̃4

XY ZW (3.4)
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which implies that

(Γ3 ◦ Γ2) ◦ Γ2 = ∆̃4
XY ZW (Γ1 × Γ2 × Γ3).

From this point of view the associative law is a consequence of equations
(3.3) and (3.4) and of the fact that

(Γ1 × Γ2)× Γ3 = Γ1 × (Γ2 × Γ3) = Γ1 × Γ2 × Γ3.

3.3.4 The transpose.

In our category FinRel, if Γ ∈ Morph(X,Y ) define Γ† ∈ Morph(Y,X) by

Γ† := {(y, x)|(x, y) ∈ Γ}.

We have defined a map

† : Morph(X,Y )→ Morph(Y,X) (3.5)

for all objects X and Y which clearly satisfies

†2 = id (3.6)

and
(Γ2 ◦ Γ1)† = Γ†1 ◦ Γ†2. (3.7)

So † is a contravariant functor and satisfies our conditions for an involution.
This makes our category FinRel of finite sets and relations into an involutive
category.

3.3.5 Some notation.

In the category FinRel a morphism is a relation. So Morph(X,Y ) is a subset
of X × Y . As we have seen, we can think of a relation as a generalization of
the graph of a map which is a special kind of relation. The following definitions
(some of which are borrowed from Alan Weinstein) will prove useful in other
categorical settings: Let Γ ∈ Morph(X,Y )

• X is called the source of Γ,

• Y is called the target of Γ,

• If T is a subset of X, then Γ(T ) := {y|∃x ∈ T such that (x, y) ∈ Γ} is
called the image of T and is denoted by Γ(T ).

• Γ(X) is called the range of Γ,

• The range of Γ† is called the domain of Γ.

• Γ is surjective if if its range equals its target.
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• Γ is cosurjective if its domain equals its source, i.e it is “defined every-
where”.

• Γ is injective if for any y ∈ Y there is at most one x ∈ X with (x, y) ∈ Γ.

• Γ is co-injective if for any x ∈ X there is at most one y ∈ Y with
(x, y) ∈ Γ, i.e. Γ is “single valued”.

• Γ is called a reduction if it is surjective and co-injective,

• Γ is called a coreduction if it is injective and co-surjective, so it takes all
the points of the source X into disjoint subsets of Y .

3.4 The linear symplectic category.

Let V1 and V2 be symplectic vector spaces with symplectic forms ω1 and ω2.
We will let V −1 denote the vector space V1 equipped with the symplectic form
−ω1. So V −1 ⊕V2 denotes the vector space V1⊕V2 equipped with the symplectic
form −ω1 ⊕ ω2.

A Lagrangian subspace Γ of V −1 ⊕V2 is called a linear canonical relation.
The purpose of this section is to show that if we take the collection of symplectic
vector spaces as objects, and the linear canonical relations as morphisms we get
a category. Here composition is in the sense of composition of relations as in the
category FinRel. In more detail: Let V3 be a third symplectic vector space, let

Γ1 be a Lagrangian subspace of V −1 ⊕ V2

and let
Γ2 be a Lagrangian subspace of V −2 ⊕ V3.

Recall that as a set (see ( 3.1)) the composition

Γ2 ◦ Γ1 ⊂ V1 × V3

is defined by

(x, z) ∈ Γ2 ◦ Γ1 ⇔ ∃ y ∈ V2 such that (x, y) ∈ Γ1 and (y, z) ∈ Γ2.

We must show that this is a Lagrangian subspace of V −1 ⊕V3. It will be important
for us to break up the definition of Γ2 ◦ Γ1 into two steps:

3.4.1 The space Γ2 ? Γ1.

Define
Γ2 ? Γ1 ⊂ Γ1 × Γ2

to consist of all pairs ((x, y), (y′, z)) such that y = y′. We will restate this
definition in two convenient ways. Let

π : Γ1 → V2, π(v1, v2) = v2
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and

ρ : Γ2 → V2, ρ(v2, v3) = v2.

Let

τ : Γ1 × Γ2 → V2

be defined by

τ(γ1, γ2) := π(γ1)− ρ(γ2). (3.8)

Then Γ2 ? Γ1 is determined by the exact sequence

0→ Γ2 ? Γ1 → Γ1 × Γ2
τ→ V2 → Coker τ → 0. (3.9)

Another way of saying the same thing is to use the language of “fiber prod-
ucts” or “exact squares”: Let f : A→ C and g : B → C be maps, say between
sets. Then we express the fact that F ⊂ A × B consists of those pairs (a, b)
such that f(a) = g(b) by saying that

F −−−−→ Ay yf
B −−−−→

g
C

is an exact square or a fiber product diagram.

Thus another way of expressing the definition of Γ2 ? Γ1 is to say that

Γ2 ? Γ1 −−−−→ Γ1y yπ
Γ2 −−−−→

ρ
V2

(3.10)

is an exact square.

3.4.2 The transpose.

If Γ ⊂ V −1 ⊕ V2 is a linear canonical relation, we define its transpose Γ† just as
in FinRel:

Γ† := {(y, x)|(x, y) ∈ Γ}. (3.11)

Here x ∈ V1 and y ∈ V2 so Γ† as defined is a linear Lagrangian subspace of
V2⊕V −1 . But replacing the symplectic form by its negative does not change the
set of Lagrangian subspaces, so Γ† is also a Lagrangian subspace of V −2 ⊕ V1,
i.e. a linear canonical relation between V2 and V1. It is also obvious that just
as in FinRel we have (

Γ†
)†

= Γ.
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3.4.3 The projection α : Γ2 ? Γ1 → Γ2 ◦ Γ1.

Consider the map
α : (x, y, y, z) 7→ (x, z). (3.12)

By definition
α : Γ2 ? Γ1 → Γ2 ◦ Γ1.

3.4.4 The kernel and image of a linear canonical relation.

Let V1 and V2 be symplectic vector spaces and let Γ ⊂ V −1 × V2 be a linear
canonical relation. Let

π : Γ→ V2

be the projection onto the second factor. Define

• Ker Γ ⊂ V1 by Ker Γ = {v ∈ V1|(v, 0) ∈ Γ}.

• Im Γ ⊂ V2 by ImΓ := π(Γ) = {v2 ∈ V2|∃v1 ∈ V1 with (v1, v2) ∈ Γ}.

Now Γ† ⊂ V −2 ⊕ V1 and hence both ker Γ† and Im Γ are linear subspaces of the
symplectic vector space V2. We claim that

(ker Γ†)⊥ = Im Γ. (3.13)

Here ⊥ means perpendicular relative to the symplectic structure on V2.

Proof. Let ω1 and ω2 be the symplectic bilinear forms on V1 and V2 so that
ω̃ = −ω1 ⊕ ω2 is the symplectic form on V −1 ⊕ V2. So v ∈ V2 is in Ker Γ† if and
only if (0, v) ∈ Γ. Since Γ is Lagrangian, (0, v) ∈ Γ⇔ (0, v) ∈ Γ⊥ and

(0, v) ∈ Γ⊥ ⇔ 0 = −ω1(0, v1) + ω2(v, v2) = ω2(v, v2) ∀ (v1, v2) ∈ Γ.

But this is precisely the condition that v ∈ (Im Γ)⊥.

The kernel of α consists of those (0, v, v, 0) ∈ Γ2 ? Γ1. We may thus identify

kerα = ker Γ†1 ∩ ker Γ2 (3.14)

as a subspace of V2.
If we go back to the definition of the map τ , we see that the image of τ is

given by
Im τ = Im Γ1 + Im Γ†2, (3.15)

a subspace of V2. If we compare (3.14) with (3.15) we see that

kerα = (Im τ)⊥ (3.16)

as subspaces of V2 where ⊥ denotes orthocomplement relative to the symplectic
form ω2 of V2.
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3.4.5 Proof that Γ2 ◦ Γ1 is Lagrangian.

Since Γ2 ◦ Γ1 = α(Γ2 ? Γ1) and Γ2 ? Γ1 = ker τ it follows that Γ2 ◦ Γ1 is a linear
subspace of V −1 ⊕ V3.

It is equally easy to see that Γ2 ◦ Γ1 is an isotropic subspace of V −1 ⊕ V2.
Indeed, if (x, z) and (x′, z′) are elements of Γ2 ◦ Γ1, then there are elements y
and y′ of V2 such that

(x, y) ∈ Γ1, (y, z) ∈ Γ2, (x′, y′) ∈ Γ1, (y′, z′) ∈ Γ2.

Then

ω3(z, z′)− ω1(x, x′) = ω3(z, z′)− ω2(y, y′) + ω2(y, y′)− ω1(x, x′) = 0.

So we must show that dim Γ2 ◦ Γ1 = 1
2 dimV1 + 1

2 dimV3. It follows from
(3.16) that

dim ker α = dim V2 − dim Im τ

and from the fact that Γ2 ◦ Γ1 = α(Γ2 ? Γ1) that

dim Γ2 ◦ Γ1 = dim Γ2 ? Γ1 − dim kerα =

= dim Γ2 ? Γ1 − dim V2 + dim Im τ.

Since Γ2 ? Γ1 is the kernel of the map τ : Γ1 × Γ2 → V2 it follows that

dim Γ2 ? Γ1 = dim Γ1 × Γ2 − dim Im τ =

1

2
dim V1 +

1

2
dim V2 +

1

2
dim V2 +

1

2
dim V3 − dim Im τ.

Putting these two equations together we see that

dim Γ2 ◦ Γ1 =
1

2
dimV1 +

1

2
dimV3

as desired. We have thus proved

Theorem 7. The composite Γ2 ◦Γ1 of two linear canonical relations is a linear
canonical relation.

The associative law can be proved exactly as for FinRel: given four sym-
plectic vector spaces X,Y, Z,W we can form

∆̃4
XY ZW ⊂ [(X− × Y )× (Y − × Z)× (Z− ×W )]− × (X− ×W )

∆̃4
XY ZW = {(xyyzzwxw)}.

It is immediate to check that∆̃4
XY ZW is a Lagrangian subspace, so

∆̃4
XY ZW ∈ Morph((X− × Y )× (Y − × Z)× (Z− ×W ), X− ×W ).
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If Γ1 ∈ Morph(X,Y ), Γ2 ∈ Morph(Y, Z), and Γ3 ∈ Morph(Z,W ) then

Γ3 ◦ (Γ2 ◦ Γ1) = (Γ3 ◦ Γ2) ◦ Γ1 = ∆̃4
XY ZW (Γ1 × Γ2 × Γ3),

as before. From this point of view the associative law is again a reflection of the
fact that

(Γ1 × Γ2)× Γ3 = Γ1 × (Γ2 × Γ3) = Γ1 × Γ2 × Γ3.

The diagonal ∆V gives the identity morphism and so we have verified that

Theorem 8. LinSym is a category whose objects are symplectic vector spaces
and whose morphisms are linear canonical relations.

3.4.6 Details concerning the identity ∆̃XY Z ◦ (Γ1 × Γ2) =
Γ2 ◦ Γ1.

LetX,Y, Z be symplectic vector spaces and Γ1 ∈ Morph(X,Y ), Γ2 ∈ Morph(Y,Z).
Since Γ1 ⊂ X− × Y, Γ2 ⊂ Y − × Z so Γ1 × Γ2 is a Lagrangian subspace of
X− × Y × Y − ×Z thought of as an element of Morph(pt., X− × Y × Y − ×Z).

Also

∆̃XY Z ⊂ X− × Y × Y − × Z ×X− × Z, ∆̃XY Z = {(x, y, y, z, x, z)}.

So ∆̃XY Z ? (Γ1 × Γ2) consists of all (x, y)(y′, z), x, y, y, z such that (x, y) ∈
Γ1, (y′, z) ∈ Γ2 and x = x, y = y = y′, z = z. In other words,

∆̃XY Z ? (Γ1 × Γ2) = {((x, y, y, z, x, z)|(x, y) ∈ Γ1, (y, z) ∈ Γ2}.

Thus ∆̃XY Z ? (Γ1 × Γ2) is the kernel of the map

τ̃ : ∆̃XY Z ⊕ (Γ1 × Γ2)→ X ⊕ Y ⊕ Y ⊕ Z

given by

τ̃((x, y, y, z, x, z)(x1, y1)(y2, z2)) = (x− x1, y − y1, y − y2, z − z2).

The image of τ̃ is
X ⊕ (∆Y + (π(Γ1)⊕ ρ(Γ2))⊕ Z.

Here the middle expression is the subspace of Y − ⊕ Y consisting of all (y −
y1, y−y2) with y1 ∈ π(Γ1), y2 ∈ ρ(Γ2). The symplectic orthogonal complement
of the image of τ̃ in X− ⊕ Y ⊕ Y − ⊕ Z is 0⊕Q⊕ 0 where Q is the orthogonal
complement of ∆Y + (π(Γ1)⊕ ρ(Γ2) in Y − ⊕ Y .

From the general theory we know that this orthogonal complement is iso-
morphic to ker α̃ where

α̃ : ∆̃XY Z ? (Γ1 × Γ2)→ ∆̃XY Z ◦ (Γ1 × Γ2).

Since ∆Y is a Lagrangian subspace of Y − ⊕ Y we know that Q must be a
subspace of ∆Y and so consists of all (w,w) such that w is in the orthocom-
plement in Y of both π(Γ1) and ρ(Γ2). In other words w is such that (0, w)
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is in the orthocomplement of Γ1 in X− × Y and so (0, w) ∈ Γ1 and similarly
(w, 0) ∈ Γ2. So w ∈ kerα where

α : Γ2 ? Γ1 → Γ1 ◦ Γ1.

In short,

Proposition 12. We have an isomorphism from (Im τ)⊥ ∼= kerα → ker α̃ ∼=
(Im τ̃)⊥ given by

w 7→ 0⊕ (w,w)⊕ 0.

3.4.7 The category LinSym and the symplectic group.

The category LinSym is a vast generalization of the symplectic group because
of the following observation: Let X and Y be symplectic vector spaces. Suppose
that the Lagrangian subspace Γ ⊂ X− ⊕ Y projects bijectively onto X under
the projection of X ⊕Y onto the first factor. This means that Γ is the graph of
a linear transformation T from X to Y :

Γ = {(x, Tx)}.

T must be injective. Indeed, if Tx = 0 the fact that Γ is isotropic implies that
x ⊥ X so x = 0. Also T is surjective since if y ⊥ im(T ), then (0, y) ⊥ Γ. This
implies that (0, y) ∈ Γ since Γ is maximal isotropic. By the bijectivity of the
projection of Γ onto X, this implies that y = 0. In other words T is a bijection.
The fact that Γ is isotropic then says that

ωY (Tx1, Tx2) = ωX(x1, x2),

i.e. T is a symplectic isomorphism. If Γ1 = graphT and Γ2 = graphS then

Γ2 ◦ Γ1 = graphS ◦ T

so composition of Lagrangian relations reduces to composition of symplectic
isomorphisms in the case of graphs. In particular, if we take Y = X we see that
Symp(X) is a subgroup of Morph (X,X) in our category.

3.4.8 Reductions in the linear symplectic category.

Let X be an object in our category, i.e a symplectic vector space and let Z ⊂ X
be a coisotropic subspace of X. Since Z⊥ ⊂ Z, we can form the quotient space
B = Z/Z⊥ which is a symplectic vector space. Let π : Z → B denote the
projection, ι : Z → X the injection of Z as a subspace of X, and let ωX and
ωB denote the symplectic forms on X and B. By definition,

ι∗ωX = π∗ωB

so that the subset
Γ := {(z, π(z)), z ∈ Z} ⊂ X− ×B
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is isotropic. Let k = dim(Z⊥). Since dim(Z) + dim(Z⊥) = dimX, we see
that dim(Z) = dim(X) − k. On the other hand, dim(B) = dim(Z) − k. So
dim(B) = dim(X)− 2k. So

dim(Γ) = dim(Z) = dim(X)− k =
1

2
(dim(X) + dim(B)).

In other words, Γ is a Lagrangian subspace of X− × B, i.e. an element of
Morph(X,B) which is clearly single valued and surjective, i.e. is a reduction.

Conversely, suppose that Γ ∈ Morph(X,B) is a reduction. Let Z ⊂ X
be the domain of Γ, so that Γ consists of all (z, π(z)) where π : Z → B is
a surjective map. Let V = ker(π). Then since Γ is isotropic we see that
V ⊥ ⊂ X contains Z. The dimension of Γ equals 1

2 (dim(X) + dim(B). Let
k = dim(Z)− dim(B) = dim(V ). So

dim(Z) = dim(Γ) =
1

2
(dim(X) + dim(Z)− k)

implying that
dim(Z) = dim(X)− k = dim(V ⊥).

So V ⊥ = Z, i.e Z is co-isotropic. We have proved

Proposition 13. [Benenti and Tulszyjew [?], section 3.] A reduction
Γ in the linear symplectic category consists of a coisotropic subspace Z of a
symplectic vector space X with quotient B = Z/Z⊥ where Γ ∈ Morph(X,B)
being the graph of the projection π : Z → B.

In fact, suppose that Γ ∈ Morph(X,B) is such that π(Γ) = B, where, recall,
π is the projection of Γ ⊂ X− ×B onto the second factor. Then the projection
ρ of Γ onto the first factor must be injective. Indeed, suppose that (0, v) ∈ Γ.
Since Γ is isotropic, we must have v ∈ B⊥ so v = 0. Thus

Proposition 14. Γ ∈ Morph(X,Y ) is a reduction if π : Γ → Y is surjective
and hence (by applying †), Γ ∈ Morph(X,Y ) is a co-reduction if ρ : Γ → X is
surjective.

We have the following result (a special case of a proposition due to Wein-
stein):

Proposition 15. Every morphism in the linear symplectic category can be writ-
ten as the composition of a co-reduction with a reduction.

Proof. Let Γ be a morphism from X to Y . Since Γ is a Lagrangian subspace of
X−×Y , we can think of Γ as a morphism, call it γ, from pt. . to X−×Y . This is a
coreduction. Hence so is id.×γ which is a morphism from X×pt. to X×X−×Y .
As a Lagrangian submanifold of (X×pt.)−×(X×X−×Y ) = X−×(X×X−×Y )
it consists of all points of the form

(x, x, x′, y) with (x′, y) ∈ Γ. (3.17)
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∆X is a Lagrangian subspace of X−×X which we can think of as a morphism
εX from X− ×X to pt.. It is a reduction, hence so is εX × idY . As a subset of
(X− ×X × Y )− × Y it consists of all points of the form

(x, x, y, y). (3.18)

The composite of these two morphisms consists of the subset of X × Y =
X×pt.× pt.×Y given by those (x,y) such that there exists a w = (x, x′, y) with
(w, y) of the form (3.18) so x = x′ with (x,w) of the form (3.17) so (x′, y) ∈ Γ.
So the composite is Γ.

3.4.9 Composition with reductions or co-reductions.

Suppose that Γ ∈ Morph(X,B) is a reduction and so corresponds to a co-
isotropic subspace Z ⊂ X, and let V = Z⊥ be the kernel of the projection
πΓ : Z → B. Let Λ ∈ Morph(B,W ). Since π is surjective, for any (b, w) ∈ Λ
there exists a z ∈ Z with (z, w) ∈ Λ ◦Γ with πΓ(z) = b and this z is determined
up to an element of V . So

Proposition 16. If Γ ∈ Morph(X,B) is a reduction with V = ker(πΓ) and
Λ ∈ Morph(B,W ) then

Λ ◦ Γ = V × Λ.

Hence, if Γ ∈ Morph(B,X) is a co-reduction with V = ker ρΓ and Λ ∈
Morph(W,B) then

Γ ◦ Λ = Λ× V.

3.5 The category of oriented linear canonical re-
lations.

Recall that on an n-dimensional vector space V , its n-th exterior power ∧nV is
one dimensional. Hence ∧nV \ {0] has two components, and a choice of one of
them is called an orientation of V . Put another way, any basis e of ∧nV differs
from any other basis by multiplication by a non-zero real number. This divides
the set of bases into two equivalence classes, the elements in each equivalence
class differ from one another by a positive multiple.

If
0→ V ′ → V → V ′′ → 0

is an exact sequence of vector spaces a basis of V ′ extends to a basis of V which
then determines a basis of V ′′. So an orientation on any two of the three vector
spaces determines an orientation on the third. An orientation on a vector space
determines an orientation on its dual space.

A symplectic vector space carries a canonical orientation; indeed if ω is the
symplectic form on a 2n dimensional vector space then ωn is a non-zero element
of ∧2nV ∗, hence determines an orientation on V ∗ and hence on V .
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Suppose that V1, V2, V3 be three symplectic vector spaces with

Γ1 ⊂ V −1 ⊕ V2, Γ2 ⊂ V −2 ⊕ V3.

Claim: An orientation on Γ1 and Γ2 determines an orientation on Γ2 ◦Γ1.

Proof. Let us first consider the case where the composition is transverse. We
then have the exact sequence

0→ Γ2 ◦ Γ1 → Γ1 ⊕ Γ2
τ→ V2 → 0

so the orientations on Γ1 and Γ2 determine an orientation on Γ1 ⊕ Γ2, which
together with the canonical orientation on V2 determine an orientation on Γ2◦Γ1.

The general case is only slightly more complicated: we have the exact se-
quences

0→ Γ2 ? Γ1 → Γ1 ⊕ Γ2
τ→ Imτ → 0

0→ kerα→ Γ2 ? Γ1
α→ Γ2 ◦ Γ1 → 0 (3.19)

0→ kerα→ Imτ → Imτ/kerα→ 0.

In the last sequence we know that by definition, ker α (considered as a subspace
of V2) is a subspace of Im τ and we proved that kerα = Imτ⊥. So Imτ/kerα is a
symplectic vector space and hence has a canonical orientation. Thus a choice of
orientation on, say, kerα determines an orientation on Im τ . Such a choice then
(together with the orientation on Γ1⊕Γ2) determines an orientation on Γ2 ?Γ1

by the first sequence and then an orientation on Γ2 ◦Γ1 by the second sequence.
Had we made the opposite choice of orientation on kerα this would have made
the opposite choices of orientation on Im τ and hence on Γ2 ? Γ1 from the first
exact sequence, but then we would end up with the same orientation on Γ2 ◦Γ1

from the second exact sequence.

Proposition 17. The set whose objects are symplectic vector spaces and whose
morphisms are oriented linear canonical relations form a category.

Proof. We must prove the associative law. For this we use the identity

∆̃XY Z ◦ (Γ1 × Γ2) = Γ2 ◦ Γ1 (∗)

(withX = V1, Y = V2, Z = V3), together with the exact sequences (3.19) applied
to ∆̃XY Z and Γ1 × Γ2. The space ∆̃XY Z has a canonical orientation as it is
isomorphic to the symplectic vector space X ⊕ Y ⊕ Z. From Proposition 12
we know that kerα is isomorphic to ker α̃. So we conclude that the orientation
induced on Γ2 ◦ Γ1 is obtained from applying the construction above to (∗).
Thus the associativity follows from our “universal” associative law in that the
orientation on Γ3◦(Γ2◦Γ1) and on (Γ3◦Γ2)◦Γ1 both coincide with the orientation
induced on

∆̃XY ZW ◦ (Γ1 × Γ2 × Γ3).
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Victor: Maybe (as we discussed yesterday) we should use the orientation
coming from Γ−1 × Γ2 where Γ−1 denote the opposite orientation on Γ1. Notice
that the opposite orientation amounts to replacing one vector in a basis by its
negative, so (Γ−1 × Γ2)− = Γ1 × Γ2 and hence

(Γ−1 × Γ2)− × Γ3 = Γ1 × Γ2 × Γ3 = Γ−1 × (Γ−2 × Γ3)

so the associative law still holds. What do you think?



Chapter 4

The Symplectic
“Category”.

Let M be a symplectic manifold with symplectic form ω. Then −ω is also a
symplectic form on M . We will frequently write M instead of (M,ω) and by
abuse of notation we will let M− denote the manifold M with the symplectic
form −ω.

Let (Mi, ωi) i = 1, 2 be symplectic manifolds. A Lagrangian submanifold Γ
of

Γ ⊂M−1 ×M2

is called a canonical relation. So Γ is a subset of M1 ×M2 which is a La-
grangian submanifold relative to the symplectic form ω2 − ω1 in the obvious
notation. So a canonical relation is a relation which is a Lagrangian submani-
fold.

For example, if f : M1 → M2 is a symplectomorphism, then Γf = graph f
is a canonical relation.

If Γ1 ⊂M1 ×M2 and Γ2 ⊂M2 ×M3 we can form their composite

Γ2 ◦ Γ1 ⊂M1 ×M3

in the sense of the composition of relations. So Γ2 ◦ Γ1 consists of all points
(x, z) such that there exists a y ∈M2 with (x, y) ∈ Γ1 and (y, z) ∈ Γ2.

Let us put this in the language of fiber products: Let

π : Γ1 →M2

denote the restriction to Γ1 of the projection of M1×M2 onto the second factor.
Let

ρ : Γ2 →M2

denote the restriction to Γ2 of the projection of M2 ×M3 onto the first factor.
Let

F ⊂M1 ×M2 ×M2 ×M3

81
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be defined by

F = (π × ρ)−1∆M2
.

In other words, F is defined as the fiber product (or exact square)

F
ι1−−−−→ Γ1

ι2

y yπ
Γ2 −−−−→

ρ
M2

. (4.1)

so

F ⊂ Γ1 × Γ2 ⊂M1 ×M2 ×M2 ×M3.

Let pr13 denote the projection of M1×M2×M2×M3 onto M1×M3 (projection
onto the first and last components). Let π13 denote the restriction of pr13 to F .
Then, as a set,

Γ2 ◦ Γ1 = π13(F ). (4.2)

The map pr13 is smooth, and hence its restriction to any submanifold is
smooth. The problems are that

1. F defined as

F = (π × ρ)−1∆M2 ,

i.e. by (4.1), need not be a submanifold, and

2. that the restriction π13 of pr13 to F need not be an embedding.

So we need some additional hypotheses to ensure that Γ2 ◦ Γ1 is a submanifold
of M1 ×M3. Once we impose these hypotheses we will find it easy to check
that Γ2 ◦ Γ1 is a Lagrangian submanifold of M−1 ×M3 and hence a canonical
relation.

4.1 Clean intersection.

Assume that the maps

π : Γ1 →M2 and ρ : Γ2 →M2

defined above intersect cleanly.
Notice that (m1,m2,m

′
2,m3) ∈ F if and only if

• m2 = m′2,

• (m1,m2) ∈ Γ1, and

• (m′2,m3) ∈ Γ2.
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So we can think of F as the subset of M1 ×M2 ×M3 consisting of all points
(m1,m2,m3) with (m1,m2) ∈ Γ1 and (m2,m3) ∈ Γ2. The clean intersection
hypothesis involves two conditions. The first is that F be a manifold. The
second is that the derived square be exact at all points. Let us state this second
condition more explicitly: Let m = (m1,m2,m3) ∈ F . We have the following
vector spaces:

V1 := Tm1M1,

V2 := Tm2M2,

V3 := Tm3M3,

Γm1 := T(m1,m2)Γ1, and

Γm2 := T(m2,m3)Γ2.

So
Γm1 ⊂ T(m1,m2)(M1 ×M2) = V1 ⊕ V2

is a linear Lagrangian subspace of V −1 ⊕V2. Similarly, Γm2 is a linear Lagrangian
subspace of V −2 ⊕ V3. The clean intersection hypothesis asserts that TmF is
given by the exact square

TmF
d(ι1)m−−−−→ Γm1

d(ι2)m

y ydπ(m1,m2)

Γm2 −−−−−−−→
dρ(m2,m3)

Tm2
M2

(4.3)

In other words, TmF consists of all (v1, v2, v3) ∈ V1 ⊕ V2 ⊕ V3 such that

(v1, v2) ∈ Γm1 and (v2, v3) ∈ Γm2 .

The exact square (4.3) is of the form (3.10) that we considered in Section
3.4. We know from Section 3.4 that Γm2 ◦ Γm1 is a linear Lagrangian subspace
of V −1 ⊕ V3. In particular its dimension is 1

2 (dimM1 + dimM3) which does not
depend on the choice of m ∈ F . This implies the following: Let

ι : F →M1 ×M2 ×M3

denote the inclusion map, and let

κ13 : M1 ×M2 ×M3 →M1 ×M3

denote the projection onto the first and third components. So

κ13 ◦ ι : F →M1 ×M3

is a smooth map whose differential at any point m ∈ F maps TmF onto Γm2 ◦
Γm1 and so has locally constant rank. Furthermore, the image of TmF is a
Lagrangian subspace of T(m1,m3)(M

−
1 ×M3). We have proved:
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Theorem 9. If the canonical relations Γ1 ⊂ M−1 ×M2 and Γ2 ⊂ M−2 ×M3

intersect cleanly, then their composition Γ2 ◦ Γ1 is an immersed Lagrangian
submanifold of M−1 ×M3.

We must still impose conditions that will ensure that Γ2 ◦ Γ1 is an honest
submanifold of M1 ×M3. We will do this in the next section.

We will need a name for the manifold F we created out of Γ1 and Γ2 above.
As in the linear case, we will call it Γ2 ? Γ1.

4.2 Composable canonical relations.

We recall a theorem from differential topology:

Theorem 10. Let X and Y be smooth manifolds and f : X → Y is a smooth
map of constant rank. Let W = f(X). Suppose that f is proper and that for
every w ∈W , f−1(w) is connected and simply connected. Then W is a smooth
submanifold of Y .

We apply this theorem to the map κ13 ◦ ι : F → M1 ×M3. To shorten the
notation, let us define

κ := κ13 ◦ ι. (4.4)

Theorem 11. Suppose that the canonical relations Γ1 and Γ2 intersect cleanly.
Suppose in addition that the map κ is proper and that the inverse image of every
γ ∈ Γ2 ◦ Γ1 = κ(Γ2 ? Γ1) is connected and simply connected. Then Γ2 ◦ Γ1 is a
canonical relation. Furthermore

κ : Γ2 ? Γ1 → Γ2 ◦ Γ1 (4.5)

is a smooth fibration with compact connected fibers.

So we are in the following situation: We can not always compose the canon-
ical relations Γ2 ⊂M−2 ×M3 and Γ1 ⊂M−1 ×M2 to obtain a canonical relation
Γ2 ◦ Γ1 ⊂M−1 ×M3. We must impose some additional conditions, for example
those of the theorem. So, following Weinstein, we put quotation marks around
the word category to indicate this fact.

We will let S denote the “category” whose objects are symplectic manifolds
and whose morphisms are canonical relations. We will call Γ1 ⊂M−1 ×M2 and
Γ2 ⊂M−2 ×M3 cleanly composable if they satisfy the hypotheses of Theorem
11.

If Γ ⊂M−1 ×M2 is a canonical relation, we will sometimes use the notation

Γ ∈ Morph(M1,M2)

and sometimes use the notation

Γ : M1 �M2

to denote this fact.
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4.3 Transverse composition.

A special case of clean intersection is transverse intersection. In fact, in appli-
cations, this is a convenient hypothesis, and it has some special properties:

Suppose that the maps π and ρ are transverse. This means that

π × ρ : Γ1 × Γ2 →M2 ×M2

intersects ∆M2
transversally, which implies that the codimension of

Γ2 ? Γ1 = (π × ρ)−1(∆M2
)

in Γ1 × Γ2 is dimM2. So with F = Γ2 ? Γ1 we have

dimF = dim Γ1 + dim Γ2 − dimM2

=
1

2
dimM1 +

1

2
dimM2 +

1

2
dimM2 +

1

2
dimM3 − dimM2

=
1

2
dimM1 +

1

2
dimM3

= dim Γ2 ◦ Γ1.

So under the hypothesis of transversality, the map κ = κ13 ◦ ι is an immersion.
If we add the hypotheses of Theorem 11, we see that κ is a diffeomorphism.

For example, if Γ2 is the graph of a symplectomorphism of M2 with M3 then
dρ(m2,m3) : T(m2,m3)(Γ) → Tm2M2 is surjective at all points (m2,m3) ∈ Γ2. So
if m = (m1,m2,m2,m3) ∈ Γ1 × Γ2 the image of d(π × ρ)m contains all vectors
of the form (0, w) in Tm2

M2 ⊕ Tm2
M2 and so is transverse to the diagonal.

The manifold Γ2 ? Γ1 consists of all points of the form (m1,m2, g(m2)) with
(m1,m2) ∈ Γ1, and

κ : (m1,m2, g(m2)) 7→ (m1, g(m2)).

Since g is one to one, so is κ. So the graph of a symplectomorphism is transver-
sally composible with any canonical relation.

We will need the more general concept of “clean composability” described
in the preceding section for certain applications.

4.4 Lagrangian submanifolds as canonical rela-
tions.

We can consider the “zero dimensional symplectic manifold” consisting of the
distinguished point that we call “pt.”. Then a canonical relation between pt.
and a symplectic manifold M is a Lagrangian submanifold of pt.×M which may
be identified with a Lagrangian submanifold of M . These are the “points” in
our “category” S.

Suppose that Λ is a Lagrangian submanifold of M1 and Γ ∈ Morph(M1,M2)
is a canonical relation. If we think of Λ as an element of Morph(pt.,M1), then
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if Γ and Λ are composible, we can form Γ ◦ Λ ∈ Morph(pt.,M2) which may be
identified with a Lagrangian submanifold of M2. If we want to think of it this
way, we may sometimes write Γ(Λ) instead of Γ ◦ Λ.

We can mimic the construction of composition given in Section 3.3.2 for
the category of finite sets and relations. Let M1,M2 and M3 be symplectic
manifolds and let Γ1 ∈ Morph(M1,M2) and Γ2 ∈ Morph(M2,M3) be canonical
relations. So

Γ1 × Γ2 ⊂M−1 ×M2 ×M−2 ×M3

is a Lagrangian submanifold. Let

∆̃M1,M2,M3 = {(x, y, y, z, x, z)} ⊂M1 ×M2 ×M2 ×M3 ×M1 ×M3. (4.6)

We endow the right hand side with the symplectic structure

M1 ×M−2 ×M2 ×M−3 ×M
−
1 ×M3 = (M−1 ×M2 ×M−2 ×M3)− × (M−1 ×M3).

Then ∆̃M1,M2,M3
is a Lagrangian submanifold, i.e. an element of

Morph(M−1 ×M2 ×M−2 ×M3,M
−
1 ×M3).

Just as in Section 3.3.2,

∆̃M1,M2,M3
(Γ1 × Γ2) = Γ2 ◦ Γ1.

It is easy to check that Γ2 and Γ1 are composible if and only if ∆̃M1,M2,M3
and

Γ1 × Γ2 are composible.

4.5 The involutive structure on S.

Let Γ ∈ Morph(M1,M2) be a canonical relation. Just as in the category of finite
sets and relations, define

Γ† = {(m2,m1)|(m1,m2) ∈ Γ}.

As a set it is a subset of M2×M1 and it is a Lagrangian submanifold of M2×M−1 .
But then it is also a Lagrangian submanifold of

(M2 ×M−1 )− = M−2 ×M1.

So
Γ† ∈ Morph(M2,M1).

Therefore M 7→M,Γ 7→ Γ† is a involutive functor on S.

4.6 Reductions in the symplectic “category”.

In this section we recast the results of Sections 3.4.8 and 3.4.9 in the manifold
setting.
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4.6.1 Reductions in the symplectic “category” are reduc-
tions by coisotropics.

Let Z ⊂ X be a coisotropic submanifold. The null distribution of ιZωX is a
foliation by Frobenius. Suppose that it is fibrating with base Y so we have
π : Z → Y where the fiber dimension of π equals the codimension of Z = k,
say. We have an induced symplectic form ωY on Y such that π∗ωY = ι∗ωX
so the subset

{(z, π(z))|z ∈ Z} ⊂ X− × Y

is isotropic for the form ωY − ωX . Its dimension is dimZ = dimX − k =
1
2 (dimX + dimY ) since dimY = dimX − 2k, so is Lagrangian. As a morphism
it is surjective and single valued so is a reduction in the sense of Section 3.3.5.

Conversely, suppose that a morphism in our “category” is surjective with
image Y and let Z be the pre-image of Y . So we are assuming that Z ⊂ X is
a submanifold with surjection π : Z → Y . The Lagrangian submanifold Λ of
X− × Y consists of all (z, π(z)), z ∈ Z. Its dimension equals dimZ so we must
have

dimZ =
1

2
dimX +

1

2
dimY.

Let k := dimZ − dimY . Then we must have dimZ = dimX − k. Let V be the
vertical bundle for the fibration π. Since Λ is isotropic, so that π∗ωY = ι∗ZωX we
see that the orthogonal complement TV ⊥ relative to ωX to the tangent space
TV contains TZ. But the dimension of this complement is dimX − k = dimZ
so Z is co-isotropic.

Thus we obtain symplectic “category” version of the Proposition ?? of Be-
nenti and Tulszyjew, namely that a reduction Γ ∈ Morph(X,Y ) consists of a
co-isotropic submanifold Z ⊂ X with π : Z → Y the fibration associated to the
null foliation ι∗ZωX . Then Γ consists of all (z, π(z)).

4.6.2 The decomposition of any morphism into a reduc-
tion and a coreduction.

We next prove Weinstein’s theorem that any f ∈ Morph(X,Y ) can be written
as the transverse composition of a reduction and a coreduction. This is the
manifold version of Proposition 15, but the proof is essentially identical:

Let f be a morphism from X to Y . Since f is a Lagrangian submanifold of
X− × Y , we can think of f as a morphism γ(f) from pt. . to X− × X− × Y .
This is a coreduction. Hence so is id.× γ(f) which is a morphism from X × pt.
to X×X−×Y . As a Lagrangian submanifold of (X×pt.)−× (X×X−×Y ) =
X− × (X ×X− × Y ) it consists of all points of the form

(x, x, x′, y) with (x′, y) ∈ f. (4.7)

∆X is a Lagrangian subspace of X− ×X which we can think of as a morphism
εX from X− ×X to pt.. It is a reduction, hence so is εX × idY . As a subset of
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(X− ×X × Y )− × Y it consists of all points of the form

(x, x, y, y). (4.8)

The composite of these two morphisms consists of the subset of X × Y =
X×pt.× pt.×Y given by those (x,y) such that there exists a w = (x, x′, y) with
(w, y) of the form (4.8) so x = x′ with (x,w) of the form (3.17) so (x′, y) ∈ Γ.
So the composite is Γ.

4.6.3 Composition with reductions or co-reductions.

We now give the manifold version of Prop. 3.4.9. Suppose that Γ ∈ Morph(X,B)
is a reduction and so corresponds to a co-isotropic submanifold Z ⊂ X, and let
V be a typical fiber the projection πΓ : Z → B. Let Λ ∈ Morph(B,W ). Since
π is surjective, for any (b, w) ∈ Λ there exists a z ∈ Z with (z, w) ∈ Λ ◦ Γ with
πΓ(z) = b and this z is determined up to an element of V . So

Proposition 18. If Γ ∈ Morph(X,B) is a reduction with V = ker(πΓ) and
Λ ∈ Morph(B,W ) then

Λ ◦ Γ ∼ V × Λ.

Hence, if Γ ∈ Morph(B,X) is a co-reduction with V sim ker ρΓ and Λ ∈
Morph(W,B) then

Γ ◦ Λ = Λ× V.

4.7 Canonical relations between cotangent bun-
dles.

In this section we want to discuss some special properties of our “category” S
when we restrict the objects to be cotangent bundles (which are, after all, special
kinds of symplectic manifolds). One consequence of our discussion will be that
S contains the category C∞ whose objects are smooth manifolds and whose
morphisms are smooth maps as a (tiny) subcategory. Another consequence
will be a local description of Lagrangian submanifolds of the cotangent bundle
which generalizes the description of horizontal Lagrangian submanifolds of the
cotangent bundle that we gave in Chapter 1. We will use this local description
to deal with the problem of passage through caustics that we encountered in
Chapter 1.

We recall the following definitions from Chapter 1: Let X be a smooth
manifold and T ∗X its cotangent bundle, so that we have the projection π :
T ∗X → X. The canonical one form αX is defined by (1.8). We repeat the
definition: If ξ ∈ T ∗X,x = π(ξ), and v ∈ Tξ(T ∗X) then the value of αX at v is
given by

〈αX , v〉 := 〈ξ, dπξv〉. (1.8)

The symplectic form ωX is given by

ωX = −dαX . (1.10)
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So if Λ is a submanifold of T ∗X on which αX vanishes and whose dimension
is dimX then Λ is (a special kind of) Lagrangian submanifold of T ∗X.

The conormal bundle.

An instance of this is the conormal bundle of a submanifold: Let Y ⊂ X be
a submanifold. Its conormal bundle

N∗Y ⊂ T ∗X

consists of all z = (x, ξ) ∈ T ∗X such that x ∈ Y and ξ vanishes on TxY . If
v ∈ Tz(N∗Y ) then dπz(v) ∈ TxY so by (1.8) 〈αX , v〉 = 0.

4.8 The canonical relation associated to a map.

Let X1 and X2 be manifolds and f : X1 → X2 be a smooth map. We set

M1 := T ∗X1 and M2 := T ∗X2

with their canonical symplectic structures. We have the identification

M1 ×M2 = T ∗X1 × T ∗X2 = T ∗(X1 ×X2).

The graph of f is a submanifold of X1 ×X2:

X1 ×X2 ⊃ graph(f) = {(x1, f(x1))}.

So the conormal bundle of the graph of f is a Lagrangian submanifold of M1 ×
M2. Explicitly,

N∗(graph(f)) = {(x1, ξ1, x2, ξ2)|x2 = f(x1), ξ1 = −df∗x1
ξ2}. (4.9)

Let
ς1 : T ∗X1 → T ∗X1

be defined by
ς1(x, ξ) = (x,−ξ).

Then ς∗1 (αX1) = −αX1 and hence

ς∗1 (ωX1
) = −ωX1

.

We can think of this as saying that ς1 is a symplectomorphism of M1 with M−1
and hence

ς1 × id

is a symplectomorphism of M1 ×M2 with M−1 ×M2. Let

Γf := (ς1 × id)(N∗(graph(f)). (4.10)
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Then Γf is a Lagrangian submanifold of M−1 ×M2. In other words,

Γf ∈ Morph(M1,M2).

Explicitly,

Γf = {(x1, ξ1, x2, ξ2)|x2 = f(x1), ξ1 = df∗x1
ξ2}. (4.11)

Suppose that g : X2 → X3 is a smooth map so that Γg ∈ Morph(M2,M3). So

Γg = {(x2, ξ2, x3, ξ3)|x3 = g(x2), ξ2 = dg∗x2
ξ3.}.

The maps

π : Γf →M2, (x1, ξ1, x2, ξ2) 7→ (x2, ξ2)

and

ρ : Γg →M2, (x2, ξ2, x3, ξ3) 7→ (x2, ξ2)

are transverse. Indeed at any point (x1, ξ1, x2, ξ2, x2, ξ2, x3, ξ3) the image of
dπ contains all vectors of the form (0, w) in Tx2,ξ2(T ∗M2), and the image of dρ
contains all vectors of the form (v, 0). So Γg and Γf are transversely composible.
Their composite Γg ◦ Γf consists of all (x1, ξ1, x3, ξ3) such that there exists an
x2 such that x2 = f(x1) and x3 = g(x2) and a ξ2 such that ξ1 = df∗x1

ξ2 and
ξ2 = dg∗x2

ξ3. But this is precisely the condition that (x1, ξ1, x3, ξ3) ∈ Γg◦f ! We
have proved:

Theorem 12. The assignments

X 7→ T ∗X

and

f 7→ Γf

define a covariant functor from the category C∞ of manifolds and smooth maps
to the symplectic “category” S. As a consequence the assignments X 7→ T ∗X
and

f 7→ (Γf )
†

define a contravariant functor from the category C∞ of manifolds and smooth
maps to the symplectic “category” S.

We now study special cases of these functors in a little more detail:

4.9 Pushforward of Lagrangian submanifolds of
the cotangent bundle.

Let f : X1 → X2 be a smooth map, and M1 := T ∗X1, M2 := T ∗X2 as before.
The Lagrangian submanifold Γf ⊂M−1 ×M2 is defined by (4.11). In particular,
it is a subset of T ∗X1 × T ∗X2 and hence a particular kind of relation (in the
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sense of Chapter 3). So if A is any subset of T ∗X1 then Γf (A) is a subset of
T ∗X2 which we shall also denote by df∗(A). So

df∗(A) := Γf (A), A ⊂ T ∗X1.

Explicitly,

df∗A = {(y, η) ∈ T ∗X2|∃(x, ξ) ∈ A with y = f(x) and ξ = df∗xη}.

Now suppose that A = Λ is a Lagrangian submanifold of T ∗X1. Considering Λ
as an element of Morph(pt., T ∗X1) we may apply Theorem 9. Let

π1 : N∗(graph(f))→ T ∗X1

denote the restriction to N∗(graph(f)) of the projection of T ∗X1 × T ∗X2 onto
the first component. Notice thatN∗(graph(f)) is stable under the map (x, ξ, y, η) 7→
(x,−ξ, y,−η) and hence π1 intersects Λ cleanly if and only if π1 ◦ (ς× id) : Γf →
T ∗X1 intersects Λ cleanly where, by abuse of notation, we have also denoted by
π1 restriction of the projection to Γf . So

Theorem 13. If Λ is a Lagrangian submanifold and π1 : N∗(graph(f)) →
T ∗X1 intersects Λ cleanly then df∗(Λ) is an immersed Lagrangian submanifold
of T ∗X2.

If f has constant rank, then the dimension of df∗xT
∗(X2)f(x) does not vary,

so that df∗(T ∗X2) is a sub-bundle of T ∗X1. If Λ intersects this subbundle
transversally, then our conditions are certainly satisified. So

Theorem 14. Suppose that f : X1 → X2 has constant rank. If Λ is a
Lagrangian submanifold of T ∗X1 which intersects df∗T ∗X2 transversaly then
df∗(Λ) is a Lagrangian submanifold of T ∗X2.

For example, if f is an immersion, then df∗T ∗X2 = T ∗X1 so all Lagrangian
submanifolds are transverse to df∗T ∗X2.

Corollary 15. If f is an immersion, then df∗(Λ) is a Lagrangian submanifold
of T ∗X2.

At the other extreme, suppose that f : X1 → X2 is a fibration. Then
H∗(X1) := df∗T ∗N consists of the “horizontal sub-bundle”, i.e those covectors
which vanish when restricted to the tangent space to the fiber. So

Corollary 16. Let f : X1 → X2 be a fibration, and let H∗(X1) be the bundle
of the horizontal covectors in T ∗X1. If Λ is a Lagrangian submanifold of T ∗X1

which intersects H∗(X1) transversally, then df∗(Λ) is a Lagrangian submanifold
of T ∗X2.

An important special case of this corollary for us will be when Λ = graph dφ.
Then Λ ∩ H∗(X1) consists of those points where the “vertical derivative”, i.e.
the derivative in the fiber direction vanishes. At such points dφ descends to
give a covector at x2 = f(x1). If the intersection is transverse, the set of such
covectors is then a Lagrangian submanifold of T ∗N . All of the next chapter will
be devoted to the study of this special case of Corollary 16.
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4.9.1 Envelopes.

Another important special case of Corollary 16 is the theory of envelopes, a clas-
sical subject which has more or less disappeared from the standard curriculum:

Let

X1 = X × S, X2 = X

where X and S are manifolds and let f = π : X × S → X be projection onto
the first component.

Let

φ : X × S → R

be a smooth function having 0 as a regular value so that

Z := φ−1(0)

is a submanifold of X × S. In fact, we will make a stronger assumption: Let
φs : X → R be the map obtained by holding s fixed:

φs(x) := φ(x, s).

We make the stronger assumption that each φs has 0 as a regular value, so that

Zs := φ−1
s (0) = Z ∩ (X × {s})

is a submanifold and

Z =
⋃
s

Zs

as a set. The Lagrangian submanifold N∗(Z) ⊂ T ∗(X×S) consists of all points
of the form

(x, s, tdφX(x, s), tdSφ(x, s)) such that φ(x, s) = 0.

Here t is an arbitrary real number. The sub-bundle H∗(X × S) consists of all
points of the form

(x, s, ξ, 0).

So the transversality condition of Corollary 16 asserts that the map

z 7→ d

(
∂φ

∂s

)
has rank equal to dim S on Z. The image Lagrangian submanifold df∗N

∗(Z)
then consists of all covectors tdXφ where

φ(x, s) = 0 and
∂φ

∂s
(x, s) = 0,

a system of p+ 1 equations in n+ p variables, where p = dimS and n = dimX
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Our transversality assumptions say that these equations define a submanifold
of X × S. If we make the stronger hypothesis that the last p equations can be
solved for s as a function of x, then the first equation becomes

φ(x, s(x)) = 0

which defines a hypersurface E called the envelope of the surfaces Zs. Further-
more, by the chain rule,

dφ(·, s(·)) = dXφ(·, s(·)) + dSφ(·, s(·))dXs(·) = dXφ(·, s(·))

since dSφ = 0 at the points being considered. So if we set

ψ := φ(·, s(·))

we see that under these restrictive hypotheses df∗N
∗(Z) consists of all multiples

of dψ, i.e.
df∗(N

∗(Z)) = N∗(E)

is the normal bundle to the envelope.
In the classical theory, the envelope “develops singularities”. But from our

point of view it is natural to consider the Lagrangian submanifold df∗N
∗(Z).

This will not be globally a normal bundle to a hypersurface because its projec-
tion on X (from T ∗X) may have singularities. But as a submanifold of T ∗X it
is fine:
Examples:

• Suppose that S is an oriented curve in the plane, and at each point s ∈ S
we draw the normal ray to S at s. We might think of this line as a light
ray propagating down the normal. The initial curve is called an “initial
wave front” and the curve along which the light tends to focus is called
the “caustic”. Focusing takes place where “nearby normals intersect” i.e.
at the envelope of the family of rays. These are the points which are the
loci of the centers of curvature of the curve, and the corresponding curve
is called the evolute.

• We can let S be a hypersurface in n-dimensions, say a surface in three
dimensions. We can consider a family of lines emanating from a point
source (possible at infinity), and reflected by S. The corresponding enve-
lope is called the “caustic by reflection”. In Descartes’ famous theory of
the rainbow he considered a family of parallel lines (light rays from the
sun) which were refracted on entering a spherical raindrop, internally re-
flected by the opposite side and refracted again when exiting the raindrop.
The corresponding “caustic” is the Descartes cone of 42 degrees.

• If S is a submanifold of Rn we can consider the set of spheres of radius r
centered at points of S. The corresponding envelope consist of “all points
at distance r from S”. But this develops singularities past the radii of
curvature. Again, from the Lagrangian or “upstairs” point of view there
is no problem.
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4.10 Pullback of Lagrangian submanifolds of the
cotangent bundle.

We now investigate the contravariant functor which assigns to the smooth map
f : X1 → X2 the canonical relation

Γ†f : T ∗X2 � T ∗X1.

As a subset of T ∗(X2)× T ∗(X1), Γ†f consists of all

(y, η, x, ξ)| y = f(x), and ξ = df∗x(η). (4.12)

If B is a subset of T ∗X2 we can form Γ†f (B) ⊂ T ∗X1 which we shall denote by
df∗(B). So

df∗(B) := Γ†f (B) = {(x, ξ)|∃ b = (y, η) ∈ B with f(x) = y, df∗xη = ξ}. (4.13)

If B = Λ is a Lagrangian submanifold, once again we may apply Theorem 9
to obtain a sufficient condition for df∗(Λ) to be a Lagrangian submanifold of

T ∗X1. Notice that in the description of Γ†f given in (4.12), the η can vary freely
in T ∗(X2)f(x). So the issue of clean or transverse intersection comes down to
the behavior of the first component. So, for example, we have the following
theorem:

Theorem 17. Let f : X1 → X2 be a smooth map and Λ a Lagrangian submani-
fold of T ∗X2. If the maps f , and the restriction of the projection π : T ∗X2 → X2

to Λ are transverse, then df∗Λ is a Lagrangian submanifold of T ∗X1.

Here are two examples of the theorem:

• Suppose that Λ is a horizontal Lagrangian submanifold of T ∗X2. This
means that restriction of the projection π : T ∗X2 → X2 to Λ is a diffeo-
morphism and so the transversality condition is satisfied for any f . Indeed,
if Λ = Λφ for a smooth function φ on X2 then

f∗(Λφ) = Λf∗φ.

• Suppose that Λ = N∗(Y ) is the normal bundle to a submanifold Y of
X2. The transversality condition becomes the condition that the map f
is transversal to Y . Then f−1(Y ) is a submanifold of X1. If x ∈ f−1(Y )
and ξ = df∗xη with (f(x), η) ∈ N∗(Y ) then ξ vanishes when restricted to
T (f−1(Y )), i.e. (x, ξ) ∈ N (f−1(S)). More precisely, the transversality as-
serts that at each x ∈ f−1(Y ) we have dfx(T (X1)x) +TYf(x) = T (X2)f(x)

so
T (X1)x/T (f−1(Y ))x ∼= T (X2)f(x))/TYf(x)

and so we have an isomorphism of the dual spaces

N∗x(f−1(Y )) ∼= N∗f(x)(Y ).

In short, the pullback of N∗(Y ) is N∗(f−1(Y )).
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4.11 The moment map.

In this section we show how to give a categorical generalization of the classical
moment map for a Hamiltonian group action. We begin with a review of the
classical theory.

4.11.1 The classical moment map.

In this section we recall the classical moment map, especially from Weinstein’s
point of view.

Let (M,ω) be a symplectic manifold, K a connected Lie group and τ an ac-
tion of K on M preserving the symplectic form. From τ one gets an infinitesimal
action

δτ : k→ Vect(M) (4.14)

of the Lie algebra, k, of K, mapping ξ ∈ k to the vector field, δτ(ξ) =: ξM . Here
ξM is the infinitesimal generator of the one parameter group

t 7→ τexp−tξ.

The minus sign is to guarantee that δτ is a Lie algebra homomorphism.
In particular, for p ∈M , one gets from (4.14) a linear map,

dτp : k→ TpM , ξ → ξM (p) ; (4.15)

and from ωp a linear isomorphism,

Tp → T ∗p v → i(v)ωp ; (4.16)

which can be composed with (4.15) to get a linear map

˜dτp : k→ T ∗pM . (4.17)

Definition 1. A K-equivariant map

φ : M → k∗ (4.18)

is a moment map, if for every p ∈M :

dφp : TpM → k∗ (4.19)

is the transpose of the map (4.17).

The property (4.19) determines dφp at all points p and hence determines φ
up to an additive constant, c ∈ (k∗)K if M is connected. Thus, in particular, if
K is semi-simple, the moment map, if it exists, is unique. As for the existence
of φ, the duality of (4.17) and (4.19) can be written in the form

i(ξM )ω = d〈φ, ξ〉 (4.20)

for all ξ ∈ k; and this shows that the vector field, ξM , has to be Hamiltonian.
If K is compact the converse is true. A sufficient condition for the existence of
φ is that each of the vector fields, ξM , be Hamiltonian. (See for instance, [?],
§ 26.) An equivalent formulation of this condition will be useful below:
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Definition 2. A symplectomorphism, f : M → M is Hamiltonian if there
exists a family of symplectomorphisms, ft : M → M , 0 ≤ t ≤ 1, depending
smoothly on t with f0 = idM and f1 = f , such that the vector field

vt = f−1
t

dft
dt

is Hamiltonian for all t.

It is easy to see that ξM is Hamiltonian for all ξ ∈ k if and only if the
symplectomorphism, τg, is exact for all g ∈ K.

Our goal in this section is to describe a generalized notion of moment map-
ping in which there are no group actions involved. First, however, we recall
a very suggestive way of thinking about moment mappings and the “moment
geometry” associated with moment mappings, due to Alan Weinstein, [?]. From
the left action of K on T ∗K one gets a trivialization

T ∗K = K × k∗

and via this trivialization a Lagrangian submanifold

Γτ = {(m, τgm, g, φ(m)) ; m ∈M , g ∈ K} ,

of M ×M− × T ∗K, which Weinstein calls the moment Lagrangian. He views
this as a canonical relation between M− ×M and T ∗K, i.e. as a morphism

Γτ : M− ×M � T ∗K .

4.11.2 Families of symplectomorphisms.

We now turn to the first stage of our generalization of the moment map, where
the group action is replaced by a family of symplectomorphisms:

Let (M,ω) be a symplectic manifold, S an arbitrary manifold and fs, s ∈ S,
a family of symplectomorphisms of M depending smoothly on s . For p ∈ M
and s0 ∈ S let gs0,p : S → M be the map, gs0,p(s) = fs ◦ f−1

s0 (p). Composing
the derivative of gs0,p at s0

(dgs0,p)s0 : Ts0S → TpM (4.21)

with the map (4.16) one gets a linear map

( ˜dgs0,p)s0 : Ts0S → T ∗pM . (4.22)

Now let Φ be a map of M×S into T ∗S which is compatible with the projection,
M × S → S in the sense

M × S Φ−→ T ∗S
H
HHj ?

S
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commutes; and for s0 ∈ S let

Φs0 : M → T ∗s0S

be the restriction of Φ to M × {s0}.

Definition 3. Φ is a moment map if, for all s0 and p,

(dΦs0)p : TpM → T ∗s0S (4.23)

is the transpose of the map (4.22).

We will prove below that a sufficient condition for the existence of Φ is
that the fs’s be Hamiltonian; and, assuming that Φ exists, we will consider the
analogue for Φ of Weinstein’s moment Lagrangian,

ΓΦ = {(m, fs(m),Φ(m, s)) ; m ∈M , s ∈ S} , (4.24)

and ask if the analogue of Weinstein’s theorem is true: Is (4.24) a Lagrangian
submanifold of M ×M− × T ∗S?

Equivalently consider the imbedding of M × S into M ×M− × T ∗S given
by the map

G : M × S →M ×M− × T ∗S ,

where G(m, s) = (m, fs(m),Φ(m, s)). Is this a Lagrangian imbedding? The
answer is “no” in general, but we will prove:

Theorem 18. The pull-back by G of the symplectic form on M ×M− × T ∗S
is the pull-back by the projection, M × S → S of a closed two-form, µ, on S.

If µ is exact, i.e., if µ = dν, we can modify Φ by setting

Φnew(m, s) = Φold(m, s)− νs ,

and for this modified Φ the pull-back by G of the symplectic form on M×M−×
T ∗S will be zero; so we conclude:

Theorem 19. If µ is exact, there exists a moment map, Φ : M × S → T ∗S,
for which ΓΦ is Lagrangian.

The following converse result is also true.

Theorem 20. Let Φ be a map of M ×S into T ∗S which is compatible with the
projection of M × S onto S. Then if ΓΦ is Lagrangian, Φ is a moment map.

Remarks:

1. A moment map with this property is still far from being unique; however,
the ambiguity in the definition of Φ is now a closed one-form, ν ∈ Ω1(S).

2. if [µ] 6= 0 there is a simple expedient available for making ΓΦ Lagrangian.
One can modify the symplectic structure of T ∗S by adding to the standard
symplectic form the pull-back of −µ to T ∗S.
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3. Let Ge be the group of Hamiltonian symplectomorphisms of M . Then for
every manifold, S and smooth map

F : S → Ge

one obtains by the construction above a cohomology class [µ] which is a
homotopy invariant of the mapping F .

4. For a smooth map F : S → Ge, there exists an analogue of the character
Lagrangian. Think of ΓΦ as a canonical relation or “map”

ΓΦ : M− ×M � T ∗S

and define the character Lagrangian of F to be the image with respect to
ΓΦ of the diagonal in M− ×M .

Our proof of the results above will be an illustration of the principle: the more
general the statement of a theorem the easier it is to prove. We will first
generalize these results by assuming that the fs’s are canonical relations rather
than canonical transformations, i.e., are morphisms in our category. Next we
will get rid of morphisms altogether and replace M × M− by a symplectic
manifold M and canonical relations by Lagrangian submanifolds of M .

4.11.3 The moment map in general.

Let (M,ω) be a symplectic manifold. Let Z,X and S be manifolds and suppose
that

π : Z → S

is a fibration with fibers diffeomorphic to X. Let

G : Z →M

be a smooth map and let

gs : Zs →M, Zs := π−1(s)

denote the restriction of G to Zs. We assume that

gs is a Lagrangian embedding (4.25)

and let
Λs := gs(Zs) (4.26)

denote the image of gs. Thus for each s ∈ S, the restriction of G imbeds the
fiber, Zs = π−1(s), into M as the Lagrangian submanifold, Λs. Let s ∈ S and
ξ ∈ TsS. For z ∈ Zs and w ∈ TzZs tangent to the fiber Zs

dGzw = (dgs)zw ∈ TG(z)Λs



4.11. THE MOMENT MAP. 99

so dGz induces a map, which by abuse of language we will continue to denote
by dGz

dGz : TzZ/TzZs → TmM/TmΛ, m = G(z). (4.27)

But dπz induces an identification

TzZ/Tz(Zs) = TsS. (4.28)

Furthermore, we have an identification

TmM/Tm(Λs) = T ∗mΛs (4.29)

given by
TmM 3 u 7→ i(u)ωm(·) = ωm(u, ·).

Finally, the diffeomorphism gs : Zs → Λs allows us to identify

T ∗mΛs ∼ T ∗z Zs, m = G(z).

Via all these identifications we can convert (4.27) into a map

TsS → T ∗z Zs . (4.30)

Now let Φ : Z → T ∗S be a lifting of π : Z → S, so that

Z
Φ−→ T ∗S
HHHjπ ?

S

commutes; and for s ∈ S let

Φs : Zs → T ∗s S

be the restriction of Φ to Zs.

Definition 4. Φ is a moment map if, for all s and all z ∈ Zs,

(dΦs)z : TzZs → T ∗s S (4.31)

is the transpose of (4.30).

Note that this condition determines Φs up to an additive constant νs ∈ T ∗s S
and hence, as in § 4.11.2, determines Φ up to a section, s→ νs, of T ∗S.

When does a moment map exist? By (4.30) a vector, v ∈ TsS, defines, for
every point, z ∈ Zs, an element of T ∗Zs and hence defines a one-form on Zs
which we will show to be closed. We will say that G is exact if for all s and all
v ∈ TsS this one-form is exact, and we will prove below that the exactness of G
is a necessary and sufficient condition for the existence of Φ.

Given a moment map, Φ, one gets from it an imbedding

(G,Φ) : Z →M × T ∗S (4.32)

and as in the previous section we can ask how close this comes to being a
Lagrangian imbedding. We will prove
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Theorem 21. The pull-back by (4.32) of the symplectic form on M × T ∗S is
the pull-back by π of a closed two-form µ on S.

The cohomology class of this two-form is an intrinsic invariant of G (doesn’t
depend on the choice of Φ) and as in the last section one can show that this is
the only obstruction to making (4.32) a Lagrangian imbedding.

Theorem 22. If [µ] = 0 there exists a moment map, Φ, for which the imbed-
ding (4.32) is Lagrangian.

Conversely we will prove

Theorem 23. Let Φ be a map of Z into T ∗S lifting the map, π, of Z into S.
Then if the imbedding (4.32) is Lagrangian Φ is a moment map.

4.11.4 Proofs.

Let us go back to the map (4.30). If we hold s fixed but let z vary over Zs,
we see that each ξ ∈ TsS gives rise to a one form on Zs. To be explicit, let us
choose a trivialization of our bundle around Zs so we have an identification

H : Zs × U → π−1(U)

where U is a neighborhood of s in S. If t 7→ s(t) is any curve on S with
s(0) = s, s′(0) = ξ we get a curve of maps hs(t) of Zs →M where

hs(t) = gs(t) ◦H.

We thus get a vector field vξ along the map hs

vξ : Zs → TM, vξ(z) =
d

dt
hs(t)(z)|t=0.

Then the one form in question is

τ ξ = h∗s(i(v
ξ)ω).

A direct check shows that this one form is exactly the one form described above
(and hence is independent of all the choices). We claim that

dτ ξ = 0. (4.33)

Indeed, the general form of the Weil formula (14.8) and the fact that dω = 0
gives (

d

dt
h∗s(t)ω

)
|t=0

= dh∗si(v
ξ)ω

and the fact that Λs is Lagrangian for all s implies that the left hand side and
hence the right hand side is zero. Let us now assume that G is exact, i.e. that
for all s and ξ the one form τ ξ is exact. So

τ ξ = dφξ
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for some C∞ function φξ on Zs. The function φξ is uniquely determined up to
an additive constant on each Zs (if Zs is connected) which we can fix (in various
ways) so that it depends smoothly on s and linearly on ξ. For example, if we
have a cross-section c : S → Z we can demand that φ(c(s))ξ ≡ 0 for all s and ξ.
Alternatively, we can equip each fiber Zs with a compactly supported density
dzs which depends smoothly on s and whose integral over Zs is one for each s.
We can then demand that that

∫
Zs
φξdzs = 0 for all ξ and s.

Suppose that we have made such choice. Then for fixed z ∈ Zs the number
φξ(z) depends linearly on ξ. Hence we get a map

Φ0 : Z → T ∗S, Φ0(z) = λ⇔ λ(ξ) = φξ(z). (4.34)

We shall see below (Theorem 25) that Φ0 is a moment map by computing its
derivative at z ∈ Z and checking that it is the transpose of (4.30).

If each Zs is connected, our choice determines φξ up to an additive constant
ν(s, ξ) which we can assume to be smooth in s and linear in ξ. Replacing φξ by
φξ + ν(s, ξ) has the effect of making the replacement

Φ0 7→ Φ0 + ν ◦ π

where ν : S → T ∗S is the one form 〈νs, ξ〉 = ν(s, ξ)
Let ωS denote the canonical two form on T ∗S.

Theorem 24. There exists a closed two form ρ on S such that

G∗ω − Φ∗ωS = π∗ρ. (4.35)

If [ρ] = 0 then there is a one form ν on S such that if we set

Φ = Φ0 + ν ◦ π

then
G∗ω − Φ∗ωS = 0. (4.36)

As a consequence, the map

G̃ : Z →M− × T ∗S, z 7→ (G(z),Φ(z)) (4.37)

is a Lagrangian embedding.

Proof. We first prove a local version of the theorem. Locally, we may
assume that Z = X × S. This means that we have an identification of Zs with
X for all s. By the Weinstein tubular neighborhood theorem we may assume
(locally) that M = T ∗X and that for a fixed s0 ∈ S the Lagrangian submanifold
Λs0 is the zero section of T ∗X and that the map

G : X × S → T ∗X

is given by
G(x, s) = dXψ(x, s)
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where ψ ∈ C∞(X × S). In local coordinates x1, . . . , xk on X, this reads as

G(x, s) =
∂ψ

∂x1
dx1 + · · ·+ ∂ψ

∂xk
dxk.

In terms of these choices, the maps hs(t) used above are given by

hs(t)(x) = dXψ(x, s(t))

and so (in local coordinates) on X and on S the vector field vξ is given by

vξ(z) =
d

dt
hs(t)(z)|t=0 =

∂2ψ

∂x1∂s1
ξ1

∂

∂p1
+ · · ·+ ∂2ψ

∂x1∂sr
ξr

∂

∂p1
+ · · ·+ ∂2ψ

∂xk∂sr
ξr

∂

∂pk

where r = dimS. We can write this more compactly as

∂〈dSψ, ξ〉
∂x1

∂

∂p1
+ · · ·+ ∂〈dSψ, ξ〉

∂xk

∂

∂pk
.

Taking the interior product of this with
∑
dqi ∧ dpi gives

−∂〈dSψ, ξ〉
∂x1

dq1 − · · · −
∂〈dSψ, ξ〉
∂xk

dqk

and hence the one form τ ξ is given by

−dX〈dSψ, ξ〉.

so we may choose
Φ(x, s) = −dSψ(x, s).

Thus
G∗αX = dXψ, Φ∗αS = −dSψ

and hence
G∗ωX − Φ∗ωS = −ddψ = 0.

This proves a local version of the theorem with ρ = 0.
We now pass from the local to the global: By uniqueness, our global Φ0

must agree with our local Φ up to the replacement Φ 7→ Φ + µ ◦ π. So we know
that

G∗ω − Φ∗0ωS = (µ ◦ π)∗ωS = π∗µ∗ωS .

Here µ is a one form on S regarded as a map S → T ∗S. But

dπ∗µ∗ωS = π∗µ∗dωS = 0.

So we know that G∗ω − Φ∗0ωS is a closed two form which is locally and hence
globally of the form π∗ρ where dρ = 0. This proves (4.35).
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Now suppose that [ρ] = 0 so we can write ρ = dν for some one form ν on S.
Replacing Φ0 by Φ0 + ν ◦ π replaces ρ by ρ+ ν∗ωS . But

ν∗ωS = −ν∗dαS = −dν = −ρ. 2

Remark. If [ρ] 6= 0 then we can not succeed by modifying Φ. But we can
modify the symplectic form on T ∗S replacing ωS by ωS−π∗Sρ where πS denotes
the projection T ∗S → S.

4.11.5 The derivative of Φ.

We continue the current notation. So we have the map

Φ : Z → T ∗S.

Fix s ∈ S. The restriction of Φ to the fiber Zs maps Zs → T ∗s S. Since T ∗s S is
a vector space, we may identify its tangent space at any point with T ∗s S itself.
Hence for z ∈ Zs we may regard dΦz as a linear map from TzZ to T ∗s S. So we
write

dΦz : TzZs → T ∗s S. (4.38)

On the other hand, recall that using the identifications (4.28) and (4.29) we got
a map

dGz : TsS → T ∗mΛ, m = G(z)

and hence composing with d(gs)
∗
z : T ∗mΛ→ T ∗z Zs a linear map

χz := d(gs)
∗
z ◦ dGz : TsS → T ∗z Z. (4.39)

Theorem 25. The maps dΦz given by (4.38) and χz given by (4.39) are trans-
poses of one another.

Proof. Each ξ ∈ TsS gives rise to a one form τ ξ on Zs and by definition,
the value of this one form at z ∈ Zs is exactly χz(ξ). The function φξ was
defined on Zs so as to satisfy dφξ = τ ξ. In other words, for v ∈ TzZ

〈χz(ξ), v〉 = 〈dΦz(v), ξ〉. 2

Corollary 26. The kernel of χz is the annihilator of the image of the map
(4.38). In particular z is a regular point of the map Φ : Zs → T ∗s S if the map
χz is injective.

Corollary 27. The kernel of the map (4.38) is the annihilator of the image of
χz.

4.11.6 A converse.

The following is a converse to Theorem 24:
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Theorem 28. If Φ : Z → T ∗S is a lifting of the map π : Z → S to T ∗S and
(G,Φ) is a Lagrangian imbedding of

Z →M− × T ∗S

then Φ is a moment map.

Proof. It suffices to prove this in the local model described above where
Z = X × S, M = T ∗X and G(x, s) = dXψ(x, s). If Φ : X × S → T ∗S is a
lifting of the projection X × S → X, then (G,Φ) can be viewed as a section of
T ∗(X × S) i.e. as a one form β on X × S. If (G,Φ) is a Lagrangian imbedding
then β is closed. Moreover, the (1,0) component of β is dXψ so β − dψ is a
closed one form of type (0,1), and hence is of the form µ ◦π for some closed one
form on S. this shows that

Φ = dSψ + π∗µ

and hence, as verfied above, is a moment map. 2

4.11.7 Back to families of symplectomorphisms.

Let us now specialize to the case of a parametrized family of symplectomor-
phisms. So let (M,ω) be a symplectic manifold, S a manifold and

F : M × S →M

a smooth map such that
fs : M →M

is a symplectomophism for each s, where fs(m) = F (m, s). We can apply the
results of the preceding section where now Λs ⊂ M ×M− is the graph of fs
(and the M of the preceding section is replaced byM ×M−) and so

G : M × S →M ×M−, G(m, s) = (m,F (m, s)). (4.40)

Theorem 24 says that get a map

Φ : M × S → T ∗S

and a moment Lagrangian

ΓΦ ⊂M ×M− × T ∗S.

The equivariant situation.

Suppose that a compact Lie group K acts as fiber bundle automorphisms of
π : Z → S and acts as symplectomorphisms of M . Suppose further that the
fibers of Z are compact and equipped with a density along the fiber which is
invariant under the group action. (For example, we can put any density on Zs
varying smoothly on s and then replace this density by the one obtained by
averaging over the group.) Finally suppose that the map G is equivariant for
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the group actions of K on Z and on M . Then the map G̃ can be chosen to be
equivariant for the actions of K on Z and the induced action of K on M ×T ∗S.

More generally we want to consider situations where a Lie group K acts on
Z as fiber bundle automorphisms and on M and where we know by explicit
construction that the map G̃ can be chosen to be equivariant .

Hamiltonian group actions.

Let us specialize further by assuming that S is a Lie group K and that F :
M ×K →M is a Hamiltonian group action. So we have a map

G : M ×K →M ×M−, (m, a) 7→ (m, am).

Let K act on Z = M ×K via its left action on K so a ∈ K acts on Z as

a : (m, b) 7→ (m, ab).

We expect to be able to construct G̃ : M ×K → T ∗K so as to be equivariant
for the action of K on Z = M ×K and the induced action of K on T ∗K.

To say that the action is Hamiltonian with moment map Ψ : M → k∗ is to
say that

i(ξM )ω = −d〈Ψ, ξ〉.
Thus under the left invariant identification of T ∗K with K × k∗ we see that Ψ
determines a map

Φ : M ×K → T ∗K, Φ(m, a) = (a,Ψ(m)).

So our Φ of (4.34) is indeed a generalization of the moment map for Hamiltonian
group actions.

4.12 Double fibrations.

The set-up described in § 4.11.2 has some legitimate applications of its own.
For instance suppose that the diagram

S M

Z





�

π J
JĴ
G

is a double fibration: i.e., both π and G are fiber mappings and the map

(G, π) : Z →M × S

is an imbedding. In addition, suppose there exists a moment map Φ : Z → T ∗S
such that

(G,Φ) : Z →M × T ∗S (4.41)

is a Lagrangian imbedding. We will prove
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Theorem 29. The moment map Φ : Z → T ∗S is a co-isotropic immersion.

Proof. We leave as an exercise the following linear algebra result:

Lemma 1. Let V and W be symplectic vector spaces and Γ a Lagrangian sub-
space of V ×W . Suppose the projection of Λ into V is surjective. Then the
projection of Γ into W is injective and its image is a co-isotropic subspace of
W .

To prove the theorem let ΓΦ be the image of the imbedding (4.41). Then the
projection, Γφ → M , is just the map, G; so by assumption it is a submersion.
Hence by the lemma, the projection, ΓΦ → T ∗S, which is just the map, Φ, is a
co-isotropic immersion.

The most interesting case of the theorem above is the case when Φ is an
imbedding. Then its image, Σ, is a co-isotropic submanifold of T ∗S and M is
just the quotient of Σ by its null-foliation. This description of M gives one,
in principle, a method for quantizing M as a Hilbert subspace of L2(S). (For
examples of how this method works in practice, see [?].)

4.12.1 The moment image of a family of symplectomor-
phisms

As in §4.11.7 let M be a symplectic manifold and let {fs , s ∈ S} be an exact
family of symplectomorphisms. Let

Φ : M × S → T ∗S

be the moment map associated with this family and let

Γ = {(m, fs(m)) , Φ(m, s) ; (m, s) ∈M × S} (4.42)

be its moment Lagrangian. From the perspective of §4.4, Γ is a morphism or
“map”

Γ : M− ×M ⇒ T ∗S

mapping the categorical “points” (Lagrangian submanifolds) ofM−×M into the
categorical “points” (Lagrangian submanifolds) of T ∗S. Let ΛΦ be the image
with respect to this “map” of the diagonal, ∆, in M×M . In more prosaic terms
this image is just the image with respect to Φ (in the usual sense) of the subset

X = {(m, s) ∈M × S ; fs(m) = m} (4.43)

of M ×S. As we explained in §4.2 this image will be a Lagrangian submanifold
of T ∗S only if one imposes transversal or clean intersection hypotheses on Γ and
∆. More explicitly let

ρ : Γ→M ×M (4.44)

be the projection of Γ into M×M . The the pre-image in Γ of ∆ can be identified
with the set (4.43), and if ρ intersects ∆ cleanly, the set (4.43) is a submanifold
of M × S and we know from Theorem 9 that:
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Theorem 30. The composition,

Φ ◦ j : X → T ∗S , (4.45)

of Φ with the inclusion map, j, of X into M ×S is a mapping of constant rank
and its image, ∆Φ, is an immersed Lagrangian submanifold of T ∗S.

Remarks.

1. If the projection (4.44) intersects ∆ transversally one gets a stronger result,
Namely in this case the map (4.45) is a Lagrangian immersion.

2. If the map (4.45) is proper and its level sets are simply connected, then
ΛΦ is an imbedded Lagrangian submanifold of T ∗S, and (4.45) is a fiber
bundle mapping with X as fiber and ΛΦ as base.

Let’s now describe what this “moment image”, ΛΦ, of the moment La-
grangian look like in some examples:

4.12.2 The character Lagrangian.

Let K be the standard n-dimensional torus and k its Lie algebra. Given a
Hamiltonian action, τ , of K on a compact symplectic manifold, M , one has its
usual moment mapping, φ : M → k∗; and if K acts faithfully the image of φ is
a convex n-dimensional polytope, PΦ.

If we consider the moment map Φ : M → T ∗K = K × k∗ in the sense of
§4.11.2, The image of Φ in the categorical sense can be viewed as a labeled
polytope in which the open (n − k)-dimensional faces of PΦ are labeled by k-
dimensional subgroups of K. More explicitly, since M is compact, there are a
finite number of subgroups of K occurring as stabilizer groups of points. Let

Kα , α = 1, . . . , N (4.46)

be a list of these subgroups and for each α let

Mi,α , i = 1, . . . , kα (4.47)

be the connected components of the set of points whose stabilizer group is Kα.
Then the sets

φ(Mi,α) = Pi,α (4.48)

in k∗ are the open faces of P and the categorical image, ΛΦ, of the set of sym-
plectomorphisms {τa , a ∈ K} is the disjoint union of the Lagrangian manifolds

Λi,α = Kα ×Pi,α (4.49)
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4.12.3 The period–energy relation.

If one replaces the group, K = Tn in this example by the non-compact group,
K = Rn one can’t expect ΛΦ to have this kind of polyhedral structure; however,
ΛΦ does have some interesting properties from the dynamical systems perspec-
tive. If H : M → (Rn)∗ is the moment map associated with the action of Rn
onto M , the coordinates, Hi, of H can be viewed as Poisson–commuting Hamil-
tonians, and the Rn action is generated by their Hamiltonian vector fields, νHi ,
i.e., by the map

s ∈ Rn → fs = (exp s1νH1
) . . . (exp snνHn) . (4.50)

Suppose now that H : M → (Rn)∗ is a proper submersion. Then each connected
component, Λ, of ΛΦ in T ∗Rn = Rn × (Rn)∗ is the graph of a map

H →
(
∂ψ

∂H1
, · · · , ∂ψ

∂Hn

)
over an open subset, U , of (Rn)∗ with ψ ∈ C∞(U), and, for c ∈ U , the element,
T = (T1, . . . , Tn), Ti = ∂ψ

∂Hi
(c), of Rn is the stabilizer of a connected component

of periodic trajectories of the νHi ’s on the level set:

H1 = c1, . . . ,Hn = c .

In particular all trajectories of νHi have the same period, Ti, on this level set.
This result is known in the theory of dynamical systems as the period–energy
relation. In many examples of interest, the Legendre transform

∂ψ

∂H
: U → Rn

is invertible, mapping U bijectively onto an open set, V , and in this case Λ is
the graph of the “period mapping”

T ∈ V → ∂ψ∗

∂T
∈ (Rn)∗

where ψ∗ is the Legendre function dual to ψ.

4.12.4 The period–energy relation for families of symplec-
tomorphisms.

We will show that something similar to this period–energy relation is true for
families of symplectomorphisms providing we impose some rather strong as-
sumptions on M and ω. Namely we will have to assume that ω is exact and
that H1(M,R) = 0. Modulo these assumptions one can define, for a symplec-
tomorphism, f : M → M , and a fixed point, p of f , a natural notion of “the
period of p”.
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The definition is the following. Choose a one-form, α, with dα = ω. Then

d(α− f∗α) = ω − f∗ω = 0

so
α− f∗α = dψ (4.51)

for some ψ in C∞(M). (Unfortunately, ψ is only defined up to an additive
constant, and one needs some “intrinsic” way of normalizing this constant. For
instance, if ψ is bounded and M has finite volume one can require that the
integral of ψ over M be zero, or if there is a natural base point, p0, in M fixed
by f , one can require that ψ(p0) = 0.) Now, for every fixed point, p, set

Tp = ψ(p) . (4.52)

This definition depends on the normalization we’ve made of the additive con-
stant in the definition of ψ, but we claim that it’s independent of the choice of
α. In fact, if we replace α by α+dg, g ∈ C∞(M), ψ gets changed to ψ+f∗g−g
and at the fixed point, p,

ψ(p) + (f∗g − g)(p) = ψ(p) ,

so the definition (4.42) doesn’t depend on α.
There is also a dynamical systems method of defining these periods. By a

variant of the mapping torus construction of Smale one can construct a contact
manifold, W , which is topologically identical with the usual mapping torus of
f , and on this manifold a contact flow having the following three properties.

1. M sits inside W and is a global cross-section of this flow.

2. f is the “first return” map.

3. If f(p) = p the periodic trajectory of the flow through p has Tp as period.

Moreover, this contact manifold is unique up to contact isomorphism. (For
details see [?] or [?].) Let’s apply these remarks to the set-up we are considering
in this paper. As above let F : M ×S →M be a smooth mapping such that for
every s the map fs : M →M , mapping m to F (m, s), is a symplectomorphism.
Let us assume that

H1(M × S,R) = 0.

Let π be the projection of M × S onto M . Then if α is a one-form on M
satisfying dα = ω and αS is the canonical one-form on T ∗S the moment map
Φ : M × S →M associated with F has the defining property

π∗α− F ∗α+ Φ∗αS = dψ (4.53)

for some ψ in C∞(M × S). Let’s now restrict both sides of (4.53) to M × {s}.
Since Φ maps M × {s} into T ∗s , and the restriction of αS to T ∗s is zero we get:

α− f∗sα = dψs (4.54)



110 CHAPTER 4. THE SYMPLECTIC “CATEGORY”.

where ψs = ψ|M×{s}.

Next let X be the set, (4.43), i.e., the set:

{(m, s) ∈M × S , F (m, s) = m}

and let’s restrict (4.53) to X. If j is the inclusion map of X into M × S, then
F ◦ j = π; so

j∗(π∗α− F ∗α) = 0

and we get from (4.53)

j∗(φ∗αS − dψ) = 0 . (4.55)

The identities, (4.54) and (4.55) can be viewed as a generalization of the
period–energy relation. For instance, suppose the map

F̃ : M × S →M ×M

mapping (m, s) to (m, F (m, s)) is transversal to ∆. Then by Theorem 30 the
map Φ ◦ j : X → T ∗S is a Lagrangian immersion whose image is ΛΦ. Since F̃
intersects ∆ transversally, the map

f̃s : M →M ×M , f̃s(m) = (m, fs(m)) ,

intersects ∆ transversally for almost all s, and if M is compact, fs is Lefschetz
and has a finite number of fixed points, pi(s), i = 1, . . . , k. The functions,
ψi(s) = ψ(pi(s), s), are, by (4.54), the periods of these fixed points and by
(4.55) the Lagrangian manifolds

Λψi = {(s, ξ) ∈ T ∗S ξ = dψi(s)}

are the connected components of ΛΦ.

4.13 The category of exact symplectic manifolds
and exact canonical relations.

4.13.1 Exact symplectic manifolds.

Let (M,ω) be a symplectic manifold. It is possible that the symplectic form ω
is exact, that is, that ω = −dα for some one form α. When this happens, we
say that (M,α) is an exact sympletic manifold. In other words, an exact
symplectic manifold is a pair consisting of a manifold M together with a one
form α such that ω = −dα is of maximal rank. The main examples for us, of
course, are cotangent bundles with their canonical one forms. Observe that

Proposition 19. No positive dimensional compact symplectic manifold can be
exact.
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Indeed, if (M,ω) is a symplectic manifold with M compact, then∫
M

ωd > 0

where 2d = dimM assuming that d > 0. But if ω = −dα then

ωd = −d
(
α ∧ ωd−1

)
and so

∫
M
ωd = 0 by Stokes’ theorem. 2

4.13.2 Exact Lagrangian submanifolds of an exact sym-
plectic manifold.

Let (M,α) be an exact symplectic manifold and Λ a Lagrangian submanifold of
(M,ω) where ω = −dα. Let

βΛ := ι∗Λα (4.56)

where
ιΛ : Λ→M

is the embedding of Λ as a submanifold of M . So

dβΛ = 0.

Suppose that βΛ is exact, i.e. that βΛ = dψ for some function ψ on Λ. (This
will always be the case, for example, if Λ is simply connected.) We then call Λ
an exact Lagrangian submanifold and ψ a choice of phase function for Λ.

Another important class of examples is where βΛ = 0, in which case we can
choose ψ to be locally constant. For instance, if M = T ∗X and Λ = N∗(Y ) is
the conormal bundle to a submanifold Y ⊂ X then we know that the restriction
of αX to N∗(V ) is 0.

4.13.3 The sub“category” of S whose objects are exact.

Consider the “category” whose objects are exact symplectic manifolds and
whose morphisms are canonical relations between them. So let (M1, α1) and
(M2, α2) be exact symplectic manifolds. Let

pr1 : M1 ×M2 →M1, pr2 : M1 ×M2 →M2

be projections onto the first and second factors. Let

α := −pr∗1 α1 + pr∗2 α2.

Then −dα gives the symplectic structure on M−1 ×M2.
To say that Γ ∈ Morph(M1,M2) is to say that Γ is a Lagrangian submanifold

of M−1 ×M2. Let ιΓ : Γ→ M−1 ×M2 denote the inclusion map, and define, as
above:

βΓ := ι∗Γα.

We know that dβΓ = ι∗dα = 0. So every canonical relation between cotangent
bundles comes equipped with a closed one form.
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Example: the canonical relation of a map.

Let f : X1 → X2 be a smooth map and Γf the corresponding canonical relation
from M1 = T ∗X1 to M2 = T ∗X2. By definition Γf = (ς1× id)N∗(graph(f)) and
we know that the canonical one form vanishes on any conormal bundle. Hence

βΓf = 0.

So if Γ is a canonical relation coming from a smooth map, its associated one
form vanishes. We want to consider an intermediate class of Γ’s - those whose
associated one forms are exact.

Before doing so, we must study the behavior of the βΓ under composition.

4.13.4 Functorial behavior of βΓ.

Let (Mi, αi) i = 1, 2, 3 be exact symplectic manifolds and

Γ1 ∈ Morph(M1,M2), Γ2 ∈ Morph(M2,M3)

be cleanly composible canonical relations. Recall that we defined

Γ2 ? Γ1 ⊂ Γ1 × Γ2

to consist of all (m1,m2,m2,m3) and we have the fibration

κ : Γ2 ? Γ1 → Γ2 ◦ Γ2, κ(m1,m2,m2,m3) = (m1,m3).

We also have the projections

%1 : Γ2 ? Γ1 → Γ1, %1((m1,m2,m2,m3)) = (m1,m2)

and
%2 : Γ2 ? Γ1 → Γ2, %((m1,m2,m2,m3)) = (m2,m3).

We claim that
κ∗βΓ2◦Γ1

= %∗1βΓ1
+ %∗2βΓ2

. (4.57)

Proof. Let ρ1 and π1 denote the projections of Γ1 onto M1 and M2, and let ρ2

and π2 denote the projections of Γ2 onto M2 and M3, so that

π1%1 = ρ2%2

both maps sending (m1,m2,m2,m3) to m2. So

βΓ1 = −ρ∗1α1 + π∗1α2 and βΓ2 = −ρ∗2α2 + π∗2α3.

Thus
%∗1βΓ1

+ %∗2βΓ2
= −%∗1ρ∗1α1 + %∗2π

∗
2α3 = κ∗βΓ2◦Γ1

. 2

As a corollary we see that if βΓi = dψi, i = 1, 2 then

κ∗βΓ2◦Γ1 = d (%∗1ψ1 + %∗2ψ2) .

So let us call a canonical relation exact if its associated (closed) one form
is exact. We see that if we restrict ourselves to canonical relations which are
exact, then we obtain a sub“category” of the “category” whose objects are exact
symplectic manifolds and whose morphisms are exact canonical relations.
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4.13.5 Defining the “category” of exact symplectic mani-
folds and canonical relations.

If Γ is an exact canonical relation so that βΓ = dψ, then ψ is only deter-
mined up to an additive constant (if Γ is connected). But we can enhance our
sub“category” by specifying ψ. That is, we consider the “category” whose ob-
jects are exact symplectic manifolds and whose morphisms are pairs (Γ, ψ) where
Γ is an exact canonical relation and βΓ = dψ. Then composition is defined as
follows: If Γ1 and Γ2 are cleanly composible, then we define

(Γ2, ψ2) ◦ (Γ1, ψ1) = (Γ2 ◦ Γ1, ψ) (4.58)

where the (local) additive constant in ψ is determined by

κ∗ψ = %∗1ψ1 + %∗2ψ2. (4.59)

We shall call this enhanced sub“category” the “category” of exact canonical
relations.

An important sub“category” of this “category” is where the objects are
cotangent bundles with their canonical one forms.

The “category” of exact symplectic manifolds and conormal canonical
relations.

As we saw above, the restriction of the canonical one form of a cotangent bundle
to the conormal bundle of a submanifold of the base has the property that ι∗α =
0. So we can consider the subcategory of the “category” of exact symplectic
manifolds and canonical relations by demanding that βΓ = 0 and that ψ = 0.
Of course, in this subcategory the ψ’s occurring in (4.58) and (4.59) are all zero.
We shall call this subcategory of the exact symplectic “category” the “category”
of symplectic manifolds and conormal canonical relations. in honor of the
conormal case.

The integral symplectic “category”.

On the other hand in Chapter ?? we will make use of a slightly larger “category”
than the “category” of exact symplectic manifolds and exact canonical relations.
The objects in this larger “category” will still be exact symplectic manifolds
(M,α). But a morphism between (M1, α1) and (M2, α2) will be a pair (Γ, f)
where Γ is a Lagrangian submanifold of M−1 ×M2 and f : Γ→ S1 is a C∞ map
satisfying

ι∗Γα =
1

2πi

df

f
. (4.60)

Here α = π∗2α2 − π∗1α1 as before.
(Notice that if (Γ, ψ) is a morphism in the exact symplectic “category”,

then we get a morphism is this larger “category” by setting f = e2πiφ.) The
condition (4.60) implies that ι∗Γα defines an integral cohomology class which is
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the reason that we call this “category” the integral symplectic “category”.
The composition law (generalizing the laws in (4.58) and (4.59)) is

(Γ2, f2) ◦ (Γ1, f1) = (Γ, f)

where
κ∗f = (ρ∗2f) · (ρ∗1f). (4.61)

4.13.6 Pushforward via a map in the “category” of exact
canonical relations between cotangent bundles.

As an illustration of the composition law (4.58) consider the case where ΛZ is
an exact Lagrangian submanifold of T ∗Z so that the restriction of the one form
of T ∗Z to Λ is given by dψΛ. We consider Λ as an element of Morph(pt., T ∗Z)
so we can take (Λ, ψ) as the (Γ1, ψ1) in (4.58). Let f : Z → X be a smooth
map and take Γ2 in (4.58) to be Γf . We know that the one form associated
to Γf vanishes. In our enhanced category we must specify the function whose
differential vanishes on Γf - that is we must pick a (local) constant c. So in
(4.58) we have (Γ2, ψ2) = (Γf , c). Assume that the Γf and Λ are composible.
Recall that then Γf ◦ ΛZ = df∗(ΛZ) consists of all (x, ξ) where x = f(z) and
(z, df∗(ξ)) ∈ Λ. Then (4.58) says that

ψ(x, ξ) = ψΛ(z, η) + c. (4.62)

In the next chapter and in Chapter 8 will be particularly interested in the
case where f is a fibration. So we are given a fibration π : Z → X and we
take ΛZ = Λφ to be a horizontal Lagrangian submanifold of T ∗Z. We will
also assume that the composition in (4.58) is transversal. In this case the
pushforward map dπ∗ gives a diffeomorphism of Λφ with Λ := df∗(Λφ). In our
applications, we will be given the pair (Λ, ψ) and we will regard (4.62) as fixing
the arbitrary constant in φ rather than in Γf whose constant we take to be 0.



Chapter 5

Generating functions.

In this chapter we continue the study of canonical relations between cotangent
bundles. We begin by studying the canonical relation associated to a map in
the special case when this map is a fibration. This will allow us to generalize
the local description of a Lagrangian submanifold of T ∗X that we studied in
Chapter 1. In Chapter 1 we showed that a horizontal Lagrangian submanifold
of T ∗X is locally described as the set of all dφ(x) where φ ∈ C∞(X) and we
called such a function a “generating function”. The purpose of this chapter is
to generalize this concept by introducing the notion of a generating function
relative to a fibration.

5.1 Fibrations.

In this section we will study in more detail the canonical relation associated to
a fibration. So let X and Z be manifolds and

π : Z → X

a smooth fibration. So (by equation (4.11))

Γπ ∈ Morph(T ∗Z, T ∗X)

consists of all (z, ξ, x, η) ∈ T ∗Z × T ∗X such that

x = π(z) and ξ = (dπz)
∗η.

Then
pr1 : Γπ → T ∗Z, (z, ξ, x, η) 7→ (z, ξ)

maps Γπ bijectively onto the sub-bundle of T ∗Z consisting of those covectors
which vanish on tangents to the fibers. We will call this sub-bundle the hori-
zontal sub-bundle and denote it by H∗Z. So at each z ∈ Z, the fiber of the
horizontal sub-bundle is

H∗(Z)z = {(dπz)∗η, η ∈ T ∗π(z)X}.

115
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Let ΛZ be a Lagrangian submanifold of T ∗Z which we can also think of as
an element of Morph(pt., T ∗Z). We want to study the condition that Γπ and
ΛZ be composable so that we be able to form

Γπ(ΛZ) = Γπ ◦ ΛZ

which would then be a Lagrangian submanifold of T ∗X. If ι : ΛZ → T ∗Z
denotes the inclusion map then the clean intersection part of the composibility
condition requires that ι and pr1 intersect cleanly. This is the same as saying
that ΛZ and H∗Z intersect cleanly in which case the intersection

F := ΛZ ∩H∗Z

is a smooth manifold and we get a smooth map κ : F → T ∗X. The remaining
hypotheses of Theorem 11 require that this map be proper and have connected
and simply connected fibers.

A more restrictive condition is that intersection be transversal, i.e. that

ΛZ ∩>H∗Z

in which case we always get a Lagrangian immersion

F → T ∗X, (z, dπ∗zη) 7→ (π(z), η).

The additional composibility condition is that this be an embedding.
Let us specialize further to the case where ΛZ is a horizontal Lagrangian

submanifold of T ∗Z. That is, we assume that

ΛZ = Λφ = γφ(Z) = {(z, dφ(z))}

as in Chapter 1. When is
Λφ ∩>H∗Z?

Now H∗Z is a sub-bundle of T ∗Z so we have the exact sequence of vector
bundles

0→ H∗Z → T ∗Z → V ∗Z → 0 (5.1)

where
(V ∗Z)z = T ∗z Z/(H

∗Z)z = T ∗z (π−1(x)), x = π(z)

is the cotangent space to the fiber through z.
Any section dφ of T ∗Z gives a section dvertφ of V ∗Z by the above exact

sequence, and Λφ ∩>H∗Z if and only if this section intersects the zero section of
V ∗Z transversally. If this happens,

Cφ := {z ∈ Z|(dvertφ)z = 0}

is a submanifold of Z whose dimension is dimX. Furthermore, at any z ∈ Cφ

dφz = (dπz)
∗η for a unique η ∈ T ∗π(z)X.
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Thus Λφ and Γπ are transversally composable if and only if

Cφ → T ∗X, z 7→ (π(z), η)

is a Lagrangian embedding in which case its image is a Lagrangian submanifold

Λ = Γπ(Λφ) = Γπ ◦ Λφ

of T ∗X. When this happens we say that φ is a transverse generating func-
tion of Λ with respect to the fibration (Z, π).

If Λφ and Γπ are merely cleanly composable, we say that φ is a clean
generating function with respect to π.

If φ is a transverse generating function for Λ with respect to the fibration,
π, and π1 : Z1 → Z is a fibration over Z, then it is easy to see that φ1 = π∗1φ is
a clean generating function for Λ with respect to the fibration, π ◦ π1; and we
will show in the next section that there is a converse result: Locally, every clean
generating function can be obtained in this way from a transverse generating
function. For this reason it will suffice, for many of the things we’ll be doing in
this chapter, to work with transverse generating functions; and to simplify no-
tation, we will henceforth,in this chapter, unless otherwise stated, use the terms
“generating function” and “transverse generating function” interchangeably.

However, in the applications in Chapter 9, we will definitely need to use
clean generating functions.

5.1.1 Transverse vs. clean generating functions.

Locally, we can assume that Z is the product, X × S, of X with an open
subset, S, of Rk with standard coordinates s1, . . . , sk. Then H∗Z is defined by
the equations, η1 = · · · = ηk = 0, where the ηi’s are the standard cotangent
coordinates on T ∗S; so Λφ ∩H∗Z is defined by the equations

∂φ

∂si
= 0 , i = 1, . . . , k .

Let Cφ be the subset of X×S defined by these equations. Then if Λφ intersects
H∗Z cleanly, Cφ is a submanifold of X × S of codimension r ≤ k; and, at
every point (x0, s0) ∈ Cφ, Cφ can be defined locally near (x0, s0) by r of these
equations, i.e., modulo repagination, by the equations

∂φ

∂si
= 0 , i = 1, . . . , r .

Moreover these equations have to be independent: the tangent space at (x0, s0)
to Cφ has to be defined by the equations

d

(
∂φ

∂si

)
(x0,ξ0)

= 0 , i = 1, . . . , r .
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Suppose r < k (i.e., suppose this clean intersection is not transverse). Since
∂φ/∂sk vanishes on Cφ, there exist C∞ functions, gi ∈ C∞(X×S), i = 1, . . . , r
such that

∂φ

∂sk
=

r∑
i=1

gi
∂φ

∂si
.

In other words, if ν is the vertical vector field

ν =
∂

∂sk
−

r∑
i=1

gi(x, s)
∂

∂si

then Dνφ = 0. Therefore if we make a change of vertical coordinates

(si)new = (si)new(x, s)

so that in these new coordinates

ν =
∂

∂sk

this equation reduces to
∂

∂sk
φ(x, s) = 0 ,

so, in these new coordinates,

φ(x, s) = φ(x, s1, . . . , sk−1) .

Iterating this argument we can reduce the number of vertical coordinates so
that k = r, i.e., so that φ is a transverse generating function in these new
coordinates. In other words, a clean generating function is just a transverse
generating function to which a certain number of vertical “ghost variables”
(“ghost” meaning that the function doesn’t depend on these variables) have
been added. The number of these ghost variables is called the excess of the
generating function. (Thus for the generating function in the paragraph above,
its excess is k − r.) More intrinsically the excess is the difference between the
dimension of the critical set Cφ of φ and the dimension of X.

As mentioned above, unless specified otherwise, we assume in this Chapter
that our generating function are transverse generating functions.

5.2 The generating function in local coordinates.

Suppose that X is an open subset of Rn, that

Z = X × Rk

that π is projection onto the first factor, and that (x, s) are coordinates on Z
so that φ = φ(x, s). Then Cφ ⊂ Z is defined by the k equations

∂φ

∂si
= 0, i = 1, . . . , k.
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and the transversality condition is that these equations be functionally indepen-
dent. This amounts to the hypothesis that their differentials

d

(
∂φ

∂si

)
i = 1, . . . k

be linearly independent. Then Λ ⊂ T ∗X is the image of the embedding

Cφ → T ∗X, (x, s) 7→ ∂φ

∂x
= dXφ(x, s).

5.3 Example - a generating function for a conor-
mal bundle.

Suppose that
Y ⊂ X

is a submanifold defined by the k functionally independent equations

f1(x) = · · · = fk(x) = 0.

Let φ : X × Rk → R be the function

φ(x, s) :=
∑
i

fi(x)si. (5.2)

We claim that
Λ = Γπ ◦ Λφ = N∗Y, (5.3)

the conormal bundle of Y . Indeed,

∂φ

∂si
= fi

so
Cφ = Y × Rk

and the map
Cφ → T ∗X

is given by

(x, s) 7→
∑

sidXfi(x).

The differentials dXfi span the conormal bundle to Y at each x ∈ Y proving
(5.3).

As a special case of this example, suppose that

X = Rn × Rn

and that Y is the diagonal

diag(X) = {(x, x)} ⊂ X
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which may be described as the set of all (x, y) ∈ Rn × Rn satisfying

xi − yi = 0, i = 1, . . . , n.

We may then choose

φ(x, y, s) =
∑
i

(xi − yi)si. (5.4)

Now diag(X) is just the graph of the identity transformation so by Section 4.8
we know that (ς1× id)(N∗(diag(X)) is the canonical relation giving the identity
map on T ∗X. By abuse of language we can speak of φ as the generating function
of the identity canonical relation. (But we must remember the ς1.)

5.4 Example. The generating function of a geodesic
flow.

A special case of our generating functions with respect to a fibration is when
the fibration is trivial, i.e. π is a diffeomorphism. Then the vertical bundle
is trivial and we have no “auxiliary variables”. Such a generating function is
just a generating function in the sense of Chapter 1. For example, let X be a
Riemannian manifold and let φt ∈ C∞(X ×X) be defined by

φt(x, y) :=
1

2t
d(x, y)2, (5.5)

where
t 6= 0.

Let us compute Λφ and (ς1 × id)(Λφ). We first do this computation under the
assumption that X = Rn and the metric occurring in (5.5) is the Euclidean
metric so that

φ(x, y, t) =
1

2t

∑
i

(xi − yi)2

∂φ

∂xi
=

1

t
(xi − yi)

∂φ

∂yi
=

1

t
(yi − xi) so

Λφ = {(x, 1

t
(x− y), y,

1

t
(y − x)} and

(ς1 × id)(Λφ) = {(x, 1

t
(y − x), y,

1

t
(y − x)}.

In this last equation let us set y − x = tξ, i.e.

ξ =
1

t
(y − x)
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which is possible since t 6= 0. Then

(ς1 × id)(Λφ) = {(x, ξ, x+ tξ, ξ)}

which is the graph of the symplectic map

(x, ξ) 7→ (x+ tξ, ξ).

If we identify cotangent vectors with tangent vectors (using the Eulidean metric)
then x+ tξ is the point along the line passing through x with tangent vector ξ
a distance t‖ξ‖ out. The one parameter family of maps (x, ξ) 7→ (x + tξ, ξ) is
known as the geodesic flow. In the case of Euclidean space, the time t value of
this flow is a diffeomorphism of T ∗X with itself for every t. So long as t 6= 0 it
has the generating function given by (5.5) with no need of auxiliary variables.
When t = 0 the map is the identity and we need to introduce a fibration.

More generally, this same computation works on any “geodesically convex”
Riemannian manifold, where:

A Riemannian manifold X is called geodesically convex if, given any
two points x and y in X, there is a unique geodesic which joins them. We
will show that the above computation of the generating function works for any
geodesically convex Riemannian manifold. In fact, we will prove a more general
result. Recall that geodesics on a Riemannian manifold can be described as
follows: A Riemann metric on a manifold X is the same as a scalar product
on each tangent space TxX which varies smoothly with X. This induces an
identification of TX with T ∗X and hence a scalar product 〈 , 〉x on each T ∗X.
This in turn induces the “kinetic energy” Hamiltonian

H(x, ξ) :=
1

2
〈ξ, ξ〉x.

The principle of least action says that the solution curves of the corresponding
vector field vH project under π : T ∗X → X to geodesics of X and every geodesic
is the projection of such a trajectory.

An important property of the kinetic energy Hamiltonian is that it is quadratic
of degree two in the fiber variables. We will prove a theorem (see Theorem 31
below) which generalizes the above computation and is valid for any Hamil-
tonian which is homogeneous of degree k 6= 1 in the fiber variables and which
satisfies a condition analogous to the geodesic convexity theorem. We first recall
some facts about homogeneous functions and Euler’s theorem.

Consider the one parameter group of dilatations t 7→ d(t) on any cotangent
bundle T ∗X:

d(t) : T ∗X → T ∗X : (x, ξ) 7→ (x, etξ).

A function f is homogenous of degree k in the fiber variables if and only if

d(t)∗f = ektf.

For example, the principal symbol of a k-th order linear partial differential
operator on X is a function on T ∗X with which is a polynomial in the fiber
variables and is homogenous of degree k.
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Let E denote the vector field which is the infinitesimal generator of the one
parameter group of dilatations. It is called the Euler vector field. Euler’s
theorem (which is a direct computation from the preceding equation) says that
f is homogenous of degree k if and only if

Ef = kf.

Let α = αX be the canonical one form on T ∗X. From its very definition (1.8)
it follows that

d(t)∗α = etα

and hence that
DEα = α.

Since E is everywhere tangent to the fiber, it also follows from (1.8) that

i(E)α = 0

and hence that
α = DEα = i(E)dα = −i(E)ω

where ω = ωX = −dα.
Now let H be a function on T ∗X which is homogeneous of degree k in the

fiber variables. Then

kH = EH = i(E)dH

= i(E)i(vH)ω

= −i(vH)i(E)ω

= i(vH)α and

(exp vH)∗α− α =

∫ 1

0

d

dt
(exp tvH)∗αdt with

d

dt
(exp tvH)∗α = (exp tvH)∗ (i(vH)dα+ di(vH)α)

= (exp tvH)∗ (−i(vH)ω + di(vH)α)

= (exp tvH)∗ (−dH + kdH)

= (k − 1)(exp tvH)∗dH

= (k − 1)d(exp tvH)∗H

= (k − 1)dH

since H is constant along the trajectories of vH . So

(exp vH)∗α− α = (k − 1)dH. (5.6)

Remark. In the above calculation we assumed that H was smooth on all of
T ∗X including the zero section, effectively implying that H is a polynomial in
the fiber variables. But the same argument will go through (if k > 0) if all
we assume is that H (and hence vH) are defined on T ∗X\ the zero section, in
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which case H can be a more general homogeneous function on T ∗X\ the zero
section.

Now exp vH : T ∗X → T ∗X is symplectic map. Let

Γ := graph (exp vH),

so Γ ⊂ T ∗X−×T ∗X is a Lagrangian submanifold. Suppose that the projection
πX×X of Γ onto X ×X is a diffeomorphism, i.e. suppose that Γ is horizontal.
This says precisely that for every (x, y) ∈ X × X there is a unique ξ ∈ T ∗xX
such that

π exp vH(x, ξ) = y.

In the case of the geodesic flow, this is guaranteed by the condition of geodesic
convexity.

Since Γ is horizontal, it has a generating function φ such that

dφ = pr∗2 α− pr∗1 α

where pri, i = 1, 2 are the projections of T ∗(X ×X) = T ∗X × T ∗X onto the
first and second factors. On the other hand pr1 is a diffeomorphism of Γ onto
T ∗X. So

pr1 ◦(πX×X|Γ)−1

is a diffeomorphism of X ×X with T ∗X.

Theorem 31. Assume the above hypotheses. Then up to an additive constant
we have (

pr1 ◦(πX×X|Γ)−1
)∗

[(k − 1)H] = φ.

In the case where H = 1
2‖ξ‖

2 is the kinetic energy of a geodesically convex
Riemann manifold, this says that

φ =
1

2
d(x, y)2.

Indeed, this follows immediately from (5.6). An immediate corollary (by
rescaling) is that (5.5) is the generating function for the time t flow on a geodesi-
cally convex Riemannian manifold.

As mentioned in the above remark, the same theorem will hold if H is only
defined on T ∗X \ {0} and the same hypotheses hold with X × X replaced by
X ×X \∆.

5.5 The generating function for the transpose.

Let
Γ ∈ Morph(T ∗X,T ∗Y )

be a canonical relation, let
π : Z → X × Y
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be a fibration and φ a generating function for Γ relative to this fibration. In
local coordinates this says that Z = X × Y × S, that

Cφ = {(x, y, s)|∂φ
∂s

= 0},

and that Γ is the image of Cφ under the map

(x, y, s) 7→ (−dXφ, dY φ).

Recall that
Γ† ∈ Morph(T ∗Y, T ∗X)

is given by the set of all (γ2, γ1) such that (γ1, γ2) ∈ Γ. So if

κ : X × Y → Y ×X

denotes the transposition
κ(x, y) = (y, x)

then
κ ◦ π : Z → Y ×X

is a fibration and −φ is a generating function for Γ† relative to κ ◦ π. Put more
succinctly, if φ(x, y, s) is a generating function for Γ then

ψ(y, x, s) = −φ(x, y, s) is a generating function for Γ†. (5.7)

For example, if Γ is the graph of a symplectomorphism, then Γ† is the graph of
the inverse diffeomorphism. So (5.7) says that −φ(y, x, s) generates the inverse
of the symplectomorphism generated by φ(x, y, s).

This suggests that there should be a simple formula which gives a generating
function for the composition of two canonical relations in terms of the generating
function of each. This was one of Hamilton’s great achievements - that, in a
suitable sense to be described in the next section - the generating function for
the composition is the sum of the individual generating functions.

5.6 The generating function for a transverse com-
position.

Let X1, X2 and X3 be manifolds and

Γ1 ∈ Morph(T ∗X1, T
∗X2), Γ2 ∈ Morph(T ∗X2, T

∗X3)

be canonical relations which are transversally composable. So we are assuming
in particular that the maps

Γ1 → T ∗X2, (p1, p2) 7→ p2 and Γ2 → T ∗X2, (q2, q3) 7→ q2
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are transverse.
Suppose that

π1 : Z1 → X1 ×X2, π2 : Z2 → X2 ×X3

are fibrations and that φi ∈ C∞(Zi), i = 1, 2 are generating functions for Γi
with respect to πi.

From π1 and π2 we get a map

π1 × π2 : Z1 × Z2 → X1 ×X2 ×X2 ×X3.

Let
∆2 ⊂ X2 ×X2

be the diagonal and let

Z := (π1 × π2)−1(X1 ×∆2 ×X3).

Finally, let
π : Z → X1 ×X3

be the fibration

Z → Z1 × Z2 → X1 ×X2 ×X2 ×X3 → X1 ×X3

where the first map is the inclusion map and the last map is projection onto the
first and last components. Let

φ : Z → R

be the restriction to Z of the function

(z1, z2) 7→ φ1(z1) + φ2(z2). (5.8)

Theorem 32. φ is a generating function for Γ2 ◦Γ1 with respect to the fibration
π : Z → X1 ×X3.

Proof. We may check this in local coordinates where the fibrations are
trivial to that

Z1 = X1 ×X2 × S, Z2 = X2 ×X3 × T

so
Z = X1 ×X3 × (X2 × S × T )

and π is the projection of Z onto X1 ×X3. Notice that X2 has now become a
factor in the parameter space. The function φ is given by

φ(x1, x3, x2, s, t) = φ1(x1, x2, s) + φ2(x2, x3, t).

For z = (x1, x3, x2, s, t) to belong to Cφ the following three conditions must
be satisfied and be functionally independent:
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• ∂φ1

∂s (x1, x2, s) = 0, i.e. z1 = (x1, x2, s) ∈ Cφ1 .

• ∂φ2

∂t (x2, x3, t) = 0, i.e. z2 = (x2, x3, t) ∈ Cφ2 and

•
∂φ1

∂x2
(x1, x2, s) +

∂φ2

∂x2
(x2, x3, t) = 0.

To show that these equations are functionally independent, we will rewrite them
as the following system of equations on X1 ×X3 ×X2 ×X2 × S × T :

1. ∂φ1

∂s (x1, x2, s) = 0, i.e. z1 = (x1, x2, s) ∈ Cφ1
,

2. ∂φ2

∂t (y2, x3, t) = 0, i.e. z2 = (y2, x3, t) ∈ Cφ2
,

3. x2 = y2 and

4.
∂φ1

∂x2
(x1, x2, s) +

∂φ2

∂x2
(y2, x3, t) = 0.

It is clear that 1) and 2) are independent, and define the product Cφ1 × Cφ2

as a submanifold of X1 × X3 × X2 × X2 × S × T . So to show that 1)-4)
are independent, we must show that 3) and 4) are an independent system of
equations on Cφ1

× Cφ2
.

From the fact that φ1 is a generating function for Γ1, we know that the map

γ1 : Cφ1 → Γ1, γ1(p1) =

(
x1,−

∂φ1

∂x1
(p1), x2,

∂φ1

∂x2
(p1)

)
where

(x1, x2) = π1(p1)

is a diffeomorphism. Similarly, the map

γ2 : Cφ1
→ Γ2, γ2(p2) =

(
x2,−

∂φ2

∂x2
(p2), x3,

∂φ2

∂x3
(p2)

)
where

(x2, x3) = π2(p2)

is a diffeomorphism.
So if we set Mi := T ∗Xi, i = 1, 2, 3 we can write the preceding diffeomor-

phisms as
γi(pi) = (mi,mi+1), i = 1, 2

where

mi = (xi,−
∂φi
∂xi

(pi)), mi+1 = (xi+1,
∂φi
∂xi+1

(pi)) (5.9)

and the xi are as above. We have the diffeomorphism

γ1 × γ2 : Cφ1
× Cφ2

→ Γ1 × Γ2
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and the map

κ : Γ1 × Γ2 →M2 ×M2, κ(m1,m2, n2,m3) = (m2, n2).

This map κ is assumed to be transverse to the diagonal ∆M2
, and hence the

map
λ : Cφ1

× Cφ2
→M2 ×M2, λ := κ ◦ (γ1 × γ2)

is transverse to ∆M2
. This transversality is precisely the functional indepen-

dence of conditions 3) and 4) above.
The manifold Γ2 ?Γ1 was defined to be κ−1(∆M2) and the second condition

for transverse composibility was that the map

ρ : Γ2 ? Γ1 →M−1 ×M3, ρ(m1.m2,m2,m3) = (m1,m3)

be an embedding whose image is then defined to be Γ2◦Γ1. The diffeomorphism
γ1 × γ2 then shows that the critical set Cφ is mapped diffeomorphically onto
Γ2 ? Γ1. Here φ is defined by (5.8). Call this diffeomorphism τ . So

τ : Cφ ∼= Γ2 ? Γ1.

Thus
ρ ◦ τ : Cφ → Γ2 ◦ Γ1

is a diffeomorphism, and (5.9) shows that this diffeomorphism is precisely the
one that makes φ a generating function for Γ2 ◦ Γ1. 2

In the next section we will show that the arguments given above apply,
essentially without change, to clean composition, yielding a clean generating
function for the composite.

5.7 Generating functions for clean composition
of canonical relations between cotangent bun-
dles.

Suppose that the canonical relation, Γ1 and Γ2 are cleanly composable. Let
φ1 ∈ C∞(X1 ×X2 × S) and φ2 ∈ C∞(X2 ×X3 × T ) be transverse generating
functions for Γ1 and Γ2 and as above let

φ(x1, x3, x2, s, t) = φ1(x1, x2, s) + φ2(x2, x3, t) .

We will prove below that φ is a clean generating function for Γ2◦Γ1 with respect
to the fibration

X1 ×X3 × (X2 × S × T )→ X1 ×X3 .

The argument is similar to that above: As above Cφ is defined by the three sets
of equations:

1. ∂φ1

∂s = 0
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2. ∂φ2

∂t = 0

3. ∂φ1

∂x2
+ ∂φ2

∂x2
= 0.

Since φ1 and φ2 are transverse generating functions the equations 1 and 2 are
an independent set of defining equations for Cφ1 × Cφ2 . As for the equation 3,
our assumption that Γ1 and Γ2 compose cleanly tells us that the mappings

∂φ1

∂x2
: Cφ1 → T ∗X2

and

∂φ2

∂x2
: Cφ2

→ T ∗X2

intersect cleanly. In other words the subset, Cφ, of Cφ1 × Cφ2 defined by the

equation ∂φ
∂x2

= 0, is a submanifold of Cφ1 ×Cφ2 , and its tangent space at each

point is defined by the linear equation, d ∂φ∂x2
= 0. Thus the set of equations, 1–3,

are a clean set of defining equations for Cφ as a submanifold of X1×X3× (X2×
S × T ). In other words φ is a clean generating function for Γ2 ◦ Γ1.

The excess, ε, of this generating function is equal to the dimension of Cφ
minus the dimension of X1 ×X3. One also gets a more intrinsic description of
ε in terms of the projections of Γ1 and Γ2 onto T ∗X2. From these projections
one gets a map

Γ1 × Γ2 → T ∗(X2 ×X2)

which, by the cleanness assumption, intersects the conormal bundle of the di-
agonal cleanly; so its pre-image is a submanifold, Γ2 ? Γ1, of Γ1 × Γ2. It’s easy
to see that

ε = dim Γ2 ? Γ1 − dim Γ2 ◦ Γ1 .

5.8 Reducing the number of fiber variables.

Let Λ ⊂ T ∗X be a Lagrangian manifold and let φ ∈ C∞(Z) be a generating
function for Λ relative to a fibration π : Z → X. Let

x0 ∈ X,

let

Z0 := π−1(x0),

and let

ι0 : Z0 → Z

be the inclusion of the fiber Z0 into Z. By definition, a point z0 ∈ Z0 belongs
to Cφ if and only if z0 is a critical point of the restriction ι∗0φ of φ to Z0.
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Theorem 33. If z0 is a non-degenerate critical point of ι∗0φ then Λ is horizontal
at

p0 = (x0, ξ0) =
∂φ

∂x
(z0).

Moreover, there exists an neighborhood U of x0 in X and a function ψ ∈ C∞(U)
such that

Λ = Λψ

on a neighborhood of p0 and
π∗ψ = φ

on a neighborhood U ′ of z0 in Cφ.

Proof. (In local coordinates.) So Z = X×Rk, φ = φ(x, s) and Cφ is defined
by the k independent equations

∂φ

∂si
= 0, i = 1, . . . k. (5.10)

Let z0 = (x0, s0) so that s0 is a non-degenerate critical point of ι∗0φ which is the
function

s 7→ φ(x0, s)

if and only if the Hessian matrix (
∂2φ

∂si∂sj

)
is of rank k at s0. By the implicit function theorem we can solve equations (5.10)
for s in terms of x near (x0, s0). This says that we can find a neighborhood U
of x0 in X and a C∞ map

g : U → Rk

such that

g(x) = s⇔ ∂φ

∂si
= 0, i = 1, . . . , k

if (x, s) is in a neighborhood of (x0, s0) in Z. So the map

γ : U → U × Rk, γ(x) = (x, g(x))

maps U diffeomorphically onto a neighborhood of (x0, s0) in Cφ. Consider the
commutative diagram

U
γ−−−−→ Cφy ydXφ

X ←−−−−
πX

Λ

where the left vertical arrow is inclusion and πX is the restriction to Λ of the
projection T ∗X → X. From this diagram it is clear that the restriction of π to
the image of U in Cφ is a diffeomorphism and that Λ is horizontal at p0. Also

µ := dXφ ◦ γ



130 CHAPTER 5. GENERATING FUNCTIONS.

is a section of Λ over U . Let

ψ := γ∗φ.

Then

µ = dXφ ◦ γ = dXφ ◦ γ + dSφ ◦ γ = dφ ◦ γ

since dSφ ◦ γ ≡ 0. Also, if v ∈ TxX for x ∈ U , then

dψx(v) = dφγ(x)(dγx(v)) = dφγ(x)(v, dgx(v))

= (dXφ)γ(x)(v) = (dXφ ◦ γ)(x)(v)

so

〈µ(x), v〉 = 〈dψx, v〉

so

Λ = Λψ

over U and from π : Z → X and γ ◦ π = id on γ(U) ⊂ Cφ we have

π∗ψ = π∗γ∗φ = (γ ◦ π)∗φ = φ

on γ(U). 2

We can apply the proof of this theorem to the following situation: Suppose
that the fibration

π : Z → X

can be factored as a succession of fibrations

π = π1 ◦ π0

where

π0 : Z → Z1 and π1 : Z1 → X

are fibrations. Moreover, suppose that the restriction of φ to each fiber

π−1
0 (z1)

has a unique non-degenerate critical point γ(z1). The map

z1 7→ γ(z1)

defines a smooth section

γ : Z1 → Z

of π0. Let

φ1 := γ∗φ.

Theorem 34. φ1 is a generating function for Λ with respect to π1.
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Proof. (Again in local coordinates.) We may assume that

Z = X × S × T

and
π(x, s, t) = x, π0(x, s, t) = (x, s), π1(x, s) = x.

The condition for (x, s, t) to belong to Cφ is that

∂φ

∂s
= 0

and
∂φ

∂t
= 0.

This last condition has a unique solution giving t as a smooth function of (x, s)
by our non-degeneracy condition, and from the definition of φ1 it follows that
(x, s) ∈ Cφ1

if and only if γ(x, s) ∈ Cφ. Furthermore

dXφ1(x, s) = dXφ(x, s, t)

along γ(Cφ1
). 2

For instance, suppose that Z = X × Rk and φ = φ(x, s) so that z0 =
(x0, s0) ∈ Cφ if and only if

∂φ

∂si
(x0, s0) = 0, i = 1, . . . , k.

Suppose that the matrix (
∂2φ

∂si∂sj

)
is of rank r, for some 0 < r ≤ k. By a linear change of coordinates we can
arrange that the upper left hand corner(

∂2φ

∂si∂sj

)
, 1 ≤ i, j,≤ r

is non-degenerate. We can apply Theorem 34 to the fibration

X × Rk → X × R`, ` = k − r

(x, s1, . . . sk) 7→ (x, t1, . . . , t`), ti = si+r

to obtain a generating function φ1(x, t) for Λ relative to the fibration

X × R` → X.

Thus by reducing the number of variables we can assume that at z0 = (x0, t0)

∂2φ

∂ti∂tj
(x0, t0) = 0, i, j = 1, . . . , `. (5.11)

A generating function satisfying this condition will be said to be reduced at
(x0, t0).
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5.9 The existence of generating functions.

In this section we will show that every Lagrangian submanifold of T ∗X can be
described locally by a generating function φ relative to some fibration Z → X.

So let Λ ⊂ T ∗X be a Lagrangian submanifold and let p0 = (x0, ξ0) ∈ Λ. To
simplify the discussion let us temporarily make the assumption that

ξ0 6= 0. (5.12)

If Λ is horizontal at p0 then we know from Chapter 1 that there is a generating
function for Λ near p0 with the trivial (i.e. no) fibration. If Λ is not horizontal
at p0, we can find a Lagrangian subspace

V1 ⊂ Tp0(T ∗X)

which is horizontal and transverse to Tp0(Λ).
Indeed, to say that V1 is horizontal, is to say that it is transverse to the

Lagrangian subspace W1 given by the vertical vectors at p0 in the fibration
T ∗X → X. By the Proposition in §2.2 we know that we can find a Lagrangian
subspace which is transversal to both W1 and Tp0(Λ).

Let Λ1 be a Lagrangian submanifold passing through p0 and whose tangent
space at p0 is V1. So Λ1 is a horizontal Lagrangian submanifold and

Λ1 ∩>Λ = {p0}.

In words, Λ1 intersects Λ transversally at p0. Since Λ1 is horizontal, we can find
a neighborhood U of x0 and a function φ1 ∈ C∞(U) such that Λ1 = Λφ1 . By
our assumption (5.12)

(dφ1)x0
= ξ0 6= 0.

So we can find a system of coordinates x1 . . . , xn on U (or on a smaller neigh-
borhood) so that

φ1 = x1.

Let ξ1 . . . , ξn be the dual coordinates so that in the coordinate system

x1 . . . , xn, ξ1 . . . , ξn

on T ∗X the Lagrangian submanifold Λ1 is described by the equations

ξ1 = 1, ξ2 = · · · = ξn = 0.

Consider the canonical transformation generated by the function

τ : Rn × Rn → R, τ(x, y) = −x · y.

The Lagrangian submanifold in T ∗Rn × T ∗Rn generated by τ is

{(x,−y, y,−x)}
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so the canonical relation is

{(x, ξ, ξ,−x)}.

In other words, it is the graph of the linear symplectic transformation

γ : (x, ξ) 7→ (ξ,−x).

So γ(Λ1) is (locally) the cotangent space at y0 = (1, 0, . . . , 0). Since γ(Λ) is
transverse to this cotangent fiber, it follows that γ(Λ) is horizontal. So in some
neighborhood W of y0 there is a function ψ such that

γ(Λ) = Λ−ψ

over W . By equation (5.7) we know that

τ∗(x, y) = −τ(y, x) = y · x

is the generating function for γ−1. Furthermore, near p0,

Λ = γ−1(Λψ).

Hence, by Theorem 32 the function

ψ1(x, y) := y · x− ψ(y) (5.13)

is a generating function for Λ relative to the fibration

(x, y) 7→ x.

Notice that this is a generalization of the construction of a generating func-
tion for a linear Lagrangian subspace transverse to the horizontal in Section
2.9.1.

We have proved the existence of a generating function under the auxiliary
hypothesis (5.12). However it is easy to deal with the case ξ0 = 0 as well.
Namely, suppose that ξ0 = 0. Let f ∈ C∞(X) be such that df(x0) 6= 0. Then

γf : T ∗X → T ∗X, (x, ξ) 7→ (x, ξ + df)

is a symplectomorphism and γf (p0) satisfies (5.12). We can then form

γ ◦ γf (Λ)

which is horizontal. Notice that γ ◦ γf is given by

(x, ξ) 7→ (x, ξ + df) 7→ (ξ + df,−x).

If we consider the generating function on Rn × Rn given by

g(x, z) = −x · z + f(x)
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then the corresponding Lagrangian submanifold is

{(x,−z + df, z,−x)}

so the canonical relation is

{(x, z − df, z,−x)}

or, setting ξ = z + df so z = ξ − df we get

{(x, ξ, ξ + df,−x)}

which is the graph of γ ◦ γf . We can now repeat the previous argument to
conclude that

y · x− f(x)− ψ(y)

is a generating function for Λ. So we have proved:

Theorem 35. Every Lagrangian submanifold of T ∗X can be locally represented
by a generating function relative to a fibration.

Let us now discuss generating functions for canonical relations: So let X
and Y be manifolds and

Γ ⊂ T ∗X × T ∗Y

a canonical relation. Let (p0, q0) = (x0, ξ0, y0, η0) ∈ Γ and assume now that

ξ0 6= 0, η0 6= 0. (5.14)

We claim that the following theorem holds

Theorem 36. There exist coordinate systems (U, x1, . . . , xn) about x0 and (V, y1 . . . , yk)
about y0 such that if

γU : T ∗U → T ∗Rn

is the transform
γU (x, ξ) = (−ξ, x)

and
γV : T ∗V → T ∗Rk

is the transform
γV (y, η) = (−η, y)

then locally, near

p′0 := γ−1
U (p0) and q′0 := γV (q0),

the canonical relation
γ−1
V ◦ Γ ◦ γU (5.15)

is of the form
Γφ, φ = φ(x, y) ∈ C∞(Rn × Rk).
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Proof. Let
M1 := T ∗X, M2 = T ∗Y

and
V1 := Tp0M1, V2 := Tq0M2, Σ := T(p0,q0)Γ

so that Σ is a Lagrangian subspace of

V −1 × V2.

Let W1 be a Lagrangian subspace of V1 so that (in the linear symplectic cate-
gory)

Σ(W1) = Σ ◦W1

is a Lagrangian subspace of V2. Let W2 be another Lagrangian subspace of
V2 which is transverse to Σ(W1). We may choose W1 and W2 to be horizontal
subspaces of Tp0M1 and Tq0M2. Then W1×W2 is transverse to Σ in V1×V2 and
we may choose a Lagrangian submanifold passing through p0 and tangent to W1

and similarly a Lagrangian submanifold passing through q0 and tangent to W2.
As in the proof of Theorem 35 we can arrange local coordinates (x1 . . . , xn) on
X and hence dual coordinates (x1, . . . xn, ξ1, . . . , ξn) around p0 such that the
Lagrangian manifold tangent to W1 is given by

ξ1 = 1, ξ2 = · · · ξn = 0

and similarly dual coordinates on M2 = T ∗Y such that the second Lagrangian
submanifold (the one tangent to W2) is given by

η1 = 1, η2 = · · · = ηk = 0.

It follows that the Lagrangian submanifold corresponding to the canonical re-
lation (5.15) is horizontal and hence is locally of the form Γφ. 2

5.10 The Legendre transformation.

Coming back to our proof of the existence of a generating function for La-
grangian manifolds, let’s look a little more carefully at the details of this proof.
Let X = Rn and let Λ ⊂ T ∗X be the Lagrangian manifold defined by the
fibration, Z = X × Rn π→ X and the generating function

φ(x, y) = x · y − ψ(y) (5.16)

where ψ ∈ C∞(Rn). Then

(x, y) ∈ Cφ ⇔ x =
∂ψ

∂y
(y) .

Recall also that (x0, y0) ∈ Cφ ⇔ the function φ(x0, y) has a critical point at y0.
Let us suppose this is a non-degenerate critical point, i.e., that the matrix(

∂2φ

∂yi∂yj
(x0, y0)

)
=

(
∂ψ

∂yi∂yj
(y0)

)
(5.17)
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is of rank n. By Theorem 33 we know that there exists a neighborhood U 3 x0

and a function ψ∗ ∈ C∞(U) such that

ψ∗(x) = φ(x, y) at (x, y) ∈ Cφ (5.18)

Λ = Λψ∗ (5.19)

locally, near the image p0 = (x0, ξ0) of the map ∂φ
∂x : Cφ → Λ. What do these

three assertions say? Assertion (5.17) simply says that the map

y → ∂ψ

∂y
(5.20)

is a diffeomorphism at y0. Assertion (5.18) says that

ψ∗(x) = xy − ψ(x) (5.21)

at x = ∂ψ
∂y , and assertion(5.19) says that

x =
∂ψ

∂y
⇔ y = −∂ψ

∗

∂x
(5.22)

i.e., the map

x→ −∂ψ
∗

∂x
(5.23)

is the inverse of the mapping (5.20). The mapping (5.20) is known as the
Legendre transform associated with ψ and the formulas (5.21)– (5.23) are the
famous inversion formula for the Legendre transform. Notice also that in the
course of our proof that (5.21) is a generating function for Λ we proved that ψ
is a generating function for γ(Λ), i.e., locally near γ(p0)

γ(Λ) = Λ−ψ .

Thus we’ve proved that locally near p0

Λψ∗ = γ−1(Λψ)

where

γ−1 : T ∗Rn → T ∗Rn

is the transform (y, η)→ (x, ξ) where

y = ξ and x = −η .

This identity will come up later when we try to compute the semi-classical
Fourier transform of the rapidly oscillating function

a(y)ei
ψ(y)

~ , a(y) ∈ C∞0 (Rn) .
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5.11 The Hörmander-Morse lemma.

In this section we will describe some relations between different generating func-
tions for the same Lagrangian submanifold. Our basic goal is to show that if
we have two generating functions for the same Lagrangian manifold they can
be obtained (locally) from one another by applying a series of “moves”, each of
a very simple type.

Let Λ be a Lagrangian submanifold of T ∗X, and let

Z0
π0→ X, Z1

π1→ X

be two fibrations over X. Let φ1 be a generating function for Λ with respect to
π1 : Z1 → X.

Proposition 20. If
f : Z0 → Z1

is a diffeomorphism satisfying

π1 ◦ f = π0

then
φ0 = f∗φ1

is a generating function for Λ with respect to π0.

Proof. We have d(φ1 ◦ f) = dφ0. Since f is fiber preserving, f maps Cφ0

diffeomorphically onto Cφ1
. Furthermore, on Cφ0

we have

dφ1 ◦ f = (dφ1 ◦ f)hor = (dφ0)hor

so f conjugates the maps dXφi : Cφi → Λ, i = 0, 1. Since dXφ1 is a diffeomor-
phism of Cφ1 with Λ we conclude that dXφ0 is a diffeomorphism of Cφ0 with Λ,
i.e. φ0 is a generating function for Λ. 2

Our goal is to prove a result in the opposite direction. So as above let
πi : Zi → X, i = 0, 1 be fibrations and suppose that φ0 and φ1 are generating
functions for Λ with respect to πi. Let

p0 ∈ Λ

and zi ∈ Cφi , i = 0, 1 be the pre-images of p0 under the diffeomorphism dφi of
Cφi with Λ. So

dXφi(zi) = p0, i = 0, 1.

Finally let x0 ∈ X be given by

x0 = π0(z0) = π1(z1)

and let ψi, i = 0, 1 be the restriction of φi to the fiber π−1
i (x0). Since zi ∈ Cφi

we know that zi is a critical point for ψi. Let

d2ψi(zi)

be the Hessian of ψi at zi.
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Theorem 37. The Hörmander Morse lemma. If d2ψ0(z0) and d2ψ1(z1)
have the same rank and signature, then there exists neighborhood U0 of z0 in Z0

and U1 of z1 in Z1 and a diffeomorphism

f : U0 → U1

such that
π1 ◦ f = π0

and
φ1 ◦ f = f∗φ1 = φ0 + const. .

Proof. We will prove this theorem in a number of steps. We will first
prove the theorem under the additional assumption that Λ is horizontal at p0.
Then we will reduce the general case to this special case.

Assume that Λ is horizontal at p0 = (x0, ξ0). This implies that Λ is hori-
zontal over some neighborhood of x0. Let S be an open subset of Rk and

π : X × S → X

projection onto the first factor. Suppose that φ ∈ C∞(X × S) is a generating
function for Λ with respect to π so that

dXφ : Cφ → Λ

is a diffeomorphism, and let z0 ∈ Cφ be the pre-image of p0 under this diffeo-
morphism, i.e.

z0 = (dXφ)−1(p0).

We begin by proving that the vertical Hessian of φ at z0 is non-degenerate.
Since Λ is horizontal at p0 there is a neighborhood U of x0 ψ ∈ C∞(U) such

that
dψ : U → T ∗X

maps U diffeomorphically onto a neighborhood of p0 in Λ. So

(dψ)−1 ◦ dXφ : Cφ → U

is a diffeomorphism. But (dψ)−1 is just the restriction to a neighborhood of p0 in
Λ of the projection πX : T ∗X → X. So πX ◦dXφ : Cφ → X is a diffeomorphism
(when restricted to π−1(U)). But

πX ◦ dXφ = π|Cφ

so the restriction of π to Cφ is a diffeomorphism. So Cφ is horizontal at z0, in
the sense that

Tz0Cφ ∩ Tz0S = {0}.

So we have a smooth map
s : U → S
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such that x 7→ (x, s(x)) is a smooth section of Cφ over U . We have

dXφ = dφ at all points (x, s(x))

by the definition of Cφ and dψ(x) = dXφ(x, s(x)) = dφ(x, s(x)) so

ψ(x) = φ(x, s(x)) + const. . (5.24)

The submanifold Cφ ⊂ Z = X × S is defined by the k equations

∂φ

∂si
= 0, i = 1, . . . , k

and hence Tz0Cφ is defined by the k independent linear equations

d

(
∂φ

∂si

)
= 0, i = 1, . . . , k.

A tangent vector to S at z0, i.e. a tangent vector of the form

(0, v), v = (v1, . . . vk)

will satisfy these equations if and only if∑
j

∂2φ

∂si∂sj
vj = 0, i = 1, . . . , k.

But we know that these equations have only the zero solution as no non-zero
tangent vector to S lies in the tangent space to Cφ at z0. We conclude that the
vertical Hessian matrix

d2
Sφ =

(
∂2φ

∂si∂sj

)
is non-degenerate.

We return to the proof of the theorem under the assumption that that Λ is
horizontal at p0 = (x0, ξ0). We know that the vertical Hessians occurring in the
statement of the theorem are both non-degenerate, and we are assuming that
they are of the same rank. So the fiber dimensions of π0 and π1 are the same.
So we may assume that Z0 = X×S and Z1 = X×S where S is an open subset
of Rk and that coordinates have been chosen so that the coordinates of z0 are
(0, 0) as are the coordinates of z1. We write

s0(x) = (x, s0(x)), s1(x) = (x, s1(x)),

where s0 and s1 are smooth maps X → Rk with

s0(0) = s1(0) = 0.

Let us now take into account that the signatures of the vertical Hessians are the
same at z0. By continuity they must be the same at the points (x, s0(x)) and
(x, s1(x)) for each x ∈ U . So for each fixed x ∈ U we can make an affine change
of coordinates in S and add a constant to φ1 so as to arrange that
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1. s0(x) = s1(x) = 0.

2. ∂φ0

∂si
(x, 0) = ∂φ1

∂si
(x, 0), i = 1. . . . , k.

3. φ0(x, 0) = φ1(x, 0).

4. d2
Sφ0(x, 0) = d2

Sφ1(x, 0).

We can now apply Morse’s lemma with parameters (see §14.14.3 for a proof) to
conclude that there exists a fiber preserving diffeomorphism f : U ×S → U ×S
with

f∗φ1 = φ0.

This completes the proof of Theorem 37 under the additional hypothesis that
Lagrangian manifold Λ is horizontal.

Reduction of the number of fiber variables. Our next step in the proof of
Theorem 37 will be an application of Theorem 34. Let π : Z → X be a fibration
and φ a generating function for Λ with respect to π. Suppose we are in the
setup of Theorem 34 which we recall with some minor changes in notation: We
suppose that the fibration

π : Z → X

can be factored as a succession of fibrations

π = ρ ◦ %

where
ρ : Z →W and % : W → X

are fibrations. Moreover, suppose that the restriction of φ to each fiber

ρ−1(w)

has a unique non-degenerate critical point γ(w). The map

w 7→ γ(w)

defines a smooth section
γ : W → Z

of ρ. Let
χ := γ∗φ.

Theorem 34 asserts that χ is a generating function of Λ with respect to %.
Consider the Lagrangian submanifold

Λχ ⊂ T ∗W.

This is horizontal as a Lagrangian submanifold of T ∗W and φ is a generating
function for Λχ relative to the fibration ρ : Z →W .
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Now suppose that we had two fibrations and generating functions as in the
hypotheses of Theorem 37 and suppose that they both factored as above with
the same % : W → X and the same χ. So we get fibrations %0 : Z0 → W and
%1 : Z1 → W . We could then apply the above (horizontal) version of Theorem
37 to conclude the truth of the theorem.

Since the ranks of d2ψ0 and d2ψ1 at z0 and z1 are the same, we can apply
the reduction leading to equation (5.11) to each. So by the above argument
Theorem 37 will be proved once we prove it for the reduced case.

Some normalizations in the reduced case. We now examine a fibration
Z = X × S → S and generating function φ and assume that φ is reduced at
z0 = (x0, s0) so all the second partial derivatives of φ in the S direction vanish,
i. e.

∂2φ

∂si∂sj
(x0, s0) = 0 ∀i, j.

This implies that

Ts0S ∩ T(x0,s0)Cφ = Ts0S.

i.e. that

Ts0S ⊂ T(x0,s0)Cφ. (5.25)

Consider the map

dXφ : X × S → T ∗X, (x, s) 7→ dXφ(x, s).

The restriction of this map to Cφ is just our diffeomorphism of Cφ with Λ. So
the restriction of the differential of this map to any subspace of any tangent
space to Cφ is injective. By (5.25) the restriction of the differential of this
map to Ts0S at (x0, s0) is injective. In other words, by passing to a smaller
neighborhood of (x0, s0) if necessary, we have an embedding

X × S dXφ−−−−→ W ⊂ T ∗X

π

y yπX
X −−−−→

id
X

of X × S onto a subbundle W of T ∗X.
Now let us return to the proof of our theorem. Suppose that we have two

generating functions φi, i = 0, 1 X×Si → X and both are reduced at the points
zi of Cφ1

corresponding to p0 ∈ Λ. So we have two embeddings

X × Si
dXφi−−−−→ Wi ⊂ T ∗X

π

y yπX
X −−−−→

id
X
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of X × Si onto subbundles Wi of T ∗X for i = 0, 1. Each of these maps the
corresponding Cφi diffeomorphically onto Λ.

Let V be a tubular neighborhood of W1 in T ∗X and τ : V →W1 a projection
of V onto W1 so we have the commutative diagram

V
τ−−−−→ W1

πX

y yπX
X −−−−→

id
X

.

Let
γ := (dXφ1)−1 ◦ τ.

So we have the diagram

V
γ−−−−→ X × S1

π

y yπX
X −−−−→

id
X

and
γ ◦ dXφ1 = id .

We may assume that W0 ⊂ V so we get a fiber map

g := γ ◦ dXφ0 g : X × S0 → X × S1.

When we restrict g to Cφ0
we get a diffeomorphism of Cφ0

onto Cφ1
. By (5.25)

we know that
TsiSi ⊂ TziCφi

and so dgz0 maps Ts0S0 bijectively onto Ts1S1. Hence g is locally a diffeomor-
phism at z0. So by shrinking X and Si we may assume that

g : X × S0 → X × S1

is a fiber preserving diffeomorphism. We now apply Proposition 20. So we
replace φ1 by g∗φ1. Then the two fibrations Z0 and Z1 are the same and
Cφ0 = Cφ1 . Call this common submanifold C. Also dXφ0 = dXφ1 when
restricted to C, and by definition the vertical derivatives vanish. So dφ0 = dφ1

on C, and so by adjusting an additive constant we can arrange that φ0 = φ1 on
C.

Completion of the proof. We need to prove the theorem in the following
situation:

• Z0 = Z1 = X × S and π0 = π1 is projection onto the first factor.

• The two generating functions φ0 and φ1 have the same critical set:

Cφ0
= Cφ1

= C.
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• φ0 = φ1 on C.

• dSφi = 0, i = 0, 1 on C and dXφ0 = dXφ1 on C.

•
d

(
∂φ0

∂si

)
= d

(
∂φ1

∂si

)
at z0.

We will apply the Moser trick: Let

φt := (1− t)φ0 + tφ1.

From the above we know that

• φt = φ0 = φ1 on C.

• dSφt = 0 on C and dXφt = dXφ0 = dXφ1 on C.

•
d

(
∂φt
∂si

)
= d

(
∂φ0

∂si

)
= d

(
∂φ1

∂si

)
at z0.

So in a sufficiently small neighborhood of Z0 the submanifold C is defined by
the k independent equations

∂φt
∂si

= 0, i = 1, . . . k.

We look for a vertical (time dependent) vector field

v1 =
∑
i

vi(x, s, t)
∂

∂si

on X × S such that

1. Dvtφt = −φ̇t = φ0 − φ1 and

2. v = 0 on C.

Suppose we find such a vt. Then solving the differential equations

d

dt
ft(m) = vt(ft(m)), f0(m) = m

will give a family of fiber preserving diffeomorphsms (since vt is vertical) and

f∗1φ1 − φ0 =

∫ 1

0

d

dt
(f∗t φt)dt =

∫ 1

0

f∗t [Dvtφt + φ̇t]dt = 0.

So finding a vector field vt satisfying 1) and 2) will complete the proof of the
theorem. Now φ0 − φ1 vanishes to second order on C which is defined by the
independent equations ∂φt/∂si = 0. So we can find functions

wij(x, s, t)
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defined and smooth in some neighborhood of C such that

φ0 − φ1 =
∑
ij

wij(x, s, t)
∂φt
∂si

∂φt
∂sj

in this neighborhood. Set

vi(x, s, t) =
∑
i

wij(x, s, t)
∂φt
∂sj

.

Then condition 2) is clearly satisfied and

Dvtφt =
∑
ij

wij(x, s, t)
∂φt
∂si

∂φt
∂sj

= φ0 − φ1 = −φ̇

as required. 2

5.12 Changing the generating function.

We summarize the results of the preceding section as follows: Suppose that
(π1 : Z1 → X,φ1) and (π2 : Z2 → X,φ2) are two descriptions of the same
Lagrangian submanifold Λ of T ∗X. Then locally one description can be obtained
from the other by applying sequentially “moves” of the following three types:

1. Adding a constant. We replace φ1 by φ2 = φ1 +c where c is a constant.

2. Equivalence. There exists a diffeomorphism g : Z1 → Z2 with

π2 ◦ g = π1 and φ2 ◦ g = φ1.

3. Increasing (or decreasing) the number of fiber variables. Here
Z2 = Z1 × Rd and

φ2(z, s) = φ1(z) +
1

2
〈As, s〉

where A is a non-degenerate d× d matrix (or vice versa).

5.13 The Maslov bundle.

We wish to associate to each Lagrangian submanifold of a cotangent bundle a
certain flat line bundle which will be of importance to us when we get to the
symbol calculus in Chapter 8. We begin with a review of the Čech-theoretic
description of flat line bundles.
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5.13.1 The Čech description of locally flat line bundles.

Let Y be a manifold and U = {Ui} be an open cover of Y . Let

N1 = {(i, j)|Ui ∩ Uj 6= ∅}.

A collection of of non-zero complex numbers {cij}(i,j)∈N1 is called a (multiplica-
tive) cocycle (relative to the cover U) if

cij · cjk = cik whenever Ui ∩ Uj ∩ Uk 6= ∅. (5.26)

From this data one constructs a line bundle as follows: One considers the set

qi(Ui × C)

and puts an an equivalence relation on it by declaring that

(pi, ai) ∼ (pj , aj) ⇔ pi = pj ∈ Ui ∩ Uj and ai = cijaj .

Then
L := qi(Ui × C)/ ∼

is a line bundle over Y . The constant functions

Ui → 1 ∈ C

form flat local sections of L

si : U → L, p 7→ [(p, 1)]

and thus make L into a line bundle with flat connection over Y .
Any section s of L can be written over Ui as s = fisi. If v is a vector field

on Y , we may define Dvs by

Dvs := (Dvfi)si on Ui.

The fact that the transitions between si and sj are constant shows that this is
well defined.

5.13.2 The local description of the Maslov cocycle.

We first define the Maslov line bundle LMaslov → Λ in terms of a global gener-
ating function, and then show that the definition is invariant under change of
generating function. We then use the local existence of generating functions to
patch the line bundle together globally. Here are the details:

Suppose that φ is a generating function for Λ relative to a fibration π : Z →
X. Let z be a point of the critical set Cφ, let x = π(z) and let F = π−1(x) be
the fiber containing z. The restriction of φ to the fiber F has a critical point at
z. Let sgn#(z) be the signature of the Hessian at z of φ restricted to F . This
gives an integer valued function on Cφ:

sgn# : Cφ → Z, z 7→ sgn#(z).
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Notice that since the Hessian can be singular at points of Cφ this function can
be quite discontinuous.

From the diffeomorphism λφ = dXφ

λφ : Cφ → Λ

we get a Z valued function sgnφ on Λ given by

sgnφ := sgn] ◦λ−1
φ .

Let
sφ := e

πi
4 sgnφ .

So
sφ : Λ→ C∗

taking values in the eighth roots of unity.
We define the Maslov bundle LMaslov → Λ to be the trivial flat bundle having

sφ as its defining flat section.
Suppose that (Zi, πi, φi), i = 1, 2 are two descriptions of Λ by generating

functions which differ from one another by one of the three Hörmander moves
of Section 5.12. We claim that

sφ1
= c1,2sφ2

(5.27)

for some constant c1,2 ∈ C∗. So we need to check this for the three types of
move of Section 5.12. For moves of type 1) and 2), i.e. adding a constant or
equivalences this is obvious. For each of these moves there is no change in sgnφ.

For a move of type 3) the sgn#
1 and sgn#

2 are related by

sgn#
1 = sgn#

2 +signature of A.

This proves (5.27), and defines the Maslov bundle when a global generating
function exists.

In this discussion we have been tacitly assuming that φ is a transverse gener-
ating function of Λ. However, the definition of sφ above makes sense as well for
clean generating functions. Namely if φ ∈ C∞(Z) is a clean generating function
for Λ with respect to the fibration π : Z → X then as we showed in §5.11, π
factors (locally) into fibrations with connected fibers

Z
π1→ Z1

π2→ X

and ϕ can be written as a pull-back ϕ = π∗1ϕ1 where ϕ1 ∈ C∞(Z1) is a transverse
generating function for Λ with respect to π2. Thus Cϕ = π−1

1 (Cϕ1
) and the

signature map, (sgn)# : Cϕ → Z is just the pull-back of the signature map
Cϕ1 → Z associated with ϕ1. Moreover, the diffeomorphism

λϕ1
: Cϕ1

→ Λ
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lifts to a fiber preserving map

λϕ : Cϕ → Λ

and we can define, as above, a function

sgnφ : Λ→ Z

by requiring that sgnφ ◦λ = (sgn)# and then define sφ as above to be the

function e
iπ
4 sgnφ .

5.13.3 The global definition of the Maslov bundle.

Now consider a general Lagrangian submanifold Λ ⊂ T ∗X. Cover Λ by open
sets Ui such that each Ui is defined by a generating function and that generating
functions φi and φj are obtained from one another by one of the Hörmander
moves. We get functions sφi : Ui → C such that on every overlap Ui ∩ Uj

sφi = cijsφj

with constants cij with |cij | = 1. Although the functions sφ might be quite
discontinuous, the cij in (5.27) are constant on Ui ∩Uj . On the other hand, the
fact that sφi = cijsφj shows that the cocycle condition (5.26) is satisfied. In

other words we get a Čech cocycle on the one skeleton of the nerve of this cover
and hence a flat line bundle.

5.13.4 The Maslov bundle of a canonical relation between
cotangent bundles.

We have defined the Maslov bundle for any Lagrangian submanifold of any
cotangent bundle. If

Γ ∈ Morph(T ∗X1, T
∗X2)

is a canonical relation between cotangent bundles, so that Γ is a Lagrangian
submanifold of

(T ∗X1)− × T ∗X2

then
(ς1 × id)(Γ)

is a Lagrangian submanifold of

T ∗X1 × T ∗X2 = T ∗(X1 ×X2)

and hence has an associated Maslov line bundle. We then use the identification
ς1 × id to pull this line bundle back to Γ. In other words, we define

LMaslov(Γ) := (ς1 × id)∗LMaslov((ς1 × id)(Γ)). (5.28)
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5.13.5 Functoriality of the Maslov bundle.

Let X1, X2, and X3 be differentiable manifolds, and let

Γ1 ∈ Morph(T ∗X1, T
∗X2) and Γ2 ∈ Morph(T ∗X2, T

∗X3)

be cleanly composable canonical relations. Recall that this implies that we have
a submanifold

Γ2 ? Γ1 ⊂ T ∗X1 × T ∗X2 × T ∗X3

and a fibration (4.5)
κ : Γ2 ? Γ1 → Γ2 ◦ Γ1

with compact connected fibers. So we can form the line bundle

κ∗(LMaslov(Γ2 ◦ Γ1))→ Γ2 ? Γ1.

On the other hand, Γ2 ? Γ1 consists of all (m1,m2,m3) with

(m1,m2) ∈ Γ1 and (m2.m3) ∈ Γ2.

So we have projections

pr1 : Γ2 ? Γ1 → Γ1, (m1,m2,m3) 7→ (m1,m2)

and
pr2 : Γ2 ? Γ1 → Γ2, (m1,m2,m3) 7→ (m2,m3).

So we can also pull the Maslov bundles of Γ1 and Γ2 back to Γ2 ?Γ1. We claim
that

κ∗LMaslov(Γ2 ◦ Γ1) ∼= pr∗1 LMaslov(Γ1)⊗ pr∗2 LMaslov(Γ2) (5.29)

as line bundles over Γ2 ? Γ1.

Proof. We know from Section 5.7 that we can locally choose generating
functions φ1 for Γ1 relative to a fibration

X1 ×X2 × S1 → X1 × S2

and φ2 for Γ2 relative to a fibration

X2 ×X3 × S2 → X2 ×X3

so that
φ = φ(x1, x2, x3, s1, s2) = φ1(x1, x2, s1) + φ2(x2, x3, s2)

is a generating function for Γ2 ◦ Γ1 relative to the fibration

X1 ×X3 ×X2 × S1 × S2 → X1 ×X3

(locally). We can consider the preceding equation as taking place over a neigh-
borhood in Γ2 ? Γ1. Over such a neighborhood, the restrictions of the bundles
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on both sides of (5.29) are trivial, and we define the isomorphism in (5.29) to
be given by

pr∗1 sφ1
⊗ pr∗2 sΦ2

7→ κ∗sφ. (5.30)

We must check that this is well defined.
We may further restrict our choices of generating functions and neighbor-

hoods for Γ1 so that the passage from one to the other is given by one of the
Hörmander moves, and similarly for Γ2. A Hörmander move of type 1 on each
factor just adds a constant to φ1 and to φ2 and hence adds the sum of these
constants to φ, i.e. is a Hörmander move of type 1 on Γ2 ◦ Γ2. Similarly for a
Hörmander move of type 2. Also for Hörmander moves of type 3, we are adding
a quadratic form in (additional) s variables to φ1, and a quadratic form in t
variables to φ2 yielding a Hörmander move of type 3 to φ. This proves that
(5.29) is well defined. 2

5.14 Identifying the two definitions of the Maslov
bundle.

We will use the functoriality above to show that the line bundle LMaslov that
we defined in §5.13.2 coincides with the line bundle that we defined in §2.8. Let
p0 = (x0, ξ0) be a point of Λ. Without loss of generality we can assume ξ0 6= 0.
Hence by §5.3 there exists a coordinate patch centered at x0 and a generating
function for Λ near p0

ψ̃ : U × Rn → R

having the form

ψ̃(x, y) = x · y + ψ(y). (5.31)

Then Cψ̃ is the set

Cψ̃ : x = −∂ψ
∂y

and

λψ : Cψ̃ → Λ

is the map

y 7→
(
−∂ψ
∂y

, y

)
.

Let Λ1 be a Lagrangian submanifold which is horizontal and intersects Λ
transversally at p0. From Chapter 1 we know that Λ1 = Λφ for some φ ∈
C∞(X), ie.e is the image of the map

U 3 x 7→ ∂φ

∂x
.

Since φ is a function on X and so does not involve any fiber variables, the section
sφ of L(Λ1) associated with φ is the function sφ = 1. On the other hand, at
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every point = λψ(y) ∈ Λ, the section of LMaslov(Λ) associated with ψ̃ is the
function

sψ = e
πi
4 sgn d2ψ.

Let us now consider Λ and Λ1 as canonical relations

Λ ∈ Morph(pt., T ∗X), Λ1 ∈ Morph(pt., T ∗X)

and consider the composition

Λ†1 ◦ Λ ∈ Morph(pt.,pt.). (5.32)

Since composition of canonical relations corresponds to addition of their gener-
ating functions, we get a generating function

x · y + φ(x) + ψ(y)

for (5.32) with respect to the fibration

R2n → pt. .

This has a critical point at (x, y) = (x0, ξ0) = p0 and the composition for the

sections 1 = sφ and sψ of the Maslov bundles L(Λ†1) and LMaslov(Λ) that we
described in the preceding section gives us, for the composite section the element

e
πi
4 sgnD ∈ Lpt. . = C (5.33)

where

D =

(
A I
I B

)
(5.34)

where

A =

(
∂2ψ

∂yi∂yj
(ξ0)

)
and

B =

(
∂2φ

∂xi∂xj
(x0)

)
.

In particular, let us fix φ to be of the form

φ(x) =
∑
i

bixi +
∑
ij

bijxixj

where the bi are the coordinates of ξ0 at x = 0 = x0. Let us vary B = (bij)
so that D stays non-degenerate which is the same as saying that Λφ stays
transversal to Λ at p0.

Let V be the tangent space at p0 to the cotangent bundle of X, let M1 be
the tangent space to Λ at p0 and let M2 be the tangent space to the cotangent
fiber Tx0

X at p0.
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As we vary A, we get by (2.8) and (5.33) and (5.34) a map

f : L(V,M1,M2)→ C

satisfying the transformation law (2.17). Thus this function is an element of the
Maslov line LMaslov(p0) that we defined in Section 2.8. Thus our composition
formula (5.32) for sφ ◦ sψ gives us an identification of this line with the fiber of
L(p0) as defined in Section 5.13.3.

5.15 More examples of generating functions.

5.15.1 The image of a Lagrangian submanifold under geodesic
flow.

Let X be a geodesically convex Riemannian manifold, for example X = Rn. Let
ft denote geodesic flow on X. We know that for t 6= 0 a generating function for
the symplectomorphism ft is

ψt(x, y) =
1

2t
d(x, y)2.

Let Λ be a Lagrangian submanifold of T ∗X. Even if Λ is horizontal, there
is no reason to expect that ft(Λ) be horizontal - caustics can develop. But
our theorem about the generating function of the composition of two canonical
relations will give a generating function for ft(Λ). Indeed, suppose that φ is a
generating function for Λ relative to a fibration

π : X × S → X.

Then
1

2
d(x, y)2 + ψ(y, s)

is a generating function for ft(Λ) relative to the fibration

X ×X × S → X, (x, y, s) 7→ x.

5.15.2 The billiard map and its iterates.

Definition of the billiard map.

Let Ω be a bounded open convex domain in Rn with smooth boundary X. We
may identify the tangent space to any point of Rn with Rn using the vector
space structure, and identify Rn with (Rn)∗ using the standard inner product.
Then at any x ∈ X we have the identifications

TxX ∼= TxX
∗

using the Euclidean scalar product on TxX and

TxX = {v ∈ Rn| v · n(x) = 0} (5.35)
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where n(x) denotes the inward pointing unit normal to X at x. Let U ⊂
TX denote the open subset consisting of all tangent vectors (under the above
identification) satisfying

‖v‖ < 1.

For each x ∈ X and v ∈ TxX satisfying ‖v‖ < 1 let

u := v + an(x) where a := (1− ‖v‖2)
1
2 .

So u is the unique inward pointing unit vector at x whose orthogonal projection
onto TxX is v.

Consider the ray through x in the direction of u, i.e. the ray

x+ tu, t > 0.

Since Ω is convex and bounded, this ray will intersect X at a unique point y.
Let w be the orthogonal projection of u on TyX. So we have defined a map

B : U → U, (x, v) 7→ (y, w)

which is known as the billiard map.

The generating function of the billiard map.

We shall show that the billiard map is a symplectomorphism by writing down
a function φ which is its generating function.

Consider the function

ψ : Rn × Rn → R, ψ(x, y) = ‖x− y‖.

This is smooth at all points (x, y), x 6= y. Let us compute dxψ(v) at such a
point (x, y) where v ∈ TxX.

d

dt
ψ(x+ tv, y)|t=0 =

(
x− y
‖y − x‖

, v

)
where ( , ) denotes the scalar product on Rn. Identifying TRn with T ∗Rn using
this scalar product, we can write that for all x 6= y

dxψ(x, y) = − y − x
‖x− y‖

, dyψ(x, y) =
y − x
‖x− y‖

.

If we set

u =
y − x
‖x− y‖

, t = ‖x− y‖

we have
‖u‖ = 1

and
y = x+ tu.
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Let φ be the restriction of ψ to X ×X ⊂ Rn × Rn. Let

ι : X → Rn

denote the embedding of X into Rn. Under the identifications

TxRn ∼= T ∗xRn, TxX ∼= T ∗xX

the orthogonal projection

T ∗xRn ∼= TxRn 3 u 7→ v ∈ TxX ∼= T ∗xX

is just the map
dι∗x : T ∗xRn → T ∗xX, u 7→ v.

So
v = dι∗xu = dι∗xdxψ(x, y) = dxφ(x, y).

So we have verified the conditions

v = −dxφ(x, y), w = dyφ(x, y)

which say that φ is a generating function for the billiard map B.

Iteration of the billiard map.

Our general prescription for the composite of two canonical relations says that a
generating function for the composite is given by the sum of generating functions
for each (where the intermediate variable is regarded as a fiber variable over the
initial and final variables). Therefore a generating function for Bn is given by
the function

φ(x0, x1, . . . , xn) = ‖x1 − x0‖+ ‖x2 − x1‖+ · · ·+ ‖xn − xn−1‖.

5.15.3 The classical analogue of the Fourier transform.

We repeat a previous computation: Let X = Rn and consider the map

F : T ∗X → T ∗X, (x, ξ) 7→ (−ξ, x).

The generating function for this symplectomorphism is

x · y.

Since the transpose of the graph of a symplectomorphism is the graph of the
inverse, the generating function for the inverse is

−y · x.

So a generating function for the identity is

φ ∈ C∞(X ×X,×Rn)

φ(x, z, y) = (x− z) · y.
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5.15.4 Quadratic generating functions.

Reduced quadratic generating functions.

Let X and Y be vector spaces, π : Y → X a linear fibration and φ a homogenous
quadratic generating function. The condition that φ be reduced says that the
restriction of φ to the kernel of π vanishes. So let K be this kernel, i.e. we have
the exact sequence

0→ K
ι→ Y

π→ X → 0. (5.36)

If k ∈ K and x ∈ X, then φ(k, y) does not depend on the choice of y with
πy = x, so we get a bilinear map

B : K ×X → R, B(k, x) = φ(k, y) where πy = x.

We can consider B as a linear map

B : K → X∗.

So ImB ⊂ X∗ is a subspace of the (linear) Lagrangian subspace of T ∗X =
X ⊕ X∗ determined by the generating function φ. The kernel of φ consists of
“excess variables” so must vanish for the case that φ is transverse.

Let W ⊂ X be the annihilator space of ImB, i.e

W := (ImB)0.

Then the restriction on φ to π−1(W ) depends only on the image of π, i.e. there
is a quadratic form Q on W such that

Q(x1, x2) = φ(y1, y2)

is independent of the choice of y1, y2 with πYi = x1, i = 1, 2 when x1, x2 ∈W .
Then

Λ = ΛW,Q ⊕ ImB (5.37)

where
ΛW,Q = {(x, dQ(x)), x ∈W}

. In terms of coordinates, if x1, . . . , xk is a system of coordinates on W extended
to a system of coordinates on X then Λ consists of all points of the form(

x1, . . . , xk, 0, . . . , 0;
∂Q

∂x1
, . . . ,

∂Q

∂xk
, ξk+1 . . . , ξn

)
.

Reducing a homogeneous quadratic generating function.

More generally, consider the case where we have the exact sequence (5.36) and
a homogeneous function quadratic function φ on Y , and hence a linear map

Lφ : Y → Y ∗
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such that

φ(y) =
1

2
〈Lφy, y〉.

Our general definition of generating function restricted to the case of homoge-
neous quadratic functions says that we first pass to the critical set which in this
case corresponds to the subspace Cφ ⊂ Y

Cφ = ker(ι∗ ◦ Lφ).

Taking the transpose of (5.36) we see that π∗ is injective and ker ι∗ = Imπ∗.
Since Lφ(Cφ) ⊂ ker ι∗ we see that Lφ maps Cφ → X∗.

The general definition of a generating function then specializes in this case
to the assertion that

Λ = ρφ(Cφ)

where ρφ : Cφ → TX∗ = X ⊕X∗ is given by

ρφ(u) = (π(u), Lφ(u)).

Let
K0 := K ∩ Cφ,

so K0 is the null space of the restriction on φ to K, i.e. K0 = K⊥ relative to
the quadratic form φ ◦ ι on K.

In terms of the preceding paragraph, we know that φ is reduced if and only
if K0 = K.

Example: When Λ is transverse to X. Recall from Chapter 2 that in this
case we can take Y = X ⊕X∗ so that K = X∗ and φ to have the form

φ(x, ξ) = 〈ξ, x〉 − P (ξ)

where P is a quadratic function on X∗. Let LP : X∗ → (X∗)∗ = X be the
linear map associated to P . We have Y ∗ = X∗ ⊕X and Lφ is given by

Lφ(x, ξ) = (ξ, x− LP (ξ)).

Hence
(ι∗ ◦ Lφ)(x, ξ) = x− LP (ξ)

so that
Cφ = {(x, ξ)|x = Lξ(ξ)}.

The generating function φ in this case will be reduced if and only if P ≡ 0 in
which case Λ = X∗ and Cφ = Y .

If P 6≡ 0 we may “reduce” the number of fiber variables by replacing Y by
Y0 = Cφ. We then get the exact sequence

0→ kerLP → Y0 → X → 0

which has the form (5.36) and (5.37) becomes

Λ = {LP (ξ), ξ).
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Reduction.

In general, the quadratic form induced by φ ◦ ι on K/K0 is non-degenerate. In
particular, the restriction of Lφ ◦ ι to any complement K1 of K0 in K maps
this complement surjectively onto (K0)0 ⊂ K∗, the null space of K0, and from
linear algebra, (K0)0 = (K/K0)∗.

Let ι1 denote the restriction of ι to K1 and let Y0 = ker(ι∗1 ◦ Lφ). Clearly
ι(K0) ⊂ Y0.

Lemma 2. π|Y0
maps Y0 surjectively onto X.

Proof. Let x ∈ X. Let y ∈ Y be such that πy = x. Let k∗ = (ι∗ ◦ Lφ)(y).
We can find a k ∈ K1 such that (Lφ ◦ ι)(k) = k∗. Then y − ι(k) ∈ Y0 and
π(y − ι(k)) = x.

Let
φ0 := φ|Y0

ι0 := ιK0
, and π0 := πY0

.

So we have the exact sequence

0→ K0
ι0→ Y0

π0→ X → 0. (5.38)

If y ∈ Cφ then by definition, ι∗Lφ(y) = 0, so in the proof of the above lemma,
we do not need to modify y. Hence

Proposition 21. The sequence (5.38) is exact and and the function φ0 is a
reduced generating function for Λ.



Chapter 6

The calculus of 1
2-densities.

An essential ingredient in our symbol calculus will be the notion of a 1
2 - density

on a canonical relation. We begin this chapter with a description of densities
of arbitrary order on a vector space, then on a manifold, and then specialize
to the study of 1

2 -densities. We study 1
2 -densities on canonical relations in the

next chapter.

6.1 The linear algebra of densities.

6.1.1 The definition of a density on a vector space.

Let V be an n-dimensional vector space over the real numbers. A basis e =
e1, . . . , en of V is the same as an isomorphism `e of Rn with V according to the
rule x1

...
xn

 7→ x1e1 + · · ·+ xnen.

We can write this as x1

...
xn

 7→ (e1, . . . en) ·

x1

...
xn


or even more succinctly as

`e : x 7→ e · x

where

x :=

x1

...
xn

 , e := (e1, . . . , en).

157
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The group Gl(n) = Gl(n,R) acts on the set F(V ) of all bases of V according
to the rule

`e 7→ `e ◦A−1, A ∈ Gl(n)

which is the same as the “matrix multiplication”

e 7→ e ·A−1.

This action is effective and transitive:

• If e = e ·A−1 for some basis e then A = I, the identity matrix, and

• Given any two bases e and f these exists a (unique) A such that e = f ·A.

We shall use the word frame as being synonymous with the word “basis”,
especially when we want to talk of a basis with a particular property.

Let α ∈ C be any complex number. A density of order α on V is a function

ρ : F(V )→ C

satisfying
ρ(e ·A) = ρ(e)|detA|α ∀A ∈ Gl(n), e ∈ F(V ). (6.1)

We will denote the space of all densities of order α on V by

|V |α.

This is a one dimensional vector space over the complex numbers. Indeed,
if we fix one f ∈ F(V ), then every e ∈ F(V ) can be written uniquely as
e = f · B, B ∈ Gl(n). So we may specify ρ(f) to be any complex value and
then define ρ(e) to be ρ(f) · |detB|α. It is then easy to check that (6.1) holds.
This shows that densities of order α exist, and since we had no choice once we
specified ρ(f) we see that the space of densities of order α on V form a one
dimensional vector space over the complex numbers.

Let L : V → V be a linear map. If L is invertible and e ∈ F(V ) then
Le = (Le1, . . . , Len) is (again) a basis of V . If we write

Lej =
∑
i

Lijei

then
Le = eL

where L is the matrix
L := (Lij)

so if ρ ∈ |V |α then
ρ(Le) = |detL|αρ(e).

We can extend this to all L, non necessarily invertible, where the right hand
side is 0. So here is an equivalent definition of a density of order α on an
n-dimensional real vector space:
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A density ρ of order α is a rule which assigns a number ρ(v1, . . . , vn) to every
n-tuplet of vectors and which satisfies

ρ(Lv1, . . . , Lvn) = |detL|αρ(v1, . . . , vn) (6.2)

for any linear transformation L : V → V . Of course, if the v1, . . . , vn are not
linearly independent then

ρ(v1, . . . , vn) = 0.

6.1.2 Multiplication.

If ρ ∈ |V |α and τ ∈ |V |β then we get a density ρ · τ of order α+ β given by

(ρ · τ)(e) = ρ(e)τ(e).

In other words we have an isomorphism:

|V |α ⊗ |V |β ∼= |V |α+β , ρ⊗ τ 7→ ρ · τ. (6.3)

6.1.3 Complex conjugation.

If ρ ∈ |V |α then ρ defined by
ρ(e) = ρ(e)

is a density of order α on V . In other words we have an anti-linear map

|V |α → |V |α, ρ 7→ ρ.

This map is clearly an anti-linear isomorphism. Combined with (6.3) we get a
sesquilinear map

|V |α ⊗ |V |β → |V |α+β , ρ⊗ τ 7→ ρ · τ .

We will especially want to use this for the case α = β = 1
2 + is where s is a real

number. In this case we get a sesquilinear map

|V | 12 +is ⊗ |V | 12 +is → |V |1. (6.4)

6.1.4 Elementary consequences of the definition.

There are two obvious but very useful facts that we will use repeatedly:

1. An element of |V |α is completely determined by its value on a single basis
e.

2. More generally, suppose we are given a subset S of the set of bases on
which a subgroup H ⊂ Gl(n) acts transitively and a function ρ : S → C
such that (6.1) holds for all A ∈ H. Then ρ extends uniquely to a density
of order α on V .
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Here are some typical ways that we will use these facts:

Orthonormal frames: Suppose that V is equipped with a scalar product.
This picks out a subset O(V ) ⊂ F(V ) consisting of the orthonormal
frames. The corresponding subgroup of Gl(n) is O(n) and every element
of O(n) has determinant ±1. So any density of any order must take on
a constant value on orthonormal frames, and item 2 above implies that
any constant then determines a density of any order. We have trivialized
the space |V |α for all α. Another way of saying the same thing is that
V has a preferred density of order α, namely the density which assigns
the value one to any orthonormal frame. The same applies if V has any
non-degenerate quadratic form, not necessarily positive definite.

Symplectic frames: Suppose that V is a symplectic vector space, so n =
dimV = 2d is even. This picks out a collection of preferred bases, namely
those of the form e1, . . . , ed, f1, . . . fd where

ω(ei, ej) = 0, ω(fi, fj) = 0. ω(ei, fj) = δij

where ω denotes the symplectic form. These are known as the symplectic
frames. In this case H = Sp(n) and every element of Sp(n) has determi-
nant one. So again |V |α is trivialized. Again, another way of saying this
is that a symplectic vector space has a preferred density of any order - the
density which assigns the value one to any symplectic frame.

Transverse Lagrangian subspaces: Suppose that V is a symplectic vector
space and thatM andN are Lagrangian subspaces of V withM∩N = {0}.
Any basis e1, . . . ed of M determines a dual basis f1, . . . fd of N according
to the requirement that

ω(ei, fj) = δij

and then e1, . . . ed, f1 . . . fd is a symplectic basis of V . If C ∈ Gl(d) and
we make the replacement

e 7→ e · C
then we must make the replacement

f 7→ f · (Ct)−1.

So if ρ is a density of order α on M and τ is a density of order α on N they
fit together to get a density of order zero (i.e. a constant) on V according
to the rule

(e, f) = (e1, . . . , ed, f1, . . . , fd) 7→ ρ(e)τ(f)

on frames of the above dual type. The corresponding subgroup of Gl(n)
is a subgroup of Sp(n) isomorphic to Gl(d). So we have a canonical
isomorphism

|M |α ⊗ |N |α ∼= C. (6.5)

Using (6.3) we can rewrite this as

|M |α ∼= |N |−α.
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Dual spaces: If we start with a vector space M we can make M ⊕M∗ into a
symplectic vector space with M and M∗ transverse Lagrangian subspaces
and the pairing B between M and M∗ just the standard pairing of a vector
space with its dual space. So making a change in notation we have

|V |α ∼= |V ∗|−α. (6.6)

Short exact sequences: Let

0→ V ′ → V → V ′′ → 0

be an exact sequence of linear maps of vector spaces. We can choose a
preferred set of bases of V as follows : Let (e1, . . . , ek) be a basis of V ′

and extend it to a basis (e1, . . . , ek, ek+1, . . . en) of V . Then the images of
ei, i = k + 1, . . . n under the map V → V ′′ form a basis of V ′′. Any two
bases of this type differ by the action of an A ∈ Gl(n) of the form

A =

(
A′ ∗
0 A′′

)
so

detA = detA′ · detA′′.

This shows that we have an isomorphism

|V |α ∼= |V ′|α ⊗ |V ′′|α (6.7)

for any α.

Long exact sequences Let

0→ V1 → V2 → · · ·Vk → 0

be an exact sequence of vector spaces. Then using (6.7) inductively we
get ⊗

j even
|Vj |α ∼=

⊗
j odd

|Vj |α (6.8)

for any α.

6.1.5 Pullback and pushforward under isomorphism.

Let
L : V →W

be an isomorphism of n-dimensional vector spaces. If

e = (e1, . . . , en)

is a basis of V then
Le := (Le1, . . . , Len)
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is a basis of W and

L(e ·A) = (Le) ·A ∀A ∈ Gl(n).

So if ρ ∈ |W |α then L∗ρ defined by

(L∗ρ)(e) := ρ(Le)

is an element of |V |α. In other words we have a pullback isomorphism

L∗ : |W |α → |V |α, ρ 7→ L∗ρ.

Applied to L−1 this gives a pushforward isomorphism

L∗ : |V |α → |W |α, L∗ = (L−1)∗.

6.1.6 Pairs of Lagrangian subspaces.

Here is another useful fact:
Let `1, `2 be Lagrangian subspaces of a symplectic vector space. We have

the following two exact sequences:

0→ `1 ∩ `2 → `1 + `2 → (`1 + `2)/(`1 ∩ `2)→ 0

and
0→ `1 ∩ `2 → `1 ⊕ `2 → `1 + `2 → 0.

Since (`1 + `2)/(`1 ∩ `2) is a symplectic vector space, the first exact sequence
tells us that

|`1 + `2|α ∼ |`1 ∩ `2|α

and so the second exact sequence tells us that

|`1|α ⊗ |`2|α ∼ |`1 ∩ `2|2α. (6.9)

6.1.7 Spanning pairs of subspaces of a symplectic vector
space.

Let M1 and M2 be (arbitrary) subspaces of a symplectic vector space V with
the property that

M1 +M2 = V.

We then have the exact sequence

0→M1 ∩M2 →M1 ⊕M2 → V → 0.

Since we have the trivialization |V |α ∼= C determined by the symplectic struc-
ture, we get an isomorphism

|M1|α ⊗ |M2|α ∼= |M1 ∩M2|α. (6.10)
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6.1.8 Lefschetz symplectic linear transformations.

There is a special case of (6.5) which we will use a lot in our applications, so
we will work out the details here. A linear map L : V → V on a vector space is
called Lefschetz if it has no eigenvalue equal to 1. Another way of saying this
is that I − L is invertible. Yet another way of saying this is the following: Let

graphL ⊂ V ⊕ V

be the graph of L so
graphL = {(v, Lv) v ∈ V }.

Let
∆ ⊂ V ⊕ V

be the diagonal, i.e. the graph of the identity transformation. Then L is Lef-
schetz if and only if

graphL ∩∆ = {0}. (6.11)

Now suppose that V is a symplectic vector space and we consider V − ⊕ V as a
symplectic vector space. Suppose also that L is a (linear) symplectic transfor-
mation so that graphL is a Lagrangian subspace of V − ⊕ V as is ∆. Suppose
that L is also Lefschetz so that (6.11) holds.

The isomorphism

V → graphL : v 7→ (v, Lv)

pushes the canonical α-density on V to an α-density on graphL, namely, if
v1, . . . , vn is a symplectic basis of V , then this pushforward α density assigns
the value one to the basis

((v1, Lv1), . . . , (vn, Lvn)) of graphL.

Let us call this α-density ρL. Similarly, we can use the map

diag : V → ∆, v 7→ (v, v)

to push the canonical α density to an α-density ρ∆ on ∆. So ρ∆ assigns the
value one to the basis

((v1, v1), . . . , (vn, vn)) of ∆.

According to (6.5)
| graphL|α ⊗ |∆|α ∼= C.

So we get a number 〈ρL, ρ∆〉 attached to these two α-densities. We claim that

〈ρL, ρ∆〉 = |det(I − L)|−α. (6.12)

Before proving this formula, let us give another derivation of (6.5). Let M and
N be subspaces of a symplectic vector space W . (The letter V is currently
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overworked.) Suppose that M ∩N = {0} so that W = M ⊕N as a vector space
and so by (6.7) we have

|W |α = |M |α ⊗ |N |α.

We have an identification of |W |α with C given by sending

|W |α 3 ρW 7→ ρW (w)

where w is any symplectic basis of W . Combining the last two equations gives
an identification of |M |α ⊗ |N |α with C which coincides with (6.5) in case M
and N are Lagrangian subspaces. Put another way, let w be a symplectic basis
of W and suppose that A ∈ Gl(dimW ) is such that

w ·A = (m,n)

where m is a basis of M and n is a basis of N . Then the pairing of of ρM ∈ |M |α
with ρN ∈ |N |α is given by

〈ρM , ρN 〉 = |detA|−αρM (m)ρN (n). (6.13)

Now let us go back to the proof of (6.12). If e, f = e1, . . . , ed, f1 . . . , fd is a
symplectic basis of V then

((e, 0), (0, e), (−f , 0), (0, f))

is a symplectic basis of V − ⊕ V . We have

((e, 0), (0, e), (−f , 0), (0, f))


Id 0 0 0
0 0 Id 0
0 −Id 0 0
0 0 0 Id

 = ((e, 0), (f , 0), (0, e), (0, f))

and

det


Id 0 0 0
0 0 Id 0
0 −Id 0 0
0 0 0 Id

 = 1.

Let v denote the symplectic basis e, f of V so that we may write

((e, 0), (f , 0), (0, e), (0, f)) = ((v, 0), (0,v)) .

Write

Lvj =
∑
i

Lijvi, L = (Lij).

Then

((v, 0), (0,v))

(
Id Id
L Id

)
= ((v,Lv), (v,v)) .
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So taking

A =


Id 0 0 0
0 0 Id 0
0 −Id 0 0
0 0 0 Id

(In In
L In

)

we have
((e, 0), (0, e), (−f , 0), (0, f))A = ((v, Lv), (v,v)) .

So using this A in (6.13) proves (6.12) since

detA = det


Id 0 0 0
0 0 Id 0
0 −Id 0 0
0 0 0 Id

 det

(
In In
L In

)
= det(In − L).

We will now generalize (6.12). Let L : V → V be a linear symplectic map,
and suppose that its fixed point set

U = V L := {v ∈ V |Lv = v}

is a symplectic subspace of V , and let U⊥ be its symplectic orthocomplement.
So U⊥ is invariant under L and is a symplectic subspace of V .

The decomposition V = U ⊕ U⊥ gives rise to the deccompositions

∆ = ∆U ⊕∆U⊥ and (6.14)

graphL = ∆U ⊕ graph(L|U⊥) (6.15)

as Lagrangian subspaces of U− ⊕ U and (U⊥)− ⊕ U⊥.
Let ρ∆ and ρL be the elements of |∆|α and | graphL|α as determined above

from the canonical α densities on V . Then (6.14) and (6.15) imply that we can
write

ρ∆ = σ∆ ⊗ τ∆ (6.16)

ρL = σL ⊗ τL (6.17)

with σ∆ and σL ∈ |∆U |α, with τ∆ ∈ |∆U⊥ |α and and τL ∈ | graph(L|U⊥)|α.
Furthermore, we may identify ∆U with U , which, by hypothesis, is a symplectic
vector space and so carries a canonical density of order α. We may take σ∆ and
σL to be this canonical density of order α which then fixes τ∆ and τL.

Now ∆ and graphL are Lagrangian subspaces of V − ⊕ V and their inter-
section is ∆U which we identify with U . The isomorphism (6.9) gives us a map
sending ρ∆ ⊗ ρL into |U |2α. From (6.16) and (6.17) we see that the image of (6.9)
ρ∆ ⊗ ρL is

|du|2α〈τL, τ∆〉

where |du|2α is the canonical 2α density on U . Since the restriction of L to U⊥

is Lefschetz, we may apply (6.12) to conclude (6.11)
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Theorem 38. If the fixed point set U of L is a symplectic subspace, then the
isomorphism (6.9) determines a pairing sending the α density ρ∆ on ∆ and the
α density ρL on graphL into 2α densities on U given by

〈ρL, ρ∆〉 =
∣∣det(IU⊥ − L|U⊥

∣∣−α du2α (6.18)

where du2α is the canonical 2α density on U determined by its symplectic struc-
ture.

6.2 Densities on manifolds.

Let E → X be a real vector bundle. We can then consider the complex line
bundle

|E|α → X

whose fiber over x ∈ X is |Ex|α. The formulas of the preceding section apply
pointwise.

We will be primarily interested in the tangent bundle TX. So |TX|α is
a complex line bundle which we will call the α-density bundle and a smooth
section of |TX|α will be called a smooth α-density or a density of order α.

Examples.

• Let X = Rn with its standard coordinates and hence the standard vector
fields

∂

∂x1
, . . . ,

∂

∂xn
.

This means that at each point p ∈ Rn we have a preferred basis(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

.

We let
dxα

denote the α-density which assigns, at each point p, the value 1 to the
above basis. So the most general smooth α-density on Rn can be written
as

u · dxα

or simply as
udxα

where u is a smooth function.

• Let X be an n-dimensional Riemannian manifold. At each point p we have
a preferred family of bases of the tangent space - the orthonormal bases.
We thus get a preferred density of order α - the density which assigns the
value one to each orthonormal basis at each point.
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• Let X be an n-dimensional orientable manifold and Ω a nowhere vanishing
n-form on X. Then we get an α-density according to the rule: At each
p ∈ X assign to each basis e1, . . . , en of TpX the value

|Ω(e1, . . . , en)|α.

We will denote this density by

|Ω|α.

• As a special case of the preceding example, if M is a symplectic manifold
of dimension 2d with symplectic form ω, take

Ω = ω ∧ · · · ∧ ω d factors.

So every symplectic manifold has a preferred α-density for any α.

6.2.1 Multiplication of densities.

If µ is an α density and ν is a β density the we can multiply them (pointwise)
to obtain an (α+β)-density µ · ν. Similarly, we can take the complex conjugate
of an α-density to obtain an α-density.

6.2.2 Support of a density.

Since a density is a section of a line bundle, it makes sense to say that a density
is or is not zero at a point. The support of a density is defined to be the closure
of the set of points where it is not zero.

6.3 Pull-back of a density under a diffeomor-
phism.

If
f : X → Y

is a diffeomorphism, then we get, at each x ∈ X, a linear isomorphism

dfx : TxX → Tf(x)Y.

A density ν of order α on Y assigns a density of order α (in the sense of vector
spaces) to each TyY which we can then pull back using dfx to obtain a density
of order α on X. We denote this pulled back density by f∗ν. For example,
suppose that

ν = |Ω|α

for an n-form Ω on Y (where n = dimY ). Then

f∗|Ω|α = |f∗Ω|α (6.19)
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where the f∗Ω occurring on right hand side of this equation is the usual pull-
back of forms.

As an example, suppose that X and Y are open subsets of Rn, then

dxα = |dx1 ∧ · · · ∧ dxn|α, |dy|α = |dy1 ∧ · · · ∧ dyn|α

and
f∗(dy1 ∧ · · · ∧ dyn) = det J(f)dx1 ∧ · · · ∧ dxn

where J(f) is the Jacobian matrix of f . So

f∗dyα = |det J(f)|αdxα. (6.20)

Here is a second application of (6.19). Let ft : X → X be a one-parameter
group of diffeomorphisms generated by a vector field v, and let ν be a density
of order α on X. As usual, we define the Lie derivative Dvν by

Dvν :=
d

dt
f∗t ν|t=0.

If ν = |Ω|α then
Dvν = αDv|Ω| · |Ω|α−1

and if X is oriented, then we can identify |Ω| with Ω on oriented bases, so

Dv|Ω| = DvΩ = di(v)Ω

on oriented bases. For example,

Dvdx
1
2 =

1

2
(div v)dx

1
2 (6.21)

where

div v =
∂v1

∂x1
+ · · ·+ ∂vn

∂xn
if v = v1

∂

∂x1
+ · · ·+ vn

∂

∂xn
.

6.4 Densities of order 1.

If we set α = 1 in (6.20) we get

f∗dy = |det J(f)|dx

or, more generally,
f∗(udy) = (u ◦ f)|det J(f)|dx

which is the change of variables formula for a multiple integral. So if ν is a
density of order one of compact support which is supported on a coordinate
patch (U, x1, . . . , xn), and we write

ν = gdx
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then ∫
ν :=

∫
U

gdx

is independent of the choice of coordinates. If ν is a density of order one of
compact support we can use a partition of unity to break it into a finite sum of
densities of order one and of compact support contained in coordinate patches

ν = ν1 + · · ·+ νr

and
∫
X
ν defined as ∫

X

ν :=

∫
ν1 + · · ·+

∫
νr

is independent of all choices. In other words densities of order one (usually just
called densities) are objects which can be integrated (if of compact support).
Furthermore, if

f : X → Y

is a diffeomorphism, and ν is a density of order one of compact support on Y ,
we have the general “change of variables formula”∫

X

f∗ν =

∫
Y

ν. (6.22)

Suppose that α and β are complex numbers with

α+ β = 1.

Suppose that µ is a density of order α and ν is a density of order β on X and
that one of them has compact support. Then µ · ν is a density of order one of
compact support. So we can form

〈µ, ν〉 :=

∫
X

µν.

So we get an intrinsic sesquilinear pairing between the densities of order α of
compact support and the densities of order 1− α.

6.5 The principal series representations of Diff(X).

So if s ∈ R, we get a pre-Hilbert space structure on the space of smooth densities
of compact support of order 1

2 + is given by

(µ, ν) :=

∫
X

µν.

If f ∈ Diff(X), i.e. if f : X → X is a diffeomorphism, then

(f∗µ, f∗ν) = (µ, ν)
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and
(f ◦ g)∗ = g∗ ◦ f∗.

Let Hs denote the completion of the pre-Hilbert space of densities of order 1
2 +is.

The Hilbert space Hs is known as the intrinsic Hilbert space of order s.
The map

f 7→ (f−1)∗

is a representation of Diff (X) on the space of densities or order 1
2 + is which

extends by completion to a unitary representation of Diff (X) on Hs. This
collection of representations (parametrized by s) is known as the principal series
of representations.

If we take S = S1 = PR1 and restrict the above representations of Diff(X)
to G = PL(2,R) we get the principal series of representations of G.

We will concentrate on the case s = 0, i.e. we will deal primarily with
densities of order 1

2 .

6.6 The push-forward of a density of order one
by a fibration.

There is an important generalization of the notion of the integral of a density
of compact support: Let

π : Z → X

be a proper fibration. Let µ be a density of order one on Z. We are going to
define

π∗µ

which will be a density of order one on X. We proceed as follows: for x ∈ X,
let

F = Fx := π−1(x)

be the fiber over x. Let z ∈ F . We have the exact sequence

0→ TzF → TzZ
dπz→ TxX → 0

which gives rise to the isomorphism

|TzF | ⊗ |TxX| ∼= |TzZ|.

The density µ thus assigns to each z in the manifold F an element of

|TzF | ⊗ |TxX|.

In other words, on the manifold F it is a density of order one with values in the
fixed one dimensional vector space |TxX|. Since F is compact, we can integrate
this density over F to obtain an element of |TxX|. As we do this for all x, we
have obtained a density of order one on X.
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Let us see what the operation µ 7→ π∗µ looks like in local coordinates.
Let us choose local coordinates (U, x1, . . . , xn, s1 . . . , sd) on Z and coordinates
y1, . . . , yn on X so that

π : (x1, . . . , xn, s1, . . . , sd) 7→ (x1, . . . , xn).

Suppose that µ is supported on U and we write

µ = udxds = u(x1, . . . , xn, s1 . . . , sd)dx1 . . . dxnds1 . . . dsd.

Then

π∗µ =

(∫
u(x1, . . . , xn, s1, . . . , sd)ds1 . . . dsd

)
dx1 . . . dxn. (6.23)

In the special case that X is a point, π∗µ =
∫
Z
µ. Also, Fubini’s theorem says

that if
W

ρ→ Z
π→ X

are fibrations with compact fibers then

(π ◦ ρ)∗ = π∗ ◦ ρ∗. (6.24)

In particular, if µ is a density of compact support on Z with π : Z → X a
fibration then π∗µ is defined and∫

X

π∗µ =

∫
Z

µ. (6.25)

If f is a C∞ function on X of compact support and π : Z → X is a proper
fibration then π∗f is constant along fibers and (6.25) says that∫

Z

π∗fµ =

∫
X

fπ∗µ. (6.26)

In other words, the operations

π∗ : C∞0 (X)→ C∞0 (Z)

and
π∗ : C∞(|TZ|)→ C∞(|TX|)

are transposes of one another.
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Chapter 7

The Enhanced Symplectic
“Category”.

Suppose that M1, M2, and M3 are symplectic manifolds, and that

Γ2 ∈ Morph(M2,M3) and Γ1 ∈ Morph(M1,M2)

are canonical relations which can be composed in the sense of Chapter 4. Let
ρ1 be a 1

2 -density on Γ1 and ρ2 a 1
2 -density on Γ2. The purpose of this chapter

is to define a 1
2 -density ρ2 ◦ ρ1 on Γ2 ◦ Γ1 and to study the properties of this

composition. In particular we will show that the composition

(Γ2, ρ2)× (Γ1, ρ1) 7→ (Γ2 ◦ Γ1, ρ2 ◦ ρ1)

is associative when defined, and that the axioms for a “category” are satisfied.

7.1 The underlying linear algebra.

We recall some definitions from Section 3.4: Let V1, V2 and V3 be symplectic
vector spaces and let Γ1 ⊂ V −1 × V2 and Γ2 ⊂ V −2 × V3 be linear canonical
relations. We let

Γ2 ? Γ1 ⊂ Γ1 × Γ2

consist of all pairs ((x, y), (y′, z)) such that y = y′, and let

τ : Γ1 × Γ2 → V2

be defined by
τ(γ1, γ2) := π(γ1)− ρ(γ2)

so that Γ2 ? Γ1 is determined by the exact sequence (3.9)

0→ Γ2 ? Γ1 → Γ1 × Γ2
τ→ V2 → Coker τ → 0.

173
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We also defined
α : Γ2 ? Γ1 → Γ2 ◦ Γ1

by (3.12):
α : (x, y, y, z) 7→ (x, z).

Then kerα consists of those (0, v, v, 0) ∈ Γ2 ? Γ1 and we can identify kerα as a
subspace of V2. We proved that relative to the symplectic structure on V2 we
have (3.16):

kerα = (Im τ)⊥

as subspaces of V2. We are going to use (3.16) to prove

Theorem 39. There is a canonical isomorphism

|Γ1|
1
2 ⊗ |Γ2|

1
2 ∼= | kerα| ⊗ |Γ2 ◦ Γ1|

1
2 . (7.1)

Proof. It follows from (3.16) that we have an identification

(V2/ kerα) ∼ (V2/(Im τ)⊥) ∼ (Im τ)∗.

From the short exact sequence

0→ kerα→ V2 → V2/ kerα→ 0

we get an isomorphism

|V2|
1
2 ∼ | kerα| 12 ⊗ |V2/ kerα| 12

and from the fact that V2 is a symplectic vector space we have a canonical
trivialization |V2|

1
2 ∼= C. Therefore

| kerα| 12 ∼= |V2/ kerα|− 1
2 .

But since (V2/ kerα) ∼= (Im τ)∗ we obtain an identification

| kerα| 12 ∼= |Im τ | 12 . (7.2)

From the exact sequence (3.9) we obtain the short exact sequence

0→ Γ2 ? Γ1 → Γ1 × Γ2
τ→ Im τ → 0

which gives an isomorphism

|Γ1|
1
2 ⊗ |Γ2|

1
2 ∼= |Γ2 ? Γ1|

1
2 ⊗ |Im τ | 12 .

From the short exact sequence

0→ kerα→ Γ2 ? Γ1 → Γ2 ◦ Γ1 → 0

we get the isomorphism

|Γ2 ? Γ1|
1
2 ∼= |Γ2 ◦ Γ1|

1
2 ⊗ | kerα| 12 .

Putting these two isomorphisms together and using (7.2) gives (7.1). 2
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7.1.1 Transverse composition of 1
2

densities.

Let us consider the important special case of (7.1) where τ is surjective and so
kerα = 0. Then we have a short exact sequence

0→ Γ2 ? Γ1 → Γ1 × Γ2
τ→ V2 → 0

and an isomorphism
α : Γ2 ? Γ1

∼= Γ2 ◦ Γ1

and so (7.1) becomes

|Γ2 ◦ Γ1|
1
2 ∼= |Γ1 × Γ2|

1
2 . (7.3)

So if we are given 1
2 -densities σ1 on Γ1 and σ2 on Γ2 we obtain a 1

2 -density
σ2 ◦ σ1 on Γ2 ◦ Γ1.

Let us work out this “composition” explicitly in the case that Γ2 is the graph
of an isomorphism

S : V2 → V3.

Then ρ : Γ2 → V2 is an isomorphism, and so we can identify 1
2 -densities on Γ2

with 1
2 -densities on V2. Let us choose σ2 to be the 1

2 -density on Γ2 which is
identified with the canonical 1

2 -density on V2. So if 2d2 = dimV2 = dimV3 and
u1, . . . , u2d2 is a symplectic basis of V2, then σ2 assigns the value one to the
basis

(u1, Su1), . . . , (u2d2 , Su2d2)

of Γ2.
Let 2d1 = dimV1 and let

(e1, f1), . . . (ed1+d2 , fd1+d2)

be a basis of Γ1. Then

(e1, Sf1), . . . (ed1+d2 , Sfd1+d2)

is a basis of Γ2 ◦ Γ1. Under our identification of Γ2 ◦ Γ1 with Γ2 ? Γ1 (which is
a subspace of Γ1 × Γ2) this is identified with the basis

[(e1, f1), (f1, Sf1)], . . . , [(ed1+d2 , fd1+d2), (fd1+d2), Sfd1+d2)]

of Γ2 ? Γ1. The space {0} × Γ2 is complementary to Γ2 ? Γ1 in Γ1 × Γ2 and the
basis

[(e1, f1), (f1, Sf1)], . . . , [(ed1+d2 , fd1+d2), (fd1+d2), Sfd1+d2)],

[(0, 0), (u1, Su1)], . . . , [(0, 0), (u2d2 , Su2d2)]

differs from the basis

[(e1, ff ), (0, 0)], . . . , [((ed1+d2 , fd1+d2), (0, 0)],

[(0, 0), (u1, Su1)], . . . , [(0, 0), (u2d2 , Su2d2)]
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by multiplication by a matrix of the form(
I ∗
0 I

)
.

We conclude that

Proposition 22. If Γ2 is the graph of a symplectomorphism S : V2 → V3 and
σ2 ∈ |Γ2|

1
2 is identified with the canonical 1

2 -density on V2, then σ2 ◦σ1 is given
by (id×S)∗σ1 under the isomorphism id×S of Γ1 with Γ2 ◦ Γ1. In particular,
if S = id then σ2 ◦ σ1 = σ1.

7.2 Half densities and clean canonical composi-
tions.

Let M1,M2,M3 be symplectic manifolds and let Γ1 ⊂ M−1 ×M2 and Γ2 ⊂
M−2 ×M3 be canonical relations. Let

π : Γ1 →M2, π(m1,m2) = m2, ρ : Γ2 →M2, ρ(m2,m3) = m2,

and Γ2 ? Γ1 ⊂ Γ1 × Γ2 the fiber product:

Γ2 ? Γ1 = {(m1,m2,m3)|(m1,m2) ∈ Γ1, (m2,m3) ∈ Γ2}.

Let

α : Γ2 ? Γ1 →M1 ×M3, α(m1,m2,m3) = (m1,m3).

The image of α is the composition Γ2 ◦ Γ1.

Recall that we say that Γ1 and Γ2 intersect cleanly if the maps ρ and π
intersect cleanly. If π and ρ intersect cleanly then their fiber product Γ2 ? Γ1 is
a submanifold of Γ1 × Γ2 and the arrows in the exact square

Γ2 ? Γ1 −−−−→ Γ1y yπ
Γ2 −−−−→

ρ
M2

are smooth maps. Furthermore the differentials of these maps at any point give
an exact square of the corresponding linear canonical relations. In particular, α
is of constant rank and Γ2 ◦ Γ1 is an immersed canonical relation. If we further
assume that

1. α is proper and

2. the level sets of α are connected and simply connected,
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then Γ2 ◦ Γ1 is an embedded Lagrangian submanifold of M−1 ×M2 and

α : Γ2 ? Γ1 → Γ2 ◦ Γ1

is a fiber map with proper fibers. So our key identity (7.1) holds at the tangent
space level: Let m = (m1,m2,m3) ∈ Γ2 ? Γ1 and q = α(m) ∈ Γ2 ◦ Γ1 and let
Fq = α−1(q) be the fiber of α passing through m. We get an isomorphism

|TmFq| ⊗ |Tq(Γ2 ◦ Γ1)| 12 ∼= |Tm1,m2
Γ1|

1
2 ⊗ |T(m2,m3)Γ2|

1
2 . (7.4)

This means that if we are given half densities ρ1 on Γ1 and ρ2 on Γ2 we get a
half density on Γ2 ◦Γ1 by integrating the expression obtained from the left hand
side of the above isomorphism over the fiber. This gives us the composition law
for half densities. Once we establish the associative law and the existence of the
identity we will have have enhanced our symplectic category so that now the
morphisms consist of pairs (Γ, ρ) where Γ is a canonical relation and where ρ is
a half density on Γ.

Notice that if the composition Γ2 ◦ Γ1 is transverse, then integration is just
pointwise evaluation as in Section 7.1.1. In particular, we may apply Proposi-
tion 22 pointwise if Γ2 is the graph of a symplectomorphism. In particular, if
Γ2 = ∆(X2) is the diagonal in X2 ×X2 and we use the canonical 1

2 -density σ∆

coming from the identification of ∆(X2) with the symplectic manifold X2 with
its canonical 1

2 -density, then (∆(X2), σ∆) ◦ (Γ1σ1) = (Γ1, σ1). This shows that
(∆(X2), σ∆) acts as the identity for composition on the left at X2, and using the
involutive structure (see below) implies that it is also an identity for composition
on the right. This establishes the existence of the identity. For the associative
law, we use the trick of of reducing the associative law for compostion to the
associative law for direct product as in Section 3.3.2:

7.3 Rewriting the composition law.

We will rewrite the composition law in the spirit of Sections 3.3.2 and 4.4: If
Γ ⊂ M− ×M is the graph of a symplectomorphism, then the projection of Γ
onto the first factor is a diffeomorphism. The symplectic form on M determines
a canonical 1

2 -density on M , and hence on Γ. In particular, we can apply this
fact to the identity map, so ∆ ⊂M−×M carries a canonical 1

2 -density. Hence,
the submanifold

∆̃M1,M2,M3
= {(x, y, y, z, x, z)} ⊂M1 ×M2 ×M2 ×M3 ×M1 ×M3

as in (4.6) carries a canonical 1
2 -density τ1,2,3. Then we know that

Γ2 ◦ Γ1 = ∆̃M1,M2,M3
◦ (Γ1 × Γ2)

and it is easy to check that

ρ2 ◦ ρ1 = τ123 ◦ (ρ1 × ρ2).
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Similarly,

(Γ3 ◦ Γ2) ◦ Γ1 = Γ3 ◦ (Γ2 ◦ Γ1) = ∆̃M1,M2,M3,M4
◦ (Γ1 × Γ2 × Γ3)

and ∆̃M1,M2,M3,M4
carries a canonical 1

2 -density τ1,2,3,4 with

(ρ3 ◦ ρ2) ◦ ρ1 = ρ3 ◦ (ρ2 ◦ ρ1) = τ1.2.3.4 ◦ (ρ1 × ρ2 × ρ3).

This establishes the associative law.

7.4 Enhancing the category of smooth manifolds
and maps.

Let X and Y be smooth manifolds and E → X and F → Y be vector bundles.
According to Atiyah and Bott, a morphism from E → X to F → Y consists of
a smooth map

f : X → Y

and a section
r ∈ C∞(Hom(f∗F,E)).

We described the finite set analogue of this concept in Section ??. If s is a
smooth section of F → Y then we get a smooth section of E → X via

(f, r)∗s(x) := r(s(f(x)), x ∈ X.

We want to specialize this construction of Atiyah-Bott to the case where E and
F are the line bundles of 1

2 -densities on the tangent bundles. So we say that r
is an enhancement of the smooth map f : X → Y or that (f, r) is an enhanced
smooth map if r is a smooth section of the line bundle

Hom(|f∗TY | 12 , |TX| 12 ).

The composition of two enhanced maps

(f, r) : (E → X)→ (F → Y ) and (g, r′) : (F → Y )→ (G→ Z)

is (g ◦ f, r ◦ r′) where, for τ ∈ |Tg(f(x))Z)| 12

(r ◦ r′)(τ) = r(r′(τ)).

We thus obtain a category whose objects are the line bundles of 1
2 -densities on

the tangent bundles of smooth manifolds and whose morphisms are enhanced
maps.

If ρ is a 1
2 -density on Y and (f, r) is an enhanced map then we get a 1

2 -density
on X by the Atiyah-Bott rule

(f, r)∗ρ(x) = r(ρ(f(x)) ∈ |TxX|
1
2 .

Then we know that the assignment (f, r) 7→ (f, r)∗ is functorial. We now give
some examples of enhancement of particular kinds of maps:
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7.4.1 Enhancing an immersion.

Suppose f : X → Y is an immersion. We then get the conormal bundle N∗fX
whose fiber at x consists of all covectors ξ ∈ T ∗f(x)Y such that df∗xξ = 0. We
have the exact sequence

0→ TxX
dfx→ Tf(x)Y → NxY → 0.

Here NxY is defined as the quotient Tf(x)Y/dfx(TxX). The fact that f is an
immersion is the statement that dfx is injective. The space (N∗fXx) is the dual
space of NxY . From the exact sequence above we get the isomorphism

|Tf(x)Y |
1
2 ∼= |NxY |

1
2 ⊗ |TxX|

1
2 .

So

Hom(|Tf(x)Y |
1
2 , |TxX|

1
2 ) ∼= |TxX|

1
2 ⊗ |Tf(x)Y |−

1
2 ∼= |NxY |−

1
2 ∼= |(N∗fX)x|

1
2 .

Conclusion. Enhancing an immersion is the same as giving a section of
|N∗fX|

1
2 .

7.4.2 Enhancing a fibration.

Suppose that π : Z → X is a submersion. If z ∈ Z, let Vz denote the tangent
space to the fiber π−1(x) at z where x = π(z). Thus Vz is the kernel of dπz :
TzZ → Tπ(z)X. So we have an exact sequence

0→ Vz → TzZ → Tπ(z)X → 0

and hence the isomorphism

|TzZ|
1
2 ∼= |Vz|

1
2 ⊗ |Tπ(z)X|

1
2 .

So

Hom(|Tπ(z)X|
1
2 , |TzZ|

1
2 ) ∼= |Tπ(z)X|−

1
2 ⊗ |TzZ|

1
2 ∼= |Vz|

1
2 . (7.5)

Conclusion. Enhancing a fibration is the same as giving a section of |V | 12 where
V denotes the vertical sub-bundle of the tangent bundle, i.e. the sub-bundle
tangent to the fibers of the fibration.

7.4.3 The pushforward via an enhanced fibration.

Suppose that π : Z → X is a fibration with compact fibers and r is an enhance-
ment of π so that r is given by a section of the line-bundle |V | 12 as we have just
seen. Let ρ be a 1

2 -density on Z. From the isomorphism

|TzZ|
1
2 ∼= |Vz|

1
2 ⊗ |Tπ(z)X|

1
2
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we can regard ρ as section of |V | 12 ⊗ π∗|TX| 12 and hence

r · ρ

is a section of |V | ⊗ π∗|TX| 12 . Put another way, for each x ∈ X, r · ρ gives a

density (of order one) on π−1(x) with values in the fixed vector space |TxX|
1
2 .

So we can integrate this density of order one over the fiber to obtain

π∗(r · ρ)

which is a 1
2 -density on X. If the enhancement r of π is understood, we will

denote the push-forward of the 1
2 -density ρ simply by

π∗ρ.

We have the obvious variants on this construction if π is not proper. We can
construct π∗(r ·ρ) if either r or ρ are compactly supported in the fiber direction.

An enhanced fibration π = (π, r) gives a pull-back operation π∗ from half
densities on X to 1

2 -densities on Z. So if µ is a 1
2 -density on X and ν is a

1
2 -density on Z then

ν · π∗µ

is a density on Z. If µ is of compact support and if ν is compactly supported in
the fiber direction, then ν · π∗µ is a density (of order one) of compact support
on Z which we can integrate over Z. We can also form

(π∗ν) · µ.

which is a density (of order one) which is of compact support on X. It follows
from Fubini’s theorem that∫

Z

ν · π∗µ =

∫
X

(π∗ν) · µ.

7.5 Enhancing a map enhances the correspond-
ing canonical relation.

Let f : X → Y be a smooth map. We can enhance this map by giving a section
r of Hom(|TY | 12 , |TX| 12 ). On the other hand, we can construct the canonical
relation

Γf ∈ Morph(T ∗X,T ∗Y )

as described in Section 4.8. Enhancing this canonical relation amounts to giving
a 1

2 -density ρ on Γf . In this section we show how the enhancement r of the map
f gives rise to a 1

2 -density on Γf .
Recall (4.11) which says that

Γf = {(x1, ξ1, x2, ξ2)|x2 = f(x1), ξ1 = df∗x1
ξ2}.
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From this description we see that Γf is a vector bundle over X whose fiber over
x ∈ X is T ∗f(x)Y . So at each point z = (x, ξ1, y, η) ∈ Γf we have the isomorphism

|TzΓf |
1
2 ∼= |TxX|

1
2 ⊗ |Tη(T ∗f(x)Y )| 12 .

But (T ∗f(x)Y ) is a vector space, and at any point η in a vector space W we
have a canonical identification of TηW with W . So at each z ∈ Γf we have an
isomorphism

|TzΓf |
1
2 ∼= |TxX|

1
2 ⊗ |Tη(T ∗f(x)Y )| 12 = Hom(|Tf(x)Y |

1
2 , |TxX|

1
2 )

and at each x, r(x) is an element of Hom(|Tf(x)Y |
1
2 , |TxX|

1
2 ). So r gives rise to

a 1
2 -density on Γf , I still need to write up the

functoriality of this relation.

7.6 The involutive structure of the enhanced sym-
plectic “category”.

Recall that if Γ ∈ Morph(M1,M2) then we defined Γ† ∈ (M2,M1) be

Γ† = {(y, x)|(x, y) ∈ Γ}.

We have the switching diffeomorphism

s : Γ† → Γ, (y, x) 7→ (x, y),

and so if ρ is a 1
2 -density on Γ then s∗ρ is a 1

2 -density on Γ†. We define

ρ† = s∗ρ. (7.6)

Starting with an enhanced morphism (Γ, ρ) we define

(Γ, ρ)† = (Γ†, ρ†).

We show that † : (Γ, ρ) 7→ (Γ, ρ)† satisfies the conditions for a involutive struc-
ture. Since s2 = id it is clear that †2 = id. If Γ2 ∈ Morph(M2,M1) and
Γ1 ∈ Morph(M1,M2) are composible morphsims, we know that the composi-
tion of (Γ2, ρ2) with (Γ1, ρ1) is given by

(∆̃M1,M2,M3
, τ123) ◦ (Γ1 × Γ2, ρ1 × ρ2).

where
∆̃M1,M2,M3 = {(x, y, y, z, x, z)|x ∈M1, y ∈M2, z ∈M3}

and τ123 is the canonical (real) 1
2 -density arising from the symplectic structures

on M1,M2 and M3. So

s : (Γ2 ◦ Γ1)† = Γ†1 ◦ Γ†2 → Γ2 ◦ Γ1
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is given by applying the operator S switching x and z

S : ∆̃M3,M2,M1 → ∆̃M1,M2,M3 ,

applying the switching operators s1 : Γ†1 → Γ1 and s2 : Γ†2 → Γ2 and also
switching the order of Γ1 and Γ2. Pull-back under switching the order of Γ1

and Γ2 sends ρ1 × ρ2 to ρ2 × ρ1, applying the individual s∗1 and s∗2 and taking

complex conjugates sends ρ2 × ρ1 to ρ†2 × ρ
†
1. Also

S∗τ123 = τ321

and τ321 is real. Putting all these facts together shows that

((Γ2, ρ2) ◦ (Γ1, ρ1))
†

= (Γ1, ρ1)† ◦ (Γ2, ρ2)†

proving that † satisfies the conditions for a involutive structure.

Let M be an object in our “category”, i.e. a symplectic manifold. A “point”
of M in our enchanced “category” will consist of a Lagrangian submanifold
Λ ⊂ M thought of as an element of Morph(pt.,M) (in S) together with a 1

2 -
density on Λ. If (Λ, ρ) is such a point, then (Λ, ρ)† = (Λ†, ρ†) where we now
think of the Lagrangian submanifold Λ† as an element of Morph(M,pt.).

Suppose that (Λ1, ρ1) and (Λ2, ρ2) are “points” of M and that Λ†2 and Λ1 are

composible. Then Λ†2 ◦ Λ1 in S is an element of Morph(pt.,pt.) which consists
of a (single) point. So in our enhanced “category” S̃

(Λ2, ρ2)†(Λ1, ρ1)

is a 1
2 -density on a point, i.e. a complex number. We will denote this number

by

〈(Λ1, ρ1), (Λ2, ρ2)〉 .

7.6.1 Computing the pairing 〈(Λ1, ρ1), (Λ2, ρ2)〉 .
This is, of course, a special case of the computation of Section 7.2, where Γ2 ◦Γ1

is a point.
The first condition that Λ†2 and Λ1 be composible is that Λ1 and Λ2 intersect

cleanly as submanifolds of M . Then the F of (7.4) is F = Λ1 ∩ Λ2 so (7.4)
becomes

|TpF | = |Tp(Λ1 ∩ Λ2)| ∼= |TpΛ1|
1
2 ⊗ |TpΛ2|

1
2 (7.7)

and so ρ1 and ρ2 multiply together to give a density ρ1ρ2 on Λ1 ∩Λ2. A second
condition on composibility requires that Λ1 ∩ Λ2 be compact. The pairing is
thus

〈(Λ1, ρ1), (Λ2, ρ2)〉 =

∫
Λ1∩Λ2

ρ1ρ2. (7.8)
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7.6.2 † and the adjoint under the pairing.

In the category of whose objects are Hilbert spaces and whose morphisms are
bounded operators, the adjoint A† of a operator A : H1 → H2 is defined by

〈Av,w〉2 = 〈v,A†w〉1, (7.9)

for all v ∈ H1, w ∈ H2 where 〈 , 〉i denotes the scalar product on Hi, i = 1, 2.
This can be given a more categorical interpretation as follows: A vector u in a
Hilbert space H determines and is determined by a bounded linear map from
C to H,

z 7→ zu.

In other words, if we regard C as the pt. in the category of Hilbert spaces, then
we can regard u ∈ H as an element of of Morph(pt., H). So if v ∈ H we can
regard v† as an element of Morph(H,pt.) where

v†(u) = 〈u, v〉.

So if we regard † as the primary operation, then the scalar product on each
Hilbert space is determined by the preceding equation - the right hand side is
defined as being equal to the left hand side. Then equation (7.9) is a consequence
of the associative law and the laws (A ◦B)† = B† ◦A† and †2 = id.. Indeed

〈Av,w〉2 := w† ◦A ◦ v = (A† ◦ w)† ◦ v =: 〈v,A†w〉1.

So once we agree that a 1
2 -density on pt. is just a complex number, we can

conclude that the analogue of (7.9) holds in our enhanced category S̃: If (Λ1, ρ1)
is a “point ” of M1 in our enhanced category, and if (Λ2, ρ2) is a “point ” of M2

and if (Γ, τ) ∈ Morph(M1,M2) then (assuming that the various morphisms are
composible) we have

〈((Γ, τ) ◦ (Λ1, ρ1), (Λ2, ρ2)〉2 =
〈
(Λ1, ρ1), ((Γ, τ)† ◦ (Λ2, ρ2)

〉
1
. (7.10)

7.7 The symbolic distributional trace.

We consider a family of symplectomorphisms as in Section 4.11.7 and follow the
notation there. In particular we have the family Φ : M × S → S of symplecto-
morphisms and the associated moment Lagrangian

Γ := ΓΦ ⊂M ×M− × T ∗S.

7.7.1 The 1
2
-density on Γ.

Since M is symplectic it has a canonical 1
2 density. So if we equip S with a half

density ρS we get a 1
2 density on M ×M−×S and hence a 1

2 density ρΓ making
Γ into a morphism

(Γ, ρΓ) ∈ Morph(M− ×M,T ∗S)
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in our enhanced symplectic category.
Let ∆ ⊂M− ×M be the diagonal. The map

M →M− ×M m 7→ (m,m)

carries the canonical 1
2 -density on M to a 1

2 -density, call it ρ∆ on ∆ enhancing
∆ into a morphism

(∆, ρ∆) ∈ Morph(pt. .,M− ×M).

The generalized trace in our enhanced symplectic “category”.

Suppose that Γ and ∆ are composable. Then we get a Lagrangian submanifold

Λ = Γ ◦∆

and a 1
2 -density

ρΛ := ρΓ ◦ ρ∆

on Λ. The operation of passing from F : M×S →M to (Λ, ρΛ) can be regarded
as the symbolic version of the distributional trace operation in operator theory.

7.7.2 Example: The symbolic trace.

Suppose that we have a single symplectomorphism f : M → M so that S is a
point as is T ∗S. Let

Γ = Γf = graph f = {(m, f(m)), m ∈M}

considered as a morphism from M ×M− to a point. Suppose that Γ and ∆
intersect transversally so that Γ ∩ ∆ is discrete. Suppose, in fact, that it is
finite. We have the 1

2 -densities ρ∆ on Tm∆ and TmΓ at each point m of of
Γ ∩∆. Hence, by (6.12), the result is∑

m∈∆∩Γ

|det(I − dfm)|−
1
2 . (7.11)

7.7.3 General transverse trace.

Let S be arbitrary. We examine the meaning of the hypothesis that that the
inclusion ι : ∆→M ×M and the projection Γ→M ×M be transverse.

Since Γ is the image of (G,Φ) : M ×S →M ×M ×T ∗S, the projection of Γ
onto M ×M is just the image of the map G given in (4.40). So the transverse
composibility condition is

G∩>∆. (7.12)

The fiber product of Γ and ∆ can thus be identified with the “fixed point
submanifold” of M × S:

F := {(m, s)|fs(m) = m}.
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The transversality assumption guarantees that this is a submanifold of M × S
whose dimension is equal to dimS. The transversal version of our composition
law for morphisms in the category S asserts that

Φ : F→ T ∗ S

is a Lagrangian immersion whose image is

Λ = Γ ◦∆.

Let us assume that F is connected and that Φ is a Lagrangian imbedding. (More
generally we might want to assume that F has a finite number of connected
components and that Φ restricted to each of these components is an imbedding.
Then the discussion below would apply separately to each component of F.)

Let us derive some consequences of the transversality hypothesis G∩>∆. By
the Thom transverslity theorem, there exists an open subset

SO ⊂ S

such that for every s ∈ SO, the map

gs : M →M ×M, gs(m) = G(m, s) = (mfs(m))

is transverse to ∆. So for s ∈ SO,

g−1
s (∆) = {mi(s), i = 1, . . . , r}

is a finite subset of M and the mi depend smoothly on s ∈ SO. For each i,
Φ(mi(s)) ∈ T ∗s S then depends smoothly on s ∈ SO. So we get one forms

µi := Φ(mi(s)) (7.13)

parametrizing open subsets Λi of Λ. Since Λ is Lagrangian, these one forms are
closed. So if we assume that H1(SO) = {0}, we can write

µi = dψi

for ψi ∈ C∞(SO) and
Λi = Λψi .

The maps
SO → Λi, s 7→ (s, dψi(s))

map SO diffeomorphically onto Λi. The pull-backs of the 1
2 -density ρΛ = ρΓ◦ρ∆

under these maps can be written as

hiρS

where ρS is the 1
2 -density we started with on S and where the hi are the smooth

functions Victor: details here?
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hi(s) = |det(I − dfmi)|
− 1

2 . (7.14)

In other words, on the generic set SO where gs is transverse to ∆, we can
compute the symbolic trace h(s) of gs as in the preceding section. At points
not in SO, the “fixed points coalesce” so that gs is no longer transverse to ∆
and the individual gs no longer have a trace as individual maps. Nevertheless,
the parametrized family of maps have a trace as a 1

2 -density on Λ which need
not be horizontal over points of S which are not in SO.

7.7.4 Example: Periodic Hamiltonian trajectories.

Let (M,ω) be a symplectic manifold and

H : M → R

a proper smooth function with no critical points. Let v = vH be the correspond-
ing Hamiltonian vector field, so that

i(v)ω = −dH.

The fact that H is proper implies that v generates a global one parameter group
of transformations, so we get a Hamiltonian action of R on M with Hamiltonian
H, so we know that the function Φ of (4.34) (determined up to a constant) can
be taken to be

Φ : M × R→ T ∗R = R× R, Φ(m, t) = (t,H(m)).

The fact that dHm 6= 0 for any m implies that the vector field v has no zeros.
Notice that in this case the transversality hypothesis of the previous example

is never satisfied. For if it were, we could find a dense set of t for which exp tv :
M → M has isolated fixed points. But if m is fixed under exp tv then every
point on the orbit (exp sv)m of m is also fixed under exp tv and we know that
this orbit is a curve since v has no zeros.

So the best we can do is assume clean intersection: Our Γ in this case is

Γ = {m, (exp sv)m, s,H(m))}.

If we set fs = exp sv we write this as

Γ = {(m, fs(m), s,H(m))}.

The assumption that the maps Γ→M ×M and

ι : ∆→M ×M

intersect cleanly means that the fiber product

X = {(m, s) ∈M × R|fs(m) = m}
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is a manifold and that its tangent space at (m, s) is

{(v, c) ∈ TmM × R|v = (dfs)m(v) + cv(m) (7.15)

since

dF(m,s)

(
v, c

∂

∂t

)
= (dfs)m(v) + cv(m).

The map Φ : X → T ∗S is of constant rank, and its image is an immersed
Lagrangian submanifold of T ∗S. One important consequence is:

The energy-period relation.

The restriction of dt ∧ dH = Φ∗(dt ∧ dτ) vanishes. Thus if c is a regular value
of H, then on every connected component of H−1(C) ∩X all trajectories of v
have the same period. For this reason Λ is called the period Lagrangian.

The linear Poincaré map.

At each m ∈M , let

W 0
m := {w ∈ TmM | dH(w) = 0.}

Since dH(v) ≡ 0, we have v(m) ∈ W 0
m and since fs preserves H and v we see

that (fs)m : TmM → TmM induces a map

Pm,s : W 0
m/Rv(m)→W 0

m,s/Rv

called the linear Poincaré map.

Let us make the genericity assumption

det(I − Pm,s) 6= 0. (7.16)

This means the following: Let t 7→ γ(t) = ft(m) be the trajectory of ft = exp tv
through m. We know that the flow ft preserves the hypersurface H = H(m).
Let Y be a transverss slice to γ through m on this hypersurface. If m′ is a
point of Y near m, then the trajectory through m′ will intersect Y again at
some point p(m′) at some time s′ near s, and this map p : Y → Y is known as
the Poincaré map of the flow (restricted to the hypersurface and relative to the
choice of slice). Then Pm,s can be identified with the differential of this Poincarë
map, and our genericity assumption (7.16) says that m is a non-degenerate fixed
point of p.

By (7.15), the genericity assumption (7.16) implies that

1. dimX = 2,

2. H : X → R is a sumbersion, and
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3. X∩H−1(c) is a disjoint union of periodic trajectories of v. In other words,
if Xi, i = 1, 2, . . . are the connected components of X and

(mi, s) ∈ H−1(c) ∩Xi

then
H−1(c) ∩Xi = γci

where γci is the periodic trajectory of v = vH through mi or period s =
Ti(c).

Remarks.

• If m′ = ft(m) is a second point on the trajectory through m, then the
maps Pm,s and Pm′,s are conjugate. Hence det(I − Pm,s) = det(I − Pm′,s
so condition (7.16) depends on the periodic trajectory, not on the choice
of a specific point on this trajectory.

• If m lies on a periodic trajectory γi then it will have a first return time
T ]i > 0, the smallest positive s for which fs(m) = m, m ∈ γi. All other

return times will be integer multiples of T ]i .

• The moment map Φ : M ×R→ T ∗S maps Xi onto the period Lagrangian

Λi = {(t, τ), t = Ti(τ)}.

This map is a fiber mapping with compact fibers and the fiber above (t, τ)
can be identified with the periodic trajectory γi.

Let us equip R with its standard 1
2 -density |dt| 12 . We will obtain a 1

2 -density σi
on Λi which will involve fiber integration over the fibration by periodic tra-
jectories described above. If we use τ as a coordinate on Λi via the map
τ 7→ (t, τ), t = Ti(τ) then a computation similar to the one we gave above
for a single symplectomorphism shows that the induced 1

2 -density on Λi is given
by

T ]i (τ)|det(I − Pγi(τ))|−
1
2 . (7.17)

7.8 The Maslov enhanced symplectic “category”.

Let X be a manifold, Λ ⊂ T ∗X a Lagrangian submanifold, π : Z → X a
fibration and φ ∈ C∞(Z) a generating function for λ with respect to π.

For each z ∈ Cφ let sgnφ(z) denote the signature of the quadratic form

d2
(
φ
∣∣π−1(π(z)

)
z
.

Let sφ : Cφ → C be the function

sφ := exp
πi

4
sgnφ. (7.18)
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Under the identification λφ : Cφ → Λ we will regard sφ as a function on Λ.
In Section 5.13 we defined the Maslov bundle LMaslov → Λ to be the trivial

flat line bundle whose flat sections are constant multiples of sφ.
More generally, if Λ does not admit a global generating function, we can

cover Λ by open sets Ui on each of which we have a generating function φi,
and we showed in Section 5.13.3 that the sφi ’s patch together to give a globally
defined flat line bundle LMaslov → Λ.

We can define this bundle for canonical canonical relations

Γ : T ∗X1 ⇒ T ∗X2

by regarding Γ as a Lagrangian submanifold of (T ∗X1)
−×T ∗X2. As we showed

in Section 5.13.5 it has the same functorial behavior with respect to clean com-
position of canonical relations as does the bundle of 1

2 -densities, compare (5.29)
with (7.4).

So we enhance our symplectic “category” even further by defining

LΛ := LMaslov(Λ)⊗ |TΛ| 12 (7.19)

LΓ := LMaslov(Γ)⊗ |TΓ| 12 , (7.20)

where the objects are now pairs (Λ, σ), where σ is a section of LΛ and morphisms
are pairs (Γ, τ) with τ is a section of LΓ and the composition law (when defined,
i.e. under the hypotheses for clean composition) is given by combining the
composition laws (5.29) and (7.4).

As we will see in the next chapter, this enhanced “category” will play a
fundamental role in the theory of semi-classical Fourier integral operators.
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Chapter 8

Oscillatory 1
2-densities.

Let (Λ, ψ) be an exact Lagrangian submanifold of T ∗X. Let

k ∈ Z.

The plan of this chapter is to associate to (Λ, ψ) and to k a space

Ik(X,Λ, ψ)

of rapidly oscillating 1
2 -densities on X and to study the properties of these

spaces. If Λ is horizontal with

Λ = Λφ, φ ∈ C∞(X),

and
ψ = φ ◦ (πX)|Λ

this space will consist of 1
2 -densities of the form

~ka(x, ~)ei
φ(x)
~ ρ0

where ρ0 is a fixed non-vanishing 1
2 -density on X and where

a ∈ C∞(X × R).

In other words, so long as Λ = Λφ is horizontal and ψ = φ ◦ (πX)|Λ, our space

will consist of the 1
2 -densities we studied in Chapter 1.

As we saw in Chapter 1, one must take into account, when solving hyper-
bolic partial differential equations, the fact that caustics develop as a result
of the Hamiltonian flow applied to initial conditions. So we will need a more
general definition. We will make a more general definition, locally, in terms
of a general generating function relative to a fibration, and then show that
the class Ik(X,Λ, ψ) of oscillating 1

2 -densities on X that we obtain this way is
independent of the choice of generating functions.

191



192 CHAPTER 8. OSCILLATORY 1
2 -DENSITIES.

This will imply that we can associate to every exact canonical relation be-
tween cotangent bundles (and every integer k) a class of (oscillatory) integral
operators which we will call the semi-classical Fourier integral operators asso-
ciated to the canonical relation. We will find that if we have two transversally
composible canonical relations, the composition of their semi-classical Fourier
integral operators is a semi-classical Fourier integral operator associated to the
composition of the relations. We will then develop a symbol calculus for these
operators and their composition.

For expository reasons, we will begin by carrying out the discussion in terms
of transverse generating functions, which limits our symbol calculus to the case
of transverse composition. Since, in the applications, we will need to allow clean
compositions of canonical relations, we will go back and give the local description
of the class Ik(X,Λ, ψ) in terms of clean generating functions which will then
allow us to give a symbol calculus for the semi-classical operators associated to
clean composition of canonical relations.

In order not to overburden the notation, we will frequently write Λ instead
of (Λ, ψ). But a definite choice of ψ will always be assumed. So, for example,
we will write Ik(X,Λ) instead of Ik(X,Λ, ψ) for the class of 1

2 -densities that we
will introduce over the next few sections.

A key ingredient in the study of an element of Ik(X,Λ) is its symbol. Ini-
tially, we will define the “symbol” in terms of a (transverse) generating function
as a function on Λ. Although this definition definitely depends on the choice of
presentation of Λ by generating functions, we will find that the assertion that
the symbol of an element of Ik(X,Λ) vanishes at p ∈ Λ does have invariant
significance. So if we let Ikp (X,Λ) denote the set of all elements of Ik(X,Λ)
whose (non-intrinsic) symbol vanishes at p, we obtain an intrinsically defined
line bundle L over Λ where

Lp = Ik(X,Λ)/Ikp (X,Λ).

We will find that this definition is independent of k.
(For the experts, our line bundle L can be identified with the line bundle of

half-densities on Λ tensored with the Maslov bundle. But our point is to deal
with intrinsically defined objects from the start.)

We then will have a symbol map from Ik(X,Λ) to sections of L and will find
that Ik(X,Λ)/Ik+1(X,Λ) is isomorphic to sections of L. We will also find that
the study of Ik(X,Λ)/Ik+`(X,Λ) is associated with a sheaf E` on Λ giving rise
to the concept of microlocalization.

8.1 Definition of Ik(X,Λ) in terms of a generat-
ing function.

Let π : Z → X be a fibration which is enhanced in the sense of Section 7.4.2.
Recall that this means that we are given a smooth section r of |V | 12 where V
is the vertical sub-bundle of the tangent bundle of Z. We will assume that r
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vanishes nowhere. If ν is a 1
2 -density on Z which is of compact support in the

vertical direction, then recall from Section 7.4.3 that we get from this data a
push-forward 1

2 -density π∗ν on X.
Now suppose that φ is a global generating function for (Λ, ψ) with respect

to π. Recall that this means that we have fixed the arbitrary constant in φ so
that

ψ(x, ξ) = φ(z)

if dφz = π∗zξ where π(z) = x, z ∈ Cφ. See the discussion following equation
(4.62). Let

d := dimZ − dimX.

We define Ik0 (X,Λ, φ) to be the space of all compactly supported 1
2 -densities on

X of the form
µ = ~k−

d
2 π∗

(
aei

φ
~ τ
)

(8.1)

where a = a(z, ~)
a ∈ C∞0 (Z × R)

and where τ is a nowhere vanishing 1
2 -density on Z. Then define Ik(X,Λ, φ) to

consist of those 1
2 -densities µ such that ρµ ∈ Ik0 (X,Λ, φ) for every ρ ∈ C∞0 (X).

It is clear that Ik(X,Λ, φ) does not depend on the choice of the enhancement
r of π or on the choice of τ .

8.1.1 Local description of Ik(X,Λ, φ).

Suppose that Z = X × S where S is an open subset of Rd and π is projection
onto the first factor. We may choose our fiber 1

2 -density to be the Euclidean
1
2 -density ds

1
2 and τ to be τ0 ⊗ ds

1
2 where τ0 is a nowhere vanishing 1

2 -density
on X. Then φ = φ(x, s) and the push forward in (8.1) becomes the oscillating
integral (∫

S

a(x, s, ~)ei
φ
~ ds

)
τ0. (8.2)

8.1.2 Independence of the generating function.

Let πi : Zi → X, φi be two fibrations and generating functions for the same
Lagrangian submanifold Λ ⊂ T ∗X. We wish to show that Ik(X,Λ, φ1) =
Ik(X,Λ, φ2). By a partition of unity, it is enough to prove this locally. Ac-
cording to Section 5.12, since the constant is fixed by (4.62), it is enough to
check this for two types of change of generating functions, 1) equivalence and 2)
increasing the number of fiber variables. Let us examine each of the two cases:

Equivalence.

There exists a diffeomorphism g : Z1 → Z2 with

π2 ◦ g = π1 and φ2 ◦ g = φ1.
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Let us fix a non-vanishing section r of the vertical 1
2 -density bundle |V1|

1
2 of Z1

and a 1
2 -density τ1 on Z1. Since g is a fiber preserving map, these determine

vertical 1
2 -densities and 1

2 -densities g∗r and g∗τ1 on Z2. If a ∈ C∞0 (Z2×R) then
the change of variables formula for an integral implies that

π2,∗ae
i
φ2
~ g∗τ1 = π1,∗g

∗aei
φ1
~ τ1

where the push-forward π2,∗ on the left is relative to g∗r and the push-forward
on the right is relative to r. 2

Increasing the number of fiber variables.

We may assume that Z2 = Z1 × S where S is an open subset of Rm and

φ2(z, s) = φ1(z) +
1

2
〈As, s〉

where A is a symmetric non-degenerate m ×m matrix. We write Z for Z1. If
d is the fiber dimension of Z then d+m is the fiber dimension of Z2. Let r be
a vertical 1

2 -density on Z so that r ⊗ ds 1
2 is a vertical 1

2 -density on Z2. Let τ

be a 1
2 density on Z so that τ ⊗ ds 1

2 is a 1
2 -density on Z2. We want to consider

the expression

~k−
d+m

2 π2∗a2(z, s, ~)ei
φ2(z,s)

~ (τ ⊗ ds 1
2 ).

Let π2,1 : Z × S → Z be projection onto the first factor so that

π2∗ = π1∗ ◦ π2,1∗

and the operation π2,1∗ sends

a2(z, s, ~)ei
φ2
~ τ ⊗ ds 1

2 7→ b(z, ~)ei
φ1
~ τ

where

b(z, ~) =

∫
a2(z, s, ~)ei

〈As,s〉
2~ ds.

We now apply the Lemma of Stationary Phase (see Chapter 15) to conclude
that

b(z, ~) = ~m/2a1(z, ~)

and in fact

a1(z, ~) = cAa2(z, 0, ~) +O(~), (8.3)

where cA is a non-zero constant depending only on A. 2
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8.1.3 The global definition of Ik(X,Λ).

Let (Λ, ψ) be an exact Lagrangian submanifold of T ∗X. We can find a locally
finite open cover of Λ by open sets Λi such that each Λi is defined by a generating
function φi relative to a fibration πi : Zi → Ui where the Ui are open subsets of
X. We let Ik0 (X,Λ) consist of those 1

2 -densities which can be written as a finite
sum of the form

µ =

N∑
j=1

µij , µij ∈ Ik0 (X,Λij ).

By the results of the preceding section we know that this definition is inde-
pendent of the choice of open cover and of the local descriptions by generating
functions.

We then define the space Ik(X,Λ) to consist of those 1
2 -densities µ on X

such that ρµ ∈ Ik0 (X,Λ) for every C∞ function ρ on X of compact support.

8.2 Semi-classical Fourier integral operators.

Let X1 and X2 be manifolds, let

X = X1 ×X2

and let
Mi = T ∗Xi, i = 1, 2.

Finally, let (Γ,Ψ) be an exact canonical relation from M1 to M2 so

Γ ⊂M−1 ×M2.

Let
ς1 : M−1 →M1, ς1(x1, ξ1) = (x1,−ξ1)

so that
Λ := (ς1 × id)(Γ)

and
ψ = Ψ ◦ (ς1 × id)

gives an exact Lagrangian submanifold (Λ, ψ) of

T ∗X = T ∗X1 × T ∗X2.

Associated with (Λ, ψ) we have the space of compactly supported oscillatory
1
2 -densities Ik0 (X,Λ). Choose a nowhere vanishing density on X1 which we will
denote (with some abuse of language) as dx1 and similarly choose a nowhere
vanishing density dx2 on X2. We can then write a typical element µ of Ik0 (X,Λ)
as

µ = u(x1, x2, ~)dx
1
2
1 dx

1
2
2

where u is a smooth function of compact support in all three “variables”.
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Recall that L2(Xi) is the intrinsic Hilbert space of L2 half densities on Xi.
Since u is compactly supported, we can define the integral operator

Fµ = Fµ,~ : L2(X1)→ L2(X2)

by

Fµ(fdx
1
2
1 ) =

(∫
X1

f(x1)u(x1, x2, ~)dx1

)
dx

1
2
2 . (8.4)

We will denote the space of such operators by

Fm0 (Γ)

where
m = k +

n2

2
, n2 = dimX2,

and call them compactly supported semi-classical Fourier integral oper-
ators. In other words, Fµ,~ is a compactly supported semi-classical Fourier

integral operator of degree m if and only if its Schwartz kernel belongs to I
m−n2

2
0 .

We could, more generally, demand merely that u(x1, x2, ~)dx
1
2
1 be an element

of L2(X1) in this definition, in which case we would drop the subscript 0.

8.2.1 Composition of semi-classical Fourier integral oper-
ators.

Let X1, X2 and X3 be manifolds, let Mi = T ∗Xi, i = 1, 2, 3 and let

(Γ1,Ψ1) ∈ Morphexact(M1,M2), (Γ2,Ψ2) ∈ Morphexact(M2,M3)

be exact canonical relations. Let

F1 ∈ Fm1
0 (Γ1) and F2 ∈ Fm2

0 (Γ2).

Theorem 40. If Γ2 and Γ1 are transversally composible, then

F2 ◦ F1 ∈ Fm1+m2
0 ((Γ2, ψ2) ◦ (Γ1, ψ1)). (8.5)

where the composition of exact canonical relations is given in (4.58) and (4.59).

Proof. By partition of unity we may assume that we have fibrations

π1 : X1 ×X2 × S1 → X1 ×X2, π2 : X2 ×X3 × S2 → X2 ×X3

where S1 and S2 are open subsets of Rd1 and Rd2 and that φ1 and φ2 are
generating functions for Γ1 and Γ2 with respect to these fibrations. We also

fix nowhere vanishing 1
2 -densities dx

1
2
i on Xi, i = 1, 2, 3. So F1 is an integral

operator with respect to a kernel of the form (8.4) where

u1(x1, x2, ~) = ~k1−
d1
2

∫
a1(x1, x2, s1, ~)ei

φ1(x1,x2,s1)
~ ds1



8.3. THE SYMBOL OF AN ELEMENT OF IK(X,Λ). 197

where
k1 = m1 −

n2

2
, n2 = dimX2

and F2 has a similar expression (under the change 1 7→ 2, 2 7→ 3). So their
composition is the integral operator

fdx
1
2
1 7→

(∫
X1

f(x1)u(x1, x3, ~)dx1

)
dx

1
2
3

where
u(x1, x3, ~) = ~k1+k2− d1+d2

2 ×∫
a1(x1, x2, s1, ~)a2(x2, x3, s2, ~)ei

φ1+φ2
~ ds1ds2dx2. (8.6)

By Theorem 32 φ1(x1, x2, s1)+φ2(x2, x3, s2) is a generating function for Γ2 ◦Γ1

with respect to the fibration

X1 ×X3 × (X2 × S1 × S2)→ X1 ×X3,

and by (4.59) this is a generating function for (Γ2,Ψ2) ◦ (Γ1,Ψ1). Since the
fiber dimension is d1 + d2 +n2 and the exponent of ~ in the above expression is
k1 + k2 − d1+d2

2 we obtain (8.5).

8.3 The symbol of an element of Ik(X,Λ).

Let Λ = (Λ, ψ) be an exact Lagrangian submanifold of T ∗X. We have attached
to Λ the space Ik(X,Λ) of oscillating 1

2 -densities. The goal of this section is to
give an intrinsic description of the quotient

Ik(X,Λ)/Ik+1(X,Λ)

as sections of a line bundle L→ Λ.

8.3.1 A local description of Ik(X,Λ)/Ik+1(X,Λ).

Let S be an open subset of Rd and suppose that we have a generating function
φ = φ(x, s) for Λ with respect to the fibration

X × S → X, (x, s) 7→ x.

Fix a C∞ nowhere vanishing 1
2 -density ν on X so that any other smooth 1

2 -
density µ on X can be written as

µ = uν

where u is a C∞ function on X.
The critical set Cφ is defined by the d independent equations

∂φ

∂si
= 0, i = 1, . . . , d (8.7)
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The fact that φ is a generating function of Λ asserts that the map

λφ : Cφ → T ∗X, (x, s) 7→ (x, dφX(x, s)) (8.8)

is a diffeomorphism of Cφ with Λ. To say that µ = uν belongs to Ik0 (X,Λ)
means that the function u(x, ~) can be expressed as the oscillatory integral

u(x, ~) = ~k−
d
2

∫
a(x, s, ~)ei

φ(x,s)
~ ds, where a ∈ C∞0 (X × S × R). (8.9)

Proposition 23. If a(x, s, 0) ≡ 0 on Cφ then µ ∈ Ik+1
0 (X,Λ).

Proof. If a(x, s, 0) ≡ 0 on Cφ then by the description (8.7) of Cφ we see that we
can write

a =

d∑
j=1

aj(x, s, ~)
∂φ

∂sj
+ a0(x, s, ~)~.

We can then write the integral (8.9) as v + u0 where

u0(x, ~) = ~k+1− d2
∫
a0(x, s, ~)ei

φ(x,s)
~ ds

so
µ0 = u0ν ∈ Ik+1

0 (X,Λ)

and

v = ~k−
d
2

d∑
j=1

∫
aj(x, s, ~)

∂φ

∂sj
ei
φ
~ ds

= −i~k+1− d2
d∑
j=1

∫
aj(x, s, ~)

∂

∂sj
ei
φ
~ ds

= i~k+1− d2
d∑
j=1

∫ (
∂

∂sj
aj(x, s, ~)

)
ei
φ
~ ds

so

v = i~k+1− d2
∫
b(x, s, ~)ei

φ
~ ds where b =

d∑
j=1

∂aj
∂sj

. (8.10)

This completes the proof of Proposition 23.

This proof can be applied inductively to conclude the following sharper re-
sult:

Proposition 24. Suppose that µ = uν ∈ Ik0 (X,Λ) where u is given by (8.9)
and for i = 0, . . . , 2`− 1

∂ia

∂~i
(x, s, 0)

vanishes to order 2(`− i) on Cφ. Then

µ ∈ Ik+2`+1
0 (X,Λ).
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As a corollary we obtain:

Proposition 25. If a vanishes to infinite order on Cφ then µ ∈ I∞(X,Λ), i.e.

µ ∈
⋂
k

Ik(X,Λ).

8.3.2 The local definition of the symbol.

We now make a tentative definition of the symbol, one that depends on the
presentation (Z, π, φ) of the Lagrangian manifold, and also on the choices of
non-vanishing half densities: If µ ∈ Ik(X,Λ) we define the function σφ ∈ C∞(Λ)
by

σφ(µ)(x, ξ) = a(x, s, 0) where (x, s) ∈ Cφ and λφ(x, s) = (x, ξ). (8.11)

Strictly speaking, we should also include the choice of non-vanishing half-densities
in the notation for σ but this would clutter up the page too much.

The symbol as just defined depends on the presentation of Λ and on the
choices of non-vanishing half-densities. However, we claim that

Proposition 26. If p ∈ Λ, the assertion that (σφ(µ))(p) = 0 has an intrinsic
significance, i.e. is independent of all the above choices.

Proof. Changing the choice of non-vanishing half-densities clearly multiplies
σφ(µ)(p) by a non-zero factor. So we must investigate the dependence on the
presentation. As in Section 8.1.2, we must check what happens for the two
Hörmander moves: For the case of equivalence this is obvious. When increas-
ing the number fiber variables as in Section 8.1.2 (and with the notation of
that section) we have Cφ2

= Cφ1
× {0} and setting ~ = 0 in (8.3) shows that

σφ1
(µ) = cAσφ2

(µ) where cA 6= 0.

8.3.3 The intrinsic line bundle and the intrinsic symbol
map.

With the above notation, define

Ikp (X,Λ) :=
{
µ ∈ Ik(X,Λ)|σφ(µ)(p) = 0

}
.

According to Prop. 26, this is independent of all the choices that went into the
definition of σφ. So we have defined a line bundle

L→ Λ

where
Lp := Ik(X,Λ)/Ikp (X,Λ). (8.12)

Multiplication by ~`−k is an isomorphism of Ik(X,Λ) onto I`(X,Λ) and it is
easy to check that this isomorphism maps Ikp (X,Λ) onto I`p(X,Λ), so we see
that the above definition is independent of k.



200 CHAPTER 8. OSCILLATORY 1
2 -DENSITIES.

The choice of data that went into the definition of σφ gives a trivialization
of L and shows that L → Λ is indeed a smooth line bundle. It also shows the
following: let us define the intrinsic symbol map

σ : Ik(X,Λ)→ sections of L

by
σ(µ)p := [µ]p = µ/Ikp (X,Λ) ∈ Lp

i.e. σ(µ)p is the equivalence class of µ mod Ikp (X,Λ). Then σ(µ) is a smooth
section of L. In other words,

σ : Ik(X,Λ)→ C∞(L).

The following proposition now follows from Prop. 23:

Proposition 27. If µ ∈ Ik(X,Λ) and σ(µ) ≡ 0 then µ ∈ Ik+1(X,Λ).

We will soon prove the converse to this proposition and hence conclude that
σ induces an isomorphism of Ik(X,Λ)/Ik+1(X,Λ) with C∞(L).

8.4 Symbols of semi-classical Fourier integral op-
erators.

Let X1 and X2 be manifolds, with

n2 = dimX2

and let
Γ ∈ Morph(T ∗X1, T

∗X2)

be an exact canonical relation. Let

Λ = (ς1 × id)(Γ)

where ς(x1, ξ1) = (x1,−ξ1) so that Λ is an exact Lagrangian submanifold of
T ∗(X1 ×X2). We have associated to Γ the space of compactly supported semi-
classical Fourier integral operators

Fm0 (Γ)

where F ∈ Fm0 (Γ) is an integral operator with kernel

µ ∈ Im−
n2
2

0 (X1 ×X2,Λ).

We have the line bundle LΛ → Λ and we define the line bundle LΓ → Γ to be
the pull-back under ς ⊗ id of the line-bundle LΛ:

LΓ → Γ := (ς ⊗ id)∗|Γ(LΛ). (8.13)
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Similarly, if F ∈ Fm0 (Γ) corresponds to

µ ∈ Im−
n2
2

0 (X1 ×X2,Λ)

we define the symbol of F to be

σ(F ) = (ς ⊗ id)∗|Γσ(µ). (8.14)

8.4.1 The functoriality of the symbol.

We recall some results from Section 5.6: Let X1, X2 and X3 be manifolds and

Γ1 ∈ Morph(T ∗X1, T
∗X2), Γ2 ∈ Morph(T ∗X2, T

∗X3)

be canonical relations which are transversally composible. So we are assuming
in particular that the maps

Γ1 → T ∗X2, (p1, p2) 7→ p2 and Γ2 → T ∗X2, (q2, q3) 7→ q2

are transverse.
Suppose that

π1 : Z1 → X1 ×X2, π2 : Z2 → X2 ×X3

are fibrations and that φi ∈ C∞(Zi), i = 1, 2 are generating functions for Γi
with respect to πi.

From π1 and π2 we get a map

π1 × π2 : Z1 × Z2 → X1 ×X2 ×X2 ×X3.

Let
∆2 ⊂ X2 ×X2

be the diagonal and let

Z := (π1 × π2)−1(X1 ×∆2 ×X3).

Finally, let
π : Z → X1 ×X3

be the fibration

Z → Z1 × Z2 → X1 ×X2 ×X2 ×X3 → X1 ×X3

where the first map is the inclusion map and the last map is projection onto the
first and last components. Let

φ : Z → R

be the restriction to Z of the function (5.8)

(z1, z2) 7→ φ1(z1) + φ2(z2).
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Then (Theorem 32) φ is a generating function for

Γ := Γ2 ◦ Γ1

with respect to the fibration π : Z → X1 ×X3.
Suppose that we have chosen trivializing data for semi-classical Fourier in-

tegral operators as in Section 8.2, and, more particularly, as in the proof of
Theorem 40. So F = F2 ◦ F1 corresponds to µ ∈ Ik(X,Λ) given by (8.6). We
have the diffeomorphism

κ : Γ2 ? Γ1 → Γ2 ◦ Γ1

where

Γ2 ? Γ1 = {(m1,m2.m3)|(m1,m2) ∈ Γ1, (m2,m3) ∈ Γ2}.

We also have the projections

pr1 : Γ2 ? Γ1 → Γ1, (m1,m2,m3) 7→ (m1,m2)

and

pr2 : Γ2 ? Γ1 → Γ2, (m1,m2,m3) 7→ (m2,m3).

Our choices of trivializing data give trivializations of L1 → Γ1 and of L2 → Γ2

and hence of

pr∗1 L1 ⊗ pr∗2 L2 → Γ2 ? Γ1.

Also, our choice of dx2 gives a choice of trivializing data for (Z, π, φ) representing
Γ. Indeed, in terms of local product representations Z1 = X1 × X2 × S1 and

Z2 = X2×X2×S2 we now have the half-density dx
1
2
2 ⊗ds

1
2
1 ⊗ds

1
2
2 on X2×S1×S2.

We have the diffeomorphism γ := γφ : Cφ → Γ and the maps

γi : Cφi → Γi, i = 1, 2

as in the proof of Theorem 32. We have the immersion

ι : Cφ → Cφ1 × Cφ2

given by

ι(x1, x3, x2, s, t) = ((x1, x2, s), (x2, x3, t)).

The amplitude in (8.6) is

a(x1, x3, x2, s, t) = a1(x1, x2, s)a2(x2, x3, t)

so

a|Cφ = ι∗
(
a1|Cφ1 · a2|Cφ2

)
(8.15)

We have

σφ(F ) = (γ−1)∗a|Cφ,~=0



8.4. SYMBOLS OF SEMI-CLASSICAL FOURIER INTEGRAL OPERATORS.203

with similar expressions for σφ1(F1) and σφ2(F2). Also, if j : Γ2 ?Γ1 → Γ1 ×Γ2

denotes the injection

j(m1,m2,m3) = ((m1,m2), (m2,m3))

then
j ◦ κ−1 ◦ γ = (γ1 × γ2) ◦ ι

as maps from Cφ to Γ1 × Γ2. In other words,

ι ◦ γ−1 ◦ κ = (γ−1
1 × γ−1

2 ) ◦ j

as maps from Γ2 ? Γ1 to Cφ1 × Cφ2 . Setting ~ = 0 in (8.15) we see that

κ∗σφ(F ) = j∗ (σφ1(F1)σφ2(F2)) . (8.16)

In this equation, the data entering into the definition of σφ must be chosen
consistently with the data defining σφ1

and σφ2
. But we see from this equation

that if
p = κ(p1, p2, p3), (p1, p2, p3) ∈ Γ2 ? Γ1

then

σφ(F )(p) = 0⇔ either σφ1(F1)(p1, p2) = 0 or σφ2(F2)(p2, p3) = 0. (8.17)

The condition of vanishing or not vanishing of the symbol is intrinsic, as we
have seen. Let

L→ Γ2 ◦ Γ1, L1 → Γ1 and L2 → Γ2

be the intrinsic line bundles so that

L1
(p1,p2) = Fm1(Γ1)/Fm1

(p1,p2)(Γ1)

where Fm1

(p1,p2) denotes those elements of Fm1(Γ1) whose symbols vanish at

(p1, p2) with similar notation for L2 and L.
Then (8.17) says the following: If F1 ∈ Fm1(Γ1) and F2 ∈ Fm2(Γ2) then

σ(F2 ◦F1)(p) = 0 if and only if either σ(F1)(p1, p2) = 0 or σ(F2)(p2, p3) = 0 (or
both). Thus composition of operators induces an isomorphism

Lp ∼= L1
(p1,p2) ⊗ L2

(p2,p3). (8.18)

We have proved the following theorem:

Theorem 41. Composition of semi-classical Fourier integral operators induces
multiplication of their symbols in the following sense: Let

Γ1 ∈ Morph(T ∗X1, T
∗X2), Γ2 ∈ Morph(T ∗X2, T

∗X3)

be exact canonical relations and

L1 → Γ1, L2 → Γ2
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their associated intrinsic line bundles. Suppose that Γ2 and Γ1 are transversally
composible and let

Γ = Γ2 ◦ Γ1

and L→ Γ its line bundle. Let

κ : Γ2 ? Γ1 → Γ

be the diffeomorphism κ(p1, p2, p3) = (p1, p3) and j : Γ2 ? Γ1 → Γ1 × Γ2 the
immersion j(p1, p2, p3) = ((p1, p2), (p2, p3)). Then we have a canonical isomor-
phism

κ∗L ∼= j∗ (L1 ⊗ L2) . (8.19)

If F1 ∈ Fm1(Γ1) and F2 ∈ Fm2(Γ1) (so that F2 ◦ F1 ∈ Fm1+m2(Γ)) then

κ∗(σ(F2 ◦ F1)) = j∗(σ(F1)σ(F2)) (8.20)

under the isomorphism (8.19).

We can now prove the converse to Prop. 23:

Proposition 28. Let µ be an element of Ik(X,Λ) and σ(µ) = σk(µ) denote its
symbol (as an element of Ik(X,Λ)). If µ ∈ Ik+1(X,Λ) then

σ(µ) ≡ 0.

Proof. Let us first prove this for the case that Λ is horizontal. So (locally) we
can assume that Λ = Λφ. So the fibration is trivial, and hence the critical set
Cφ is X itself and the diffeomorphism λφ : X → Λφ is just the map x 7→ dφx.
Any µ ∈ Ik(X,Λ) is of the form

µ = ~ka(x, ~)ei
φ
~ dx

1
2

(with no integration) and

σφ(µ) = (λ−1
φ )∗a(x, 0).

To say that µ ∈ Ik+1(X,Λφ) means that µ is of the form

~k+1b(x, ~)ei
φ
~ .

This implies that a(x, ~) = ~b(x, ~), so setting ~ = 0 shows that σ(µ) ≡ 0. So
the Proposition is trivially true when Λ is horizontal.

Now to the general case. Given any Lagrangian submanifold Λ ⊂ T ∗X and
any p ∈ Λ, we can find a horizontal Lagrangian submanifold Λφ such that

Λφ ∩ Λ = {p}

and such that this intersection is transverse. Let µ1 ∈ I0(X,Λφ) so that

µ1 = a1(x, ~)ei
φ
~ dx

1
2
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and we choose µ1 so that a1(x, 0) does not vanish. In other words, σ(µ1) is
nowhere vanishing. We think of Λ as an element of Morph(pt., T ∗X) and of

Λ†φ as an element of Morph(T ∗X,pt.). This is a transverse composition, so for

µ ∈ Ik(X,Λ) we have

Fµ1 ◦ Fµ = Fν , where ν ∈ Ik+n
2 (pt.)

so

ν = ~kc(~)

and

σ(ν) = σ(µ1)(p)σ(µ)(p) = c(0).

If µ were actually in Ik+1(X,Λ) we would conclude that ν ∈ Ik+1(pt.) so

ν = ~k+1c1(~)

implying that c(~) = ~c1(~) so σ(ν) = c(0) = 0. Since σ(µ1)(p) 6= 0 we
conclude that σ(µ)(p) = 0. Since we can do this for every p ∈ Λ we conclude
that σ(µ) ≡ 0.

Putting together Propositions 23 and 28 we obtain:

Theorem 42. The symbol map σ induces a bijection

Ik(X,Λ)/Ik+1(X,Λ)→ C∞(L).

8.5 The Keller-Maslov-Arnold description of the
line bundle L

Let X be an n-dimensional manifold and Λ ⊆ T ∗X an exact Lagrangian sub-
manifold. In §8.3 we proved that there exists an intrinsically defined line bundle
L→ Λ and symbol map

σL : Ik(X,Λ)→ C∞(L) (8.21)

which is surjective and has kernel Ik+1(X,L). In this section we will show that

L ∼= LMaslov ⊗ |TΛ| 12 and give a much more concrete description of this map.
We’ll begin by reviewing some material in §7.4–7.5 on “enhancing” fibrations.
Let Z

π→ X be a fibration and let V be the vertical sub-bundle of TZ. An
enhancement of π is the choice of a non-vanishing section, vπ, of the 1

2 -density

bundle, |V | 12 . This enhancement does two things for us: it gives us a non-
vanishing 1

2 density, ρπ, on the canonical relation Γπ, and it also enables us to
define a fiber integration operation

π∗ : C∞0 (|TZ| 12 )→ C∞0 (|TX| 12 ) .
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Now let Λ be an exact Lagrangian submanifold of T ∗X and φ : Z → R a
generating function for Λ with respect to π. Then by definition

Λ = Γπ ◦ Λφ

where Λφ is the Lagrangian submanifold, {(q, dφq) , q ∈ Z}, of T ∗Z. So if we
are given a 1

2 density, v, on Λφ we can associate with it a 1
2 density ρπ ◦ v on Λ

by the composition described in (7.1). In particular let µ ∈ Ik(X,Λ) be the
oscillatory 1

2 -density (8.1), i.e.,

µ = (2πh)k−
d
2 π∗ν (8.22)

where ν ∈ I0(Z,Λφ) is the oscillatory half-density, ν := a(z, ~)ei
φ
~ τ .

Let us denote by ℘ the projection of Λϕ onto Z. We define the “Symbol”
of ν to be the 1

2 density, σ(ν) = ℘∗(a(z, 0)τ) on Λ, and we define the Symbol of
µ to be the product

σ(µ) := sφρπ ◦ σ(ν) (8.23)

where sφ is the section of LMaslov associated with φ, (see Sec. 5.13.2.)
We will show below that this “Symbol” is intrinsically defined. Assuming

this for the moment, we now show that the “Symbol” map we’ve just defined:

σ : Ik(X,Λ)→ C∞(LMaslov ⊗ |TΛ| 12 ) (8.24)

coincides with the map (8.21). In particular, this will show that the line bundle

L of (8.21) can be identified with LMaslov ⊗ |TΛ| 12 .
To prove this we show that this map is surjective and that its kernel is

Ik+1(X,Λ).
To see that this is the case let’s go back to §5.1 and recall how the compo-

sition Γπ ◦ Λφ is defined. As in §5.1 let H∗Z be the horizontal sub-bundle of
T ∗Z. Then one has canonical identifications

Γπ = H∗Z

and

Γπ ◦ Λφ = Λφ ∩H∗Z.

The assumption that Γπ and Λφ are transversally composable simply says
that this intersection is transversal. i.e., that every point we have

TpΛφ ∩ TpH∗Z = Tp(Λφ ∩H∗Z)

and

TpΛφ + TpH
∗Z = Tp(T

∗Z) .

So at every p we are in the situation of (6.10). In other words one has a short
exact sequence

0→ Tp(Λφ ∩H∗Z)→ TpΛφ ⊕ TpH∗Z → TpT
∗Z → 0 .
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Moreover, T ∗Z is a symplectic manifold, so |TpT ∗Z|
1
2 ∼= C , so (taking α = 1

2
in (6.10—))from this short exact sequence we get an isomorphism

|Tp(Λφ ∩H∗Z)| 12 = |TpΛφ|
1
2 ⊗ |TpH∗Z|

1
2

and from the 1
2 -densities σ(ν)(p) and ρπ(p), we get a 1

2 -density

σ(ν)(p)σ(π)(p) ∈ |Tp(Λφ ∩H∗Z)| 12 .

From the diffeomorphism,

Λφ ∩H∗Z → Γπ ◦ Λ ,

mapping p = (q, dϕ(q)) to λϕ(q), this maps to the 1
2 -density, (ρπ ◦ σ(ν))(λφ(q))

in |Tλϕ(p)Γπ ◦ Λφ|
1
2 .

Now recall that by (8.22) σ(ν) = ℘∗a(z, 0)℘∗τ where ℘∗τ is a non-vanishing
1
2 -density on Λφ. Hence

σπ ◦ σ(ν) = (λ−1
φ )∗(a(z, 0)|Cφ)σπ ◦ ℘∗τ (8.25)

where (λ−1
φ )∗a(z, 0)|Cϕ is the “provisional symbol” of µ and ρπ ◦ ℘∗τ is a non-

vanishing 1
2 -density on Λ. Thus it’s clear that the symbol mapping (8.24) is

surjective and that its kernel is Ik+1(X,Λ).

This proves that we have the identification L ∼= LMaslov ⊗ |TΛ| 12 and that
under this identification, the map “Symbol” coincides with the intrinsic symbol
map defined earlier, assuming that “Symbol” is intrinsically defined.

We will now show that the symbol (8.25) is intrinsically defined, i.e., doesn’t
depend on our choice of defining data z, π, φ, ν, σ. To check this it suffices to
show that (8.23) is unchanged if we apply a sequence of Hörmander moves to
these data:

1. Let us first consider what happens if we replace these data by diffeomor-
phic data: Z1, π1, φ1, ν1, σ1 where f : Z1 → Z is a diffeomorphism with the
properties π · f = π1, φ ◦ f = φ1, f∗ν = ν1 and f∗σ = σ1. Since f : Z1 → Z
is a diffeomorphism it lifts to a symplectomorphism, f# : T ∗Z1 → T ∗Z and
(f#)∗σ(ν) = σ(ν1). Moreover since π ◦ f = π1 and f∗σ = σ1, f# maps
H∗Z1 = Γπ diffeomorphically onto H∗Z = Γπ and maps σπ1

onto σπ. Thus
σπ ◦ σ(ν) = σπ1

◦ σ(ν1). Also since φ ◦ f = φ1 the signature functions (sgn)# :
Cφ → Z and (sgn)# : Cφ1 → Z (see 5.13.2) are intertwined by f and hence
sφ = sφ1 . Thus

σ(µ) = sφρπ ◦ σ(ν) = sφ1
ρπ1
◦ σ(ν1) . (8.26)

2. The situation is a bit more complicated for the Hörmander move that
increases the number of fiber variables. Let Q = R` → R be a non-degenerate
quadratic form, and let us replace Z by Z1 = Z × R`, π by π1 = π ◦ ρ, where
ρ is the projection of Z × R` onto Z, replace ϕ(z) by ϕ1(z, s) = ϕ(z) + Q(s),

replace σ by σ1 = σ|ds| 12 and ν by the expression

ν1 = (2πh)k−
d+`
2 a1(z, s, h)e

iϕ1
h τ |ds| 12CQ
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where a1(z, 0, h) = a(z, h) and

cQ = e−
iπ
4 sgnQ|detQ| 12 .

By stationary phase

ρ∗ν1 = ν +O(hk+1− d2 )

and hence
µ1 = (π1)∗ν1 = µ+O(hk+1) .

On the other hand we claim that

σρ ◦ σ(ν1) = e−
πi
4 sgnQσ(ν) .

Indeed to check this it suffices to check this for the fibration ρ : R` → pt, for
the generating function, $1 = Q(s), for the fiber 1

2 -density, σ1 = ds
1
2 and for

ν1 = e
iQ(s)

~ |ds| 12 , i.e., to show that, in this case, σρ ◦ σ(ν1) = |detQ|− 1
2 , and

we’ll leave this as an exercise. Thus

σπ1 ◦ σ(ν1) = e−
iπ
4 sgnQσπ ◦ σ(ν) (8.27)

On the other hand since ϕ1(z, s) = ϕ(z) + Q(s), sϕ1
= e

iπ
4 sgnQsϕ so we again

get
σ(µ) = sϕσπ ◦ σ(ν)sϕ1σπ ◦ σ(ν) = sϕ1 ◦ σ(ν1). (8.28)

Since every Hörmander move is a succession of the two elementary Hörmander
moves described above this proves that σ(µ) is intrinsically defined.

Remark. The definition of L that we’ve given in this section is due to Hörmander,
but the presence of the phase factor, sϕ, in this definition has antecedents in
earlier work of Joe Keller in geometric optics and of Maslov–Arnold on the
fundamental group of Lagrangian manifolds, Λ ⊆ T ∗X.

8.6 Microlocality.

We have identified Ik(X,Λ)/Ik+1(X,Λ) as the space of smooth sections of a
line bundle L over Λ. What about higher quotients of the form

Ik(X,Λ)/Ik+`(X,Λ), ` > 1?

We will find in this section that Ik(X,Λ)/Ik+`(X,Λ) can be identified with
elements of a sheaf on Λ. As usual, we will first describe this identification via
the choice of some local data, and then describe what happens when we change
our choice.

So we start with a (local) presentation (Z, π, φ) of Λ where Z = X × Rd,
where π is projection onto the first factor, and where we have chosen densities
ds = ds1 · · · dsd on Rd and dx on X. Then µ ∈ Ik(X,Λ) means that

µ = udx
1
2
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where

u = ~k−
d
2

∫
Rk
a(z, ~)ei

φ
~ ds

where a ∈ C∞0 (Z).
Recall that µ ∈ Ik+1(X,Λ) if and only if a(x, s, 0)|Cφ ≡ 0. Let us now

examine what the condition µ ∈ Ik+2(X,Λ) says about a. The fact that
a(x, s, 0)|Cφ = 0 tells us that we can write

a(x, s, 0) =
∑
k

ak(x, s)
∂φ

∂sk

and hence that we can write

a(x, s, ~) =
∑
k

ak(x, s)
∂φ

∂sk
+ ~b(x, s, ~).

Then∫
Rk
a(z, ~)ei

φ
~ ds =

∫
Rk

∑
k

ak(x, s)
∂φ

∂sk
ei
φ
~ ds+ ~

∫
Rk
b(z, ~)ei

φ
~ ds

= −i~
∫
Rk

∑
k

ak(x, s)
∂

∂sk

(
ei
φ
~

)
ds+ ~

∫
Rk
b(z, ~)ei

φ
~ ds

= i~
∫
Rk

∑
k

∂ak(x, s)

∂sk
ei
φ
~ ds+ ~

∫
Rk
b(z, ~)ei

φ
~ ds

So define the operator rφ by

rφ(a) := i
∑
k

∂ak(x, s)

∂sk
+ b. (8.29)

Then we can write µ ∈ Ik+1(X,Λ) as µ = udx
1
2 where

u = ~k+1− d2
∫
rφa(x, s, ~)ei

φ
~ ds,

and hence

µ ∈ Ik+2(X,Λ)⇔ (rφa(x, s, 0))|Cφ = 0.

Notice that the operator rφ involves a and its first two partial derivatives.
Iterating this argument proves

Proposition 29. If µ ∈ Ik(X,Λ) and ` ≥ 0 then

µ ∈ Ik+`(X,Λ)⇔ (rjφa)(z, 0)|Cφ = 0 for 0 ≤ j ≤ `. (8.30)
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We now examine what this proposition tells us about Ik/Ik+`. For this we
make some further choices:

Let O be tubular neighborhood of Cφ in Z, so that we have a retraction map

r : O → Cφ

and let ρ ∈ C∞0 be a function which is:

• identically one in a neighborhhood of Cφ,

• with supp ρ ⊂ O and such that

• r: supp ρ→ Cφ is proper.

If µ = ~k(π∗a(z, ~)ei
φ
~ dz)dx

1
2 and ν = ~k(π∗ρ(z)a(z, ~)ei

φ
~ dz)dx

1
2 then µ− ν ∈

I∞(X,Λ) since ρa = a in a neighborhhod of Cφ.

Proposition 30. Every µ ∈ Ik(X,Λ) has a unique expression modulo Ik+`(X,Λ)
of the form

µ = ~k−
d
2 π∗

ρ(z)

`−1∑
j=0

r∗aj~j
 ei

φ
~ dz

 dx
1
2

with
aj ∈ C∞0 (Cφ).

Proof. Let µ ∈ Ik(X,Λ) = ~kπ∗(a(z, ~)ei
φ
~ dz)dx

1
2 . Let

a0 := a(z, 0)|Cπ

and
µ1 := µ− ~k−

d
2 π∗

(
ρ(z)r∗(a0)(z)ei

φ
~ dz

)
dx

1
2 .

Then µ1 ∈ Ik+1(X,Λ) so

µ1 = ~k−
d
2 π∗(b(z, ~)ei

φ
~ dz)dx

1
2

for some b ∈ C∞0 (Z × R). Set a1 := b(z, 0)|Cφ and

µ2 := µ− ~k+1− d2 π∗

(
ρ(z)(r∗a1)(z)ei

φ
~ dz

)
dx

1
2 .

Then µ2 ∈ Ik+2(X,Λ). Continue.

Let us define

σ`O : Ik(X,Λ)→
`−1⊕
j=0

~jC∞0 (Λ)

by

µ 7→ (λ−1
φ )∗

`−1∑
j=0

~jaj .


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This map is independent of the choice of cutoff function ρ. Indeed, if we had
two cutoff functions, they would agree in some neighborhood of Cφ and hence
give the same aj .

We need to investigate how σ`O depends on the choice of the tubular neigh-
borhood O. So let O1 and O2 be two such tubular neighborhoods. Let us
set

σ`1 := σ`O1
and σ`2 := σ`O2

.

Proposition 31. There exists a differential operator

P :

`−1⊕
j=0

~jC∞0 (Λ)→
`−1⊕
j=0

~jC∞0 (Λ)

of degree 2`− 2 such that
σ`2 = P ◦ σ`1.

Proof. Since the maps σ`i , i = 1, 2, are independent of the choice of cutoff
functions, we may choose a common cutoff function ρ supported in O1 ∩ O2.
Suppose that

g =

`−1∑
j=0

~jaj

where a0, . . . a`−1 are elements of C∞0 (Cφ) and that

µ = ~k−
d
2 π∗

(
ρ (r∗1g) ei

φ
~ dz

)
dx

1
2

so that
σ`1(µ) = (λ−1

φ )∗g.

Let
ν = µ− ~k−

d
2 π∗

(
ρ (r∗2g) ei

φ
~ dz

)
dx

1
2

= ~k−
d
2 π∗

(
ρ (r∗1g − r∗2g) ei

φ
~ dz

)
dx

1
2 .

If we set
g̃ := ρ(r∗1g − r∗2g)

then since g̃ vanishes on Cφ we know that

ν = ~k+1− d2 π∗

(
rφg̃ei

φ
~ dz

)
dx

1
2 .

So define the operator P1 by

P1g = (rφg̃)|Cφ .

We know that P1 is a second order differential operator. Set

g1 := P1g.
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We have shown that

µ = ~k−
d
2 π∗

(
ρ (r∗2g) ei

φ
~ dz

)
dx

1
2 mod Ik+1(X,Λ).

In fact,

µ = ~k−
d
2 π∗

(
ρ (r∗2g) ei

φ
~ dz

)
dx

1
2µ1

where
µ1 = ~k+1− d2 π∗

(
ρ (r∗1g1) ei

φ
~ dz

)
dx

1
2 .

Continuing in this way proves the proposition.

8.6.1 The microsheaf.

Let U be an open subset of Λ. We define the subset

Ik+`
U (X,Λ)

by saying that for µ ∈ Ik(X,Λ) that

µ ∈ Ik+`(X,Λ) ⇔ σ`(µ) ≡ 0 on U. (8.31)

In order for this to make sense, we need to know that the condition σ`(µ) ≡ 0
is independent of the presentation. (We already know that it is independent of
the tubular neighborhood O of Cφ.)

So we need to check this for each of the two Hörmander moves:

• Equivalence: In this case we have (Z1, π1φ1, dz1) together with (Z2, π2, φ2, dz2)
and a diffeomorphism ψ : Z1 → Z2 such that

π1 = π2 ◦ ψ, φ1 = φ2 ◦ ψ, and dz1 = ψ∗dz2.

In this case, we choose

O1 = ψ−1(O2), r1 = r2 ◦ ψ, and ρ1 = ρ2 ◦ ψ

and the result is obvious.

• Z2 = Z1 × Rm, π2 = π1 ◦ r where r : Z1 × Rm → Z1 is projection onto
the first factor, and

φ2 = φ1 +Q

where Q is a non-degenerate quadratic form on Rm. In this case

Cφ2
= Cφ1

× {0}.

We may choose our densities so that

dz2 = dz1 ⊗ ds
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where ds is Lebesgue measure on Rn. If r1 : O1 → Cφ1 is a tubular
neighborhood of Cφ1 we choose

O2 = O1 × Rm

and r2 = ι ◦ r1 ◦ r where ι : Z1 → Z1 ×Rm is the injection ι(z) = z × {0}.
If ρ1 is a cutoff function for r1 we chose ρ2 to be of the form

ρ2(z, s) = ρ1(z)ρ(s)

where ρ ∈ C∞0 (Rm) which is identically one near the origin. Then the
result is also obvious.

We now define
E`(U) := Ik(X,Λ)/Ik+`

U (X,Λ). (8.32)

If V ⊂ U is an open set, then Ik+`
U (X,Λ) ⊂ Ik+`

V (X,Λ) so we get a projection

E`(U)→ E`(V )

and it is routine to check that the axioms for a sheaf are satisfied.
Notice that

• Multiplication by a power of ~ shows that E`(U) is independent of k.

• For ` = 1 the sheaf E1 is the sheaf of sections of L.

• There is an intrinsic symbol map σ`U : Ik(X,Λ)→ E`(U).

• In the whole discussion, we can let ` =∞.

• In particular, if µ ∈ Ik(X,Λ), we will say that µ ≡ 0 on U if σ∞U (µ) = 0.

• For semi-classical Fourier integral operators Fk(Γ) we similarly get a sheaf
on Γ.

8.6.2 Functoriality of the sheaf E `.
We return to the situation and the notation of Section 8.4.1. Let U1 be an open
subset of Γ1 and let U2 be an open subset of Γ2. Then

pr−1
1 (U1)

is an open subset of Γ2 ? Γ1 as is pr−1
2 (U2).

Let F1 ∈ Fm1(Γ1) and F2 ∈ Fm2(Γ2) so that F2 ◦ F1 ∈ Fm1+m2(Γ2 ◦ Γ1).

Theorem 43. If σ`1U1
(F1) = 0 and σ`2U2

(F2) = 0 then

σ`1+`2
U (F2 ◦ F1) = 0

where
U = κ

(
pr−1

1 (U1) ∩ pr−1
2 (U2)

)
.
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Proof. This is a local assertion. So let (Z1, π1φ1) be a presentation of Γ1 and
(Z2, π2, φ2) be presentations of Γ1 and Γ2 where

Z1 = X1 ×X2 × Rd1 , Z2 = X2 ×X3 × Rd2

with the obvious projections. Let

r1 : O1 → Cφ1 and r2 → O2

be tubular neighborhoods and let ρ1 and ρ2 be cutoff functions. Define

W1 := r−1
1 γ−1

φ1
(U1) W2 := r−1

2 γ−1
φ2

(U2).

Then F 1 is of the form (8.4) where

u1 = ~m1−n2
2 −

d1
2

∫
W1

ρ1r∗1γ
∗
φ1
ã1e

i
φ1
~ ds1, n2 = dimX2

where
ã1 ∈ C∞0 (Γ1 × R)

with a similar expression for F 2.
If we set

a1 := ρ1r∗1γ
∗
φ1
ã1, a2 := ρ2r∗2γ

∗
φ2
ã2

then the composition F = F 2 ◦F 1 is of the form (8.4) where u is given by (8.6).
Now our assumptions about F 1 and F 2 say that ãi = ~`i b̃i which implies

that
ai = ~`ibi on Wi, i = 1.2.

So
a = ~`1+`2b1(x1, x2, s1, ~)b2(x2, x3, s2, ~)

on the set

W := {(x1, x3, s1, s2, x2)| (x1, x2, s1) ∈W1 and (x2, x3, s2) ∈W2}.

But the set γφ(W ∩ Cφ) is precisely the set U of the theorem.

Corollary 1. Composition of semi-classical Fourier integral operators induces
a a map

E`Γ1
(U1)⊗ E`Γ2

(U2)→ E`Γ(U).

Proof. By the theorem, F = F2 ◦ F1 lies in Fk+` if either F1 ∈ Fk1+` or
F2 ∈ Fk2+`.

In sheaf theoretical terms we can state this corollary as

Theorem 44. Composition of semi-classical Fourier integral operators induces
a a morphism of sheaves

pr∗1 E`Γ1
⊗ pr∗2 E`Γ2

→ κ∗E`Γ.
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8.7 Semi-classical pseudo-differential operators.

We want to apply the results of the preceding few sections to the case X1 =
X2 = X3 = X and Γ1 = Γ2 = ∆ where ∆M ⊂ M− ×M is the diagonal where
M = T ∗X. Since

∆M = Γf , f = id : X → X

we know that the composition

∆M ◦∆M = ∆M

is transverse.
We define

Ψk(X) := Fk(∆M ). (8.33)

Theorem 8.5 allows us to conclude that

F1 ∈ Ψk(X) and F2 ∈ Ψ`(X) ⇒ F2 ◦ F1 ∈ Ψk+`(X).

So we define
Ψ(X) =

⋃
Ψj(X)

and conclude that Ψ(X) is a filtered algebra. It is called the algebra of semi-
classical pseudo-differential operators on X.

8.7.1 The line bundle and the symbol.

We can identify M with ∆M via the map

diag : M → ∆M , m 7→ (m,m)

and we can identify M with ∆M ?∆M under the map

m 7→ (m,m,m).

Under these identifications, the maps κ,pr1 and pr2 all become the identity
map. So if we define

LM := diag∗ L∆M

then (8.19) says that we have a canonical isomorphism

LM ∼= LM ⊗ LM

which implies that we have a canonical trivialization of LM .
In other words, under these identifications, we have a symbol map

σ : Ψk(X)→ C∞(M)

with kernel Ψk+1(X)
If P1 ∈ Ψk1(X) and P2 ∈ Ψk2(X) equation (8.20) becomes

σ(P2 ◦ P1) = σ(P1)σ(P2).
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8.7.2 The commutator and the bracket.

If P1 ∈ Ψk1(X) and P2 ∈ Ψk2(X) then

σ(P2 ◦ P1) = σ(P1)σ(P2) = σ(P1 ◦ P2)

so

σ(P1 ◦ P2 − P2 ◦ P1) = 0

which implies that

P1 ◦ P2 − P2 ◦ P1 ∈ Ψk1+k2−1(X).

Consider the symbol of (P1◦P2−P2◦P1) thought of as an element of Ψk1+k2−1(X).
We claim that this expression depends only on σ(P1) and σ(P2). Indeed, if we
replace P1 by P1 +Q1 where Q1 ∈ Ψk1−1 then (P1 ◦P2−P2 ◦P1) is replaced by

(P1 ◦ P2 − P2 ◦ P1) + (Q1 ◦ P2 − P2 ◦Q1)

and the second term in parentheses is in Ψk1+k2−2(X). Similarly if we replace
P2 by P2 +Q2. Thus there is a well defined bracket operation [ , ] on C∞(M)
where

[f1, f2] = σ(P1 ◦ P2 − P2 ◦ P1)

(thought of as an element of Ψk1+k2−1(X) when f1 = σ(P1) and f2 = σ(P2)).
(This is a general phenomenon: if R is a filtered ring whose associated graded

ring is commutative, then the graded ring inherits bracket structure.)
We will find that, up to a scalar factor, this bracket is the same as the

Poisson bracket coming from the symplectic structure on M , see (8.46) below.

8.7.3 I(X,Λ) as a module over Ψ(X).

Let Λ be an exact Lagrangian submanifold of M = T ∗X thought of as an
element of Morph(pt.,M). Then we have the transversal composition

∆M ◦ Λ = Λ.

Thus we have the composition

Pµ := P ◦ µ. P ∈ Ψk1(X), µ ∈ Ik2(X,Λ)

where, on the right, µ is thought of as a semi-classical Fourier integral operator
from pt. to X. It follows from (8.5) that

Pµ ∈ Ik1+k2(X,Λ). (8.34)

In other words, I(X,Λ) =
⋃
` I

`(X,Λ) is a filtered module over the filtered
algebra Ψ(X).
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Let us examine the symbol maps and the sheaves associated to this module
structure: We begin by examining the various maps that occur in Theorem 41:
We have the identification

∆M ? Λ→ Λ, (pt., λ, λ) 7→ λ.

Under this identification the map

κ : ∆M ? Λ→ ∆M ◦ Λ, (pt., λ, λ) 7→ λ

becomes the identity map. The map

pr1 : ∆M ? Λ→ Λ, (pt., λ, λ) 7→ (pt., λ)

becomes the identity map, and the map

pr2 : ∆M ? Λ→ ∆M , (pt., λ, λ) 7→ (λ, λ)

becomes the inclusion ι→M when we identify ∆M with M . The map

j : ∆M ? Λ→ Λ×∆M , (pt., λ, λ) 7→ ((pt., λ), (λ, λ))

becomes
j = id×ι.

Then the left side of (8.19) is just LΛ and the right hand side of (8.19) is LΛ⊗C
since LM is the trivial bundle.

Equation (8.20) then becomes

σ(Pµ) = ι∗ (σ(P ))σ(µ) (8.35)

where σ(P ) is a function on M = T ∗X in view of our identification of M with
∆M .

8.7.4 Microlocality.

If U is an open subset of M = T ∗X we define

Ψk+`
U := Fk+`

U (∆M )

(Again we are identifying M with ∆M .) So

Ψ∞U = F∞U (∆M ).

In particular, if P ∈ Ψk(X) we say that P = 0 on U if P ∈ Ψ∞U .
It follows from Theorem 43 that

Proposition 32. If P1 and P2 ∈ Ψ(X) and either P1 or P2 are zero on U then
P1P2 is zero on U .

We define the microsupport of P ∈ Ψ(X) as follows:



218 CHAPTER 8. OSCILLATORY 1
2 -DENSITIES.

Definition 5. We say that p ∈ T ∗X is not in the microsupport of P if there
is an open set U containing p such that P = 0 on U .

Let Λ be an exact Lagrangian submanifold of T ∗X and U ⊂ T ∗X an open
subset.

It follows from Theorem 43 that

P ∈ Ψk1+`
U and µ ∈ Ik2(X,Λ) ⇒ Pµ ∈ Ik1+k2+`

U∩Λ (X,Λ). (8.36)

Taking ` =∞ in this equation says that

Proposition 33. If P = 0 on U then

Pµ ∈ I∞U∩Λ(X,Λ).

8.7.5 The semi-classical transport operator.

Let ι : Λ → T ∗X be an exact Lagrangian submanifold, let µ ∈ Ik2(X,Λ) and
P ∈ Ψk1(X). Suppose that

ι∗P ≡ 0.

It then follows from (8.35) that

σ(Pµ) = 0,

so
Pµ ∈ Ik1+k2+1(X,Λ).

We can then consider the symbol of Pµ, thought of as an element of Ik1+k2+1(X,Λ).
Suppose we start with a section s ∈ C∞(LΛ) and choose a µ ∈ Ik2(Λ) such

that
σ(µ) = s.

We can then compute the symbol of Pµ thought of as an element of Ik1+k2+1(X,Λ).
This gives a section, σk1+k2+1(Pµ) of LΛ. We claim that σk1+k2+1(Pµ) is inde-
pendent of the choice of µ. Indeed, choosing a different µ amounts to replacing
µ by µ+ ν where ν ∈ Ik2+1(X,Λ) and

Pν ∈ Ik1+k2+2(X,Λ)

so
σk1+k2+1(P (µ+ ν)) = σk1+k2+1(Pµ).

We have thus defined an operator

LP : C∞(LΛ)→ C∞(LΛ)

where

LP (s) := σk1+k2+1(Pµ) if µ ∈ Ik2(X,Λ) with σk2(µ) = s. (8.37)
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Once again, multiplication by a power of ~ shows that the definition of LP is
independent of the choice of k2.

Let us examine what happens when we replace s by fs where f ∈ C∞(Λ):
Choose Q ∈ Ψ0(X) with σ(Q) = f . Then

LP (fs) = LP (σ(Q)σ(µ))

= LPσ(Qµ)

= σ(P (Qµ))

= σ(Q(Pµ)) + σ((P ◦Q−Q ◦ P )µ)

= fLP s+ [p, f ]s.

where
p := σ(P ).

Let us now use equation (8.46) (to be proved below) which says that

[p, f ] =
1

i
{p, f}.

We know that since p vanishes on Λ, the corresponding vector field Xp is tangent
to Λ, so

[p, f ] = DY f

where Y is the restriction of Xp to Λ. So

LP (fs) = fLP s+
1

i
(DY f)s.

Suppose we choose a connection ∇ on LΛ so

∇Z(fs) = f∇Zs+ (DZf)s

for any vector field Z on Λ. Thus(
LP −

1

i
∇Y
)

(fs) = f

(
LP −

1

i
∇Y
)
s.

This says that the operator
(
LP − 1

i∇Y
)
) commutes with multiplication by

functions, and hence is itself multiplication by a function:(
LP −

1

i
∇Y
)
s = σsub(P,∇)s.

Fixing ∇ (and writing σsub(P ) instead of σsub(P,∇)) we have

LP s =
1

i
∇Y s+ σsub(P )s. (8.38)

This now allows us to carry out the program of chapter I, with differential
operators replaced by semi-classical pseudo-differential operators. Suppose we
are interested in finding an oscillatory half density µ which satisfies the equation

Pµ = 0
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(in the sense of oscillatory half-densities). The first step is to solve the eikonal
equation, as in Chapter I. This involves some hyperbolicity condition, as in
Chapter I. Suppose we have done this, and so have found an exact Lagrangian
submanifold Λ on which σ(P ) = 0, and furthermore Λ is the flow out under the
vector field Xp of an initial isotropic submanifold S.

For any µ ∈ Ik2(X,Λ) we know that Pµ ∈ Ik1+k2+1(X,Λ). We want to do
better. We want to find µ such that Pµ ∈ Ik1+k2+2(X,Λ). This means that
want to choose µ so that its symbol satisfies Lps = 0. According to (8.38), this
amounts to solving the equation

∇Y s+ iσsub(P )s = 0

which is an ordinary first order differential homogeneous linear differential equa-
tion along the trajectories of Y . If we choose an initial section sS of LΛ along
S, then there is a unique solution of this differential equation. Call the corre-
sponding oscillatory half density µ1. So

µ1 ∈ Ik1(X,Λ) and Pµ1 ∈ Ik1+k2+2(X,Λ).

We would now like to find µ2 ∈ Ik2+1(X,Λ) such that

P (µ1 + µ2) ∈ Ik1+k2+3(X,Λ)

which is the same as requiring that

σk1+k2+2(Pµ1) + σk1+k2+2(Pµ2) = 0

which amounts to finding a section s2 of LΛ such that

LP s2 = −σk1+k2+2(Pµ1).

This amounts to an inhomogeneous linear differential equation along the trajec-
tories on Y which we can solve once we have prescribed initial conditions along
S. Continuing in this way, we can find

µ1 + · · ·+ µN

with prescribed initial conditions such that

P (µ1 + · · ·+ µN ) ∈ Ik1+k2+N+1(X,Λ).

If we now choose
µ ∼

∑
j

µj

then
Pµ = 0 mod O(~∞),

where we can prescribe initial values along S.
Since everything was intrinsically defined, we have no problems with caus-

tics. However we do have to explain the relation between the semi-classical
pseudodifferential operators discussed in this chapter, and the differential op-
erators and the semi-classical differential operators discussed in Chapter I. We
shall do this in Section 8.10.
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8.8 The local theory.

Let

X ⊂ Rn

be an open convex subset,

M = T ∗X

and

∆M ⊂M ×M

the diagonal,

Z = X ×X × Rn

with π : Z → X ×X given by

π(x, y, ξ) = (x, y)

and

φ(x, y, ξ) = (y − x) · ξ.

Then we know that (Z, π, φ) is a generating function for ∆M with

Cφ = {(x, y, ξ)|x = y}.

So we may identify Cφ with

X × Rn.

Also, we identify ∆M with M = T ∗X which is identified with X × Rn. Under
these identifications the map

γφ : Cφ → ∆M

becomes the identity map.
We will also choose the standard Lebesgue densities dx on X and dξ on Rn

with their corresponding half-densities.
To get a local symbol calculus for Ψ(X) we must choose a tubular neigh-

borhood O of Cφ and a projection pr : O → Cφ. Three standard choices are to
take O = Z and the projections pr : Z → Cφ to be

prR(x, y, ξ) := (x, ξ) (8.39)

prL(x, y, ξ) := (y, ξ) (8.40)

prW (x, y, ξ) :=

(
x+ y

2
, ξ

)
(8.41)

The first choice, prR, gives rise to the semi-classical analogue of the right symbol
calculus in the theory of pseudo-differential operators. The second choice, prL,
gives the analogue of the left symbol calculus while the third choice gives rise
to the analogue of the Weyl calculus.
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In this section we will focus on prR. Choose a cutoff function ρ ∈ C∞0 (Rn)
with ρ(x) ≡ 1 for ‖x‖ ≤ 1. We now apply Proposition 30 to conclude that every
P ∈ Ψk(X) can be written uniquely mod Ψ∞ as an integral operator K where

K : C∞0 (X)→ C∞(Rn), (Kf)(x) =

∫
K(x, y, ~)f(y)dy

where

K(x, y, ~) = ~k−n
∫
ρ(y − x) (pr∗R a) ei

(y−x)·ξ
~ dξ, a = a(x, ξ, ~) ∈ C∞0 (Cφ × R)

in other words,

K(x, y, ~) = ~k−n
∫
ρ(y − x)a(x, ξ, ~)ei

(y−x)ξ̇
~ dξ. (8.42)

Definition 6. The function ~k−na(x, ξ, ~) is called the (right) total symbol
of P .

8.8.1 The composition law for symbols.

Given P1 ∈ Ψk1(X) and P2 ∈ Ψk2(X) we will work out the formula for the total
symbol of their composition P2 ◦ P1 in terms of the total symbols of P1 and P2

by an application of the formula of stationary phase. The final result will be
formula (8.45) below. We will give an alternative derivation of the composition
laws using the semi-classical Fourier transform in the next chapter.

So suppose that

K1(z, y, ~) =

∫
ρ(z − y)a1(z, ξ, ~)ei

(z−y)·ξ
~ dξ

K2(x, z, ~) =

∫
ρ(x− z)a2(x, η, ~)ei

(x−z)·η
~ dη

so ∫
K2(x, z, ~)K1(z, y, ~)dz =∫

ρ(x− z)ρ(z − y)a2(x, η, ~)a1(z, ξ, ~)ei
φ
~ dηdξdz (8.43)

where

φ(x, y, z, η, ξ) = (x− z) · η + (z − y) · ξ = x · η − y · ξ + (ξ − η) · z.

Make the change of variables

η1 := η − ξ, z1 := z − x
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so that in terms of these new variables

φ(x, y, z1, ξ, η1) = x · (η1 + ξ)− y · ξ + (z1 + x) · (ξ − η1 − ξ)
= x · η1 + x · ξ − y · ξ − z1 · η1 − x · η1

= (x− y) · ξ − z1 · η1.

So (8.43) becomes ∫
ã(x, y, ξ, ~)ei

(x−y)·ξ
~ dξ

where
ã(x, y, ξ, ~) =∫

ρ(−z1)ρ(z1 + x− y)a2(x, η1 + ξ, ~)a1(z1 + x, ξ, ~)e−i
z1·η1

~ dη1dz1. (8.44)

If we set w = (z1, η1), this integral has the form∫
f(w)ei

Aw,w)
2~ dw

where A is the non-singular symmetric matrix

A =

(
0 −I
−I 0

)
where I is the n × n identity matrix. The formula of stationary phase says

that (in general) an integral of the form I(~) =
∫
Rm f(w)ei

Aw,w)
2~ dw has the

asymptotic expansion

I(~) ∼
(

~
2π

)m
2

γAa(~)

where
γA = |detA|−

1
2 e

pii
4 sgnA

and

a(~) ∼
(

exp

(
−i~

2
b(D)

)
f

)
(0)

where
b(D) =

∑
k`

bk`DxkDx`

with B = (bk`) = A−1.
In our case m = 2n, |detA| = 1, sgnA = 0 so γA = 1 and B = A so

b(D) = −2Dη1 ·Dz1

and so (8.44) has the asymptotic expansion(
~

2π

)n
(exp(i~Dη1 ·Dz1) ρ(z1)ρ(z1 + x− y)a2(x, η1 + ξ, ~)a1(z1 + x, ξ, ~)
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evaluated at z1 = x1 = 0. Any (non-trivial) derivative of ρ(z1) vanishes near
z1 = 0 since ρ is identically one there. So ã has the asymptotic expansion(

~
2π

)n∑
β

(i~)|β|
1

β!
Dβ
ξ a2(x, ξ, ~)Dβ

x [ρ(x− y)a1(x, ξ, ~)] .

Once again, any non-trivial derivative of ρ(x− y) vanishes if |x− y| ≤ 1. So (in
terms of the above notation) we have proved

Theorem 45. The kernel K of the compostite P2 ◦ P1 has the form

K(x, y, ~) =

(
~

2π

)n ∫
ρ(x− y)a(x, ξ, ~)e−

(x−y)·ξ
~ dξ

where a has the asymptotic expansion∑
β

(i~)|β|
1

β!
Dβ
ξ a2(x, ξ, ~)Dβ

xa1(x, ξ, ~). (8.45)

Let us examine the first two terms in this expansion. They are

a2a1 + i~
∑ ∂a2

∂ξj

∂a1

∂xj
.

Interchanging P1 and P2 and subtracting shows that the bracket introduced in
Section 8.7.1 is related to the Poisson bracket by

[ , ] = −i{ , }. (8.46)

8.9 The semi-classical Fourier transform.

Let X = Rn and consider the function

ρ : X ×X → R, ρ(x, y) = −x · y.

Let Γρ ∈ Morph(T ∗X,T ∗X) be the corresponding canonical relation, so Γρ
consists of all (x, ξ, y, η) with

ξ = −∂ρ
∂x
, η =

∂ρ

∂y
.

In other words

ξ = y, η = −x

so Γρ is the graph of the symplectomorphism

J : (x, ξ) 7→ (ξ,−x).
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Define the semi-classical Fourier transform to be the integral operator F~,
where, for f ∈ C∞0 (X)

(F~f)(y) :=
1

(2π~)n/2

∫
f(x)e−i

x·y
~ dx.

So F~ is a semi-classical Fourier integral operator associated to Γρ. In terms of

the usual Fourier transform f 7→ f̂ where

f̂(z) =
1

(2π)n/2

∫
f(x)e−ix·zdx

we have
(F~f)(y) = ~−n/2f̂

(y
~

)
.

The Fourier inversion formula says that

f(w) =
1

(2π)n/2

∫
f̂(z)eiw·zdz.

Setting z = y/~ this gives

f(w) =
1

(2π~)n/2

∫
(F~f) (y)ei

w·y
~ dy.

In other words, the semi-classical Fourier integral operator

g 7→ 1

(2π~)n/2

∫
g(y)ei

w·y
~ dy

associated to the canonical transformation

J−1 : (x, ξ) 7→ (−ξ, x)

is the inverse of F~. So we will denote the semi-classical Fourier integral operator

g 7→ 1

(2π~)n/2

∫
g(y)e

w·y
~ dy by F−1

~ .

For example, let P ∈ Ψ(Rn) so that P (fdx
1
2 ) = (Kf)dx

1
2 where

(Kf)(x) =

∫
K(x, y, ~)f(y)dy

where

k(x, y, ~) =

∫
ρ(x− y)a(x, ξ, ~)ei

(x−y)·ξ
~ dξ.

Ignoring the cutoff factor, this has the form

(2π~)−n/2
∫
a(x, ξ, ~)ei

x·ξ
~ (F~f)(ξ)dξ. (8.47)
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So
P = A ◦ F~ (8.48)

where (absorbing the powers of 2π) A is the operator whose Schwartz kernel is
the oscillatory function

a(x, y, ~)ei
x·y
~ .

In particular, A is a semi-classical Fourier integral operator associated with the
symplectomorphism J−1.

8.9.1 The local structure of oscillatory 1
2
-densities.

Let X be a manifold and Λ ⊂ T ∗X be an exact Lagrangian submanifold, and
let

p0 = (x0, ξ0) ∈ Λ

with ξ0 6= 0. According to the argument in Section 5.9, there are canonical
Darboux coordinates

x1, . . . , xn, ξ1, . . . , ξn

in a neighborhood V of p0 such that the horizontal Lagrangian foliation

ξ1 = c1, . . . ξn = cn

is transverse to Λ. Let ν ∈ I`(X,Λ) be microlocally supported in V .
We will use these coordinates and (by restriction) we may assume that Λ ⊂

T ∗(Rn). As above, let J denote the symplectomorphism

J(x, ξ) = (ξ,−x).

So J(Λ) is horizontal , i.e.
Λ = Λ−φ

for some φ ∈ C∞(Rn).
Since

J

(
∂φ

∂ξ
, ξ

)
=

(
ξ,−∂φ

∂ξ

)
,

we see that J(Λ) is the image of the set{
(x, ξ) ∈ T ∗(Rn) | x =

∂φ

∂ξ

}
.

As the inverse semi-classical Fourier transform F−1
~ is a Fourier integral operator

of degree zero associated to the graph of J−1 we know that

µ ∈ I`(Rn,Λ−φ)⇔ ν = F−1
~ µ ∈ I`(Rn,Λ).

If we write µ in the form

~`b(ξ, ~)e
−iφ(ξ)

~

then

ν = F−1
~ µ =

~`−n2
(2π)n/2

∫
b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ (8.49)

gives the local expression for an element of I`(X,Λ).



8.9. THE SEMI-CLASSICAL FOURIER TRANSFORM. 227

8.9.2 The local expression of the module structure of I(X,Λ)
over Ψ(X).

Continuing with the notation of previous sections, let

P = A ◦ F~ ∈ Ψ(X)

and
ν = F−1

~ ◦ µ ∈ I
`(X,Λ).

Then
P ◦ ν = A ◦ µ.

More explicitly P ◦ ν has the expression

~k+`−n2
∫
a(x, ξ, ~)b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ. (8.50)

8.9.3 Egorov’s theorem.

As an application of the theorems of this section, consider the following situa-
tion: Let

γ : T ∗X1 → T ∗X2

be a symplectomorphism, and set

Γ1 := graph γ, Γ2 := graph γ−1.

Suppose that F1 is a semi-classical Fourier operator associated to Γ1 and that
F2 = F−1

1 on some open subset U ⊂ T ∗X1, meaning that for every B ∈ Ψ0(X)
with microsupport in U , we have

F2F1B = B.

Theorem 46. [Egorof.] For any A ∈ Ψk(X2) with microsupport in γ(U),

F2 ◦A ◦ F1 ∈ Ψk(X1)

and
σ(F2AF1) = γ∗ (σ(A)) . (8.51)

Proof. The first assertion follows from the fact that Γ2 ◦ ∆T∗X2 ◦ Γ1 =
∆T∗X1

.
As to (8.51), let (x, ξ, y, η) ∈ Γ1 so from F2 ◦ F1 = I on U we get

σ(F2)(y, η, x, ξ)σ(F1)(x, ξ, y, η) = 1

for (x, ξ) ∈ U .
Now

σ(F2AF1)(x, ξ)
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= σ(F2)(y, η, x, ξ)σ(A)(y, η)σ(F1)(x, ξ, y, η).

Since A is a semi-classical pseudo-differential operator, σ(A) is just a scalar, so
we can pull the middle term out of the product, and use to preceding equation
to conclude that

σ(F2AF1)(x, ξ) = σ(A)(y, η)

where (x, ξ) is related to (y, η) by (x, ξ, y, η) ∈ Γ1, i.e. (y, η) = γ(x, ξ). This is
precisely the assertion of (8.51). 2

8.10 Semi-classical differential operators and semi-
classical pseudo-differential operators.

Recall from Chapter I that a semi-classical differential operator on Rn (of degree
0) has the expression

P = P (x,D, ~) =
∑

aα(x, ~)(~D)α, aα ∈ C∞(X × R).

The right symbol of P is defined as

p(x, ξ, ~) :=
∑

aα(x, ~)ξα

so that

P
(
ei
x.·ξ
~

)
=

∑
aα(x, ~)(~D)α

(
ei
x.·ξ
~

)
= ei

x.·ξ
~
∑

aα(x, ~)ξα

= p(x, ξ, ~)ei
x.·ξ
~ .

Proposition 34. If P is a semi-classical differential operator and f ∈ C∞0 (Rn)
then

(Pf)(x) = (2π~)n/2
∫
p(x, ξ, ~)ei

x.·ξ
~ (F~f)(ξ)dξ.

Proof. This follows from the semi-classical Fourier inversion formula

f(x) = (2π~)−n/2
∫
ei
x·ξ
~ (F~f)(ξ)dξ

and the above formula Pei
x.·ξ
~ = pei

x.·ξ
~ by passing P under the integral sign. 2

If we compare this proposition with (8.47), we see that the (right) symbol of
a semi-classical differential operator plays the same role as the (right) symbol
of a semi-classical pseudo-differential operator.
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The composition of a semi-classical differential operator with a semi-
classical pseudo-differential operator.

Theorem 47. Let P be a semi-classical differential operator on Rn with right
symbol p = p(x, ξ, ~) and let Q be a semiclassical pseudo-differential operator
on Rn with right symbol q = q(x, ξ, ~). Then P ◦Q is a semi-classical pseudo-
differential operator with right symbol

r(x, ξ, ~) ∼
∑
α

1

α!

(
∂

∂ξ

)α
p (~Dx)αq. (8.52)

Remark. Notice that (except for the placement of powers of ~ and i) this
is the same as formula (8.45) for the composition of two semi-classical pseudo-
differential operators.

Proof. Notice that for any f ∈ C∞(Rn), Leibnitz’s rule gives

(~Dxj )[e
i x·ξ~ f ] = ei

x·ξ
~ [~Dxj + ξj ]f

and hence by induction

(~Dx)α[ei
x·ξ
~ f ] = ei

x·ξ
~ [~Dx + ξ]αf.

Applied to the formula

(Qf)(x) = (2π~)−n/2
∫
q(x, ξ, ~)ei

x·ξ
~ (F~f)(ξ)dξ

gives

(P (Qf))(x) =

∫
r(x, ξ, ~)ei

x·ξ
~ (F~f)(ξ)dx

where

b(x, ξ, ~) = p(x, ~Dx + ξ, ~)q =
∑
α

1

α!

(
∂

∂ξ

)α
p (~Dx)αq

by the multinomial theorem.

The action of a semi-classical differential operator on oscillatory 1
2

densities.

Let P be a semi-classical differential operator

P =
∑
α

aα(x, ~)(~D)α

so P has right symbol p.
Let ν be a semi-classial Fourier integral operator as given by (8.49). Once

again, differentiating under the integral sign shows that Pν is given by

~`−
n
2

∫
p(x, ξ, ~)b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ. (8.53)
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Notice that (with k = 0 and a replaced by p0 this is the same as (8.50). This
shows that I(X,Λ) is a module over the ring of semi-classical differential oper-
ators.

8.10.1 Semi-classical differential operators act microlocally
as semi-classical pseudo-differential operators.

Let K ⊂ Rn be a compact subset. Let

prRn : Rn × R→ Rn

denote projection onto the first factor. We want to consider the action of the
semiclassical differential operator P on the set of ν ∈ I(X,Λ) of the form(8.49)
where

prRn Supp(b) ⊂ K. (8.54)

Let ρ ∈ C∞0 (Rn) have the property that ρ(ξ) = 1 on K. Define the operator
ρ(~D) on the set of µ satisfying (8.54) by

ρ(~D) = F−1
~ ◦ ρ(ξ) ◦ F~. (8.55)

More explicitly, (and dropping the half density factors)

(ρ(D)f)(x) = (2π~)−n/2
∫
ei
x·ξ
~ (F~f)(ξ)dξ.

Then
Pρ(D)ν = PF−1

~ ρ(ξ)F~µ = PF−1
~ F~µ = Pν.

In short, P = Pρ(D) microlocally in a neighborhood of a point of Λ.
Applied to Ψ(X) regarded as a module over itself, we see that microlocally,

in a neighborhood of any point of T ∗X we can write P = Pρ(~D). This answers
the issue raised at the end of Section 8.7.5 and we may apply the method of
that section to the solution of (semi-classical) hyperbolic differential equations.

Application: The semi-classical wave equation.

Let
P =

∑
|α|≤r

aα(x, ~)(~D)α

be a zero-th order semi-classical partial differential operator on X := Rn. In
this section we show how to apply the methods we have developed to solve the
following problem:

Construct semi-classical operators

U(t) ∈ Ψ0(X), −∞ < t <∞

with
U(0) = ρ(~D), ρ ∈ C∞0 (Rn)
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satisfying
1

i

∂

∂t
U(t) = PU(t) mod ~∞.

In other words, we want to construct a semi-classical version of the wave operator

eitP ρ(~D)

and show that this is indeed a semi-classical pseudo-differential operator.
If µ = µ(x, y, t, ~) is to be the Schwartz kernel of our desired U(t), then the

initial condition says that

µ(x, y, 0, ~) = ~−n
∫
ρ(ξ)ei

(x−y)·ξ
~ dξ, (8.56)

while the wave equation requires that(
1

i
~
∂

∂t
− ~P

)
µ = 0. (8.57)

Condition (8.56) implies that

µ(0) ∈ I−n(X ×X,∆X).

The leading symbol of the operator(
1

i
~
∂

∂t
− ~P

)
occurring in (8.57) is just τ , the dual variable to t, and so the corresponding
Hamiltonian vector field is ∂

∂t .

Hence, if we take Λ0 = ∆X × (0, 0) ⊂ T ∗(X ×X)× T ∗R, the flowout by ∂
∂t

of Λ) is just the subset given by τ = 0 of T ∗(X ×X)×T ∗R. We can now apply
the method of the transport equation as developed above to get a solution of
(8.57) with initial condition (8.56) with µ ∈ I−n(X ×X × R,Λ).

If ιa denotes the injection

ιa : X ×X → X ×X × R, ιa(x, y) = (x, y, a)

then

Γ†ιa ◦ Λ = ∆X

so

ι∗aµ ∈ I−n(X ×X,∆X)

proving that the corresponding operator U(a) is indeed an element of Ψ0(X).
The construction of U that we just gave shows the power of the symbolic

method. In fact, we will need more explicit information about U(t) which will
follow from more explicit local methods that we will develop in the next chapter.
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8.10.2 Pull-back acts microlocally as a semi-classical Fourier
integral operator.

Let X and Y be smooth manifolds and

G : X → Y

as smooth map. Associated toG is the canonical relation ΓG ∈ Morph(T ∗X,T ∗Y )
where

(x, ξ, y, η) ∈ ΓG ⇔ y = G(x) and ξ = dG∗xη.

We have the pull-back operator

G∗ : C∞(Y )→ C∞(X).

We would like to think of G∗ as being associated to the transpose canonical
relation Γ†G. But G∗ is not a semi-classical Fourier integral operator. The point
of this section is to show that microlocally it is.

Since we are making micro-local assertions, we may assume that Y = Rn.
Let ρ = ρ(ξ) a smooth function of compact support, and ρ(~D) the operator
sending f ∈ C∞0 (Y ) into ρ(~D)f where

(ρ(~D)f)(x) = ~−n
∫
ρ(ξ)ei

(x−y)·ζ
~ f(y)dydζ.

Then G∗ ◦ ρ(~D) sends f into the function

x 7→ ~−n
∫
ρ(ζ)ei

(G(x)−y)·ζ
~ f(y)dydζ.

Let gi(x) denote the i-th coordinate of G(x). The function

ψ(y, x, ζ) := (G(x)− y) · ζ =
∑
i

(gi(x)− yi)ζi

is a generating function for Γ†G. Indeed the condition dζψ = 0 gives y = G(x)
and then the horizontal derivatives DY×X give (η,G∗η) for η =

∑
i ζidyi. In

other words, G∗ ◦ ρ(~D) is a semi-classical Fourier integral operator of order
n1−n2

2 associated to Γ†G. 2

8.11 Description of the space Ik(X,Λ) in terms
of a clean generating function.

In this section we give a local description of the space Ik(X,Λ) in terms of a
clean generating function. We refer back to Section 5.1.1 for notation and results
concerning clean generating functions, and, in particular, for the concept of the
excess, e, of a generating function.

So let (π, φ) be a clean presentation of Λ of excess e where π : X ×Rd → X
is projection onto the first factor . Recall that Cφ denotes the set where ∂φ

∂si
= 0

where s1, . . . , sd are the coordinates on Rd. In Section 5.1.1 we proved
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Proposition 35. There exists a neighborhood U of Cφ and an embedding

f : U → X × Rd

such that
π ◦ f = π

and
φ = f∗π∗1φ1 (8.58)

where
π1 : X × Rd → X × Rd1 , d1 = d− e

is the projection
π1(x, s1, . . . , sd) = (x, s1, . . . , sd1)

and where φ1 is a transverse generating function for Λ with respect to the
projection π2 : X × Rd1 → X onto the first factor. In particular, we have
f(Cφ) = π−1

1 (Cφ1
) and the map

℘φ : Cφ → Λ, (x, s) 7→
(
x,
∂φ

∂x

)
factors as

℘φ = ℘φ1
◦ π1 ◦ f.

Now let a = a(x, s, ~) ∈ C∞0 (U × R) and let

µ = Fa,φ := ~k−
d
2 + e

2

∫
a(x, s, ~)e

iφ
~ ds.

Notice that the class of such µ when e = 0 (i.e. for transverse generating
functions) is precisely the space we denoted by Ik0 (X,Λ, φ) in Section 8.1. We
can use the Proposition to show that we haven’t enlarged the space Ik0 (X,Λ)
by allowing e to be unequal to zero.

Indeed, letting

J =

(
∂fi
∂sj

)
where f(x, s) = (x, f1(x, s), . . . , fd(x, s)), we can, by the change of variables
formula, rewrite the above expression for µ as

µ = ~k−
d
2 + e

2

∫
ã(x, s, ~)e

iπ∗1φ1
~ ds

where
ã := (f−1)∗

(
a |det J |−1

)
.

So if we set

a1(x, s1, . . . , sd1 , ~) :=

∫
ã(x, s1, . . . , sd, ~)dsd1+1 · · · sd, (8.59)
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then

µ = ~k−
d1
2

∫
a1(x, s1, . . . , sd1 , ~)e

iφ1
~ ds1 · · · dsd1 . (8.60)

Since φ1 is a transverse generating function for Λ we see that we have not
enlarged the space Ik0 (X,Λ).

Notice that it follows from the above definitions of ã and a1 that if a(x, s, 0) ≡
0 then µ ∈ Ik+1

0 .
If we now go back to the local definition of the symbol as given in Section

8.3.2, i.e.
σφ1

(µ) = ℘−1
φ1
a1(x, s1, . . . , sd1 , 0)|Cφ1 ,

see equation (8.11), we see that

σφ1
(µ) = (℘φ)∗ a(x, s, 0)|Cφ (8.61)

where ℘φ = π1 ◦f and (℘φ)∗ is fiber integration with respect to the fiber density
along the fiber f∗ds.

8.12 The clean version of the symbol formula.

We will now say all this more intrinsically. Let π : Z → X be a fibration and
φ : Z → R a generating function for Λ with respect to π. Then φ is a clean
generating function if and only if the canonical relations,

Λφ : pt.⇒ T ∗Z and Γπ : T ∗Z ⇒ T ∗X

intersect cleanly, in which case Λ = Γφ ◦ Λπ. If in addition we are given a fiber
1
2 -density, σ, on Z this gives us a push-forward operation:

π∗ : C∞0 (|TZ| 12 )→ C∞0 (|TX| 12 )

and a 1
2 -density, σπ, on Γπ. Now let

ν = (2πh)k−
d+e
2 a(z, h)e

iφ
h τ

be an element of Ik−
d+e
2 (Z,Λφ), where a is in C∞0 (Z×R) and τ is a non-vanishing

1
2 -density on Z. Then, by what we proved above, π∗ν = µ is in Ik(X,Λ). We
will prove that, just as in the transverse case the symbol of µ is given by the
formula

σ(µ) = sφ σπ ◦ σ(ν) (8.62)

where sφ is the section of LMaslov(Λ) associated with φ. (For the definition of
sφ when φ is a clean generating function see §5.13.2 .)To prove this we will first
suppose that Λ ⊆ T ∗X is horizontal, i.e., Λ = Λψ for some ψ ∈ C∞(X) and
that φ = ψ ◦ π. Then Λφ sits inside H∗Z, so

Γπ ? Λφ = H∗Z ∩ Λφ = Λφ
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and the fibration
Γπ ? Λφ → Γπ ◦ Λφ = Λ (8.63)

is just the restriction to Λφ of the fibration

H∗Z = π∗T ∗X → X .

In other words if we denote by

℘φ : Λφ → Z

and

℘ : Λ→ X

the projection of Λφ onto Z and Λ onto X, the map (8.63) is just the map

πΛ : Λφ → Λ , πΛ = ℘−1 ◦ π ◦ ℘ . (8.64)

In particular the fibers of this map coincide with the fibers of π, so our enhance-
ment of π gives us an enhancement of πΛ, and hence a push-forward operation

(πΛ)∗ : C∞0 (|TΛφ|
1
2 )→ C∞0 (|TΛ| 12 )

and it is easily checked that, for σ ∈ C∞0 (|TΛφ|
1
2 ),

σπ ◦ σ = (πΛ)∗σ . (8.65)

Thus given ν = (2πh)ka(z, h)ei
φ
h τ in Ik(Z, λφ)

σπ ◦ σ(ν) = σπ ◦ ℘∗φ(a(z, 0)τ)

= ℘∗ψπ∗a(z, 0)

so if
µ = π∗ν = (2π~)k(π∗a(z, ~)τ)ei

ψ
~

we get for the symbols of µ and ν

σ(µ) = σπ ◦ σ(ν) = sφσπ ◦ σ(ν) . (8.66)

(We can insert the factor, sφ, into the last term because, φ = π∗ψ involves no
fiber variables and hence sφ ≡ 1.)

Let us now turn to the general case. As we observed above, the fibration,
π : Z → X can be factored (locally) into a pair of fibrations

Z
π2−→ Z1

π1−→ Z

such that φ = φ1 ◦ π2 and φ1 : Z1 → R is a transverse generating function
for Λ with respect to π1. Moreover, if we enhance these two fibrations by
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equipping them with fiber 1
2 -densities this gives us an enhancement of π having

the properties

σπ = σπ2
◦ σπ1

and

π∗ = (π1)∗(π2)∗

and the assertion (8.62) follows from the transversal version of this result and
the result we’ve just proved.

8.13 Clean composition of Fourier integral op-
erators.

Let X1, X2, X3 be manifolds and Mi = T ∗Xi, i = 1, 2, 3. Let

Γi ⊂M−i ×Mi+1, i = 1, 2

be exact canonical relations with phase functions ψi. Suppose that Γ2 and Γ1

are cleanly composable, so that Γ2 ? Γ1 is a C∞ manifold and

κ : Γ2 ? Γ1 → Γ2 ◦ Γ1

is a smooth fibration with connected fibers. Let e be the fiber dimension of this
fibration.

Suppose that
Zi = Xi ×Xi+1 × Rdi , i = 1, 2

that
πi : Zi → Xi ×Xi+1, i = 1, 2

and φi ∈ C∞(Zi) are such that (πi, φi), i = 1, 2 are transverse presentations of
(Γi, ψi).

Let
Z = X1 ×X3 × (X2 × Rd1 × Rd2), π : Z → X1 ×X3.

We know that the function φ on Z given by

φ(x1, x3;x2, s1, s2) = φ1(x1, x2, s1) + φ2(x2, x3, s2)

is a clean generating function for Γ2 ◦ Γ1 with respect to π.
The diffeomorphisms ℘φi : Cφi → Γi, i = 1, 2 give us a diffeomorphism

γφ : Cφ → Γ2 ? Γ1

where γφ is the composition

Cφ → Cφ1
× Cφ2

→ Γ1 × Γ2
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and also gives us an identification

Γ2 ? Γ1 = Γπ ? Λφ. (8.67)

We have the factorization
℘φ = κ ◦ γφ.

Now suppose that µj , j = 1, 2 are the Schwartz kernels of Fourier integral oper-
ators Fj of order kj associated with Γj and that they have the local description

µj = ~kj−
nj+1

2 −
dj
2

∫
a(xj , xj+1, sj , ~)e

iφj
~ dsj , j = 1, 2.

Then the operator F2 ◦ F1 has Schwartz kernel

µ =

∫
µ1(x1, x2, ~)µ2(x2, x3, ~)dx2 = ~k1+k2−n3

2 −
d1+d2+n2

2

∫
a1a2e

iφ
~ ds1ds2dx2.

By the results of the preceding section, we know that

µ ∈ Ik1+k2−n3
2 −

e
2 (X1 ×X3,Γ, ψ)

where n3 = dimX3. Hence we conclude

Theorem 48. The operator F2 ◦ F1 is a Fourier integral operator of order
k1 + k2 − e

2 associated with the canonical relation Γ2 ◦ Γ1

8.13.1 A more intrinsic description.

We can describe the construction above more intrinsically as follows. If πi is
the fibration of Zi over Xi ×Xi+1 then π1 × π2 is a fibration of Z1 × Z2 over
the product X1 × X2 × X2 × X3 and Z is the preimage in Z1 × Z2 of the set
X1×∆2×X3 where ∆2 is the diagonal in X2×X2. Therefore π : Z → X1×X3

is the composite map
π = γ ◦ (π1 × π2) ◦ ι (8.68)

where ι is the inclusion of Z in Z1 × Z2 and γ is the projection,

γ : X1 ×∆2 ×X3 → X1 ×X3 .

We will now show how to “enhance” the fibration, π, to make it into a morphism
of 1

2 -densities. By the definition above the conormal bundle of Z in Z1×Z2 can
be identified with the pull-back to Z of the cotangent bundle, T ∗X2, via the
map

Z → X1 ×∆2 ×X3 → ∆2 = X2

the first arrow being the map, (π1 ◦ π2) ◦ ι. Therefore, by Section 7.4.1, en-

hancing ι amounts to fixing a non-vanishing section of |T ∗X2|
1
2 . On the other

hand the fiber of γ is X2 so enhancing γ amounts to fixing a section of |TX2|
1
2 .

Thus the constant section, 1, of |T ∗X2|
1
2 ⊗ |TX2|

1
2 gives one a simultaneous

enhancement of γ and ι. Therefore from (8.68) we conclude
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Proposition 36. Enhancements of the fibrations, π1 and π2, automatically give
one an enhancement for π.

Fixing such enhancements the Schwartz kernel of Fi has a global description
as a push-forward

hki−
ni+1

2 − di2 (πi)∗νie
iφi
h (8.69)

where νi(z, h) is a globally defined 1
2 -density on Zi depending smoothly on h.

As for the Schwartz kernel of F2 ◦F1 the formula for it that we described above
can be written more intrinsically as

hkπ∗ι
∗((ν1 ⊗ ν2)ei

φ1+φ2
h ) . (8.70)

where

k = k1 + k2 −
d1 + d2 + n2

2
− n3

2
.

(Note that since we’ve enhanced ι the pull-back operation, ι∗, is well-defined
as an operation on 1

2 -densities and since we’ve enhanced π the same is true of
the operation, π∗.) We’ll make use of (8.70) in the next section to compute the
intrinsic symbol of F2 ◦ F1.

8.13.2 The composition formula for symbols of Fourier in-
tegral operators when the underlying canonical re-
lations are cleanly composable.

From the intrinsic description of the Schwartz kernel of F2 ◦ F1 given by (8.70)
and the results of Section ?? we get a simple description of the intrinsic symbol
of F2 ◦ F1. The enhancing of π gives us a 1

2 -density, σπ, on Γπ and from the
symbol of ν = ι∗(ν1 ⊗ ν2) we get a 1

2 -density, σ(ν), on Λϕ, and from these
data we get by Theorem 36 of §7.1 an object, σπ ∗ ν, on Γπ ? Λφ of the form
κ∗α ⊗ β where α is a 1

2 -density on Γπ ◦ Λφ and β is a density on the fibers of
the fibration, κ : Γπ ? Λϕ → Γπ ◦ Λϕ. Hence we can integrate β over fibers to
get a complex-valued function, π∗β, on Γπ ◦ Λϕ, and Theorem ?? of § ?? tells
us that the composite symbol

σπ ◦ σ(ν) = απ∗β

is, modulo Maslov factors, the intrinsic symbol of F2 ◦ F1. On the other hand
the symbol, σi, of Fi is a 1

2 -density on Γi, and from the 1
2 -densities, σ1 and σ2

we again get, by §7.1 , an object σ2 ?σ1 on Γ2 ?Γ1 which is the pull-back of a 1
2 -

density on Γ2◦Γ1 times a density on the fibers of the fibration, Γ2?Γ1 → Γ2◦Γ1,
and the fiberwise integral of this object is the composite 1

2 -density σ2 ◦ σ1 on
Γ2 ◦ Γ1. However as we observed above Γ2 ? Γ1 = Γπ ? Λφ, Γ2 ◦ Γ1 = Γπ ◦ Λφ,
and the fibrations of Γ2 ? Γ1 over Γ2 ◦ Γ1 and of Γπ ? Λφ over Γπ ◦ Λφ are the
same. Finally, a simple computation in linear algebra (which we’ll omit) also
shows that the objects σ2 ?σ1 and σπ ?σ(ν) are the same. As for Maslov factors,
let Z be the preimage of X1 × ∆X2

× X3 in Z1 × Z2 and let sφi , i = 1, 2 be
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the section of LMaslov(Γi) associated with φ1. By the composition formula for
sections of Maslov bundles described in Section 5.13.5

sφ2 ◦ sφ1 = sφ

where φ is the restriction of φ1 + φ2 to Z and sφ is the section of LMaslov(Γ)
associated to φ. Hence we have proved

Theorem 49. The intrinsic symbol

σ(F ) = sφσπ ? σ(ν)

of the Fourier integral operator F = F2 ◦ F1 is the composition

σ(F2) ◦ σ(F1)

of the M-enhanced symbols σ(Fi) = sφiσπi ◦ σ(νi), i = 1, 2.

8.14 An abstract version of stationary phase.

As an application of the clean intersection ideas above, we’ll discuss in this
section an abstract version of the lemma of stationary phase. We’ll begin by
quickly reviewing the results of the previous two sections. Let Xi, i = 1, 2, 3, be
manifolds and let Mi = T ∗Xi. Assume we are given exact canonical relations

Γi : Mi �Mi+1 , i = 1, 2

and assume that Γ1 and Γ2 are cleanly composable. Then we have a fibration

κ : Γ2 ? Γ1 → Γ2 ◦ Γ1 =: Γ

and the fiber dimension, e, of this fibration is the excess of this clean composi-
tion. If Fi ∈ Fki(Γi), i = 1, 2 is a Fourier integral operator with microsupport
on Γi, then as we showed above F2 ◦ F1 is in the space Fk(Γ2 ◦ Γ1) where
k = k1 + k2 − e

2 . Moreover if ϕΓi ∈ C∞(Γi), i = 1, 2 are phase functions on Γ1

and Γ2, the associated phase function ϕΓ ∈ C∞(Γ) is defined by

κ∗ϕΓ = γ∗1ϕΓ1
+ γ∗2ϕΓ2

. (8.71)

Recall that
Γ2 ? Γ1 = {(P1, P2, P3), (Pi, Pi+1) ∈ Γi}

and that γi : Γ2 ∗ Γ1 → Γi is the projection

(P1, P2, P3)→ (Pi, Pi+1), i = 1, 2.

We now apply these facts to the following special case: Let X and Y be
differentiable manifolds of dimensions m and n and let

f : X → Y
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be a C∞ map and let

Γf = {(x, ξ, y, η) ; y = f(x) , ξ = df∗xη} .

Then f∗ : C∞(Y )→ C∞(X) can be viewed as a semi-classical F.I.O.

f∗ ∈ Fr(Γ]f ), r =
m− n

2

in the sense that for every P ∈ Ψ0(Y )

f∗P ∈ Fr(Γ∗f ) .

Moreover, suppose f is a fiber mapping with compact fibers. Then if we fix
volume densities dx and dy on X and Y we get a fiber integration map

f∗ : C∞(X)→ C∞(Y )

with the defining property that∫
f∗ϕψ dx =

∫
ϕf∗ · ψ dy

for all ϕ ∈ C∞0 (Y ) and ψ ∈ C∞(X). In other words, f∗ is just the transpose
of f∗. Since transposes of semi-classical F.I.O.’s are also semi-classical F.I.O.’s
we conclude that

f∗ ∈ F0(Γf )

in the sense that Pf∗ ∈ F0(Γf ) for all P ⊂ Ψ0(Y ).
We want to apply these remarks to the following simple setup. Let X be a

manifold and Y ⊂ X a compact manifold of codimension n. Then we have an
inclusion map ι : Y → X and a projection map π : Y → pt.. Equipping Y with
a volume density, dy, we get from these maps Fourier integral operators

ι∗ : C∞(X)→ C∞(Y )

and

π∗ : C∞(Y )→ C∞(pt.) = C

associated with the canonical relations

Γ†ι = {(x, ξ, y, η) , y = x , η = (dι)∗yξ}
and

Γπ = {(y, η) , y ∈ Y , η = 0} ,

i.e., η ∈ (dπy)∗T ∗ pt.⇔ η = 0 . Then

Γπ ◦ Γ†ι = {(y, ξ) , y ∈ Y , ξ ∈ T ∗yX , (dιy)∗ξ = 0}
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is just the conormal bundle Γ = N∗Y in T ∗X. Moreover its easy to see that this
set coincides with Γπ ?Γ†ι , so Γπ and Γ†ι are transversally composable. Therefore
π∗ι
∗ is a semi-classical Fourier integral operator. Moreover since

ι∗ ∈ F−n2 (Γ†ι ) n = dimX

and

π∗ ∈ Fo(Γπ) 0 = dim pt. ,

π∗ι
∗ ∈ F−n2 (Γ)

where

n

2
= −1

2
(dimX) +

dimY

2
.

Remark.

Since Γ is a conormal bundle ι∗ΓαX = 0 so Γ is exact with phase function
ϕΓ ≡ 0. We’ll make use of this fact below.

Now let Λ ⊆ T ∗X be an exact Lagrangian manifold with phase function ϕΛ.
As is our wont, we’ll regard Λ as a canonical relation

Λ : pt.⇒ T ∗X

and Γ as a canonical relation

Γ : T ∗X ⇒ pt.

and composing these canonical relations we get the relation

pt.⇒ pt.

and sitting over it the relation
Γ ? Λ

which is just the set of triples

(pt., p,pt.)

with (pt., p) ∈ Λ and (p,pt.) ∈ Γ, i.e., if we go back to thinking of Λ and Γ as
Lagrangian manifolds in T ∗X:

Γ ? Λ = Γ ∩ Λ .

Therefore in this example Γ and Λ are cleanly composable iff Γ and Λ intersect
cleanly in T ∗X. Let’s assume this is the case. Then taking

µ ∈ Ik(X,Λ, ϕ)
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and viewing µ as the Schwartz kernel of the operator

Fµ : C∞(pt.)→ C∞(X) , c→ cµ

we get by composition of F.I.O.’s

π∗ι
∗µ ∈ Ik+`+n

2−
e
2 (pt, ϕpt.)

where e = dim Γ ∩ Λ and

k + `+
n

2
− e

2
= k − dimX

2
+

dimY

2
+

dimX

2
− e

2

= k +
m

2
− e

2
m =

dimY

2

and ϕpt. satisfies κ∗ϕpt. = γ∗1ϕ1 +γ∗2ϕ2 where ϕ1 and ϕ2 are the phase functions
on Γ and Λ and γ1 and γ2 are the inclusion maps,

Γ ∩ Λ→ Γ

and

Γ ∩ Λ→ Λ .

Thus since ϕ1 = 0 and ϕ2 = ϕ our formula for composition of phase functions
tells us

Lemma 3. The restriction of ϕ to Λ ∩ Γ is constant and ϕpt. = ϕ(p) where p
is any point on Λ ∩ Γ.

Thus summarizing, we’ve proved

Theorem 50. The integral

π∗ι
∗µ =

∫
Y

(ι∗µ) dy

has an asymptotic expansion

ei
ϕpt.

h
hk+m

2 −
e
2

∞∑
i=0

aih
i . (8.72)

This is, in semi-classical analysis, the abstract lemma of stationary phase.

Remark.

If Γ and Λ intersect cleanly in N connected components

(Γ ∩ Λ)r , r = 1, . . .

one gets a slightly generalized version of (8.72)

π∗ι
∗µ ∼

m∑
r=1

e
iϕr(pt.)

h
hk+m

2 −er
∞∑
i=0

ai,rh
r (8.73)

where ϕr(pt.) = ϕ(pr), pr ∈ (Λ ∩ Γ)r and er = dim Λ ∩ Γr.



Chapter 9

Pseudodifferential
Operators.

In this chapter we will give a brief account of the “classical” theory of semi-
classical pseudo-differential operators: pseudo-differential operators whose sym-
bols satisfy appropriate growth conditions at infinity. We will show that most
of the main properties of these operators can be deduced, via microlocalization,
from properties of the semi-classical pseudo-differential operators with compact
support that we introduced in Chapter 8. Victor: Please check all

references to Chapter 8.

9.1 Semi-classical pseudo-differential operators
with compact microsupport.

In §8.6 we defined a class of operators which we called “semi-classical pseudo-
differential operators”. A more appropriate description of these operators is
“semi-classical pseudo-differential operators with compact microsupport”. On
open subsets of Rn they are integral operators of the form

A : C∞(U)→ C∞(U), φ 7→
∫
KA(x, y, ~)φ(y)dy

where KA(x, y, ~) is an oscillatory integral

KA(x, y, ~) =

∫
a(x, y, ξ, ~)ei

(x−y)·ξ
~ dξ (9.1)

with amplitude
a ∈ C∞0 (U × U × Rn × R).

By the general theory of oscillatory integrals, these are “semi-classical Fourier
integral operators associated to the identity map of T ∗U to itself”. We know
from the general theory that their definition is coordinate invariant. However,

243
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since these operators will play a fundamental role in this chapter, here is a short
proof of this fact:

Let f : V → U ⊂ Rn be a diffeomorphism, and let

B = f∗A(f−1)∗

so that B is an integral operator with kernel

KB(x, y, ξ, ~) =

∫
a(f(x), f(y), ξ, ~)ei

(f(x)−f(y))·ξ
~ |detDf(y)| dξ.

Define fij by

fi(x)− fi(y) =
∑
j

fij(x, y)(xj − yj)

and let F be the matrix F = (fij). So

(f(x)− f(y)) · ξ = (F (x, y)(x− y)) · ξ = (x− y) · F †(x, y)ξ

and the above expression for Kb can be written as

KB =

∫
b(x, y, ξ, ~)ei

(x−y)·ξ
~ dξ

where

b(x, y, x, ξ, ~) = a(f(x), f(y), (F †)−1(x, y)ξ, ~)
∣∣det

(
F (x, y)−1Df(y)

)∣∣ . 2

(9.2)
Equation (9.2) shows how this changes under a diffeomorphism, and, in

particular that it is intrinsically defined.
Moreover, since

fi(x)− fi(y) = Dfi(x− y) +O(‖x− y‖2),

equation (9.2) also shows that

b(y, y, ξ, 0) = a
(
f(y), f(y), Df(y)†ξ, 0

)
.

In other words, it shows that the leading symbol of f∗A(f−1)∗ is g∗σ(A)(x, ξ)
where g : T ∗V → T ∗U is the diffeomorphism of cotangent bundles corrrespond-
ing to the diffeomorphism f .

So this gives us an elementary proof of the a property of pseudo-differential
operators that we proved in Chapter 8 - that their leading symbols are intrinsi-
cally defined as functions on the cotangent bundle.

Let us define the microsupport of A to be the closure in T ∗U of the set of
points, (x, ξ), at which Dα

yD
N
h a(x, x, ξ, 0) 6= 0 for some α and N .

We will let Ψ0(U) denote the set of semi-classical pseudo-differential oper-
ators with compact microsupport in U , and by Ψ00(U) the subset of Ψ0(U)
consisting of semi-classical pseudo-differential operators with microsupport in
the set ξ 6= 0.

More generally, if X is an n-dimensional manifold, we denote the analogous
objects on X by Ψ0(X) and by Ψ00(X). Our proof above that the definition
of of semi-classical pseudo-differential operators with compact microsupport is
coordinate invariant justifies this definition.



9.2. CLASSICAL ΨDO’S WITH POLYHOMOGENEOUS SYMBOLS. 245

9.2 Classical ΨDO’s with polyhomogeneous sym-
bols.

Our goal in this chapter is to get rid of the “compact microsupport” condition
and show that Ψ0(X) is a subalgebra of a much larger class of of semi-classical
pseudo-differential operators.

As a first step in this direction, we will give in this section a somewhat
unorthodox description of the class of classical pseudo-differential operators with
polyhomogeneous symbols, the standard house and garden variety of pseudo-
differential operators of Kohn-Nirenberg, Hörmander, et al. (See for instance,
[HorIII].) Our description is based on an observation that we made in §8.10: Let
X be a manifold and let A : C∞(X) → C∞(X) be a differential operator. We
saw that if P ∈ Ψ0(X) then AP ∈ Ψ0(X).

Now let A : C∞0 (X) → C−∞(X) be a continuous operator in the distribu-
tional sense, i.e. admitting as Schwartz kernel a generalized function

KA ∈ C−∞(X ×X)

(relative to some choice of smooth density).
We will convert the observation we made above about differential operators

into a definition:

Definition 7. A is a classical pseudo-differential operator with polyho-
mogeneous symbol if,

AP ∈ Ψ00(X)

for every P ∈ Ψ00(X).

Remarks.

• We will explain at the beginning of the next section why we cannot replace
Ψ00(X) by Ψ0(X) in this definition.

• From the results of §8.10 we know that differential operators belong to
this class.

Here are some other examples: Assume for the moment that

KA ∈ C`(X ×X)

for some ` ≥ 0. Pre- and post-multiplying KA by compactly supported smooth
cut-off functions, we may assume that X = Rn. We may write

KA(x, y) = K(x, x− y)

where K(x,w) = KA(x, x− w).
Let P be the zero-th order semi-classical pseudo-differential operator

P = ψ(x)ρ(~D)
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where ψ(w) ≡ 1 on the set where K(x,w) 6= 0 and ρ = ρ(ξ) ∈ C∞0 (Rn).
The Schwartz kernel of P is

ψ(x)

(
~−n

∫
ρ(ξ)ei

(x−y)·ξ
~ dξ

)
and hence the Schwartz kernel of AP is

~−n
∫
K(x, x− z)e

i(z−y)·ξ
~ ρ(ξ)dzdξ.

For fixed x, let us make the change of variables w = z − x. The above integral
then becomes ∫

K(x,−w)ei
w·ξ
~ ei

(x−y)·ξ
~ ρ(ξ)dwdξ.

This equals

(2π)n/2
∫
K̂

(
x,
ξ

~

)
ρ(ξ)ei

(x−y)·ξ
~ dξ (9.3)

where K̂ is the Fourier transform of K with respect to w:

K̂(x, ζ) =
1

(2π)n/2

∫
K(x,w)e−iw·ζdw.

Suppose that ρ is supported on the set

ε ≤ ‖ξ‖ ≤ 1

ε

and is identically one on the set

2ε < ‖ξ‖ < 1

2ε
.

Then P ∈ Ψ00(Rn), so in order for AP to be a semi-classical pseudo-differential
operator with compact microsupport, K̂ has to have a semi-classical expansion

K̂

(
x,
ξ

~

)
∼ ~−k

∞∑
i=0

Fi(x, ξ)~i

on the set 2ε < ‖ξ‖ ≤ 1
2ε , for some k.

Letting ~ = 1
‖ξ‖ and writing

ξ = ‖ξ‖ · ξ

‖ξ‖

this becomes the more conventional expression

K̂(x, ξ) ∼
∑

ai(x, ξ) (9.4)
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for ‖ξ‖ >> 0 where

ai(x, ξ) = ‖ξ‖kFi
(
x,

ξ

‖ξ‖

)
‖ξ‖−i (9.5)

is a homogeneous symbol of degree −i + k. In other words, A is a classical
pseudo-differential operator with polyhomogeneous symbol a(x, ξ) = K̂(x, ξ).
(For the standard definition of these objects, see [HorIII] p. 67.)

Notice that since K(x, ·) ∈ C`0, k has to be less than −n2 − `.

We now prove a converse result - that if A is a classical pseudo-differential
operator with polyhomogeneous symbol

a(x, ξ) ∼
∞∑
i=0

ai(x, ξ) (9.6)

which is compactly supported in x and of degree k < −n then A is a polyho-
mogeneous pseudo-differential operator in our sense.

Let

K(x,w) =
1

(2π)n/2

∫
a(x, ξ)eiw·ξdξ,

be the inverse Fourier transform of a with respect to ξ. We recall the following
facts about the Fourier transform:

Lemma 4. If −k > n+ ` then K(x, ·) ∈ C`.

Proof. For |α| ≤ `,

|(Dw)αK(x,w)| ≤ 1

(2π)n/2

∫
|a(x, ξ)ξα| dξ

is bounded. Indeed, the integrand on the right is bounded by 〈ξ〉k+` and k+` <
−n.

Lemma 5. On the set wj 6= 0,

K(x,w) = w−Nj
1

(2π)n/2

∫ (
i
∂

∂ξj

)N
a(x, ξ)eiw·ξdξ

for all N .

Proof. Use the identity (
−i ∂
∂ξj

)n
eiw·ξ = wNj e

iw·ξ

and integration by parts.
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Lemma 6. If a is a polyhomogeneous symbol of degree k, then(
i
∂

∂ξj

)N
a(x, ξ)

is a polyhomogeneous symbol of degree k −N .

Proof. Term-wise differentiation of the asymptotic expansion a(x, ξ) =
∑
ai(x, ξ).

Corollary 51. K(x,w) is C∞ on the set w 6= 0.

Now note that by the Fourier inversion formula,

a(x, ξ) = K̂(x, ξ).

Hence for ρ ∈ C∞0 (Rn) with support on the set

ε < ‖ξ‖ < 1

ε
,

the Schwartz kernel of Aρ(~D) is

~−n
∫
a

(
x,
ξ

~

)
ρ(ξ)ei

(x−y)·ξ
~ dξ

by (9.3). Hence, by (9.6), Aρ(~D) ∈ Ψ00(Rn).
More , if P ∈ Ψ00(Rn) and ρ ≡ 1 on the microsupport of P , then by (8.45)

P = ρ(~D)P

and hence
AP = (Aρ(~D))P ∈ Ψ00(Rn).

Conclusion: A is a polyhomogeneous pseudo-differential operator in our
sense.

Let us now get rid of the assumption that A is an integral operator:

Let X be a manifold and

A : C∞0 (X)→ C−∞(X)

be a continuous operator with Schwartz kernel KA(x, y). Pre- and post- multi-
plying KA by compactly supported cut-off functions we may assume that

KA ∈ C−∞0 (Rn × Rn).

Hence by Schwartz’s theorem,

KA = 〈Dx〉2N 〈Dy〉2NKB
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where
KB ∈ C`0(Rn × Rn)

for some positive integers ` and N . In other words,

B = 〈D〉−2NA〈D〉−2N

is an integral operator with a C` kernel. Now 〈D〉−2N is a classical pseudo-
differential operator with polyhomogeneous symbol

(1 + ‖ξ‖2)−N

and hence by what we proved above, it is a pseudo-differential operator with
polyhomogeneous symbol in our sense. Thus if A is a polyhomogeneous pseudo-
differential operator in our sense, so is B. We conclude that B is a polyho-
mogeneous pseudo-differential operator in the standard sense, i.e., operates on
C0(Rn) by the recipe

f 7→ 1

(2π)n

∫
b(x, ξ)eix·ξ f̂(ξ)dξ

where b is a standard polyhomogeneous symbol. Thus A is the classical pseudo-
differential operator with polyhomogeneous symbol

a(x, ξ) = 〈Dx + ξ〉2Nb(x, ξ)〈ξ〉2N .

A consequence of this computation which will be useful later is

Proposition 37. Let A : C∞0 (Rn)→ C∞(Rn) be a classical pseudo-differential
operator with polyhomogeneous symbol a(x, ξ) of order k. Then A〈D〉−2N is a
classical pseudo-differential operator with polyhomogeneous symbol a(x, ξ)〈ξ〉−2N .
In particular, if k− 2N < −`− n then A〈D〉−2N is an integral operator and its
kernel is in C`(Rn × Rn).

As a corollary we obtain

Proposition 38. Let A : C∞0 (Rn)→ C−∞(Rn) be a classical pseudo-differential
operator with polyhomogeneous symbol of order k. Then A maps C∞0 (Rn) into
C∞(Rn).

Proof. For any ` pick N so that k − 2N < n− ` and write A = B〈D〉2N where
B is a a classical pseudo-differential operator with polyhomogeneous symbol of
order k−2N < n−`. Now 〈D〉2N maps C∞0 (Rn) into itself and B maps C∞0 (Rn)
into C`(Rn).

Remarks.

1. Formally, the Schwartz kernel of A is the generalized function

KA(x, y) =

∫
a(x, ξ)ei(x−y)·ξdξ.
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If we make the change of variables ξ 7→ ξ/~ this becomes

~−n
∫
a

(
x,
ξ

~

)
ei

(x−y)·ξ
~ dξ.

In other words, in semi-classical form, A is the operator

C∞0 (Rn) 3 f → ~−
n
2

∫
a(x, ξ, ~)ei

x·ξ
~ (F~f)(ξ)dξ

where

a(x, ξ, ~) = a

(
x,
ξ

~

)
and F~ is the semi-classical Fourier transform.

Now F~ρ(~D)f = ρ(ξ)F~f , so Aρ(~D) is the operator given by

[Aρ(~D)f ] (x) = ~n/2
∫
a(x, ξ, ~)ρ(ξ)ei

x·ξ
~ (F~)(ξ)dξ. (9.7)

2. Let A : C∞0 (X) → C∞(X) be a smoothing operator. In other words,
assume that A has a Schwartz kernel K = KA ∈ C∞(X ×X). Then A can be
viewed as a classical pseudo-differential operator of order −∞. Hence, for every
P ∈ Ψ00(X), the operator PA belongs to Ψ−∞00 (X). This can also be easily
proved by the methods of Chapter 8. Indeed, we may write

K(x, y) = K(x, y)e
iφ(x,y)

~

where φ ≡ 0. Hence A can be regarded as a semi-classical Fourier integral
operator with microsupport on the zero section of T ∗(X×X). So if P ∈ Ψ00(X),
its microsupport does not intersect the microsupport of A, and hence AP is a
Fourier integral operator (with microsupport on the zero section of T ∗(X×X))
of order −∞. In other words from the microlocal perspective it’s the zero
operator.

9.3 Semi-classical pseudo-differential operators.

We have seen that an operator

A : C∞0 (X)→ C−∞(X)

is a classical polyhomogeneous pseudo-differential operator if and only if it has
the property

AP ∈ Ψ00(X) for all P ∈ Ψ00(X).

The condition that P ∈ Ψ00(X) requires not only that P have compact micro-
support, but also that the microsupport of P is disjoint from the zero section
of T ∗X. We will now show that it’s important to make this stipulation. We
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will show that if we impose on A the stronger condition: “AP ∈ Ψ0(X) for
all P ∈ Ψ0(X)” then essentially the only operators with this property are
differential operators.

To see this, let us assume that X = Rn and that the Schwartz kernel KA of
A is in C`0(Rn × Rn) for large `. Let K be defined by

KA(x, y) = K(x, x− y),

where K(x,w) = KA(x, x− w). Let ρ ∈ C∞0 (Rn) with

ρ(ξ) ≡ 1 for ‖ξ‖ < 1

ε
.

Then Aρ(~D) has kernel

(2π)n/2
∫
K̂

(
x,
ξ

~

)
ρ(ξ)ei

(x−y)·ξ
~ dξ

by (9.3). Thus if Aρ(~D) ∈ Ψ0(X), we would have an asymptotic expansion

K̂

(
x,
ξ

~

)
∼ ~k

∑
Fi(x, ξ)~i

for ‖ξ‖ < 1
ε , with k ≥ n

2 + `. Thus for ~ < 1 we may replace ξ by ~ξ in this
expansion to get

K̂(x, ξ) ∼ ~k
∑

Fi(x, ~ξ)~i

and hence, letting ~→ 0,

K̂(x, ξ) ≡ 0.

The situation becomes a lot better if we allow our operators to depend on
~. More explicitly, let

A~ : C∞0 (Rn)→ C∞(Rn)

be an operator with Schwartz kernel

KA(x, y, ~) ∈ C` (Rn × Rn × R)

and set

K(x,w, ~) = KA(x, x− w, ~).

Since K(x,w, ~) is in C`0 as function of x, there is a constant C such that∫
|Dα

wK(x,w, ~)| dw ≤ C, ∀ |α| ≤ `.

So if K̂ denotes the Fourier transform of K with respect to w, we have∣∣∣ξαK̂(x, ξ, ~)
∣∣∣ ≤ C ∀ |α| ≤ `. (9.8)
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We now repeat the argument we gave at the beginning of this section, but keep
track of the ~-dependence: As above, let ρ = ρ(ξ) ∈ C∞0 (Rn) be supported on
the set ‖ξ‖ < 1

ε and be identically 1 on the set ‖ξ‖ < 1
2ε . By (9.3), the Schwartz

kernel of Aρ(~D) is

~−n
∫
K̂

(
x,
ξ

~
, ~
)
ρ(ξ)ei

(x−y)·ξ
~ dξ.

For Aρ(~D) to be a semi-classical pseudo-differential operator with compact
microsupport for all choices of such ρ, we must have

K̂

(
x,
ξ

~
, ~
)

= b(x, ξ, ~)

for some b ∈ C∞(Rn × Rn × R). In other words, K̂ has to be a function of the
form

K̂(x, ξ, ~) = b(x, ~ξ, ~). (9.9)

We have thus proved:

Theorem 52. Let A : C∞0 (Rn)→ C`0(Rn) be an operator with Schwartz kernel

K = K(x, y, ~) ∈ C`0(Rn × Rn × R).

Suppose that A has the microlocality property

AP ∈ Ψ0(Rn) for all P ∈ Ψ0(Rn).

Then the Schwartz kernel of A is given by an oscillatory integral of the form

~−n
∫
b(x, ~ξ, ~)ei

(x−y)·ξ
~ dξ (9.10)

where (by (8))
|b(x, ξ, ~)| ≤ C~`〈ξ〉−`. (9.11)

We will devote most of the rest of this section to proving a converse result.
Let us first note that (9.10) can be written as∫

b(x, ~ξ, ~)ei(x−y)·ξdξ (9.12)

by making the change of variables ξ 7→ ~ξ. So A = A~ is the operator

(Af)(x) =

∫
b(x, ~ξ, ~)eix·ξ f̂(ξ)dξ (9.13)

where f̂ is the Fourier transform of f . This operator makes sense under hy-
potheses much weaker than (9.11). Namely, suppose that

|b(x, ξ, ~)| ≤ C〈ξ〉m (9.14)

for some (possibly very large) integer m. We claim:
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Theorem 53. For b satisfying (9.14) the operator (9.13) is well defined and
has the microlocality property

AP ∈ Ψ0(Rn) if P ∈ Ψ0(Rn).

Proof. Since f ∈ C∞0 (Rn) we have

|f̂(ξ)| ≤ C`〈ξ〉−`

for all ` so the operator (9.13) is well defined. Moreover, for ρ ∈ C∞0 (Rn),

(Aρ(~D))(x) = ~−n/2
∫
b(x, ξ, ~)ρ(ξ)ei

x·ξ
~ F~f(ξ)dξ (9.15)

so
Aρ(~D) ∈ Ψ(Rn).

For the operator A to have other desirable properties, one has to impose
some additional conditions on b. For instance, one such desirable property is
that the range of A be contained in C∞(Rn). We will show that a sufficient
condition for this to be the case is a mild strengthening of (9.15):

Theorem 54. Suppose that for every multi-index α there is a C = C(α) and
an N = N(α) such that

|Dα
x b(x, ξ, ~)| ≤ C〈ξ〉N . (9.16)

Then A maps C∞0 (Rn) into C∞(Rn).

Proof. By (9.13)

(Dα
xAf)(x) =

∫
(Dx + ξ)αb(x, ~ξ, ~)eix·ξ f̂(ξ)dξ

and by (9.16) the integral on the right is well defined.

Another desirable property is “pseudolocality”. Recall that if X is a man-
ifold, and A : C∞0 (X) → C∞(X) is a linear operator, then A is said to be
pseudolocal if, for every pair of functions ρ1, ρ2 ∈ C∞0 (X) with non-overlapping
supports, the operator

C∞0 (X) 3 f 7→ ρ2Aρ1f

is a smoothing operator, i.e. an operator of the form

f 7→
∫
ρ2(x)K(x, y)ρ1(y)dy

where K is a C∞ function on the set x 6= y. We claim that we can achieve this
property for the operator (9.10) by imposing a condition analogous to (9.16) on
the ξ derivatives of b(x, ξ, ~):
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Theorem 55. Suppose that for all multi-indices α there is a constant C = C(α)
such that ∣∣Dα

ξ b(x, ξ, ~)
∣∣ ≤ C〈ξ〉m−|α|. (9.17)

Then the operator (9.10) is pseudolocal.

Proof. For k large,
Af = Anew〈D〉2kf

where

(Anewf)(x) =

∫
b(x, ξ, ~)〈ξ〉−2keix·ξ f̂(ξ)dξ.

Since 〈D〉2k is pseudolocal, A will be pseudolocal if Anew is pseudolocal. Thus
replacing A by Anew, we may assume that the m in (9.17) is less than −n − `
for ` large. In other words, we can assume that A is an integral operator with
Schwartz kernel

KA =

∫
b(x, ~ξ, ~)ei(x−y)ξdξ

in C`(Rn × Rn). Now for any multi-index α we have

(y − x)α
∫
b(x, ~ξ, ~)ei(x−y)ξdξ =

∫
b(x, ~ξ, ~)(−Dξ)

αei(x−y)ξdξ

=

∫
Dα
ξ b(x, ~ξ, ~)ei(x−y)ξdξ

by integration by parts. Thus, by (9.17)

(y − x)αK(x, y, ~) ∈ C`+|α|(Rn × Rn).

Since |α| can be chosen arbitrarily large, this shows that KA is C∞ on the set
x 6= y, and hence that A is pseudolocal.

The inequalities (9.16) and (9.17) are the motivation for the following defi-
nition:

Definition 8. A function b = b(x, ξ, ~) is said to be in the symbol class Sm if,
for every pair of multi-indices α and β, and for every compact subset W ⊂ Rn,
there is a constant CW,α,β such that∣∣∣Dα

xD
β
ξ b(x, ξ, ~)

∣∣∣ ≤ CW,α,β〈ξ〉m−|β|
for all x ∈W ,
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From the previous two theorems we conclude that an operator A given by

(Af)(x) =

∫
b(x, ~ξ, ~)eix·ξ f̂(ξ)dξ

with
b ∈ Sm

maps C∞0 (Rn) into C∞(Rn) and is both pseudolocal and microlocal.

To relate the results of this section to the theorem we proved in the preceding
section, we note that a particularly nice subset of Sm is the set of polyhomo-
geneous symbols of degree m given by the following definition:

Definition 9. A symbol b(x, ξ, ~) is a polyhomogeneous symbol of degree m if
there exist, for i = m,m− 1, . . . homogeneous functions of degree i in ξ:

bi(x, ξ, ~) ∈ C∞(Rn × (Rn \ {0})× R)

such that for ρ ∈ C∞0 (Rn) and r < m

b− (1− ρ)

m∑
r

bi ∈ Sm−r−1.

Operators with symbols of this type we will call semi-classical polyhomoge-
neous pseudo-differential operators, or SCPHΨDO’s for short.

A nice property of these operators is that they can be completely character-
ized by microlocal properties: More explicitly, let X be a manifold and

A~ : C∞0 (X)→ C∞(X)

be a family of polyhomogeneous operators in the sense of §9.2 which depend
smoothly on ~. By this we mean that its restriction to a coordinate patch has
a polyhomogeneous symbol (in the sense of §9.2):

a(x, ξ, ~) ∈ C∞(Rn × Rn × R).

Then A~, viewed as a semi-classical object, i.e.as an operator depending on ~ ,
is a SCPHΨDO if

a(x, ξ, ~) = b(x, ~ξ, ~)

and, as we proved above, this is the case if and only if AP ∈ Ψ0(X) for P ∈
Ψ0(X).

9.4 The symbol calculus.

The “semi-classical pseudo-differential operators with compact microsupport”
that we discussed in §8.7 were integral operators

(Af)(x) =

∫
KA(x, y, ~)f(y)dy
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with kernel of the form

KA(x, y, ~) = ~−n
∫
a(x, y, ξ, ~)ei

(x−y)·ξ
~ dξ.

In particular, the symbol, a(x, y, ξ, ~) of A was allowed to be a function of both
the variable x and the variable y. We will show that the same is true of the
semi-classical pseudo-differential operators that we introduced in Section 9.3.

We begin by enlarging the class of symbols that we introduced in Section
9.3:

Definition 10. A function

a = a(x, y, ξ, ~) ∈ C∞(Rn × Rn × R× R)

is said to be in the symbol class Sm if for all multi-indices α, β, γ and all
compact subsets W of Rn × Rn there are constants Cα,β,γ,W such that∣∣∣Dα

xD
γ
yD

β
ξ a(x, y, ξ, ~)

∣∣∣ ≤ Cα,β,γ,W 〈ξ〉m−|β| ∀ (x, y) ∈W. (9.18)

We will show below that operators with symbols of this type are essentially
the same operators that we introduced in Section 9.3. For the moment, let us
assume that m < −` − n with ` � 0. Let A be the operator with Schwartz
kernel

KA(x, y, ~) =

∫
a(x, y, ~ξ, ~)ei(x−y)·ξdξ. (9.19)

From the above estimate we see that∣∣Dα
xD

β
yKA(x, y, ~)

∣∣ ≤ CW ∫ 〈ξ〉m+`dξ

for |α| + |β| ≤ `. Since m + ` < −n the integral on the right converges, and
hence KA ∈ C`(Rn × Rn).

A similar argument shows that A is pseudolocal: For 1 ≤ r ≤ n

(xr − yr)N
∫
a(x, y, ~ξ, ~)ei(x−y)·ξdξ

=

∫
a(x, y, ~ξ, ~)

(
−i ∂
∂ξr

)N
ei(x−y)·ξdξ

=

∫ (
i
∂

∂ξr

)N
a(x, y, ~ξ, ~)ei(x−y)·ξdξ.

So by (9.18) and the preceding argument,

(xr − yr)NKA(x, y, ~) ∈ C`+N (Rn × Rn).

In other words, KA ∈ C`+N (Rn × Rn) for all N on the set x 6= y.
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Let us now prove that A is a semiclassical pseudo-differential operator with
symbol of type Sm in the sense of Section 9.3: Replace a(x, y, ξ, ~) by its Taylor
expansion in y about the point x:

a(x, y, ξ, ~) ∼
∑
α

(y − x)α

α!

(
∂

∂y

)α
a(x, x, ξ, ~).

Plugging this into the right hand side of (9.19) one gets an asymptotic expansion

KA ∼
∑
α

Kα(x, y, ~) (9.20)

where

Kα(x, y, ~) =

∫ (
∂

∂y

)α
a(x, x, ~ξ, ~)

(y − x)α

α!
ei(x−y)·ξdξ

=
1

α!

∫ (
∂

∂y

)α
a(x, x, ~ξ, ~) (−Dξ)

α
ei(x−y)·ξdξ

=
~|α|

α!

∫ (
∂

∂y

)α
Dα
ξ a(x, x, ~ξ, ~)ei(x−y)·ξdξ.

Thus the operator with Schwartz kernel Kα is a semi-classical pseudo-differential
operator Aα with symbol

aα =
~|α|

α!

(
∂

∂y

)α
Dα
ξ a(x, x, ξ, ~).

Furthermore,
a = a] + r

where a] is in Sm and has an asymptotic expansion

a](x, ξ, ~) =
∑
α

~|α|

α!

(
∂

∂y

)α
Dα
ξ a(x, x, ξ, ~) (9.21)

and r(x, y, ξ, ~) is in S−∞ and vanishes to infinite order at ~ = 0.
Letting A] and R be the operators with these symbols we conclude that

A = A] +R (9.22)

where A] ∈ Ψm and the Schwartz kernel∫
r(x, y, ~ξ, ~)ei(x−y)·ξdξ

of R is a C∞ function which vanishes to infinite order at ~ = 0.
One immediate application of this result is

Theorem 56. If A is a semi-classical pseudo-differential operator with symbol
in Sm then its transpose is a semi-classical pseudo-differential operator with
symbol in Sm.
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Proof. If the Schwartz kernel of A is given by (9.19) then the Schwartz kernel
KA(y, x) of A† is given by∫

a(x, y, ~ξ, ~)ei(x−y)·ξdξ.

In particular, one can formulate the notion of microlocality in terms of “mul-
tiplication on the left” by microlocal cut-offs:

Proposition 39. For every semi-classical pseudo-differential operator P of
compact microsupport the operator PA is a semi-classical pseudo-differential
operator of compact microsupport.

We will let Ψk(Sm) denote the class of elements of Ψk whose symbols belong
to Sm. If we do not want to specify k we will simply write Ψ(Sm).

9.4.1 Composition.

We will next show that the composition of two pseudo-differential operators
A ∈ Ψ(Sm1) and B ∈ Ψ(Sm2) with mi � n, i = 1, 2 is in Ψ(Sm1+m2).

Indeed, by what we just proved, we may assume that A has a symbol of the
form a(x, ξ, ~) and that B has a symbol of the form b(y, ξ, ~). This implies that
the Schwartz kernel of A is of the form

KA(x, y, ~) = K(x, x− y, ~)

where

K(x,w, ξ) =

∫
a(x, ~ξ, ~)eiw·ξdξ.

By the Fourier inversion formula

a(x, ~ξ, ~) = (2π)nK̂(x,w, ~) (9.23)

where K̂ is the Fourier transform of K with respect to w.
By the identities above, the Schwartz kernel of AB is given by∫

K(x, x− z, ~)ei(z−y)·ξb(y, ~ξ, ~)dzdξ.

Making the change of variables z = w + x this becomes∫
K(x,−w, ~)eiw·ξe(x−y)·ξb(y, ξ, ~)dwdξ.

By the Fourier inversion formula and (9.21) the inner integral is a(x, ~ξ, ~) so
the above expression for the Schwartz kernel of AB becomes∫

a(x, ~ξ, ~)b(y, ~ξ, ~)ei(x−y)·ξdξ.

We have proved
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Theorem 57. Under the above hypotheses, AB ∈ Ψ(Sm1+m2) and its symbol
is

a(x, ξ, ~)b(y, ξ, ~).

9.4.2 Behavior under coordinate change.

The operators we considered in §8.6 were the restrictions to open sets of Rn
of objects which were well defined on manifolds. To prove the same for the
operators we are studying in this chapter, we must prove “invariance under
coordinate change”, and this we can do by exactly the same argument as in
§9.1. More explicitly let U and V be open subsets of Rn and f : V → U a
diffeomorphism. Let a(x, y, ξ~) be a symbol in Sm with m � −n and with
support in in the set {(x, y) ⊂ U × U} and let A be the operator with a as
symbol. By the argument in Section 9.1, f∗A(f−1)∗ is a semi-classical pseudo-
differential operator with symbol

af = a(f(x), f(y), (F †)−1ξ, ~)
∣∣det fyF

−1(x, y)
∣∣

and, by inspection af ∈ Sm.
Our next task is to get rid of assumption, a ∈ Sm, m < −n− `. One way to

do this is by distributional techniques, but, in the spirit of this book we will do
this by a more hands-on approach. For a ∈ Sm, m < −n, let

Ta = a− 〈Dx + ξ〉2Na
〈ξ〉2N

. (9.24)

Then Ta is in Sm−1 and

〈~Dx〉2N
∫
a(x, y, ~ξ, ~)

〈~ξ〉2N
ei(x−y)·ξ dξ (9.25)

=

∫
(a− Ta)(x, y, ~ξ, ~)ei(x−y)·ξ dξ .

Thus setting

b =
a+ Ta+ · · ·+ T 2N−1a

〈ξ〉2N

we have by (9.25)

〈~Dx〉2N
∫
b(x, y, ~ξ, ~)ei(x−y)·ξ ds

=

∫
(a− T 2Na)(x, y, ~ξ, ~) dξ .

Thus the operators, B and C with symbols, b and c = T 2Na, are in Ψm−2N and

A = 〈~Dx〉2NB + C . (9.26)
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Using this formula we can make sense of A for a in Sm when m is large, namely
we can choose N with m − 2N � −n and then define A by (9.26). Notice
also that by taking transposes in (9.26) we get the transpose identity: At =
Bt〈Dx〉2N + Ct. Moreover by Theorem 5 we can replace A, B and C by their
transposes in this identity, and by doing so, we get a “left handed” version of
(9.26)

A = B〈~Dx〉2N + C (9.27)

with B and C in Ψm−2N . One application of these formulas is making sense of
the product, A1A2 where Ai is in Ψmi and the mi’s are large. Letting

A1 = 〈~Dx〉NB1 + C1

and

A2 = B2〈~Dx〉2N + C2

the product becomes

〈~D2N
x 〉B1B2〈~Dx〉2N + 〈~Dx〉NB1C2 + C1B2〈~Dx〉N + C1C2

and for N large B1B2, B1C2 and C1C2 are in Ψk for k = m1 +m2− 4N � −n.
We observed in the preceding paragraph that ΨDO’s with symbols in Sm, m�
−n are invariant under coordinate change and hence are intrinsically defined on
manifolds. Combining this with (9.26) and (9.27) we can remove the restriction
m� −n. Indeed, these equations imply

Theorem 58. The algebra of ΨDO’s with symbol in Sm, −∞ ≤ m < ∞ is
invariant under coordinate change and hence intrinsically defined on manifolds.

The same argument also shows that the principal symbol, a(x, x, ξ, 0), of
a(x, y, ξ, ~) is intrinsically defined as a function on T ∗U . Indeed, for m < −n
one can prove this exactly as we did in Section 9.1, and for first order differential
operators (i.e.vector fields) the proof is more or less trivial. Hence by (9.26) and
the composition formula for symbols described in Theorem 57, it is easy to
remove the restriction m < −n.

Our goal in the last part of this chapter will be to explore in more detail
symbolic properties of the operators above. In particular three issues we’ll be
concerned with are:

1. Canonical forms for symbols. We’ve seen above that every A ∈ Ψm has a
unique symbol of the form, a(x, ξ, ~), i.e., a symbol not depending on y.
These symbols we will call left Kohn–Nirenberg symbols (or left KN sym-
bols for short). Similarly by taking transposes we get for A = (At)t a
unique right Kohn–Nirenberg symbol of the form, a(y, ξ, h). An interest-
ing compromise between these extremes are Weyl symbols: symbols of the
form, a(x+y

2 , ξ, ~) and, interpolating between these three classes of sym-
bols, generalized Weyl symbols: symbols of the form a((1− t)x+ ty, ξ, ~),
0 ≤ t ≤ 1.
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2. Compositions and transposes. Let Ψ be the union,
⋃

Ψm. We have shown
that this space of operators is closed under composition and transposes.
We would like, however, to have a “symbolic calculus” for these operations,
(e.g.) a composition law for symbols analogous to (9.3).

3. Converting symbols of one type into symbols of another type. From (9.21)
one gets formulas relating the various canonical forms in item 1, e.g. for-
mulas for expressing left KN symbols in terms of right KN symbols or
expressing right KN symbols in terms of Weyl symbols. One of our goals
will be to describe these “conversion” laws in more detail.

The key ingredient in these computations will be

Theorem 59. Two symbols a1(x, y, ξ, ~) and a2(x, y, ξ, ~) in Sm define the
same pseudo-differential operator A if

a1 − a2 = e−i
(x−y)·ξ

~

n∑
j=1

∂

∂ξj

(
ei

(x−y)·ξ
~ cj

)
(9.28)

with
cj ∈ Sm+1.

Proof. Let us first prove this result under the assumption that m < −n− ` with
`� 0. Let b = a1 − a2. The Schwartz kernel of the operator defined by b is

~−n
∫
b(x, y, ξ, ~)ei

(x−y)·ξ
~ dξ

and this vanishes if the integrand is a “divergence”, as in the right hand side of
(9.28).

To prove this theorem in general, notice that

~Dxi + ξi = e−i
(x−y)·ξ

~ ◦ (~Dxi) ◦ ei
(x−y)·ξ

~ .

So if we apply the operator (9.25) to a divergence

e−i
(x−y)·ξ

~
∑ ∂

∂ξi

(
ei

(x−y)·ξ
~ ci

)
we again get such a divergence.

In particular, for a ∈ Sm, the symbols

a(x, y, ξ, ~)(x− y)α

and
(−~D)αa(x, y, ξ, ~)

define the same operator. (We already made use of this observation in the course
of proving (9.22) for symbols a ∈ Sm with m� 0.)

In the next section we will address the issues raised in items 1-4 above
by elevating (9.28) to an equivalence relation, and deriving identities between
symbols of varying types by purely formal manipulation.
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9.5 The formal theory of symbols.

We say that two symbols a1(x, y, ξ, ~) and a2(x, y, ξ, ~) in Sm are equiva-
lent if their associated ΨDOs, A1 and A2, differ by a ΨDO, B, with symbol
b(x, y, ξ, ~) ∈ ~∞S−∞.

Starting with the relation

a(x, y, ξ, ~)(x− y)α ∼ (−~Dξ)
α(a(x, y, ξ, ~))

we will generalize the formula (9.22) to a ∈ Sm with m arbitrary. Namely,

a(x, y, ξ, ~) ∼
∑ 1

α!

(
∂

∂y

)α
a(x, y, ξ, ~)

∣∣∣∣
y=x

(y − x)α

∼
∑ 1

α!
(~Dξ)

α

(
∂

∂y

)α
a(x, y, ξ, ~)

∣∣∣∣
y=x

∼ aR(x, ξ, ~)

where

aR(x, ξ, ~) ∼ exp

(
~
∂

∂y
Dξ

)
a(x, y, ξ, ~)

∣∣∣∣
y=x

(9.29)

is a right Kohn-Nirenberg symbol (i.e., depending only on x).
Notice that if aL(y, ξ, ~) is a left Kohn-Nirenberg symbol (depending only

on y) then

aR(x, ξ, ~) ∼ exp

(
~
∂

∂x
Dξ

)
aL(x, ξ, ~) (9.30)

and hence

aL(y, ξ, ~) ∼ exp

(
−~ ∂

∂y
Dξ

)
aR(y, ξ, ~). (9.31)

From now on, to avoid confusing x’s and y’s, we will replace the x and y by
a neutral variable z, and express this relation between right and left symbols as

aR(z, ξ, ~) ∼ exp

(
~
∂

∂z
Dξ

)
aL(z, ξ, ~). (9.32)

We can generalize right and left symbols by substituting (1 − t)x + ty for z in
a(z, ξ, ~).

This gives the generalized symbol

aW,t(z) = a ((1− t)x+ ty, ξ, ~) .

This can be converted by (9.29) into a right Kohn-Nirenberg symbol

aR(x, ξ, ~) ∼ exp

(
~
∂

∂y
Dξ

)
a((1− t)x+ ty, ξ, ~)

∣∣∣∣
y=x

= exp

(
t~

∂

∂x
Dξ

)
a(x, ξ, ~).
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Reverting to our neutral variable z this becomes

aR(z, ξ, ~) = exp

(
t~
∂

∂z
Dξ

)
aW,t(z, ξ, ~) (9.33)

and

aW,t(z, ξ, ~) = exp

(
−t~ ∂

∂z
Dξ

)
aR(z, ξ, ~) (9.34)

9.5.1 Multiplication properties of symbols.

We start with Theorem 57: If A is a ΨDO with right Kohn-Nirenberg symbol
a(x, ξ, ~) and B is a ΨDO with left Kohn-Nirenberg symbol b(y, ξ, ~) then the
symbol of AB is a(x, ξ, ~)b(y, ξ, ~). (We proved this in Section 9.4 for symbols
of large negative degree.) But by (9.26) and(9.27) this extends to symbols of
arbitrary degree.)

Let us now convert this, using (9.29) into a right Kohn-Nirenberg symbol:
We obtain ∑ 1

α!
~Dα

ξ

(
a(x, ξ, ~)∂αy b(y, ξ, ~)

)∣∣∣∣
y=x

=
∑ 1

α!

∑
β+γ=α

α!

β!γ!
(~Dξ)

β
a(x, ξ, ~) (~Dξ)

γ
∂αx b(x, ξ, ~)

=
∑
β,γ

1

β!
(~Dξ)

β
a(x, ξ, ~)

1

γ!
(~Dξ)

γ
∂γx
(
∂βx b(x, ξ, ~)

)
=

∑
β

1

β!
(~Dξ)

β
a(x, ξ, ~)∂βx exp (~Dξ∂x) b(x, ξ, ~).

If
b(y, ξ, ~) = bL(y, ξ, ~) = exp (−~Dξ∂x) bR(x, ξ, ~)|x=y

this formula simplifies to∑
β

1

β!
(~Dξ)

β
a(x, ξ, ~)∂βx bR(x, ξ, ~). (9.35)

In other words, let aR and bR be two right Kohn-Nirenberg symbols and let A
and B be the corresponding ΨDO’s. Then up to equivalence, the right Kohn-
Nirenberg symbol of AB is given by (9.35). This generalizes a formula that we
proved in Chapter 8 for ΨDO’s of compact microsupport.

There is a more compact version of (9.35): We can write∑
β

1

β!
(~Dξ1)

β
aR(z1, ξ1, ~)∂βz2bR(z2, ξ2, ~)

as

exp

(
~Dξ1

∂

∂z2

)
aR(z1, ξ1, ~)bR(z2, ξ2, ~).
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We then get (9.35) by setting z = z1 = z2 and ξ = ξ1 = ξ2. In other words, the
symbol of AB is given by

exp

(
~Dξ1

∂

∂z2

)
aR(z1, ξ1, ~)bR(z2, ξ2, ~)

∣∣∣∣
z=z1=z2, ξ=ξ1=ξ2

. (9.36)

Our next task will be to derive an analogue of this formula for symbols of
type (W, t). First we show how a product symbol of the form a(x, ξ, ~)b(y, ξ, ~)
can be converted into such a generalized Weyl symbol: Let

z = sx+ ty, s = 1− t

so that

x = z + t(x− y), y = z − s(x− y).

By Taylor’s expansion

a(x, ξ, ~)b(y, ξ, ~) =
∑
β,γ

tβ

β!
∂βz a(z, ξ, ~)

(−s)γ

γ!
∂γz b(z, ξ, ~)(x− y)β+γ

=
∑ 1

α!

(
t
∂

∂u
− s ∂

∂v

)α
a(u, ξ, ~)b(v, ξ, ~)

∣∣∣∣
u=v=z

(x− y)α

∼
∑ 1

α!

(
s
∂

∂v
− t ∂

∂u

)α
(~Dξ)

α
(a(u, ξ, ~)b(v, ξ, ~))

∣∣∣∣
u=v=z

We can simplify this further: Replace

1

α!

(
s
∂

∂v
− t ∂

∂u

)α
(~Dξ)

α
(a(u, ξ, ~)b(v, ξ, ~))

by the sum

∑
µ+ν=α

(~Dξ)
µ

(
s
∂

∂v
− t ∂

∂u

)µ
1

ν!
(~Dη)ν

(
s
∂

∂v
− t ∂

∂u

)ν
a(u, ξ, ~)b(v, η, ~)

evaluated at ξ = η. Summing this over α then yields

exp

(
~Dξ

(
s
∂

∂y
− t ∂

∂x

)
+ ~Dη

(
s
∂

∂y
− t ∂

∂x

))
a(x, ξ, ~)b(y, η, ~)

∣∣∣∣
x=y=z, ξ=η

.

(9.37)
Now let a(z, ξ, ~) and b(z, ξ, ~) be symbols of type (W, t), and let

a1 = exp

(
t
∂

∂x
~Dξ

)
a(x, ξ, ~)

b1 = exp

(
−s ∂

∂y
~Dη

)
b(y, η, ~)
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be the corresponding right and left Kohn-Nirenberg symbols so that their sym-
bolic product is a1(x, ξ, ~)b1(x, ξ, ~). We plug this into (9.37). The “exp” part
of the formula becomes

exp

(
~Dξ

(
s
∂

∂y
− t ∂

∂x

)
+ t~Dξ

∂

∂x
+ ~Dη

(
s
∂

∂y
− t ∂

∂x

)
− s~Dη

∂

∂y

)
= exp ~

(
sDξ

∂

∂y
− tDη

∂

∂x

)
.

So we have proved:

Theorem 60. Let a(z, ξ, ~) and b(z, ξ, ~) be symbols of type (W, t). Their sym-
bolic product is

exp ~
(
sDξ

∂

∂y
− tDη

∂

∂x

)
a(x, ξ, ~)b(y, η, ~) (9.38)

evaluated at ξ = η and x = y = z.

9.6 The Weyl calculus.

In this section we discuss special properties of symbols of type (W, 1
2 ) which we

shall simply call Weyl symbols.
For the case s = t = 1

2 formula (9.38) takes the more symmetric form

exp
~
2

(
Dξ

∂

∂y
−Dη

∂

∂x

)
a(x, ξ, ~)b(y, η, ~). (9.39)

Here is another important property of Weyl symbols: The ΨDO A associated
to a Weyl symbol a(z, ξ, ~) has Schwartz kernel

KA(x, y) = ~−n
∫
a

(
x+ y

2
, ξ, ~

)
ei

(x−y)·ξ
2 dξ.

See the discussion in Chapter 16 of kernels of this type from the point of view
of physics and of group theory.

The Schwartz kernel of the formal adjoint of A is the operator with Schwartz
kernel KA(y, x) which is

~−n
∫
a

(
x+ y

2
, ξ, ~

)
ei

(x−y)·ξ
2 dξ.

So if a is real valued, A is formally self-adjoint.
An important consequence of this is the following: Let a and b be real Weyl

symbols and A and B their corresponding ΨDO’s which are therefore formally
self-adjoint. Consider their commutator: [A,B] = AB − BA. The adjoint of
this commutator is BA − AB = −[A,B] hence the symbol of [A,B] is purely
imaginary. This means that in the symbolic expansion for this commutator
all even powers of h have to be zero. This can also be seen directly from
(9.39) by interchanging a and b and subtracting. This has the consequence that
computations with Weyl symbols are usually “twice as fast” as the corresponding
computations with Kohn–Nirenberg symbols.
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9.7 The structure of I(X,Λ) as a module over
the ring of semi-classical pseudo-differential
operators.

Let X be a manifold and Λ a Lagrangian submanifold of T ∗X. In ¶8.9.1 we
pointed out that the space of oscillatory 1

2 -densites I(X,Λ) is a module over the
ring of “semi-classical pseudo-differential operators” where, in Chaper 8, “semi-
classical” meant “semi-classical with compact micro-support”. We also pointed
out in ¶8.10 that I(X,Λ) is a module over the ring of differential operators. Both
these rings sit inside the ring Ψ̃ of ΨDO’s with symbols in Sm, −∞ ≤ m <∞.
It is easy to extend the results of ¶9.8-8.10 to this more general setting:

Theorem 61. Let P ∈ Ψ̃k(X) be a semi-classical ΨDO with a symbol of type
Sm. If γ ∈ I`(X,Λ) then Pγ ∈ Ik+`(X,Λ). Moreover if γ is given locally on
an open set U ⊂ Rn by the expression (8.49):

γ = ~`−
n
2

∫
b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ

where x · ξ − φ(ξ) is a generating function for Λ with respect to the cotangent
fibration T ∗U 3 (x, ξ) 7→ x ∈ U then

Pγ = ~k+`−n2
∫
a(x, ξ, ~)b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ (9.40)

where a(x, ξ, ~) is the right Kohn-Nirenberg symbol of P .

Proof. If b(ξ) is supported on the set ‖ξ‖ ≤ N and ρ is a compactly supported
C∞ function of ξ which is identically one on this set, then

ρ(~D)γ = ~`−
n
2

∫
ρ(ξ)b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ

= ~`−
n
2

∫
b(ξ, ~)ei

x·ξ−φ(ξ)
~ dξ

and hence
Pγ = Pρ(~D)γ.

so in view of (8.49) and (8.50) the right hand side is given by (9.40).



Chapter 10

Trace invariants.

10.1 Functions of pseudo-differential operators.

Let P : C∞0 (Rn) → C∞(Rn) be a semi-classical pseudo-differential operator
of order zero with right Kohn-Nirenberg symbol p(x, ξ, ~) ∈ Sm with leading
symbol p0(x, ξ) = p(x, ξ, 0) and Weyl symbol

pW (x, ξ, ~) = exp(−~
2
Dξ∂x)p(x, ξ, ~).

We showed in ¶9.5 that if pW is real valued then P is formally self-adjoint. But
much more is true: under the above assumption, for sufficiently small values of
~, the operators P = P~ can be extended to a self adjoint operator with a dense
domain D(P ) ⊂ L2(Rn). See Chapter 13 for a sketch of how this goes. Hence,
by the spectral theorem for self-adjoint operators, one can define the operator
f(P ) for any bounded continuous or (even measurable) function f on R. (See
Chapter 13.)

Moreover, if f ∈ C∞0 (R) then f(P ) is itself a semi-classical pseudo-differential
operator. A nice exposition of this result based on ideas of Helffer and Sjöstrand
can be found in the book [?], Chapter 8. We will give a brief account of the
exposition in the paragraphs below. A somewhat more extended description
will be given in Chapter 13.

Given f ∈ C∞0 (R), an almost analytic extension of f is a function f̃ ∈
C∞0 (C) with the property that∣∣∣∣∣∂f̃∂z (x+ iy)

∣∣∣∣∣ ≤ CN |y|N
for all N ∈ N. It is easy to show that almost analytic extensions exist. See , for
example [?] or [?] - or Chapter 13.

Here is a variant of Cauchy’s integral theorem valid for a smooth function g

267
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of compact support in the plane:

1

π

∫
C

∂g

∂z
· 1

z − w
dxdy = −g(w). (10.1)

Proof. The integral on the left is the limit of the integral over C \Dδ where Dδ

is a disk of radius δ centered at w. Since g has compact support, and since

∂

∂z

(
1

z − w

)
= 0,

we may write the integral on the left as

− 1

2πi

∫
∂Dδ

g(z)

z − w
dz = − 1

2π

∫ 2π

0

g(w + δeiθ)

δ
δdθ → −g(w).

Suppose now that P is a self-adjoint operator on a Hilbert space H. A
standard theorem in Hilbert space theory (see Chapter 13, for example) says that
the resolvent R(z, P ) = (zI − P )−1 exists as a bounded operator for Im z 6= 0
and its norm blows up as |Im z|−1 as Im z → 0. Hence from (10.1) one is tempted
to believe that

f(P ) := − 1

π

∫
C

∂f̃

∂z
R(z, P )dxdy, (10.2)

where f̃ is an (any) almost holomorphic extension of f . Indeed this formula,
due to Helffer and Sjóstrand is true. For a proof see [?] or Chapter 13. In fact,
Davies [?] gives a beautiful proof of the spectral theorem starting with (10.2)
as a putative formula for f(P ).

If P is a semi-classical pseudo-differential operator of order zero one can
use the Helffer-Sjóstrand formula (10.2) to prove that f(P ) is a semi-classical
pseudo-differential operator by reducing this assertion to the assertion that
R(z, P ) is a a semi-classical pseudo-differential operator, a fact which is much
easier to prove.

In addition, one gets from (10.2) a formula for the symbol of f(P ): Indeed,
using the Weyl calculus, one can solve the equation

(z − pW )]q = 1 +O(~∞)

and use this to get a symbolic expansion of R(z, P ) = (zI−P )−1 and then plug
this into (10.2) to get a symbolic expansion for f(P ). (Again, see Chapter 13
for more details.)

In this chapter we will develop a functional calculus on a much more modest
scale.: Let ρ ∈ C∞0 (R). We will make sense of the expression

eitP ρ(~D), −∞ < t <∞ (10.3)

mod O(~∞) as a semi-classical pseudo-differential operator and then define

f(P )ρ(~D)
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mod O(~∞) by Fourier inversion:

f(P )ρ(~D),=
1√
2π

∫
R
f̂(t)eitP dtρ(~D). (10.4)

We will then show that weak “ellipticity type” assumptions allow us to remove
the ρ(~D) in (10.4) and so define f(P ) itself (again only mod O(~∞)) as a
semi-classical pseudo-differential operator.

A somewhat stronger ellipticity hypothesis enables one not only to define
f(P ) mod O(~∞) but also to conclude that it is of trace class mod O(~∞).
Namely, suppose that for some compact interval [a, b], p−1

0 ([a, b]) is compact.
Then the operator P has discrete spectrum on the interval [a, b]. In fact,

spec(P ) ∩ (a, b) = {λi(~), i = 1, . . . , N(~)}

where
N(~) ∼ (2π~)−nVol {a ≤ p0(x, ξ) ≤ b}, (10.5)

and hence for f ∈ C∞0 ((a, b))

tr f(P ) =
∑

f(λi(~)). (10.6)

Hence (10.4) will give, in this case, an asymptotic expansion of (10.6) as ~→ 0.
We will sketch a proof of this fact following an argument of Dimassi-Sjöstrand in
Chapter 13. The prototye of this theorem is a well known theorem of Friedrichs
[?] which asserts that that if the potential is non-negative and →∞ as x→∞
then the Schrödinger operator has discrete spectrum.

We now give a brief summary of the contents of this chapter:
In Section 10.2 we will prove that the wave equation

1√
−1

∂

∂t
U(t) = U(t)

with the initial data
U(0) = ρ(~D)

is solvable mod O(~∞) by the symbol calculus techniques we developed in
Chaper 9. This will give us via (10.4) a symbolic expansion for f(P )ρ(~D),
and, when when we remove the cutoff, a symbolic expansion for f(P ) itself. We
will then examine the asymptotics of (10.4) and in particular, prove the Weyl
law (10.5).

This wave trace approach to the asymptotics of (10.4) has the virtue that
it is relatively easy to implement computationally. We will illustrate this by
working through the details for a few simple cases like the Schrödinger operator
on the real line and the Schrödinger operator on Rn with radially symmetric
electro-magnetic potential.

The results described above involve operators on Rn. But it is easy to modify
this approach so that it applies to operators on manifolds. This we will do in
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Section ? We will also point out in that section that the theory developed in
this chapter is closely related to a branch of spectral theory that is some sixty
years old: the heat trace theory developed by Minakshisundaran-Pleijel in the
1950’s and since then generalized and applied to numerous problems in analysis
and differential geometry.

10.2 The wave operator for semi-classical pseudo-
differential operators.

Let P ∈ Ψ0(Sm(Rn)) be a zeroth order semi-classical pseudo-differential oper-
ator with right Kohn-Nirenberg symbol p(x, ξ, ~) and Weyl symbol pW (x, ξ, ~)
which we assume to be real as in the preceding section, so that P is formally
self-adjoint. Let p0(x, ξ) = p(x, ξ, 0) be the leading symbol of P . Let∑

k

pk(x, ξ)~k (10.7)

be the Taylor expansion of p in ~ at 0.
Our goal in this section is to find a family U(t) of semi-classical pseudo-

differential operators depending differentiabyy on t for −∞ < t < ∞ which
satisfies the differential equation

1

i

∂

∂t
U(t) = PU(t) (10.8)

with the initial condition
U(0) = ρ(~D). (10.9)

In principle we could solve these equations by the transport equation method
of Chapter 8. But a more direct and elementary approach is the following:

Let µ(x, y, t, ~) be the (desired) Schwartz kernel of U(t). We wish this to
belong to I−n(X ×X,∆X) for each fixed t. So we want µ to have the form

µ(x, y, t, ~) = (2π~)−n
∫
a(x, ξ, t, ~)ei

(x−y)·ξ
~ dξ. (10.10)

Our initial condition (10.9) says that

a(x, ξ, 0, ~) = ρ(ξ). (10.11)

Set
a(x, ξ, t, ~) = eitp0(x,ξ)b(x, ξ, t, ~)ρ(ξ).

So (10.11) becomes
b(x, ξ, 0, ~) ≡ 1 (10.12)

while (10.8) (for all ρ) yields

1

i

∂

∂t

(
eitp0(x,ξ)b(x, ξ, t, ~)

)
= p(x, ξ, ~) ?

(
eitp0(x,ξ)b(x, ξ, t, ~)

)
. (10.13)
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We can expand (10.13) out as

eitp
(

1

i

∂b

∂t
+ p0b

)
=
∑
α

~α

α!
Dα
ξ p∂αx

(
eitp0b

)
.

Write

∂αx
(
eitp0b

)
= eitp0

(
e−itp0∂αx e

itp0
)
b

and cancel the factor eitp0 from both sides of the preceding equation to get

1

i

∂b

∂t
+ p0b =

∑
α

~α

α!
Dα
ξ pQα(b)

where

Q =

(
∂x + it

∂p0

∂x

)
. (10.14)

Since Q0 = I, we can remove the term p0b from both sides of the preceding
equation to obtain

1

i

∂b

∂t
=
∑
|α|≥1

~αDα
ξ pQα(b) + (p− p0). (10.15)

Let us expand b and p in powers of ~,

b =
∑
k

bk(x, ξ, t)hk, p =
∑
k

pk~k,

and equate powers of ~ in (10.15). We get the series of equations

1

i

∂bm
∂t

=
∑
|α|≥1

∑
j+k+|α|=m

Dα
ξ pjQ

αbk +
∑
j≥1

pjbm−j (10.16)

with initial conditions

b0(x, ξ, 0) ≡ 1, bm(x, ξ, 0) ≡ 0 for m ≥ 1.

We can solve these equations recursively by integration. In particular, b0(x, ξ, t) ≡
1.

Proposition 40. bm(x, ξ, t) is a polynomial in t of degree at most 2m.

Proof by induction. We know this for m = 0. For j + k + |α| = m, we
know by induction that Qαbk is a polynomial in t of degree at most |α|+ 2k =
m − j + k ≤ m + k < 2m so integration shows that bm is a polynomial in t of
degree at most 2m. 2

So we have found a solution mod ~∞ to our wave equation problem.
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10.3 The functional calculus modulo O(~∞).

Sticking (10.10) into (10.4) we get the following expression for the Schwartz
kernel of f(P )ρ(~D):

1√
2π

∫
µ(x, y, t, ~)f̂(t)dt ∼ 1√

2π

∑
~k−n

∑
`≤2k

∫
µk,`(x, y, t)f̂(t)dt (10.17)

where
1√
2π

∫
µk,`(x, y, t)f̂(t)dt

=

∫
bk,`(x, ξ)ρ(ξ)ei

(x−y)·ξ
~

(
1√
2π

∫
t`f̂(t)eip0dt

)
dξ

=

∫
bk,`(x, ξ)ρ(ξ)ei

(x−y)·ξ
~

((
1

i

d

ds

)`
f

)
(p0(x, ξ))dξ.

Thus the Schwartz kernel of f(P )ρ(~D) has an asymptotic expansion

(2π~)−n
∑
k

~k
∑
`≤2k

∫
bk,`(x, ξ)ρ(ξ))ei

(x−y)·ξ
~

((
1

i

d

ds

)`
f

)
(p0(x, ξ))dξ.

(10.18)
This shows that f(P )ρ(~D) ∈ Ψ0(Rn) and has left Kohn-Nirenberg symbol

bf (x, ξ, ~)ρ(ξ)

where

bf (x, ξ, ~) ∼
∑
k

~k
∑
`≤2k

bk,`(x, ξ)

((
1

i

d

ds

)`
f

)
(p0(x, ξ))

 . (10.19)

In particular, since b0,0(x, ξ) ≡ 1, we have

bf (x, ξ, 0) = f(p0(x, ξ)). (10.20)

Now let us show that if one imposes a mild “ellipticity type” assumption on
p0(x, ξ) one can remove the cut-off ρ from the above formula.

We have been assuming that the symbol p of P is in Sm and hence, in
particular, that p(x, ξ) satisfies

|p0(x, ξ)| ≤ CK〈ξ〉m

as x ranges over a compact set K.
In the cases we are interested in m is positive, so we can impose on p0 the

“ellipticity type” condition

|p0(x, ξ)| ≥ Ck‖ξ‖k + o(‖ξ‖k) (10.21)
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for some 0 ≤ k ≤ m and positive constant Ck.
Since f is compactly supported, this assumption tells us that(

d

ds

)`
(f)(p0(x, ξ))

is compactly supported in ξ. Hence, if we choose the cutoff function ρ(ξ) to be
equal to 1 on a neighborhood of this support, we can eliminate ρ from (10.18)
to get the simpler result

Theorem 62. Under the above ellipticity assumptions, if f ∈ C∞0 (R) the oper-
ator f(P ) is a semi-classical pseudo-differential operator and its Shwartz kernel
has the asymptotic expansion

(2π~)−n
∑

~k
∑
`≤2k

∫
bk,`(x, ξ)e

i(x−y)·ξ
~

1

i`
f (`)(p0(x, ξ))dξ.

10.4 The trace formula.

Suppose that for some interval [a, b] the set p−1
0 ([a, b]) is compact. Then for

f ∈ C∞0 ((a, b)) the functions f (`)(p0(x, ξ)) are compactly supported and hence
by the expression for f(P ) given in Theorem 62, the operator f(P ) is of trace
class modulo O(~∞). In Chapter 13 we will show that the “modulo O(~∞)
proviso can be removed, i.e. that f(P ) itself is of trace class and hence that
spec(P ) ∩ (a, b) is discrete. Assuming this, let [c, d] be a finite subinterval of
(a, b), and let λi(~), i = 1, 2, · · · be the eigenvalues of P lying in [c, d]. If we
choose our f to be non-negative and f ≡ 1 on [c, d] we see that∑

(λi(~)) ≤
∑

f(λi(~)) ≤ tr f(P ) <∞.

We conclude that

Proposition 41. For any [c, d] ⊂ (a, b) the number of eigenvalues of P on [c, d]
is finite.

From Theorem 62 we have the asymptotic expansion∑
f(λi(~)) ∼ (2π~)−n

∑
k,`

~k
∫
bk,`(x, ξ)

1

i`
f (`)(p0(x, ξ))dxdξ. (10.22)

Since b0,0 ≡ 1, the leading term on the right is

(2π~)−n
∫
f (p0(x, ξ)) dxdξ. (10.23)

If 0 ≤ f ≤ 1 and is supported on the interval (c− ε, d+ ε) with f ≡ 1 on [c, d],
then (10.22) and (10.23) imply that

#{λi(~) ∈ [c, d]} ≤ (2π~)−n (Vol(c ≤ p0(x, ξ) ≤ d) +O(ε)) .
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In the opposite direction, if 0 ≤ f ≤ 1 with f supported on [c, d] and ≡ 1 on
[c+ ε, d− ε] we get the estimate

#{λi(~) ∈ [c, d]} ≥ (2π~)−n (Vol(c ≤ p0(x, ξ) ≤ d) +O(ε)) .

Putting these together we get the “Weyl law”

#{λi(~) ∈ [c, d]} ∼ (2π~)−n (Vol(c ≤ p0(x, ξ) ≤ d)) + o(1). (10.24)

Let us return to (10.22). The summands on the right, namely∫ ∑
`≤2k

bk,`(x, ξ)
1

i`
f (`) (p0(x, ξ)) dxdξ (10.25)

are clearly spectral invariants of P . In the next few sections we will compute
the first few of these invariants for the Schrödinger operator

S~ =
~2

2

∑
i

D2
xi + V (10.26)

and the Schrödinger operator with vector potential A = (a1, . . . , an):

S~,A =
~2

2

∑
i

(Dxi + ai)
2 + V. (10.27)

We will also show how, in one dimension, these invariants serve to determine V
in some cases.

The material in the next few sections is taken from the paper [GW].

10.5 Spectral invariants for the Schrödinger op-
erator.

For the Schrödinger operator (10.26), we have

p(x, ξ, ~) = p0(x, ξ) =

p(x, ξ) :=
‖ξ‖2

2
+ V (x). (10.28)

Hence the set a ≤ p0(x, ξ) ≤ b is compact if and only if the set a ≤ V (x) ≤ b
is compact. For the rest of this chapter let us assume that this is the case. We
now compute the trace invariants (10.25) for S~: The first trace invariant is∫

f(p(x, ξ))dxdξ
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as we have seen above.
To compute the next trace invariant we observe that the operator Q of

(10.14) is given as

Q = ∂x + it
∂V

∂x
(10.29)

for the case of the Schrödinger operator (10.26). Since p is quadratic in ξ,
equations ((10.16) become

1

i

∂bm
∂t

=
∑
|α|≥1

∑
k+|α|=m

Dα
ξ pQ

αbk

=
∑
k

ξk
i

(
∂

∂xk
+ it

∂V

∂xk

)
bm−1 −

1

2

∑
k

(
∂

∂xk
+ it

∂V

∂xk

)2

bm−2.

Since b0(x, ξ, t) = 1 and b1(x, ξ, 0) = 0, we have

b1(x, ξ, t) =
it2

2

∑
l

ξl
∂V

∂xl
,

and thus

1

i

∂b2
∂t

=
∑
k

ξk
i

(
∂

∂xk
+ it

∂V

∂xk

)
(
it2

2

∑
l

ξl
∂V

∂xl
)− 1

2

∑
k

(
∂

∂xk
+ it

∂V

∂xk

)2

(1)

=
t2

2

∑
k,l

ξkξl

(
∂2V

∂xk∂xl
+ it

∂V

∂xk

∂V

∂xl

)
− 1

2

∑
k

(
it
∂2V

∂x2
k

− t2 ∂V
∂xk

∂V

∂xk

)
.

It follows that

b2(x, ξ, t) =
t2

4

∑
k

∂2V

∂x2
k

+
it3

6

∑
k

(
∂V

∂xk
)2 +

∑
k,l

ξkξl
∂2V

∂xk∂xl

− t4
8

∑
k,l

ξkξl
∂V

∂xk

∂V

∂xl
.

(10.30)
Thus the next trace invariant will be the integral∫
−1

4

∑
k

∂2V

∂x2
k

f ′′(
ξ2

2
+ V (x))− 1

6

∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x))

− 1

6

∑
k,l

ξkξl
∂2V

∂xk∂xl
f (3)(

ξ2

2
+ V (x))− 1

8

∑
k,l

ξkξl
∂V

∂xk

∂V

∂xl
f (4)(

ξ2

2
+ V (x)) dxdξ.

(10.31)
We can apply to these expressions the integration by parts formula,∫

∂A

∂xk
B(

ξ2

2
+ V (x)) dxdξ = −

∫
A(x)

∂V

∂xk
B′(

ξ2

2
+ V (x)) dxdξ (10.32)

and∫
ξkξlA(x)B′(

ξ2

2
+ V (x)) dxdξ = −

∫
δlkA(x)B(

ξ2

2
+ V (x)) dxdξ. (10.33)
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Applying (10.32) to the first term in (10.31) we get∫
1

4

∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ,

and by applying (10.33) the fourth term in (10.31) becomes∫
1

8

∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.

Finally applying both (10.33) and (10.32) the third term in (10.31) becomes∫
−1

6

∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.

So the integral (10.31) can be simplified to

1

24

∫ ∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.

We conclude

Theorem 63. The first two terms of (10.22) are

tr f(S~) =

∫
f

(
ξ2

2
+ V (x)

)
dxdξ+

1

24
~2

∫ ∑
k

(
∂V

∂xk
)2f (3)(

ξ2

2
+V (x)) dxdξ+O(~4).

(10.34)

In deriving (10.34) we have assumed that f is compactly supported. How-
ever, if we change our compactness hypothesis slightly, and assume that V is
bounded from below and that the set V (x) ≤ a is compact for some a, the left
and right hand sides of (10.34) are unchanged if we replace the “f” in (10.34)
by any function, f , with support on (−∞, a), and, as a consequence of this
remark, it is easy to see that the following two integrals,∫

ξ2

2 +V (x)≤λ
dxdξ (10.35)

and ∫
ξ2

2 +V (x)≤λ

∑
k

(
∂V

∂xk
)2dxdξ (10.36)

are spectrally determined by the spectrum (??) on the interval [0, a]. Moreover,
from (10.34), one reads off the Weyl law: For 0 < λ < a,

#{λi(~) ≤ λ} = (2π~)−n
(

Vol(
ξ2

2
+ V (x) ≤ λ) + o(1)

)
. (10.37)
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We also note that the second term in the formula (10.34) can, by (10.33),
be written in the form

1

24
~2

∫ ∑
k

∂2V

∂x2
k

f (2)(
ξ2

2
+ V (x)) dxdξ

and from this one can deduce an ~2-order “cumulative shift to the left” correc-
tion to the Weyl law.

We won’t attempt to compute the invariants (10.25) explicitly. However we
will show that they can be written in the form

νk(f) =

∫ k∑
j=[ k2 +1]

f (2j)

(
ξ2

2
+ V (x)

)
pk,j(DV, · · · , D2kV )dxdξ (10.38)

where pk,j are universal polynomials, and DkV the kth partial derivatives of V .

Proof of (10.38). Notice that for m even, the lowest degree term in the
polynomial bm is of degree m

2 + 1, thus we can write

bm =

m∑
l=−m2 +1

bm,lt
m+l.

Putting this into the the iteration formula, we will get

m+ l

i
bm,l =

∑ ξk
i

∂bm−1,l

∂xk
+
∑

ξk
∂V

∂xk
bm−1,l−1 −

1

2

∑ ∂2bm−2,l+1

∂x2
k

− i

2
(
∂

∂xk

∂V

∂xk
+
∂V

∂xk

∂

∂xk
)bm−2,l +

1

2

∑
(
∂V

∂xk
)2bm−2,l−1,

from which one can easily conclude that for l ≥ 0,

bm,l =
∑

ξα(
∂V

∂x
)βpα,β(DV, · · · , DmV ) (10.39)

where pα,β is a polynomial, and |α|+ |β| ≥ 2l− 1. Moreover, by integration by
parts,∫

ξµξif
(r

(
‖ξ}2

2
+ V (x)

)
dξ = −

∫ (
∂

∂ξi
ξµ
)
if (r−1

(
‖ξ}2

2
+ V (x)

)
dξ.

It follows from this formula and (10.32) and (10.33), all the f (m+l), l ≥ 0, in the
integrand of the ~mth term in the expansion (10.25) can be replaced by f (r)’s
with r ≤ m. In other words, only derivatives of f of degree ≤ 2k figure in the
expression for νk(f). For those terms involving derivatives of order less than 2k,
one can also use integration by parts to show that each f (m) can be replaced by
a f (m+1) and a f (m−1). In particular, we can replace all the odd derivatives by
even derivatives. This proves (10.38). 2
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10.6 An Inverse Spectral Result: Recovering the
Potential Well

Let us now consider the one dimensional case. Suppose V is a “potential well”,
i.e. has a unique nondegenerate critical point at x = 0 with minimal value
V (0) = 0, and that V is increasing for x positive, and decreasing for x negative.
For simplicity assume in addition that

−V ′(−x) > V ′(x) (10.40)

holds for all x. We will show how to use the spectral invariants (10.35) and
(10.36) to recover the potential function V (x) on the interval |x| < a.

y

x x

ξ

ξ2

2 + V (x) = λ

y = V (x)

λ

−x2(λ) x1(λ)

A2 A1

Figure 10.1: Single Well Potential

For 0 < λ < a we let −x2(λ) < 0 < x1(λ) be the intersection of the curve
ξ2

2 + V (x) = λ with the x-axis on the x − ξ plane. We will denote by A1 the
region in the first quadrant bounded by this curve, and by A2 the region in the
second quadrant bounded by this curve. Then from (10.35) and (10.36) we can
determine ∫

A1

+

∫
A2

dxdξ (10.41)

and ∫
A1

+

∫
A2

V ′(x)2dxdξ. (10.42)
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Let x = f1(s) be the inverse function of s = V (x), x ∈ (0, a). Then∫
A1

V ′(x)2 dxdξ =

∫ x1(λ)

0

V ′(x)2

∫ √2(λ−V (x))

0

dξdx

=

∫ x1(λ)

0

V ′(x)2
√

2λ− 2V (x) dx

=

∫ λ

0

√
2λ− 2sV ′(f1(s)) ds

=

∫ λ

0

√
2λ− 2s

(
df1

ds

)−1

ds.

Similarly ∫
A2

V ′(x)2 dxdξ =

∫ λ

0

√
2λ− 2s

(
df2

ds

)−1

ds,

where x = f2(s) is the inverse function of s = V (−x), x ∈ (0, a). So the
spectrum of S~ determines∫ λ

0

√
λ− s

(
(
df1

ds
)−1 + (

df2

ds
)−1

)
ds. (10.43)

Similarly the knowledge of the integral (10.41) amounts to the knowledge of∫ λ

0

√
λ− s

(
df1

ds
+
df2

ds

)
ds. (10.44)

Recall now that the fractional integration operation of Abel,

Jag(λ) =
1

Γ(a)

∫ λ

0

(λ− t)a−1g(t) dt (10.45)

for a > 0 satisfies JaJb = Ja+b. Hence if we apply J1/2 to the expression
(10.44) and (10.43) and then differentiate by λ two times we recover df1

ds + df2
ds

and (df1ds )−1 + (df2ds )−1 from the spectral data. In other words, we can determine
f ′1 and f ′2 up to the ambiguity f ′1 ↔ f ′2.

However, by (10.40), f ′1 > f ′2. So we can from the above determine f ′1 and
f ′2, and hence fi, i = 1, 2. So we conclude

Theorem 64. Suppose the potential function V is a potential well, then the
semi-classical spectrum of S~ modulo o(~2) determines V near 0 up to V (x)↔
V (−x).

Remarks, 1. We will show in Section 10.9 that the hypothesis (10.40) or some
“asymmetry” condition similar to it is necessary for the theorem above to be
true.

2. The formula (10.44) can be used to construct lots of Zoll potentials, i.e.
potentials for which the Hamiltonian flow vH associated with H = ξ2 + V (x) is
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periodic of period 2π. It’s clear that the potential V (x) = x2 has this property
and is the only even potential with this property. However, by (10.44) and
the area-period relation (See Proposition 6.1) every single-well potential V for
which

f1(s) + f2(s) = 2s1/2

has this property.

10.7 Semiclassical Spectral Invariants for Schrödinger
Operators with Magnetic Fields

In this section we will show how the results in §10.5 can be extended to Schrödinger
operators with magnetic fields. Recall that a semi-classical Schrödinger operator
with magnetic field on Rn has the form

Sm~ :=
1

2

∑
j

(
~
i

∂

∂xj
+ aj(x))2 + V (x) (10.46)

where ak ∈ C∞(Rn) are smooth functions defining a magnetic field B, which,

in dimension 3 is given by ~B = ~∇ × ~a, and in arbitrary dimension by the 2-
form B = d(

∑
akdxk). We will assume that the vector potential ~a satisfies the

Coulomb gauge condition,

∇ · ~a =
∑
j

∂aj
∂xj

= 0. (10.47)

(In view of the definition of B, one can always choose such a Coulomb vector
potential.) In this case, the Kohn-Nirenberg symbol of the operator (10.46) is
given by

p(x, ξ, ~) =
1

2

∑
j

(ξj + aj(x))2 + V (x). (10.48)

Recall that

Qα =
1

α!

∏
k

(
∂

∂xk
+ it

∂p

∂xk

)αk
, (10.49)

so the iteration formula (??) becomes

1

i

∂bm
∂t

=
∑
k

1

i

∂p

∂ξk
(
∂

∂xk
+ it

∂p

∂xk
)bm−1−

1

2

∑
k

(
∂

∂xk
+ it

∂p

∂xk

)2

bm−2. (10.50)

from which it is easy to see that

b1(x, ξ, t) =
∑
k

∂p

∂ξk

∂p

∂xk

it2

2
. (10.51)
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Thus the “first” spectral invariant is∫ ∑
k

(ξk + ak(x))
∂p

∂xk
f (2)(p) dxdξ = −

∫ ∑
k

∂ak
∂xk

f ′(p)dxdξ = 0,

where we used the fact
∑ ∂ak

∂xk
= 0.

With a little more effort we get for the next term

b2(x, ξ, t) =
t2

4

∑
k

∂2p

∂x2
k

+
it3

6

∑
k,l

∂p

∂ξk

∂al
∂xk

∂p

∂xl
+
∑
k,l

∂p

∂ξk

∂p

∂ξl

∂2p

∂xk∂xl
+
∑
k

(
∂p

∂xk
)2


+
−t4

8

∑
k,l

∂p

∂ξk

∂p

∂xk

∂p

∂ξl

∂p

∂xl
.

and, by integration by parts, the spectral invariant

Iλ = − 1

24

∫ ∑
k

∂2p

∂x2
k

−
∑
k,l

∂ak
∂xl

∂al
∂xk

 f (2)(p(x, ξ))dxdξ. (10.52)

Notice that
∂2p

∂x2
k

=
∑
j

∂2aj
∂x2

k

∂p

∂ξj
+
∑
j

(
∂aj
∂xk

)2 +
∂2V

∂x2
k

and

‖B‖2 = trB2 = 2
∑
j,k

∂ak
∂xj

∂aj
∂xk
− 2

∑
j,k

(
∂ak
∂xj

)2

So the subprincipal term is given by

1

48

∫
f (2)(p(x, ξ))

(
‖B‖2 − 2

∑
k

∂2V

∂x2
k

)
dx dξ.

Finally Since the spectral invariants have to be gauge invariant by definition,
and since any magnetic field has by gauge change a coulomb vector potential
representation, the integral∫

p<λ

(
‖B‖2 − 2

∑
k

∂2V

∂x2
k

)
dx dξ

is spectrally determined for an arbitrary vector potential. Thus we proved

Theorem 65. For the semiclassical Schrödinger operator (10.46) with mag-
netic field B, the spectral measure ν(f) = tracef(Sm~ ) for f ∈ C∞0 (R) has an
asymptotic expansion

νm(f) ∼ (2π~)−n
∑

νmr (f)~2r,
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where

νm0 (f) =

∫
f(p(x, ξ, ~))dxdξ

and

νm1 (f) =
1

48

∫
f (2)(p(x, ξ, ~))(‖B‖2 − 2

∑ ∂2V

∂x2
i

).

10.8 An Inverse Result for The Schrödinger Op-
erator with A Magnetic Field

Making the change of coordinates (x, ξ) → (x, ξ + a(x)), the expressions (65)
and (10.8) simplify to

νm0 (f) =

∫
f(ξ2 + V )dxdξ

and

νm1 (f) =
1

48

∫
f (2)(ξ2 + V )(‖B‖2 − 2

∑ ∂2V

∂x2
i

)dxdξ.

In other words, for all λ, the integrals

Iλ =

∫
ξ2+V (x)<λ

dxdξ

and

IIλ =

∫
ξ2+V (x)<λ

(‖B‖2 − 2
∑ ∂2V

∂x2
i

)dxdξ

are spectrally determined.
Now assume that the dimension is 2, so that the magnetic field B is actually

a scalar B = Bdx1 ∧ dx2. Moreover, assume that V is a radially symmetric
potential well, and the magnetic field B is also radially symmetric. Introducing
polar coordinates

x2
1 + x2

2 = s, dx1 ∧ dx2 =
1

2
ds ∧ dθ

ξ2
1 + ξ2

2 = t, dξ1 ∧ dξ2 =
1

2
dt ∧ dψ

we can rewrite the integral Iλ as

Iλ = π2

∫ s(λ)

0

(λ− V (s))ds,

where V (s(λ)) = λ. Making the coordinate change V (s) = x ⇔ s = f(x) as
before, we get

Iλ = π2

∫ λ

0

(λ− x)
df

dx
dx.
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A similar argument shows

IIλ = π2

∫ λ

0

(λ− x)H(f(x))
df

dx
dx,

where
H(s) = B(s)2 − 4sV ′′(s)− 2V ′(s).

It follows that from the spectral data, we can determine

f ′(λ) =
1

π2

d2

dλ2
Iλ

and

H(f(λ))f ′(λ) =
1

π2

d2

dλ2
IIλ.

So if we normalize V (0) = 0 as before, we can recover V from the first equation
and B from the second equation.

Remark. In higher dimensions, one can show by a similar (but slightly more
complicated) argument that V and ‖B‖ are both spectrally determined if they
are radially symmetric.

10.9 Counterexamples.

Let V ∈ C∞(Rn) be a potential well - that is a potential with V (0) = 0,
V (x) > 0 for x 6= 0 and V (x)→ +∞ as |x| → +∞. Then, by Proposition 41, the
spectrum of the Shrödinger operator (10.26) is discrete. The question : “to what
extent does this spectrum determine V ?” is still an open question; however we
will show in this section that in dimension one there exist uncountable families
of potentials for which the spectral invariants (10.25) are the same and that
in dimension greater than one there even exist infinite parameter families of
potentials for which these invariants are the same.

We first observe that if A : Rn → Rn is an orthogonal transformation,
i.e., A ∈ O(n) then

A∗(Sn)(A−1)∗ = SAn

where

SAn =
~2

2
∆ + V A(x)

and V A(x) = V (Ax). Thus if Kf (x, y, ~) is the Schwartz kernel of the operator
f(S~), then Kf (Ax,Ay, ~) is the Schwartz kernel of the operator, f(SA~ ) and,
by (10.18), Kf (Ax,AX) has an asymptotic expansion of the form

(2π~)−n
∑
k

~k
∑
`≤2k

∫
bk,`(Ax, ξ)ρ(ξ))ei

(x−y)·ξ
~

((
1

i

d

ds

)`
f

)(
‖ξ‖2

2
+ V (Ax, )

)
dξ.
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In particular since the function, bk,`(x, ξ) in the expansion (10.19) has the form

bk,` =
∑

ξαPα,k,`(DV, . . . , d
2kV ) (10.53)

by (39) the corresponding functions for SAn have the form

bAk,` =
∑

ξαpα,k,`(DV
A, . . . , D2kV A) (10.54)

and hence in particular

bk,`(ξ, Ax) =
∑

ξαpα,k,`(DV
A, . . . D2kV A) (10.55)

for all x ∈ Rn.
Now choose V to be rotationally symmetric and let ρi(x) be a non-negative

C∞ function with support on the set

i < |x| < i+ 1 , x1 > 0, . . . , xn > 0

with ρi = 0 for i odd and ρi 6= 0 for i even. Then, fixing a sequence of rotations,

A = {Ai ∈)(n) i = 1, 2, 3, . . .}
the potentials

VA = V (x) +
∑

ρi(Aix)

have the same spectral invariants (10.38) for all sequences, A, as can be seen by
writing ∫

bk,`(ξ,DVA, . . . , D
2kVA)f `(

ξ2

2
+ VA) dx dξ

=
∑∫

i≤|x|≤i+1

bk,`(ξ,DVA, . . . , D
2kVA)f `(

ξ2

2
+ VA) dx dξ

=
∑∫

i≤|x|≤i+1

bk,`(ξ,D(V+ρi)
Ai , . . . , D2k(V+ρi)

Ai)f `
(
ξ2

2
+ (V + ρi)

Ai

)
dx dξ

and observing that this is equal to∑∫
i≤|x|≤i+1

bk,`(ξ,D(V + ρi))f
`

(
ξ2

2
+ V + ρi

)
dx dξ

by equation (10.55).
In dimension one this construction doesn’t give us an infinite parameter

family of potentials with the same spectral invariants (10.38) but it’s easy to see
that it does give us uncountable family of potentials for which these invariants
are the same. Namely for every K ∈ [0, 1) let

α = α1α2α3 . . .
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be the binary expansion of α and choose A2i to be the symmetry, x → −x, if
αi is one and x→ x if αiis 0.

This example (which is a slightly modified version of a counterexample by
Colin de Verdiere in [CV]) shows why the assumption (40) (or some asymmetry
condition similar to (40)) is necessary in the hypotheses of Theorem 64.

10.10 The functional calculus on manifolds

Let Xn be a compact manifold and P~ ∈ Ψ0Sm(X) a self-adjoint zeroth order
semi-classical pseudodifferential operator with leading symbol P0(x, ξ) ∈ Sm(X)
satisfying an elliptic estimate of the form

P0(x, ξ) ≥ C|ξ|m (10.56)

on every coordinate patch. We will show below how to extend the results of
§§10.2–10.3 to manifolds, i.e., how to define f(P~), modulo O(~∞), as a zeroth

order semi-classical pseudodifferential operator on X with compact microsup-
port for all f ∈ C∞0 (R).

Let Vi, i = 1, . . . , N , be a covering of X by coordinate patches, let ϕi ∈
C∞0 (Vi), i = 1, . . . , N be a partition of unity subordinate to this cover, and for
each i, let ψi ∈ C∞0 (Vi) be a function which is equal to 1 on a neighborhood of
Suppϕi. We can, as in §10.2, construct a family of semi-classical pseudodiffer-
ential operators, Ui(t) : C∞0 (Vi)→ C∞(Vi), such that modulo O(~∞)

1√
−1

d

dt
Ui(t) ≡ P~Ui(t)

Ui(0) = ρ(~D) .

Thus the sum

U(t) =
∑

ψiUi(t)ϕi

is a zeroth order semi-classical pseudodifferential operator on X satisfying

1√
−1

d

dt
U(t) ≡

∑
ψiP~Ui(t)ϕi

≡
∑

P~ψiUi(t)ϕi

≡ P~U(t)

modulo O(~∞) with initial data

U(0) =
∑

ψiρ(~D)ϕi
def
= Qρ , (10.57)

i.e., modulo O(~∞)

U(t) = (exp itP~)Qρ . (10.58)
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Thus for f ∈ C∞0 (R)

f(P~)Qρ ≡
∑

ψi

(∫
Ui(t)f̂(t) dt

)
ϕi (10.59)

modO(~∞) where each of the expressions in parentheses has a Schwartz kernel
of the form (10.18). Thus by the ellipticity condition (10.56) we can, exactly as
in §10.3, remove the cut-off, ρ, to get an asymptotic expansion for the Schwartz
kernel of f(Ph) itself of the form,

(2πh)−n
N∑
i=1

∑
k,`

hkψi

∫
bik,`(x, ξ)e

i(x, y) · ξ
h

(
i

i

d

ds

)`
f(p0(x, ξ)) dξϕi(y)

and from this expansion a trace formula of the form (10.22). More explicitly
since X is compact the ellipticity conditions (10.56) insure that the spectrum
of Ph is discrete and for fixed ~ consists of a sequence of eigenvalues, λi(~),
i = 1, 2, . . ., which tend to +∞ as i tends to infinity. Hence from the asymp-
totic expansion above for the Schwartz kernel of f(Ph) one gets an asymptotic
expansion for

∑
f(λi(h)) of the form

(2π~)−n
N∑
y=1

∫ ∑
k,`

~kbjk,`(x, ξ)ϕj(x)

(
1

i

d

ds

)`
f(P0(x, ξ)) dx dξ . (10.60)

In particular, as we showed in §10.2, bi0,0 = 1 so the leading term in this
expansion gives the Weyl estimate∑

f(λi(h)) ∼ (2πh)−n
(∫

f(P0(x, ξ)
ωn

n!
+ 0()1)

)
(10.61)

where P0 : T xX → R is the intrinsic leading symbol of P~ and ω =
∑

dxi ∧ dξi
is the intrinsic symplectic form on T ∗X.

There is an interesting tie-in between this result and the classical “heat-
trace” theorem for Riemannian manifolds: Suppose X is a Riemannian manifold
and ∆ : C∞(X)→ C∞(X) its Laplace operator. The Minakshisundaram-Plejjel
theorem asserts that as t→ 0+ one has an asymptotic expansion

Tr(exp(−t∆)) ∼ (4πt)−n/2
∑

ait
i (10.62)

with a0 = vol(X). This is easily deduced from the formula (10.60) by letting
t = h2, Ph = h

√
∆ and the f in (10.60) a sequence of f ’s which tend in the

Schwartz space norm to e−x
2

.



Chapter 11

Fourier Integral operators.

11.1 Semi-classical Fourier integral operators

As in Chapter 9 one can extend the theory of Fourier integral operators to classes
of operators having symbols, a(x, y, ξ, ~), which are not compactly supported
in ξ; i.e., with “compact support in ξ” replaced by growth conditions in ξ
similar to those we discussed for pseudodifferential operators in Chapter 9. We
won’t, however, attempt to do so here; and, in fact, we will continue to confine
ourselves in this chapter to the type of Fourier integral operator we discussed in
Chapter 8. We have already seen, however, that these include a lot of interesting
real-world examples. For instance, given a C∞ mapping between manifolds
f : X → Y , the pull-back operation, f∗ : C∞(Y ) → C∞(X) is microlocally
an F.I.O. in the sense that for every semi-classical pseudodifferential operator,
Q : C∞(Y )→ C∞(Y ), with compact microsupport, f∗Q is a semi-classical F.I.O.
Moreover if f is a fiber mapping a similar assertion is true for the push-forward
operation, f∗. Given the results of Chapter 9 we can add to this list a lot of
other examples such as the operators, f∗P~ρ(D) and f∗P~ρ(D) where P~ is in
ΨkSm and ρ = ρ(ξ1, . . . , ξn) is compactly supported. In addition an example
about which we will have a lot to say at the end of this chapter is the operator,
exp( i t~ P~)f(P~), f ∈ C∞0 (R), where P~ is a self-adjoint elliptic operator in
Ψ0Sm(X). This operator looks suspiciously like the operator, exp i tP~, which
we studied in detail in the last chapter, but the presence of the factor “1/~” in
the exponent gives it a completely different character. In particular we will show
that, like the other examples above, it is microlocally an F.I.O. What follows is
a brief table of contents for this chapter.

I. Let X be a compact manifold, let M = T ∗X and let Γ : T ∗X � T ∗X be
a canonical relation which is transversal to ∆M . We will show in §11.2 that
if F~ is a kth order Fourier integral operator with compact microsupport
quantizing Γ then one has an asymptotic expansion

trace F~ ∼ ~F
∑

ap(~)e
iπ
4 σpe

iT∗p
~ (11.1)

287
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summed over p ∈ Γ ∩ ∆M where ap(~) =
∑∞
i=0 ap,i~i is a formal power

series in ~, σp a Maslov factor and the Tp’s are symplectic invariants of Γ.

II. In §§11.3 and 11.4 we will show how to compute these invariants when
Γ is the graph of a symplectomorphism, and in particular we will show
in §11.4 that they have a simple geometric interpretation as the “period
spectrum” of a dynamical system living on the mapping torus of f .

III. The second half of this chapter will focus on the two main wave-trace
formulas of semi-classical analysis: the Gutzwiller formula and density of
states. Let X be Rn (or, alternatively, let X be a compact manifold) and
let Ph : C∞0 (X) → C∞(X) be a self-adjoint zeroth order semi-classical
pseudodifferential operator. We will denote by H : T ∗X → R its leading
symbol and by vH the Hamiltonian vector field associated with H. We
will show in §11.5 that if H is proper the operator, exp i t~P is microlo-
cally a semi-classical Fourier integral operator quantizing the symplecto-
morphism, exp tvH and we will show that for cut-offs, ψ and f in C∞0 (R)
the trace of the operator

ψ̂

(
P~

~

)
f(P~) =

∫
ψ(t)e

i t
~ P~ dtf(P~)

has nice asymptotic properties if the flow of vH on the energy surface,
H = 0 has non-degenerate periodic trajectories. In particular there is a
trace formula

trace ψ̂

(
P~

~

)
f(P~) ∼ ~−

n
2

∑
γ

e
iSγ
~

∞∑
i=0

aγ,i~i (11.2)

similar to (11.1) where the sum is over the periodic trajectories of vH
on H = 0 and the Sγ ’s are the classical “actions” associated with these
trajectories:

Sγ =

∫
γ

∑
ξi dxi . (11.3)

Replacing P~ by P~ − E, for any E ∈ R one gets an analogous result for
the periodic trajectories of vH on the energy surface H = E; so among
many other things this result tells us that the classical actions, Sγ , are
spectral invariants of P~.

IV. In assuming that the periodic trajectories of vH on the energy surface
of H = 0 are non-degenerate we are ruling out the case where a periodic
trajectory consists simply of a fixed point for the flow, exp tvH ; i.e., a zero,
p, of the vector field vH . However, if there are a finite number of isolated
zeros of H on H = 0 and they are all non-degenerate the density of states
formula asserts that for |t| small

trace exp
i t

~
P~f(P~) ∼

∑
p

~−n/2e
iTp
~ ap(t, ~) (11.4)
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where ap(t, ~) ∼
∑∞
i=0 ap,i(t)~i, and the Tp’s are the symplectic invariants

figuring in (11.1).

V. In the last section of this chapter we will discuss some applications
of the results of this chapter to “heat trace invariants” in Riemannian
geometry. Let X be as in §10.11 a compact Riemannian manifold and
g : X → X an isometry of X. In the 1970’s Harold Donnelly generalized
the heat trace formula that we described in §10.11 by showing that one
has an asymptotic expansion

trace g∗e−t∆X ∼
∑
Z

(4πt)−dZ/2
∞∑
k=0

bk,Zt
k (11.5)

where the Z’s are the connected components of the fixed point set of g and
dZ is the dimension of Z. Moreover since g is an isometry the eigenvalues
of the map (dg)p : Np(Z) → Np(Z) at p ∈ Z don’t depend on p, and
denoting these eigenvalues by λi,Z ,i=1, . . . n− dΓ he shows that

bo,Z = vol(Z)(Π(1− λi,Z))−1 . (11.6)

If f is the identity map this heat trace expansion is just the Minakshisundaran-
Pleijel formula (10.62) and as we pointed out in §10.11 this expansion
can be thought of semi-classically as a trace formula for f(P~) where
P~ = ~

√
∆. In §11.6 we will show that the same is true of the formula

(11.5). In fact we will show more generally that if P~ is a self-adjoint semi-
classical elliptic pseudodifferential operator of order zero and g : X → X
is a diffeomorphism of X whose graph intersects ∆X in a finite number
of fixed point components, Z, then one has an analogue of the expansion
(11.5) for the trace of g∗f(P~) and that (11.5) can be viewed as a special
case of this expansion.

A key ingredient in the proof of all these results is the lemma of stationary
phase. A detailed account of the lemma of stationary phase (with a host of
applications) can be found in Chapter 15. However, in the next section we will
give a brief acount of the manifold version of this lemma, the version that we
will need for the applications below.

11.2 The lemma of stationary phase.

Let X be an n-dimensional manifold. A C∞ function φ on X is said to be a
Bott-Morse function if

• Its critical set Cφ := {x ∈ X|dφx = 0} is a smooth submanifold and

• For every p ∈ Cφ the Hessian d2φp : TpX → R is non-degenerate on the
normal space NpCφ = TpX/TpCφ.
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To state the lemma of stationary phase we need to recall some differential in-
variants which are intrinsically attached to such a function:

Let Wr, r = 1, . . . , N be the connected components of Cφ, so that φ is
constant, say identically equal to γr on Wr. Similarly, the signature sgnd2φ is
constant on each Wr. Let p ∈Wr and w1, . . . , wk be a basis of NpWr. Consider

|det(d2φp(wi, wj))|
1
2 .

If we replace wi by Awi in this expression, where A is some linear operator
on NpWr we pullout a factor of |detA|. In other words, the above expression
defines a density on NpWr. From the exact sequence

0→ TpWr → TpX → NpWr → 0

we know from (6.7) that we have an isomorphism

|TpX| ' |TpW | ⊗ |NpW |.

Thus, the above density on NpWr together with a given density on TpX deter-
mines a density on TpWr.

For example, if X = Rn with density dx1 . . . dxn and φ has an isolated non-
degenerate fixed point at 0, then the induced “density”, which is a number,
is

1

|det(∂2φ/∂xi∂xj)(0)|
.

In short, a density µ on X determines a density, call it νr on each Wr. The
lemma of stationary phase says that for µ of compact support we have∫

X

e
iφ
~ µ =

∑
r

(2π~
dr
2 )

(
e
iγr
~ ei

sgnWr
4

∫
Wr

νr +O(~)

)
. (11.7)

11.3 The trace of a semiclassical Fourier integral
operator.

Let X be an n-dimensional manifold, let M = T ∗X and let

Γ : T ∗X � T ∗X

be a canonical relation. Let ∆M ⊆ M ×M be the diagonal and let us assume
that

Γ∩>∆M .

Our goal in this section is to show that if F ∈ Fk0 (Γ) is a semi-classical Fourier
integral operator “quantizing” the canonical relation Γ then one has a trace
formula of the form:

trF = ~k
∑

ap(h)e
iπ
ηp eiT

∗
p /~ (11.8)



11.3. THE TRACEOF A SEMICLASSICAL FOURIER INTEGRAL OPERATOR.291

summed over p ∈ Γ∩∆M . In this formula n is the dimension of X, the ηp’s are
Maslov factors, the T ∗p are symplectic invariants of Γ at p ∩ Γ ◦∆M which will
be defined below, and ap(h) ∈ C∞(R) .

Let ς : M → M be the involution, (x, ξ) → (x,−ξ) and let Λ = ς ◦ Γ. We
will fix a non-vanishing density, dx, on X and denote by

µ = µ(x, y, ~) dx
1
2 dy

1
2 (11.9)

the Schwartz kernel of the operator, F . By definition

µ ∈ Ik−n2 (X ×X,Λ)

and by (11.9) the trace of F is given by the integral

trF =:

∫
µ(x, x, ~) dx . (11.10)

To compute this, we can without loss of generality assume that Λ is defined by
a generating function, i.e., that there exists a d-dimensional manifold, S, and
a function ϕ(x, y, s) ∈ C∞(X ×X × S) which generates Λ with respect to the
fibration, X×X×S → X×X. Let Cϕ be the critical set of ϕ and λϕ : Cϕ → Λ
the diffeomorphism of this set onto Λ. Denoting by ϕ] the restriction of ϕ to
Cϕ and by ψ the function, ϕ] ◦ λ−1

ϕ , we have

dψ = αΛ (11.11)

where αΛ is the restriction to Λ of the canonical one form, α, on T ∗(X ×X).
Lets now compute the trace of F . By assumption µ can be expressed as an

oscillatory integral

(dx)
1
2 (dy)

1
2

(
hk

n
2−d/2

∫
a(x, y, s, h)e

iϕ(x,y,s)
~ ds

)
and hence by (11.10)

trF = ~k−
n
2−d/2

∫
a(x, x, s, ~)ei

ϕ(x,x,s)
~ ds dx . (11.12)

We claim that: The function

ϕ(x, x, s) : X × S → R (11.13)

is a Morse function, with critical points

(x, x, s) = λ−1
ϕ (p) , p ∈ Γ ∩∆M . (11.14)

Proof. Consider Γ as a morphism

Γ : pt.→M− ×M (11.15)
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and ∆t
M as a morphism

∆t
M : M− ×M → pt . (11.16)

The condition that Γ intersects ∆M transversally can be interpreted as say-
ing that (11.14) and (11.16) are transversally composable. Thus since ϕ(x, y, s)
is a generating function for Γ with respect to the fibration

X ×X × S → X ×X

and ρ(x, y, ξ) = (x− y) · ξ is a generating function for ∆M with respect to the
fibration

X ×X × Rh → X ×X

the function, ϕ(x, y, s)+ρ(x, y, ξ) is a transverse generating function for ∆t
M ◦Γ

with respect to the fibration

X ×X × S × Rh → pt

i.e. is just a Morse function on this set. (See §5.6.)
However if we let ϕ(x, y, s) = ϕ(x, x, s) + (x−y) ·h(x, y, s) and set u = x−y

and w = ξ + h(x, y, s) then, under this change of coordinates, ϕ+ γ becomes

ϕ(x, x, s) + u · w

x, s, u and w being independent variables. Since this is a Morse function its two
summands are Morse functions with critical points (x, s) and u = v = 0 where

∂ϕ

∂x
(x, x, s) = −∂d

∂y
(x, x, s)

and

∂d

∂s
(x, x, s) = 0

i.e. x, x, s is given by (11.14).

Since the function (11.13) is a Morse function we can evaluate (11.11) by
stationary phase obtaining

trF =
∑

hkap(h)ei
π
4 sgnpeiψ(p)/~ (11.17)

where sgnp is the signature of ϕ(x, x, s) at the critical point corresponding to p
and

ψ(p) = ϕ(x, x, s) ,

the value of ϕ(x, x, s) at this point. This gives us the trace formula (11.8) with
T ]p = ψ(p).
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Replacing the transverse composition formula for generating function (§5.6)
by the analogous clean composition formula (§5.7) one gets a “clean” version of
this result. Namely suppose Γ and ∆M intersect cleanly in a finite number of
connected submanifolds Wr, r = 1. . . . , N of dim d = dr. Then on each of these
submanifolds, ψ is constant: ψ|Wr = γr and

trF = hk
∑
r

h−
dr
2 a(h)ei

γr
h . (11.18)

11.3.1 Examples.

Let’s now describe how to compute these T ]p ’s in some examples: Suppose Γ is
the graph of a symplectomorphism

f : M →M .

Let pr1 and pr2 be the projections of T ∗(X × X) = M × M onto its first
and second factors, and let αX be the canonical one form on T ∗X. Then the
canonical one form, α, on T ∗(X ×X) is

(pr1)∗αX + (pr2)∗αX ,

so if we restrict this one form to Λ and then identify Λ with M via the map,
M → Λ, p→ (p, σf(p)), we get from (11.11)

αX − f∗αX = dψ (11.19)

and T ]p is the value of ψ at the point, p.
Let’s now consider the Fourier integral operator

Fm =
︷ ︸︸ ︷
F ◦ · · · ◦ F

and compute its trace. This operator “quantizes” the symplectomorphism fm,
hence if

graph fm ∩>∆M

we can compute its trace by (11.8) getting the formula

trFm = ~`
∑

am,p(~)ei
π
4 σm,peiT

]
m,p/~ . (11.20)

with ` = km, the sum now being over the fixed points of fm. As above, the
oscillations, T ]m,p, are computed by evaluating at p the function, ψm, defined by

αX − (fm)∗αX = dψm .

However,

αX − (fm)∗αX = αX − f∗αX + · · ·+ (fm−1)∗αX − (fm)∗α ,

= d(ψ + f∗ψ + · · ·+ (fm−1)∗ψ)
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where ψ is the function (11.11). Thus at p = fm(p)

T ]m,p =

m−1∑
i=1

ψ(pi) , pi = f i(p) . (11.21)

In other words T ]m,p is the sum of ψ over the periodic trajectory (p1, . . . , pm−1)
of the dynamical system

fk , −∞ < k <∞ .

We refer to the next subsection “The period spectrum of a symplectomorphism”
for a proof that the T ]m,p’s are intrinsic symplectic invariants of this dynamical
system, i.e., depend only on the symplectic structure of M not on the canonical
one form, αX . (We will also say more about the “geometric” meaning of these
T ]m,p’s in Theorem 66 below.)

Finally, what about the amplitudes, ap(h), in formula (11.8)? There are
many ways to quantize the symplectomorphism, f , and no canonical way of
choosing such a quantization; however, one condition which one can impose on
F is that its symbol be of the form:

h−nνΓe
iψ
~ ei

π
4 σϕ , (11.22)

in the vicinity of Γ ∩ ∆M , where νΓ is the 1
2 density on Γ obtained from the

symplectic 1
2 density, νM , on M by the identification, M ↔ Γ, p → (p, f(p)).

We can then compute the symbol of ap(h) ∈ I0(pt) by pairing the 1
2 densities,

νM and νΓ at p ∈ Γ ∩∆M as in (7.14) obtaining

ap(0) = |det(I − dfp)|−
1
2 . (11.23)

Remark. The condition (11.22) on the symbol of F can be interpreted as a
“unitarity” condition. It says that “microlocally” near the fixed points of f:

FF t = I +O(h) .

11.3.2 The period spectrum of a symplectomorphism.

Let (M,ω) be a symplectic manifold. We will assume that the cohomology class
of ω is zero; i.e., that ω is exact, and we will also assume that M is connected
and that

H1(M,R) = 0 . (*)

Let f : M → M be a symplectomorphism and let ω = dα. We claim that
α− f∗α s exact. Indeed dα− f∗dα = ω− f∗ω = 0, and hence by (*) α− f∗α s
exact. Let

α− f∗α = dψ

for ψ ∈ C∞(M). This function is only unique up to an additive constant;
however, there are many ways to normalize this constant. For instance if W is a
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connected subset of the set of fixed points of f , and j : W →M is the inclusion
map, then f ◦ j = j; so

j∗ dψ = j∗α− j∗f∗α = 0

and hence ψ is constant on W . Thus one can normalize ψ by requiring it to be
zero on W .

Example. Let Ω be a smooth convex compact domain in Rn, let X be its
boundary, let U be the set of points, (x, ξ), |ξ| < 1, in T ∗X. If B : U → U is the
billiard map and α the canonical one form on T ∗X one can take for ψ = ψ(x, ξ)
the function

ψ(x, ξ) = |x− y|+ C

where (y, n) = B(x, ξ). B has no fixed points on U , but it extends continuously
to a mapping of Ū on Ū leaving the boundary, W , of U fixed and we can
normalize ψ by requiring that ψ = 0 on W , i.e., that ψ(x, ξ) = |x− y|.

Now let
γ = p1, . . . , pk+1

be a periodic trajectory of f , i.e.,

f(pi) = pi+1 i = 1 , . . . k

and pk+1 = p1. We define the period of γ to be the sum

p(γ) =

k∑
i=1

ψ(pi) .

Claim: P (γ) is independent of the choice of α and ψ. In other words it is
a symplectic invariant of f .

Proof. Suppose ω = dα− dα′. Then d(α− α′) = 0; so, by (*), α′ − α = dh
for some function, h ∈ C∞(M). Now suppose α−f∗α = dψ and α′−f∗α′ = dψ′

with ψ = ψ′ on the set of fixed points, W . Then

dψ′ − dψ = d(f∗h− h)

and since f∗ = 0 on W
ψ′ − ψ = f∗h− h .

Thus

k∑
i=1

ψ′(pi)− ψ(pi) =

k∑
i=1

h(f(pi))− h(pi)

=

k∑
i=1

h(pi+1)− h(pi)

= 0 .
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Hence replacing ψ by ψ′ doesn’t change the definition of P (γ). 2

Example Let pi = (xi, ξi) i = 1, . . . , k + 1 be a periodic trajectory of the
billiard map. Then its period is the sum

k∑
i=1

|xi+1 − xi| ,

i.e., is the perimeter of the polygon with vertices at x1, . . . , xk. (It’s far from
obvious that this is a symplectic invariant of B.)

11.4 The mapping torus of a symplectic map-
ping.

We’ll give below a geometric interpretation of the oscillations, T ]m,p, occurring
in the trace formula (11.20). First, however, we’ll discuss a construction used
in dynamical systems to convert “discrete time” dynamical systems to “con-
tinuous time” dynamical systems. Let M be a manifold and f : M → M a
diffeomorphism. From f one gets a diffeomorphism

g : M × R→M × R , g(p, q) = (f(p), q + 1)

and hence an action

Z→ Diff(M × R) , k → gk , (11.24)

of the group, Z on M ×R. This action is free and properly discontinuous so the
quotient

Y = M × R/Z

is a smooth manifold. The manifold is called the mapping torus of f . Now
notice that the translations

τt : M × R→M × R , (p, q)→ (p, q + t) , (11.25)

commute with the action (11.24), and hence induce on Y a one parameter group
of translations

τ ]t : Y → Y , −∞ < t <∞ . (11.26)

Thus the mapping torus construction converts a “discrete time” dynamical sys-
tem, the “discrete” one-parameter group of diffeomorphisms, fk : M → M ,
−∞ < k < ∞, into a “continuous time” one parameter group of diffeomor-
phisms (11.26).

To go back and reconstruct f from the one-parameter group (11.26) we note
that the map

ι : M = M × {0} →M × R→ (M × R)/Z

imbeds M into Y as a global cross-section, M0, of the flow (11.26) and for
p ∈ M0 γt(p) ∈ M0 at t = 1 and via the identification M0 → M , the map,
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p → γ1(p), is just the map, f . In other words, f : M → M is the “first return
map” associated with the flow (11.26).

We’ll now describe how to “symplecticize” this construction. Let ω ∈ Ω2(M)
be an exact symplectic form and f : M → M a symplectomorphism. For
α ∈ Ω1(M) with dα = ω let

α− f∗α = dϕ (11.27)

and lets assume that ϕ is bounded from below by a positive constant. Let

g : M × R→M × R

be the map
g(p, q) = (p, q + ϕ(x)) . (11.28)

As above one gets from g a free properly discontinuous action, k → gk, of Z on
M × R and hence one can form the mapping torus

Y = (M × R)/Z .

Moreover, as above, the group of translations,

τt : M × R→M × R , τt(p, q) = (p, q + t) ,

commutes with (11.28) and hence induces on Y a one-parameter group of dif-
feomorphisms

τ ]t : Y → Y ,

just as above. We will show, however, that these are not just diffeomorphisms,
they are contacto-morphisms. To prove this we note that the one-form,

α̃ = α+ dt ,

on M × R is a contact one-form. Moreover,

g∗α̃ = f∗α+ d(ϕ+ t)

= α+ (f∗α− α) + dϕ+ dt

= α+ dt = α̃

by (11.27) and
(τa)∗α̃ = α+ d(t+ a) = α+ dt = α̃

so the action of Z on M ×R and the translation action of R on M ×R are both
actions by groups of contacto-morphisms. Thus, Y = (M ×R)/Z inherits from

M ×R a contact structure and the one-parameter group of diffeomorphisms, τ ]t ,
preserves this contact structure.

Note also that the infinitesimal generator, of the group translations, τt, is
just the vector field, ∂

∂t , and that this vector field satisfies

ι(
∂

∂t
)α̃ = 1
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and

ι(
∂

∂t
) dα̃ = 0 .

Thus ∂
∂t is the contact vector field associated with the contract form α̃, and

hence the infinitesimal generator of the one-parameter group, τ ]t : Y → Y is the
contact vector field associated with the contract form on Y .

Comments:

1. The construction we’ve just outlined involves the choice of a one-form, α,
on M with dα = ω and a function, ϕ, with α = fxα = dϕ; however, it
is easy to see that the contact manifold, Y , and one-parameter group of
contacto-morphisms are uniquely determined, up to contracto-morphism,
independent of these choices.

2. Just as in the standard mapping torus construction f can be shown to be
“first return map” associated with the one-parameter group, τ ]t .

We can now state the main result of this section, which gives a geometric
description of the oscillations, T ]m,p, in the trace formula.

Theorem 66. The periods of the periodic trajectories of the flow, τ ]t , −∞ < t <
∞, coincide with the “length” spectrum of the symplectomorphism, f : M →M .

Proof. For (p, a) ∈M × R,

gm(p, a) = (fm(p), q + ϕ(p) + ϕ(p1) + · · ·+ ϕ(pm−1)

with pi = f i(p). Hence if p = fm(p)

gm(p, a) = τT ](p, a)

with

T ] = T ]m,p =

m∑
i=1

ϕ(pi) , pi = f i(p) .

Thus if q is the projection of (p, a) onto Y the trajectory of τ ] through q is
periodic of period T ]m,p. 2

Via the mapping torus construction one discovers an interesting connection
between the trace formula in the preceding section and a trace formula which
we described in Section 7.7.4.

Let β be the contact form on Y and let

M ] = {(y, η) ∈ T ∗Y , η = tβy , t ∈ R+} .

It’s easy to see that M ] is a symplectic submanifold of T ∗Y and hence a sym-
plectic manifold in its own right. Let

H : M ] → R+
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be the functionH(y, tBy) = t. Then Y can be identified with the level set, H = 1
and the Hamiltonian vector field νH restricted to this level set coincides with
the contact vector field, ν, on Y . Thus the flow, τ ]t , is just the Hamiltonian flow,
exp tνH , restricted to this level set. Let’s now compute the “trace” of exp tνH
as an element in the category S̃ (the enhanced symplectic category).

The computation of this trace is essentially identical with the computation
we make at the end of Section 7.7.4 and gives as an answer the union of the
Lagrangian manifolds

ΛT ]m,p ⊂ T
∗R , m ∈ Z ,

where the T ]’s are the elements of the period spectrum of νH and ΛT ] is the
cotangent fiber at t = T . Moreover, each of these ΛT ] ’s is an element of the
enhanced symplectic category, i.e. is equipped with a 1

2 -density νT ]m,p which we

computed to be

T
]

m,p|I − dfmp |−
1
2 |dτ | 12 .

T
]

m,p being the primitive period of the period trajectory of f through p (i.e., if

pi = f i(p) i = 1, . . . ,m and p, p1, . . . , pk−1 are all distinct but p = pk then

T
]

m,p = T
]

k,p) . Thus these expressions are just the symbols of the oscillatory
integrals

~−1am,pe
IıT

]
p,mt/~

with am,p = T
]

m,p|I − dfmp |
1
2 .

11.5 The Gutzwiller formula.

Let X be a smooth manifold and P ∈ Ψ0Sn(X) a self-adjoint semi-classical
pseudo-differential operator with leading symbol p(x, ξ(. As in ¶10.4, we will
assume that for some real interval [a, b], p−1([a, b]) is compact. Our goal in this
section is to show that for f ∈ C∞0 (a, b) the operator

exp it
P

~
· f(P ) (11.29)

is compact, and to compute its trace. At first glance it would appear that the
techniques of Chapter 10, where we derived a trace formula for the operator
exp itPρ(~D) would translate more or less verbatim to this setting; i.e. that we
should be able to solve the equation

~
1

i

∂

∂t
U(t)− PU = 0 (11.30)

with initial condition U(0) = f(P ) by using the local symbol calculus of ΨDO’s
as in ¶10.2, and then patch there together to get a manifold result as in ¶10.10.

Unfortunately, however, since the operator 1
~P~ is, semi-classically, a first

order ΨDO, functions of it are no longer ΨDO’s, so this result no longer works.
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What one can do, however, is to solve (11.30) moduloO(~∞) by the transport
equation techniques of ¶8.7.5 and then use “variation of constants” to get rid
of the O(~∞). Here are the details:

Let u(x, y, t, ~) be the desired Schwartz kernel of U(t). To solve(
~

1

i

∂

∂t
− P (x,Dx, ~)

)
u(x, y, t, ~) = 0 (11.31)

modulo O(~∞) with the given initial data, let

H = τ − p(x, ξ)

be the leading symbol on the left of (11.31) and let Λ0 be the set of points

(x, ξ, y, η, t, τ) ∈ T ∗(X ×X × R)

where

(x, ξ) = (y, η), t = 0, H(x, ξ, 0, τ) = 0, and (x, ξ) ∈ p−1(a, b).

Since p−1([a, b]) is compact and invariant under the flow of the Hamiltonian
vector field vp, the set of points (x, ξ, y, η, t, τ) ∈ T ∗(X ×X × R) with

(x, ξ) = (exp tvp) (y, η), τ = p(x, ξ), and (y, η) ∈ Λ0

is well defined for all t and is an embedded Lagrangian submanifold of T ∗(X ×
X×R) on whichH is equal to zero. Moreover, the Hamiltonian flow of vH = ∂

∂t−
vp is transverse to Λ0, so we can solve (11.31) moduloO(~k) for all k be induction
on k, at each stage of the induction solving a transport equation for vH . We can
also prescribe arbitrarily the initial value of this solution on the surface Λ0 and
we can choose the initial values inductively so that µ(x, y, 0, ~) is the Schwartz
kernel (10.?) modulo O(~∞). Furhtermore, for fixed t, the microsupport of
µ(x, y, t, ~) is the graph of the symplectomorphism exp tvp and hence µ(x, y, t, ~)
is the Schwartz kernel of a Fourier integral operator of order zero quantizing this
symplectomorphism. We have achieved our first goal, namely the construction
of a solution to (11.31) modulo O(~∞).

To get rid of the O(~∞), we will briefly recall how the method of “variation
of constants” works, and show that it is applicable to our set-up:

Let H be a a Hilbert space, Q a self-adjoint operator on H and V (t) a family
of bounded operators on H which satisfy

1

i

d

dt
V (t) = QV (t) +R(t) (11.32)

and
V (0) = A. (11.33)

To convert V (t) into a solution of

1

i

d

dt
U(t) = QU(t) (11.34)
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with intial data
U(0) = A, (11.35)

we note that by Stone’s theorem (see ¶12.3) Q generates a one-parrameter group
exp itQ of unitary operators. Using this fact, set

W (t) := exp itQ

∫ t

0

exp(−isQ)R(s)ds. (11.36)

Then
1

i

d

dt
W (t) = QW (t) +R(t)

and W (0) = 0. Then V −W satisfies (11.35) and 11.36).
Let us apply the formula (11.36) to our solution mod O(~∞) of (11.30) with

Q = 1
~P . For each t this solution has microsupport in the set p−1([c, d]) where

[c, d] ⊂ (a, b) so we can choose functions g and h in C∞0 (a, b) such that g = h ≡ 1
on [c, d] and h ≡ 1 on Supp(g). Multiplying the solutionwe obtained above fore
and aft by g(P ) and h(P ) we get a new solution of (11.30) mod O(~∞) with
the same initial data as before, namely U(0) = f(P ), but the remainder is now
of the form g(P )R(t)h(P ) and the W (t) in (11.36) has the form∫ t

0

g(P ) (exp i(t− s)Q)R(s)h(P )ds. (11.37)

Now note that g(P ) and h(P ) are smoothing operat ors and that exp i(t−s)Q is
unitary map of L2(X) into itself. Moreover, by Proposition 41, g(P ) and h(P )
have Schwartz kernels of the form∑

g(λi(~))ψi(x, ~)ψi(y, ~)

and ∑
h(λi(~))ψi(x, ~)ψi(y, ~)

where the Ψi are semi-classical L2 eigenfunctions of P .
Thus, since the Schwartz kernel of R has compact support, the expression

(11.37) is well defined. Moreover, since R(s, ~) is O(~∞) and the “exp i(t −
s)R(s)” factor in the integrand of (11.37) is multiplied fore and aft by operators
which are smoothing and smooth as functions of ~, the integral (11.37) also has
this property. This justifies our application of variation of constants.

To recapitulate: We have prove the following (main theorem) of this section:

Theorem 67. For f ∈ C∞0 (a, b) the Schwartz kernel of the operator
(
exp itP~

)
f(P )

is an element of I−n(X × X,Lambda). In particular, for all t this operator
is a semi-classical Fourier integral operator quantizing the symplectomorphism
exp tvp.

Let ψ be a C∞ function on R whose Fourier transform is in C∞0 (R). In the
next section we will compute
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tr
1√
2π

∫ (
exp i

t

~
P

)
f(P )ψ̂(t)dt

=
1√
2π

∑
k

∫
ei
tλk
~ ψ̂(t)dtf(λk)

=
∑
k

ψ

(
λk(~)

~

)
f(λk(~)).

We will find that the above expression has a very interesting asymptotic ex-
pansion involving the periodic trajectories of the vector field vp on the energy
surface p = 0. For this we will need to be more explicit about the phase function
(in the sense of Chapter 4) of our flowout manifold.

11.5.1 The phase function for the flowout.

Let M = T ∗X, α = αX the canonical one form on M . Let

α̃ = −pr∗1 α+ + pr∗2 α+ τdt

be the canonical one form on M− ×M × T ∗R. We compute the restriction of
α̃ to Λ:

Let ιΛ : M × R→M− ×M × T ∗R be the map

(x, ξ, t) 7→ ((x, ξ), exp tvp(x, ξ),−t, τ) .

This maps M × R diffeomorphically onto Λ. We claim that

ι∗Λα̃ = −α+ (exp tvp)∗α+ (exp tvp)∗ι(vp)αdt− pdt. (11.38)

Proof. Holding t fixed, the restriction of ι∗Λα̃ to M × {t0} ∼M is

−ι∗Λ pr∗1 α+ ι∗Λ pr∗2 α

by the definition of α̃. But

pr1 ◦ιΛ = idM and pr2 ◦ιΛ = exp tvp.

So the preceding expression becomes the sum of the first two terms on the right
hand side of (11.38). So to verify (11.38) we need only check the value of α̃ on
the tangent vector to the flowout curve

t 7→ (q, exp tvp(q),−t,p(q)).

This tangent vector is (
0, vp (exp tvp(q)) ,− ∂

∂t
, 0

)
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and this accounts for the second two terms on the right hand side of (11.38).
2

Now define the function φ ∈ C∞(M × R) by

φ :=

∫ t

0

(exp svp)
∗
ι(vp)α ds− tp. (11.39)

We will now show that
ι∗Λα̃ = dφ. (11.40)

Proof. −α+ (exp tvp)
∗
α =

∫ t
0
d
ds (exp svp)

∗
αds

=

∫ t

0

(exp svp)
∗
Lvpαds

=

∫ t

0

(exp svp)
∗
dM ι(vp)αds+

∫ t

0

(exp svp)
∗
ι(vp)dMαds

=

∫ t

0

(exp svp)
∗
dM ι(vp)αds+

∫ t

0

(exp svp)
∗

(−dp)ds

=

∫ t

0

(exp svp)
∗
dM ι(vp)αds− dp

∫ t

0

ds

=

∫ t

0

(exp svp)
∗
dM ι(vp)αds− dp

∫ t

0

ds

= dM×R

∫ t

0

(exp svp)
∗
dM ι(vp)αds

−
(
d

dt

∫ t

0

(exp svp)
∗
ι(vp)αds

)
dt− tdp

= dM×R

∫ t

0

(exp svp)
∗
ι(vp)αds− ((exp tvp)∗ι(vp)α) dt− tdp

= dM×Rφ− ((exp tvp)∗ι(vp)α) dt+ pdt

proving (11.40). 2

11.5.2 Periodic trajectories of vp.

Suppose that t 7→ γ(t) is a periodic trajectory of vp with (least) period T so
that

q := γ(0) = γ(T ).

Then q is a fixed point of the map expTvp : M → M . The differential of this
map, i.e.

d expTvp : TqM → TqM

maps the subspace Wq ⊂ TqM determined by dpq = 0 into itself and maps
vp(q), which is an element of this subspace into itself. So we get a map, the
(reduced) Poincaré map

Pγ : Wq/{vp} → Sq/{vp}.
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The trajectory γ is called non-degenerate if

det(I − Pγ) 6= 0.

Let us define

Sγ :=

∫ T

0

γ∗α. (11.41)

11.5.3 The trace of the operator (11.29).

Suppose that there are only finitely many periodic trajectories, γ1, . . . , γN of vp

lying on the energy surface p = 0 whose periods T1, . . . , TN lie in the interval
(a, b) and that they are all non-degenerate.

Let ψ̂ ∈ C∞0 ((a, b)). The Gutzwiller trace formula asserts that the trace of
the operator ∫

R
ψ̂(t) exp i

tP

~
f(P )dt

has an asymptotic expansion

~
n
2

N∑
r=1

ei
Sγ
~

∞∑
i=0

ar,i~i.

Proof. Write this trace as
∫
ψ̂(t)µ(x, x, t, ~)dt, where

ψ̂(t)µ(x, y, t, ~) ∈ I−n2 (X ×X × R,Λφ).

In other words, it is the integral of ψ̂(t)µ(x, y, t, ~) over the submanifold

Y := ∆X × R

of X ×X ×R. The conormal bundle of Γ of Y in M− ×M × T ∗R is the set of
points

(x, ξ, y, η, t, τ)

satisfying
x = y, ξ = η, τ = 0.

This intersects Λ in the set of points (x, ξ, y, η, t, τ) where

(exp tvp)(x, ξ) = (x, ξ), p = τ = 0.

For a < t < b this is exactly the union of the points on the periodic orbits in
this interval. The non-degeneracy condition implies that Γ intersects Λ cleanly.
So the Gutzwiller formula above is a special case of our abstract lemma of
stationary phase, see Section 8.14.

If we write the trace of the operator
∫
R ψ̂(t) exp i tP~ f(P )dt as∑

k

∫
ψ̂(t)eit

λk
~ dt · f(λk(~))
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and use the Fourier inversion formula this becomes

√
2π
∑

ψ

(
λk
~

)
f(λk(~))

where ψ is the inverse Fourier transform of ψ̂.

In this argument, there was nothing special about the zero level set of p We
can replace P by P − E. So the spectrum of P determines the integrals Sγ for
all non-degenerate period trajectories of vp.

11.5.4 Density of states.

The density of states formula is a kind of degenerate version of the Gutzwiller
formula. It replaces the periodic trajectories of the bicharacteristic flow ft :=
exp tvp by fixed points of this flow:

More explicitly, let M = T ∗X, and suppose that for q = (x, ξ) ∈ M we
have vp(q) = 0, so that q is a fixed point of ft for all t. Let us suppose that
for all 0 < t < t0 this fixed point is non-degenerate in the sense of Section
11.3. In other words, we assume that the graph of ft intersects the diagonal
∆M ⊂M ×M , which is equivalent to the condition that the map

I − (dft)q : TMq → TMq

is bijective. Let us also suppose that q is the only fixed point of ft on the energy
surface

p = c where c := p(q).

We can apply the results of Section 11.3 to the Fourier integral operator

Ft = exp
itP

~
ρ(P ), (11.42)

where ρ ∈ C∞0 )R) is supported on a small neighborhood of c and is identically
one on a still smaller neighborhood. For this choice ρ, the microsupport of Ft
intersects ∆M only at q, Since this intersection is transversal, there is only one
summand in (11.8) so (11.8) gives the asymptotic expansion

tr

(
exp

itP~

~
ρ(P~)

)
= ~

n
2 e

iπ
σq aq(~, t)e

iT
]
q

~ (11.43)

where σq is a Maslov factor and T ]q = ψ(q, t) where ψ is defined by the identity
(11.19):

αX − f∗t αX = dψ.

Since vp(q) = 0, we read off from (11.39) and (11.40) that

ψ(q, t) = −tp(q).
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Hence from (11.41) we obtain, for 0 < t < t0 the density of states formula

tr

(
exp

itP~

~
ρ(P~)

)
= ~

n
2 e

iπ
σq aq(~, t)e−itp(q). (11.44)

Moreover, by (11.23)

aq(0, t) = |det(I − (dft)q|
1
2 . (11.45)

We also note that since the left hand side of (11.44) depends smoothly on t, so
does aq(~, t).

11.6 The Donnelly theorem.

Let X be a compact manifold, M its cotangent bundle and Ph a zeroth order
self-adjoint elliptic pseudodifferential operator on X. Then for ρ ∈ C∞0 , ρ(Ph) is
a zeroth order pseudodifferential operator with compact microsupport. Hence,
given a C∞ mapping, f : X → X the operator

F = f∗ρ(Ph)

is, as we showed in §8.10, a semi-classical Fourier integral operator quantizing
the canonical relation, Γf , where

(x, ξ, y, n) ∈ Γf ⇔ y = f(x) and ξ = df txn . (11.46)

Therefore if Γf intersects ∆M cleanly we get for the trace of F an asymptotic
expansion of the form (11.17). This expansion can also be derived more directly
by simply applying stationary phase to the integral (11.10). (Moreover, this
approach gives one a lot more information about the individual terms in this
asymptotic expansion.)

The details: Let p(x, ξ) be the leading symbol of P . Then the Schwartz
kernel of ρ(Pn) is given locally by an oscillatory integral having an asymptotic
expansion in powers of h:

(2πh)−d
∞∑
k=0

hk
∫
aρ,k(x, ξ)e

i(x−y)·ξ
h dξ (11.47)

where

aρ,k(x, ξ) =
∑
`≤2k

bk,`(x, ξ)

((
d

ds

)`
ρ

)
(p(x, ξ)) (11.48)

and the leading order term in (11.48) is given by aρ,0 = ρ(p(x, ξ)). Hence

tr f∗ρ(Ph) ∼ (2πh)−d
∫
aρ(f(x), ξ, h)e

i(f(x)−x)·ξ
h dx dξ . (11.49)

Let’s now apply the lemma of stationary phase to the integral (11.49) with
phase function

ψ(x, ξ) = (f(x)− x) · ξ . (11.50)
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To do so we have to compute Cψ. But

∂ψ

∂ξ
= 0⇔ x = f(x) and

∂ψ

∂x
= 0⇔ (dfx − I) · ξ = 0 . (11.51)

Thus Cψ is just the set (11.46). The method of stationary phase requires that
Cψ be a submanifold of T ∗X and that, for (x, ξ) ∈ Cψ, the Hessian

(d2ψ)x,ξ|Nx,ξCψ

be non-degenerate, and it is easy to see that these conditions are satisfied if
the fixed point set Xf of f is a submanifold of X and if the restriction map
T ∗X|Xf → T ∗Xf maps (11.46) bijectively onto T ∗Xf . Finally, to compute
the leading order term in the asymptotic expansion of (11.49) using stationary
phase, one has to compute the determinant of the quadratic form (11.46). But

∂2ψ

∂ξ2
= 0 and

∂2ψ

∂ξ∂x
=
∂f

∂x
− I ,

so

d2ψx,ξ =

[
0 ∂f

∂x − I
∂f
∂x − I · · ·

]
and hence

det(d2ψx,ξ|Nx,ξCψ) = −
(

det

(
∂f

∂x
− I
)
| NxXf

)2

.

Note also that sgn d2ψx,ξ|Nx,ξCψ = 0 and ψ|Cψ = ((f(x) − x) · ξ)|Cψ = 0 by
(11.49). Feeding these data into the stationary phase expansion of the integral
(11.49) and noting that aρ(x, ξ, 0) = ρ(p(x, ξ)), we get the following variant of
Donnelly’s theorem.

Theorem 68. Let Xi, i = 1, . . . , N, be the connected components of Xf and let
di = dimXi. Then

trace f∗ρ(Ph) ∼
∑

(2πh)−di
∞∑
k=0

ak,ih
k.

Moreover,

a0,i =

∫
T∗Xi

ρ(p(x, ξ)|D(x)|−1) dx dξ

where dx dξ is the symplectic volume form and D(x) = det(dfx − I|NxXi).

Remark:
If we take Ph to be −h2∆X and ρ(s) to be the function e−s, s > 0, (which

takes a little justifying since this ρ is not in C∞0 ), then this theorem reduces to
Donnelly’s theorem (with h2 playing the role of t).
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Chapter 12

Integrality in semi-classical
analysis.

12.1 Introduction.

The semi-classical objects that we have been studying in the last four chapters
can be thought of from the symplectic perspective as the quantizations of objects
and morphisms in the exact symplectic “category”. Recall that in this category
an object is an exact symplectic manifold, which is a manifoldM with a one form
α such that ω = −dα is symplectic. The point morphisms pt.→M , associated
with this object are pairs (Λ, φ) where Λ ⊂M is a Lagrangian submanifold and
φ is a C∞ function on Λ such that

ι∗Λα = dφ. (12.1)

If M1 and M2 are exact symplectic manifolds, a morphism of M1 into M2 is a
point morphism of pt. to M−1 ×M2.

We discussed these categorical issues in Chapter 4. In particular, we showed
in §4.13.5 that this category sits inside a slightly larger category: the integral
symplectic category. In this “category” the objects are the same as above, but
the point morphisms pt.→ M are pairs (Λ, f) where f : Λ→ S1 is a C∞ map
that satisfies, as a substitute for (12.1) the equation

ι∗Λα =
1

2πi

df

f
. (12.2)

We can view (12.1) as a special case of (12.2) by setting f = e2πiφ.
One can show that if our exact symplectic manifolds are cotangent bundles,

then most of the semi-classical results that we obtained in the last four chapters
can be formulated as results in this larger category. Namely the functions f can
always be written locally as

f = e2πiφ, φ ∈ C∞(Λ). (12.3)

309
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Therefore, since the functions and operators that we have been dealing with in
the last four chapters have been defined by first defining them locally, and then
extending the local definitions into global definitions via partitions of unity, we
can do exactly the same same thing with exact Lagrangian manifolds replaced
by integral Lagrangian manifolds. But there is a hitch: the function φ in (12.3)
is not unique. It is only defined up to an additive constant c ∈ Z. So if we attach

to φ oscillatory integrals with phase factor e
2πiφ

~ , these oscillatory integrals will
only be well defined modulo factors of the form e

2πic
~ . There is a simple way

out - namely, to impose on ~ the constraint

~ =
1

m
, m ∈ Z. (12.4)

This is the approach we will take below. Note for such ~, we have e
2πic
~ = 1.

Our motives for introducing these integrality complications into semi-classical
analysis will become clearer later in this chapter. We will see in the discussion
of concrete examples, that the functions and operators we will use only become
well defined if we impose the integrality condition (12.4). What we can say at
this point, however, is that these examples, for the most part, have to do with
actions of Lie groups on manifolds.

For instance, suppose that X is a manifold and π : P → X a circle bundle.
We will show that if A is a classical pseudo-differential operator on P which
commutes with the action of S1 on C∞(P ), then one can think of A as a semi-
classical operator A~ on X, but this operator is only well-defined if ~ satisfies
(12.4).

Or, to cite a second example, suppose that G is a compact Lie group and
ρm the irreducible representations of G with highest weight mβ. We will show
that if γm ∈ C∞(G) is the character of this representation, the γm’s define an
oscillatory function‘γ~, ~ = 1/m living micro-locally on ΛO ⊂ T ∗G where O is
the co-adjoint orbit in g∗ containing β and ΛO its character Lagrangian. Thus,
in this example too, γ~ is only defined when ~ satisfies (12.4)

Here, as a road map, is a brief outline of the contents of this chapter:

In §12.2 we review standard facts about line bundles and connections. We
will need this material in order to explain in detail the correspondence between
classical and semi-classical pseudodifferential operators in the example we al-
luded to above.

In §12.3 we will discuss “integrality” in De Rham theory. In particular we
will describe its implications for cohomology classes [c] in H∗DR(X) in dimension
s one and two. For instance, we will show that if Λ is a Lagrangian submanifold
of the exact symplectic manifold (M,α), the integrality of ι∗Λα in the DeRham
theoretic sense in just the integrality condition (12.2).

In §12.4 we will review the results of §4.13.5 on integrality in symplectic
geometry and discuss some examples of integral Lagrangian submanifolds that
we will encounter later in the chapter.
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In §12.5 and §12.6 we will develop the symplectic machinery that we will
need for applications to group actions that we alluded to above. In particular
we study the notion of “symplectic reduction” of the “moment Lagrangian”
and of the “character Lagrangian”. The first two of these topics were briefly
discussed in Chapter 4. We will discuss them in more detail here.

These five sections constitute the “symplectic half” of the this chapter. In the
remaining six sections we discuss the semi-classical applications of this material.

In §12.7 we will amplify on what we said above about the semi-classical
oscillatory functions and operators associated with integral Lagrangian sub-
manifolds.

In §12.8 and §12.9 we discuss our semi-classical formulation of the theory
of characters for representations of compact Lie groups. Our goal in these two
sections will be to show that the two classical character formulas for compact
Lie groups: the Weyl character formula and the Kirillov character formula are
special cases of a more general result, a character formula due to Gross-Kostant-
Ramond-Sternberg and to show that the machinery of semi-classical analysis:
half-densities, Maslov factors, etc. makes these formulas more transparent.

In §10 we will elaborate on the remark above abut classical pseudodifferential
operators on a circle bunlde P → X, i.e. that such operators can be viewed as
semi-classical pseudodifferential operators on X

In §11 and §12 we will state and prove the main result of this chapter: an
equivariant version of the trace formula that we proved in Chapter 10. In §11 we
will prove the S1 version of this theorem and in §12 use the “character theorems”
of §12.8 and §12.9 to extend this result to arbitrary compact Lie groups.

12.2 Line bundles and connections.

Connections, connection forms, and curvature.

Let L→ X be a complex line bundle over a smooth real manifold. A linear first
order differential operator ∇ : C∞(L)→ C∞L⊗ T ∗X) is called a connection
if it satisfies

∇(fs) = f∇s+ s⊗ df, ∀s ∈ C∞(L), f ∈ C∞(M). (12.5)

If U ⊂ X is open, and s : U → L vanishes nowhere, define the one form α(s) by

α(s) :=
1

2πi

∇(s)

s
. (12.6)

By (12.5) we have

α(fs) = α(s) +
1

2πi

df

f
(12.7)
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for non-vanishing functions f . It follows from (12.7) that ω defined by

ωU := dα(s) (12.8)

is independent of the choice of s and hence is globally defined. From its definition
it is clear that dω = 0. ω is called the curvature form of ∇. Its cohomology
class is independent of the choice of ∇ and is called the Chern class of L.

The condition that the curvature form be real valued.

In general ω could be complex valued, but we suppose that we make the as-
sumption that ω is real valued. It follows from (12.8) that Im (α(s)) is closed,
and hence if U is simply connected that there is a real valued function h on U
with Imα(s) = dh. By (12.7)

α(e−2πhs) = α(s)− 1

i
Imα(s)

which is real. So (with a change in notation) we may assume that all our
trivializing sections have the property that α(s) is real. We now examine some
consequences of this property.

Let U = {Uι} be a good cover (meaning that all intersections are con-
tractible) with trivializing sections sι such that all the α(sι) are real. If

fjk ∈ C∞(Uj ∩ Uk) (∗)

are such that
sj = fjksk,

then it follows from the reality of the α(sι) and (12.7) that

d

(
Im

(
1

2πi
log(fjk)

))
= 0

and since Uj ∩ Uk is contractable, that

cjk := Im

(
1

2πi
log(fjk)

)
are constants. Since fjkfk`f`jsj = sj on Ujk` := Uj ∩ Uk ∩ U` it follows that
fjkfk`f`j ≡ 1 on Ujk`. Hence

cjk + ck` + c`j = Re log(fjkfk`f`j) = Re log 1 = 0 on Ujk`.

Thus the cjk define a Čech one cycle.
If X is simply connected, this cocycle is a coboundary, so that there exist

constants cj such that if Ujk := Uj ∩ Uk 6= ∅,

cjk = cj − ck.
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So if we modify our trivializing sections by replacing sj by e2πcjsj , we see that
we obtain trivializing sections such that the corresponding transition functions
satisify

|fjk| ≡ 1. (12.9)

This allows us to define a Hermitian inner product on L by defining, for any
section s of L and any Uj

〈s, s〉|Uj := |s/sj |2. (12.10)

Suppose that s is a non-vanishing section of L such that α(s) is real and we
have a Hermitian metric such that 〈s, s〉 ≡ 1. Thus d〈s, s〉 = 0. On the other
hand,

〈∇s, s〉+ 〈s,∇s〉 = (2πi)(α(s)− α(s))

so if α(s) is real, we have

〈∇s, s〉+ 〈s,∇s〉 = d〈s, s〉,

since both sides vanish. By (12.7) this equality extends to all sections. Indeed,
if we have a section of the form fs then 〈fs, fs〉 = |f |2 so d〈fs, fs〉 = fdf+fdf .
On the other hand, from (12.7) we have

〈∇(fs), fs〉+ 〈fs,∇(fs)〉 = |f |2(〈∇s, s〉+ 〈s,∇s〉) + fdf + fdf = d|f |2.

So we have
d〈u, u〉 = 〈∇u, u〉+ 〈u,∇u〉 (12.11)

for any section u of the form fs. Conversely, suppose that there is a Hermitian
metric on L for which (12.11) holds for all sections. We may choose our trivi-
alizing sections sj to satisfy 〈sj , sj〉 ≡ 1, and then conclude that the α(sj) are
real. Of course, if we have trivializing sections such that all the α(sj) are real,
then it follows from (12.8) that the curvature ω is real.

In the case that X is simply connected, and our trivializing sections sj all
have the property that α(sj) is real, then for the Hermitian metric given by
(12.10), equation (12.11) holds for all sections of L.

The meaning of ω = 0.

Having examined the implications of “ω is real valued” we next examine the
implications of the much stronger assumption “ω = 0”. This assumption implies
that for every trivializing section, s : U → L, α(s) is closed. Hence if U is simply
connected α(s) = −dh for some function h ∈ C∞(U), and if we replace s by
e2πihs this modified trivializing section satisfies Os = 0. In other words s is
an “autoparallel” section of L|U . Suppose now that, as above, U = {Ui , i =
1, 2, . . .} is a good cover of X and si : Ui → L trivializing autoparallel sections
of L|Ui. Then the transition functions that we defines above are constants, and,
as above, the constants

ci,j =
1

2π
√
−1

log fi,j
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define a Čech cocycle in Č1(U,R). Thus if this cocycle is a coboundary, i.e. if
ci,j = ci − cj then

e−2π
√
−1cisi = e−2π

√
−1cjsj .

In other words these manifold sections patch together to give a global trivializing
section of L with the property, Os = 0. Thus, to summarize, we’ve proved

Theorem 69. If X is simply connected and curv(O) = 0 there exists a global
trivializing section, s, of L with Os = 0.

Functorial properties of line bundles and connections.

Recall that if Y is a manifold and γ : Y → X a C∞ map then one can define a
line bundle γ∗L on Y by defining its fiber γ∗L at every point p ∈ Y to be the
fiber, Lq of L at the image point γ(p) = q. Thus if s : X → L is a section of L
the composite, s ◦ γ, of the maps, γ : Y → X and s : X → L can be viewed as
a section of γ∗L and this give one a pull-back operation

γ∗ : C∞(L)→ C∞(γ∗L) .

By combining this with the pull-back operation on forms: γ∗ : Ω1(X)→ Ω1(Y )
we get a pull-back operation

γ∗ : C∞(L⊗ T ∗X)→ C∞(γ∗L⊗ T ∗Y )

and it is easily checked that there is a unique connection, γ∗∆, on γ∗L which is
compatible with these two pull-back operations, i.e. satisfies

γ∗(Os) = γ∗∆(γ∗s) . (12.12)

Moreover by (12.8) the curvature form of this connection is

f∗ω. (12.13)

One elementary application of these functioriality remarks is the following.
Suppose Y is just an open subinterval of the real line. Then γ∗ω = 0, so
by the theorem above the line bundle γ∗L has an autoparallel trivialization. In
particular for a, b ∈ I, elements of Lp at p = γ(a) can be identified with elements
of Lq at q = γ(b) by “parallel transport along γ”.

More generally, if Y is any simply-connected manifold and γ∗ω = 0, then
the same is true for it: γ∗L has a canonical parallel trivialization. (For instance
this is the case if ω is a symplectic form, Y a Lagrangian submanifold of X, and
γ : Y → X the inclusion map.)

Line bundles and circle bundles.

We’ll conclude this brief review of the theory of connections by describing an
alternative way of thinking about line bundle–connection pairs. Let’s assume
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that ω is real and that L has an intrinsic “autoparallel” Hermitian inner product
〈 , 〉. If U ⊂ X is a simply connected open set and s : U → L a trivializing section
we can assume without loss of generality, that 〈s, s〉 = 1 on U . Thus if we let
P ⊆ L be the circle bundle

{(p, v) ; p ∈ X , v ∈ Lp , 〈v, v〉p = 1} ,

we can view s as being a trivialization section

s : U → P . (12.14)

Now let ∂
∂θ be the infinitesimal generator of the circle action on P . We claim

Theorem 70. There exists a unique real-valued one-form, α ∈ Ω1(P ), such
that

(i) α
(
∂
∂θ

)
= 1

2π

and

(ii) For all sections, (12.14), of P , α has the reproducing property

s∗α = α(s) (12.15)

Proof. The trivializing section (12.14) gives one a bundle isomorphism

P ' U × S1

and if α has this property it’s clear that it has to correspond to the one-form:
α(s) + dθ

2π . Thus, if an α exists, it has to be unique, and to show that it exists

it suffices to show that the form above: α(s) + dθ
2π , has properties (i) and (ii)

on U × S1. However if we replace the section (5) by s̃ = e2πihs, h being any
real-valued C∞ function, then

(s̃)(α(s) +
dθ

2π
) = α(s) + dh = α(s̃)

by 3.

Remarks

1. Since the form α(s) + dθ
2π is S1 invariant and the identification, P |U '

U × S1 is an S1-equivariant identification. The form α itself is an S1

invariant form. In particular,

ι

(
∂

∂θ

)
dα = L ∂

∂θ
α− d

(
∂

∂θ

)
α = 0 . (12.16)
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2. From property (ii) one gets the identity

Os =
√
−1s⊗ s∗α (12.17)

which can be viewed as an alternative way of defining O in terms of α.

3. Let π be the projection, P → X. Using the identity (12.15) one can
rewrite the identity: ds∗α = dα(s) = ω, more intrinsically in the form

π∗ω = dα . (12.18)

(Notation: We will henceforth refer to α as the connection form of the
connection, O.)

4. Of particular interest for us will be examples of line bundle–connection
pairs, (L,O) for which the curvature form, ω, is symplectic, i.e. for which
(X,ω) is a symplectic manifold and (L,O) is a “pre-quantization” of this
manifold. In this case α is a contact form on P , i.e. for 2m = dimX the
2m+ 1-form, α ∧ (dα)m is nowhere vanishing. Moreover, one gets from α
an exact symplectic form

ω# = d(tα) , t ∈ R+ (12.19)

on the product, P × R+. Denoting by L# the complement of the zero
section in L one gets a natural identification

P × R+ ' L# , (x, v, t) 7→ (x, tv)

via which we can think of ω# as being an exact symplectic form, ω# =
dα#, α# = tα, on L#. In particular, L# is the symplectic cone associated
with the contact manifold, (P, α).

12.3 Integrality in DeRham theory.

A coholomogy class, c ∈ Hk(X,R) is integral if it is in the image of the map
Hk(X,Z) → Hk(X,R), mapping cohomology classes with integer coefficients
into cohomology classes with real coefficients. In this section we will describe
the implications of this integrality property in degrees k = 1 and k = 2.

We begin with the case k = 1: Suppose α ∈ Ω1(X) is a closed one-form with
[α] = c. Let U = {Ui, i = 1, 2, . . .} be a good cover of X. Then, for every Ui,
there exists a function, hi ∈ C∞(Ui) with the property

dhi = α (12.20)

and hence on overlaps, Ui ∩ Uj , there exists constants ci,j satisfying

hi|Ui ∩ Uj − hj |Ui ∩ Uj = ci,j . (12.21)
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Moreover if Ui ∩ Uj ∩ Uk is non-empty

ci,j + cj,k + ck,i = 0

and hence the ci,j ’s define a Čech cocycle č ∈ Č1(U,R); and the correspondence,
α → č, gives rise, at the level of cohomology, to the standard isomorphism,
H1
DR(X) → H1(X,R). Suppose now that c is an integral Čech cocycle, i.e.

ci,j∈Z . Then by equation (12.21)

e2π
√
−1hi = e2π

√
−1hj

on Ui ∩ Uj , so these functions define a map f : X → S1 whose restriction to Ui
is e2π

√
−1hi and hence by (12.20)

α =
1

2πi

df

f
. (12.22)

In other words we’ve proved (most of) the following assertion.

Theorem 71. A cohomology class, c ∈ H1(X,R) is integral iff it has a DeRham
representative of the form

α =
1

2π
f∗ dθ (12.23)

where f is a map of X into S1 and θ the standard angle variable on S1.

Let us now turn to to the slightly more complicated problem of deciphering
the implications of integrality for cohomology classes, c, in H2(X,Z). If ω ∈
Ω2(X) is a closed 2-form representing this class, the Čech cocyle corresponding
to ω can be constructed by a sequence of operations similar to (12.20)–(12.22).
Namely let

ω|Ui = dαi , αi ∈ Ω1(Ui) , (12.24)

and on Ui ∩ Uj let
αi = αj = dhi,j (12.25)

where hi,j = −hj,i is in C∞(Ui ∩ Uj). Then by (12.25)

d(hi,j + hj,k + hk,i) = αi − αj + αj − αk + αk − αi = 0 .

so

ci,j,k = hi,j + hj,k + hk,i (12.26)

is a constant. Moreover from this identity it is easy to see that the Čech cochain,
č ∈ Č2(U,R), defined by the ci,j,k’s satisfies δc(i, j, k, `) = c(j, k, `)− c(i, k, `) +
c(i, j, `) − c(i, j, k) = 0 and hence is a cocycle. Moreover, as above the corre-
spondence ω → č, defines, at the level of cohomology, the standard isomorphism,
H2
DR(X)→ H2(X,R).
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Suppose now that č is an integral cocyle, i.e. the ci,j,k’s are integers. Then,

letting fi,j = e2π
√
−1hi,j , one gets from (12.26) the identities

fi,jfj,kfk,i = 1 , (12.27)

and it is easy to see from these identities that the fi,j ’s are transition functions
for a line bundle L → X. Indeed this line bundle can be defined explicitly as
the union:

L̃ = tiUi × C (12.28)

modulo the identifications:

(x, ci) ∼ (x, cj)⇔ ci = fi,j(x)cj (12.29)

for x’s on the overlap Ui ∩ Uj . Moreover the maps

s̃i : Ui → L̃ , x→ (x, 1)

define trivializing sections, si of L, and these have the fi,j ’s as their associated
transition functions. In addition one can define a connection, O, on L by setting

1

2π
√
−1

Osi
si

= αi (12.30)

where the αi’s are the αi’s in (12.24)–(12.25) and by (12.24) the curvature form
of this connection is ω. Thus we’ve proved (most of) the following assertion.

Theorem 72. If c ∈ H2(X,R) is an integral cohomology class there exists a
line bundle connection pair L,O with c = [curv(O)].

Remarks

1. One can define a Hermitian inner product on L by requiring that the si’s
above satisfy 〈si, sj〉 ≡ 1 on Ui.

2. This theorem is a key ingredient in the proof of the following purely topo-
logical result.

Theorem 73. There is a bijection between H2(X,Z) and the set of equivalence
classes of complex line bundles on X.

We won’t prove this result here but a nice proof of it can be found in [Weil].

12.4 Integrality in symplectic geometry.

In Chapter 4 we defined an exact symplectic manifold to be a pair (M,α) con-
sisting of a symplectic manifold (M,ω) and a one-form, α, for which ω = dα.
We also defined an exact Lagrangian submanifold of (M,α) to be a pair, (Λ, ϕ)
consisting of a Lagrangian submanifold, Λ of M and a real-valued function
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ϕ ∈ C∞(Λ) for which ι∗Λα = dϕ. These were the building blocks of the “exact
symplectic category” that we discussed in §4.13. In this category the (M,α)’s
played the role of objects, the categorical points of (M,α) were its exact La-
grangian submanifolds; and given two objects (M1, α1) and (M2, α2) we defined
the morphisms between them to be the categorical points of the product mani-
fold

M = M−1 ×M2 (12.31)

equipped with the one-form

α = −(pr1)∗α1 + pr∗2α2 . (12.32)

Recall from §4.13.5 that this category sits inside a slightly larger category which,
for lack of a better term, we called the integral symplectic category. In this
category the objects are the same as above: Exact symplectic manifolds: (M,α).
However morphisms between two objects (M,α1) and (M2, α2) are be pairs
(Γ, f) where Γ is a Lagrangian submanifold of the product (1) and f a C∞ map,
Γ→ S1 satisfying

ι∗Γα =
1

2πi

df

f
. (12.33)

Thus if (Γ, α) is a morphism in the exact symplectic category we can convert
it into a morphism in this category by setting f = e2πϕi. Note that the forms
ι∗Γα are integral one-forms (this being our reason for calling this the “integral”
symplectic category). Also as in Chapter 4 the term, category, continues to
mean “category-in-quotations marks”. To compose morphisms Γ1M2 → M3

and Γ2 : M2 → M3 we will have to assume that they are cleanly composible in
the sense of §4.2 and in particular that the map defined by :

κ : Γ2 ∗ Γ1 → Γ2 ◦ Γ1

is a smooth fibration with connected fibers. Assuming this we defined the com-
position operation for morphisms (Γ1, f1) and (Γ2, f2) in this new category in
more or less the same way as in §4.12. We will simply replaced the composition
law in the exact symplectic category by the composition law

(Γ1, f1) ◦ (Γ2, f2) = (Γ, f) (12.34)

if Γ = Γ2 ◦ Γ1 and
K∗f = ρ∗1f1ρ

∗
2f2 . (12.35)

Thus by this composition law our recipe for converting an exact canonical re-
lation, (Γ, α), into an integral canonical relation, (Γ, f) by letting f = e2πiϕ,
defines an imbedding of the exact symplectic category into the integral sym-
plectic category.

Given an exact symplectic manifold (M,α) its “categorical point”: the mor-
phisms, pt → M , are by definition pairs, (Λ, f) where Λ is a Lagrangian sub-
manifold of M and f a map of M into S1 satisfying ι∗Λα = 1

2πi
df
f . We’ll devote
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the rest of this section to describing some examples of such point-morphisms
(example which will resurface in the last couple of sections of this chapter).

Example 1.

At the end of §12.2 we showed that if (X,ω) is an integral symplectic man-
ifold and (L,O) a pre-quantization of X, we get an exact symplectic manifold
(L#, α#) by deleting the zero section from L. Moreover, if P is the unit circle
bundle in L and α ∈ Ω1(P ) the connection form then, via the identification
L# = P × R+, α# becomes the one-form, tα. Now let Λ ⊂ X be a Lagrangian
submanifold and ιΛ : Λ→ X the inclusion map. Using the functorial properties
of line bundles described in §12.2 one gets a line bundle with connection on Λ

LΛ = ι∗ΛL and OΛ = ι∗ΛO .

Moreover, by the functorial property (12.13) of the curvature form

curv(OΛ) = ι∗Λω = 0

since Λ is Lagrangian. Thus if π is the projection map of P onto X, and
Λ# = π−1(Λ) then

ι∗Λ] dα = π∗ι∗Λω = 0

so ι∗Λα is closed.

Definition 11. Λ satisfies the Bohr–Sommerfeld condition if this closed
form is integral.

There are a number of other formulations of this condition, the one of most
relevance for us being the following:

Proposition 42. Let s be a trivializing section of LΛ. Then Λ satisfies Bohr–
Sommerfeld iff Reα(s) is integral.

Proof. Replacing s by 〈s0, s〉−
1
2 s we can convert s into a trivializing section of

Λ# = P |Λ, giving us identifications

Λ# = Λ× S+

and

ι∗Λ]α = α(s) +
dθ

2π
.

Therefore α is integral if and only if α(s) is integral.

Example 2.
In example 1 replace X by X− ×X and L by L∗ � L, and let f : X → X be a
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symplectomorphism. We will say that f is pre-quantizable if there exists a line
bundle automorphism

L ' f∗L (12.36)

satisfying

Of∗s = f∗Os (12.37)

f∗〈s, s〉 = 〈f∗s, f∗s〉 (12.38)

for all s ∈ C∞(L). Now let the Λ in example 1 be the graph of f viewed
as a Lagrangian manifold of X− × X. The conditions (12.36)–(12.38) can be
reformulated as saying that L∗ � L|Λ had a canonical autoparallel trivializing
section. Hence by the proposition above Λ satisfies Bohr–Sommerfeld and the
Λ# sitting above it in (L∗ � L)# is integral.

Example 3. The character Lagrangian.
Let G be an n-dimensional torus and

χ : G→ Hom(V )

an irreducible unitary representation of G. For χ to be irreducible and unitary
the vector space V has to be one dimensional and χ(g) has to be multiplication
by an element, f(g) of S+, hence such a representation is basically a homomor-
phism, f : G→ S+, and this homomorphism, is by definition the character of χ.
As for the character Lagrangian, this is by definition the graph in T ∗G of the
one-form, α = 1

2π i
df
f and hence is an integral Lagrangian submanifold of T ∗G.

We will show in the next section how to define an analogue of this object for G
non-abelian, and at the end of this chapter discuss some semi-classical results
in which it plays an important role.

We recalled at the beginning of this section that one way to generalize the
notion of “morphism” in the exact symplectic category was by replacing “ ex-
actness” by “integrality”. As we pointed out in §4.13.5, one can go in the oppo-
site direction and define a class of morphisms which are much more restrictive
than the exact morphisms but which play a prominent role in the applications
we’ve just alluded to. Let (Mi, αi), i = 1, 2, be exact symplectic manifolds and
Γ ⊆ M−1 ×M2 a canonical relation. If M1 and M2 are cotangent bundles so is
M1 ×M2. Thus M1 ×M2, with its zero section deleted, is a symplectic cone,
and we will say that Γ is conormal if it is a conic submanifold of this cone,
A simple condition for this to be the case is that for α the one-form (12.32) to
satisfy

ι∗Γα = 0 , (12.39)

and this motivates the following:

Definition 12. Let (Mi, αi), i = 1, 2, be exact symplectic manifolds and Γ ⊆
M∗1 ×M2 a canonical relations. We will say that Γ is conormal if it satisfies
the condition (12.39).
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12.5 Symplectic reduction and the moment map.

Let M be a symplectic manifold, G a Lie group and τ : G→ Diff(M) a Hamil-
tonian action of G on M . From this action we get a moment map

φ : M → g∗ (12.40)

with the defining property:

ι(vM )ω = d〈φ, v〉 (12.41)

for all v ∈ g. (This identity only defines the 〈φ, v〉’s up to additive constants;
however, the cases we will be interested in, we can choose these constants so
that the map (12.40) is G-equivariant. For instance suppose (M,α) is an exact
symplectic manifold and α is G invariant. Then LvMα = 0, so

ι(vM )α = −dι(vM )α , (12.42)

so one can take as one’s definition of φ

〈φ, v〉 = −ι(vM )α (12.43)

giving one a “φ” that is patently G-equivariant.)
The identity (12.41), evaluated at p ∈M , says that

d〈φ, v〉p = ι(vM (p))ωp . (12.44)

Therefore, since ωp is non-degenerate 〈dφp, v〉 = 0 if and only if vM (p) = 0, i.e.

Image (dφp : TpM → g∗) = g⊥p (12.45)

where
gp = {v ∈ g , vM (p) = 0} . (12.46)

From this one gets the following pertinent fact:

Proposition 43. A point, a, of g∗ is a regular value of φ iff for every p ∈ φ−1(a)
gp = 0; in other words iff the action of G at p is locally free.

In particular, because of the G-equivariance of φ, the set Z = φ−1(0) is a
G-invariant closed subset of M , and if 0 is a regular value, is a G-invariant
submanifold on which G acts in a locally free fashion. Therefore, if we assume
in addition that G acts freely the quotient

B = Z/G (12.47)

is a manifold and the projection π : Z → B makes Z into a principal G-bundle
over B. Moreover the identity (12.44) tells us that at p ∈ Z

〈(dφ ◦ ιZ)p , v〉 = ι(vZ(p))ι∗Zωp .
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However φ ◦ ιZ = 0, so
ι(vZ)ι∗Zω = 0 . (12.48)

This together with the fact that ι∗Zω is G-invariant tells us that ι∗Zω is basic
with respect to the fibration, π : Z → B. In other words there exists a unique
two-form, ωB , on B satisfying

π∗ωB = ι∗Zω . (12.49)

A simple computation shows that ωB is symplectic, and hence (12.49) implies
that Z is a coisotropic submanifold of M . From Section 4.6 we know that this
corresponds to a reduction morphism in the symplectic category. We recall how
this goes:

Let Γ be the graph of π. By definition this sits in Z × B; but, via the
inclusion, Z → M , we can think of Γ as a submanifold of M × B, and the
identity (12.49) can be interpreted as saying that Γ is a Lagrangian submanifold
of M− ×B i.e. a canonical relation

Γ ∈ Morph(M,B)

which is a reduction in the categorical sense. We will call this canonical relation
the reduction morphism associated with the action τ , and the pair (B,ωB) is
called the symplectic reduction of M with respect to the action, τ .

Suppose now that M is an exact symplectic manifold and that ω = dα,
α ∈ Ω1(M)G. Then, as we saw above the moment map associated with τ is
given by (12.43) and hence, for p ∈ Z, ι(vM )αp = 0. This together with the G-
invariance of α tells us that ι∗Zα is basic, and hence that there exists a one-form,
αB ∈ Ω1(B), satisfying

ωB = dαB (12.50)

and

π∗αB = ι∗Zα . (12.51)

These two identities, however, simply say that the canonical relation, Γ, is
conormal in the sense of Section 4.13.5. In other words:

Theorem 74. In the exact symplectic category the reduction morphism

Γ : M → B

is an conormal canonical relation.

Example: Let M = T ∗G. Then from the right action of G on T ∗G one gets
a trivialization T ∗G = G× g∗ which is invariant with respect to the left action
of G on T ∗G and the moment map associated with this left action is the map,
(x, ξ) ∈ G× g→ −ξ. Thus, in this example, Z is the zero section in T ∗G, Z/G
is the point manifold, “pt.”, and Γ† the point morphism, pt.→ Z.
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As an application of these ideas we will come back to a notion that we
discussed in Chapter 4, the notion of “moment Lagrangian” and provide an
alternative perspective on it in terms of symplectic reduction: Consider the
product action of G on M × T ∗G. Its moment map is the map

(x, g, ξ)→ φ(x)− ξ (12.52)

hence the zero level set of this moment map: the set, Z, in the discussion above,
can be identified with M ×G via the identification

(x, g)→ (x, g, φ(x)) . (12.53)

Thus G acts freely on Z, a global cross-section for this action being given by
M×{e}. Moreover the restriction to this cross-section of the product symplectic
form on M × T ∗G is the standard symplectic form on M so the symplectic
reduction of M × T ∗G by the product action of G is M itself. As for the
canonical relation, Γ, associated with this reduction: this is by definition the
graph of the fibration π : Z → M ; therefore, identifying M with the cross-
section, M × {e} we see that the fiber above (x, e) in Z is the G orbit through
(x, e) i.e. the set, {(g × g−1), g ∈ G} and hence the graph of Γ is the set of
all pairs (p, π(p)) where p = (x, g) and π(p) = gx. Hence if we imbed Z into
M × T ∗G via the map (12.53) Γ becomes the set of points

(x, gx ; g, φ(x)) , (x, g) ∈M ×G (12.54)

in M ×T ∗G, which by comparison with the description for Γτ in §4.10.1 is seen
to be Weinstein’s moment Lagrangian. In other words the moment Lagrangian,
Γτ , is just the reduction morphism associated with the action of G on M×T ∗G.

One consequence of this is that if M is an exact symplectic manifold Γτ is
an conormal canonical relation.

In particular, suppose thatM is the cotangent bundle T ∗X of an n-dimensional
manifold X, and that τ is the lift to M of an action

X ×G→ X (12.55)

of G on X.
As we explained in §4.7, τX defines a morphism

ΓτX : T ∗X → T ∗(X ×G) (12.56)

i.e. a Lagrangian submanifold of

(T ∗X)− × T ∗X × T ∗G.

Claim:

Theorem 75. The ΓτX defined by (12.56) is identical with the moment La-
grangian (12.54).
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Proof. Recall that for any map f : Y → X, the Lagrangian manifold Γf consists
of the set of pairs ((y, η), (x, ξ)) such that

x = f(y) and η = df∗y ξ.

So we have to check that for Y = X × G and f = τ this set coincides with
(12.54).

This follows from the following lemma:

Lemma 7. The moment map φ : T ∗X → g∗ of the lifting of τX to T ∗X is
given by

〈φ(x, ξ), v〉 = −〈ξ, vX(x)〉, v ∈ g. (12.57)

The proof of the lemma follows from the identity (12.43) and the fact that
at the point p = (x, ξ) ∈ T ∗X the right hand side of (12.43) is 〈ξ, vX(x)〉 by the
defining property of the canonical one form α on T ∗X

Thus, in this example, Γτ is not only conormal, but is, in fact, just the
conormal bundle of the graph of τX .

Let us return to the general formula (12.54): By rearranging factors we can
think of Γ as a morphism

Γ : M− ×M → T ∗G .

If this morphism is composable with the diagonal, ∆, in M−×M we get another
object that we studied in Chapter 4 the character Lagrangian, Γτ ◦∆, in T ∗G.
One consequence of the composition theorem that we proved in §112.3.4 is that
if Γτ is conormal and ∆ is an integral Lagrangian submanifold of M−×M then
the character Lagrangian is an integral Lagrangian submanifold.

An example of this which we will encounter later in this chapter is the
following. Let (X,ω) be a (not-necessarily-exact) symplectic manifold and τ an
action of G on X. Suppose X is pre-quantizable and let L be its pre-quantum
line bundle and O and 〈 , 〉 the pre-quantum connection and Hermitian inner
product on L. We will say that τ is pre-quantizable if it lifts to an action of G
on L that preserves O and 〈 , 〉. In this case it is easy to see that τ has to be
a Hamiltonian action. In fact to see this let P be the unit circle bundle in L
and α ∈ Ω1(P ) its connection form. Then the action of G on P satisfies, for all
v ∈ g

dι(vP )α = −ι(vP ) dα = −ι(vP )π∗ω . (12.58)

But ι(vP )π∗ω = π∗ι(vX)ω and ι(vP )α is an S1-invariant C∞ function on M and
hence is the pull-back by π of a C∞ function −〈φ, v〉 on X. Thus we can rewrite
the identity above in the form, d〈φ, v〉 = ι(vX)ω. Q.E.D.

Let M = P ×R+ = (L)# be the symplectic cone associated with (P, α) and
αM = tα its associated one-form. From the Hamiltonian action of S1 on M
we get a Hamiltonian action of the two-torus T = S1 × S1 on M− ×M and
associated with this action a reduction morphism
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Γ : M− ×M → X− ×X .

Moreover, this morphism can be factored into a product of two simpler mor-
phisms: From the line bundle, L, we get a pre-quantum line bundle, L∗ � L
over X− ×X and this comes equipped with a product connection and product
Hermitian structure. Let Q be the circle sub-bundle of this product bundle and
β the connection form on Q and let

W = (L∗ � L)# = Q× R+

be the symplectic cone associated with Q and β. In terms of these data the
factorization of Γ that we alluded to above is the following. Factor the torus,
T , as a product, T1 × T2, where T1 is the group of pairs, (eiθ, e−iθ), eiθ ∈ S1

and T2 the group of pairs (eiθ, eiθ). Then if we reduce M− ×M by the action
of T 1 we get a reduction morphism

Γ1 : M− ×M →W

and if we reduce W by the action of T2 we get a reduction morphism

Γ2 : W → X− ×X

and this “reduction in stages” factors Γ into a composite reduction Γ = Γ2 ◦Γ1.
Now let ∆X be the diagonal in X− ×X. Then ∆# = Γt2 ◦∆X is just the pre-
image of ∆ in Q and hence, as we showed in §112.3.4 is an integral Lagrangian
submanifold of W . Moreover Γt1 ◦∆# = Γ ◦∆; so it is just the diagonal ∆M in
M−×M , and hence ∆M is integral. Finally it is easy to check that the moment
Lagrangian associated with the action of G on M is just the composition of the
morphisms

Γ : M− ×M ⇒ X− ×X
and

Γτ : X− ×X ⇒ T ∗G .

Hence, as we showed above, this composite morphism is an conormal canonical
relation. Moreover the identity, “∆M = Γt ◦∆X”, can be interpreted as saying
that ∆X = Γ ◦ ∆M . Therefore if Γτ and ∆X are cleanly composable so are
Γτ ◦ Γ ◦∆M ; and

Γτ ◦∆X = Γτ ◦ Γ ◦∆M .

In other words the character Lagrangian associated with the action of G on M ,
coincides with the character Lagrangian associated with the action of G on X,
and hence since the first of these is integral so is the second.

We conclude this discussion of symplectic reduction by pointing out that
the reduction morphism Γ ∈ Morph(M,B) can be equipped with a canonical
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half density and hence converted into a morphism in the enhanced symplectic
“category”.

Namely, by identifying Γ with the zero level set Z of the moment map, we
can think of it as a principal G - bundle Z → B. From Haar measure on G and
the symplectic volume form on B one gets a non-vanishing smooth density on Z
whose square root is a non-vanishing half density σ. Thus via the identification
of Z with Γ this becomes a half density on Γ and hence the pair (Γ, σ) is a
morphism in the enhancedd symplectic “category”.

In particular, this remark applies to the moment Lagrangian

Γτ : M− ×M → T ∗G.

Moreover, from the sympletcic volume form on M , and the identification of M
with the diagonal in M−×M one gets a volume form on ∆ whose square root in
a non-vanishing half-density, µ. Thus, if Γτ and ∆ are cleanly composible, the
composition law for morphisms in the enhanced symplectic “category” converts
Γτ ◦∆ into an enhanced Lagrangian (Γτ ◦∆, σ ◦ µ), i.e. equips Γτ ◦∆ with a
canonical half-density σ ◦ µ.

12.6 Coadjoint orbits.

To extend the character formula (3.6.7) to non-abelian groups we will have to
describe the analogues for these groups of the elements, α, of the weight lattice
of G and this will require a brief review of the theory of co-adjoint orbits. As
above let G be a connected Lie group, g its Lie algebra and (Ad)∗ : G→ Aut(g∗)
the co-adjoint action of G on g∗. Let O be an orbit of G in g∗ and f a point on
this orbit. We claim that one can define an alternating bilinear form on TfO
by setting

ωf (vO, wO) = 〈f, [v, w]〉 (12.59)

for v, w ∈ g. To show that the left hand side is well-defined we note

〈f, [v, w]〉 = 〈f, gd(v)w〉 = 〈ad(v)∗f, w〉 (12.60)

and ad(v)∗f = 0 if and only if vO(f) = 0 so the expression on the right only
depends on vO and, with the roles of v and w reversed, only depends on wO.

Suppose in addition that ωf (v), wO) = 0 for all wO. Then by (12.60),
(ad v)∗f = 0 and hence v)(f) = 0. Therefore since the vectors v0(f), v ∈ g
span the tangent space to O at f , the bilinear form (12.59) is non-degenerate.

Let ωO be the 2-form on O defined by the assignment, f → ωf . It is clear
that this form is G-invariant. Moreover, if one lets φv ∈ C∞(O) be the function,
φv(f) = 〈f, v〉 then

dφv(wO)f = −dφv((ad)∗(w)f)

= −〈ad(w)∗f, v〉
= −〈f, ad(w)v〉 = 〈f, [v, w]〉
= ι(vO)ωf (wO)
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and hence
ι(vO)ωO = dφv . (12.61)

From this one easily deduces that the following are true:

1. The two-form, ωO, is closed (and hence symplectic.)

2. The action of G on O is Hamiltonian.

3. The moment map associated with this action is the inclusion map, O ↪→
g∗.

Proof. Since ωO is G-invariant

0 = Lv0ωO = ι(vO) dωO + dι(vO)ω)

and by (12.61) the second summand on the right vanishes. Thus for all v ∈ g,
ι(vO dωO = 0) and since the vO(f)’s span the tangent space to O at each point,
f , of O, this implies that dωO = 0. Moreover if we denote by φ the inclusion
map of O into g∗ we can rewrite (12.61) in the form

ι(vO)ω0 = d〈φ, v〉 . (12.62)

The next issue we’ll address is the question of whether O can be equipped
with G equivariant pre-quantum structure. Let L be a line bundle on O and
suppose that the action of G on O can be lifted to an action of G on L by bundle
morphisms, that this action preserves a connection, O, and a Hermitian inner
product 〈 , 〉 and, finally, that curv(O) = ω. Then equivalently, the G-action on
L preserves the circle subbundle, P , of L defined by 〈 , 〉 commutes with the S1

action on this bundle and preserves the connection form, α ∈ Ω1(P ). Now let’s
fix a point, f , of O and let Gf ⊂ G be the stabilizer group of f in G. From the
action of G on L we get the representation of Gf on Lf . Moreover, for v ∈ g

α(vP ) = 〈φ, v〉(f) = 〈f, v〉 (12.63)

by (12.62). Also, if v ∈ gf , then vP is tangent to the fiber, Pf of P above f .
However, on this fiber, α = dθ, so for every v ∈ gf

〈dθ, vP 〉 = 〈f, v〉 . (12.64)

Thus the character of the representation of Gf on Lf is just the map

exp v ∈ Gf → e2πi〈f,v〉 . (12.65)

In other words the weight of this representation is f . This proves

Theorem 76. If the action of G on O is prequantizable, then for f ∈ O, f |gf
is in the weight lattice of the group Gf .
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Remark For the groups we’ll be interested in: connected compact groups the
converse of this result is true. (See for instance Kostant Unitary representation
...)

We will henceforth call a coadjoint orbit, O, integral if it has this property.
From this result one gets a description of the line bundle, L, as the quotient

L ' G× C/Gf

where the action of Gf on G×C is the product of its right action on G and the
action (12.63) on C. Moreover the connection is determined as well by these
data. Namely the connection form α on P satisfies

α

(
∂

∂θ

)
= 1

and

α(vP )f = 〈φ, v〉f = 〈f, v〉

for all f ∈ O and since the vP ’s and ∂
∂θ span the tangent space of P at each of

its points these conditions completely determine α.
We will next compute the character Lagrangian for the action of G on O.

By definition a point (g, f) ∈ G × g∗ is in this character Lagrangian if there
exists a point x ∈ O such that gx = x and φ(x) = f . However, since φ is just
the inclusion map of O into g∗, this character Lagrangian, which we will denote
by ΛO, is the set

ΛO = {(g, f) ∈ G×O , Ad(g)∗f = f} . (12.66)

Thus the projection
ΛO → O , (g, f)→ f (12.67)

is just a fiber mapping with fiber, Gf , above f . However the projection

ΛO → G , (g, f)→ g (12.68)

is a lot more complicated. Over generic points of G the set of f ’s in O for which
Ad(g)∗f = f is finite and over these generic points (12.68) is just a covering
map. However, if g is, for instance, the identity element of G then the fiber
above g is all of O.

We will give a much more detailed description of this map in §12.8.

We conclude this discussion of coadjoint orbits by describing a generaliza-
tion, involving coadjoint orbits, of the symplectic reduction operation that we
discussed in §12.5. This generalization will play an important role in the analytic
applications of integrability the we will take up in Sections ?? and ??.

Let M be a Hamiltonian G-manifold and Φ : M → g∗ its moment map. If
O ⊂ g∗ is a coadjoint orbit, its pre-image

Σ := Φ−1(O)
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is a G-invariant subset of M . If G acts freely on this set, the by (12.45) the map
|Phi is transversal to O, and hence Σ is a submanifold of M of codimension
equal to the dimension of O. Moreover, since G acts freely on Σ, the quotient
B = Σ/G is a manifold of dimension

dimM − dimO − dimG

and the projection
π : Σ→ B

makes Σ into a principal G-bundle over B.
We call B the symplectic reduction of M with respect to O. To justify

this nomenclature, we show that B has an intrinsic symplectic structure. To see
this, we note that B has an alternative description: Consider the product action
of G on the symplectic manifold M ×O−. This is a Hamiltonian G-action with
moment map

ΨO : M ×O− → g, (p, `) 7→ Φ(p)− `.

The zero level set of ΨO is the set of (p, `) ∈ M × O− such that Φ(p) = `. So
it can be identified with Σ via the map Σ 3 p 7→ (p,Φ(p)). This identification
is G-equivariant, so as G acts freely on Σ, it acts freely on this zero level set.
Hence the symplectic reduction

Ψ−1
O (0)/G

of M ×O0− that we defined in §12.5 canbe identified with B. This allows us to
equip B with an intrinsic symplectic structure.

12.7 Integrality in semi-classical analysis

In chapter 8 we showed that if one is given a manifold, X, and an exact La-
grangian submanifold, (Λ, ϕ) of T ∗X, then one can attach to these data a space
of oscillatory half-densities I(Λ;X). Let’s briefly recall the role of the function,
ϕ, in the definition of this space. Given any Λ one can find, at least locally, a
fiber bundle, π : Z → X and a generating function for Λ, ψ ∈ C∞(Z) whose
defining property is that critical set of ψ with respect to the fibration, π, is
mapped diffeomorphically onto Λ by the map

γψ : Cψ → Λ , z → dXψ . (12.69)

Given ψ one then defines the space I(Λ, ψ) to be the set of oscillatory functions,

π∗a(z, h)e
iψ
~ , a ∈ C∞(Z × R∗) . (12.70)

One problem with this definition however is that there is an unspecified
additive constant involved in the choice of ψ: for every c ∈ R, ψ + c doesn’t
change either the critical set Cψ or the parametrization of Λ. It does however
have a discernible effect on the oscillatory behavior of the oscillatory integral
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(12.70), i.e. it multiplies it by the factor ei
c
h . (This situation becomes ever worse

if one tries to define elements of I(X; Λ) by patching together contributions from
N local parametrizations of Λ in which case the elements of I(X; Λ) become
expressions of the form

N∑
k=1

(πk)∗

(
ake

i
ψk
~

)
ei
ck
~ (12.71)

which for the ck’s arbitrary and N large can be made to have more or less
random oscillatory behavior.) The role of the ϕ in the exact pair (Λ, ϕ) is to
avoid these complications by requiring that the generating function ψ satisfy

γ∗ψϕ = ψ|Cψ (12.72)

and as we showed in chapter 8 this does avoid these complications and give one
a satisfactory global theory of oscillatory functions.

Suppose now that Λ = (Λ, f) is an integral Lagrangian submanifold of T ∗X.
In this case one can still to a certain extent avoid these complications by replac-
ing (12.72) by

γ∗ψf = eiψ . (12.73)

This does not entirely get rid of the ambiguity of an additive constant in the
definition of ψ but does force this constant to be of the form 2πn, n a positive
integer. Thus “random sums” like the expression (12.71) can be eliminated by
the simple expedient of requiring that 1/h be an integer. In fact one can show
that if one imposes this condition the results that we proved in chapter 8 all
extend, more or less verbatim, to Lagrangian manifolds and canonical relations
which are integral. Moreover we can now define some objects which we weren’t
able to fit into our theory before:

Example: Let G be an n-torus and f : G→ S1 a function of the form f(x) =
e2πiα(x), where α ∈ Z∗G ⊂ g∗ is an element of the weight lattice of G. Then the
function

fm = e
2πiα(x)

h , h =
1

m
(12.74)

can be regarded as an element of In(G; Λα) where Λα is the character Lagrangian
associated with f , and fm is the character of the representation of G with weight
mα.

This example turns out to be a special case of a larger class of examples
involving characters of representations of Lie groups, and we’ll discuss these
examples in the next three sections.

12.8 The Weyl character formula

In this section we will assume that G is a compact simply connected Lie group
and that for every β ∈ O the isotropy group, Gβ , is a subtorus of G, i.e. as
a homogeneous space, O, is the quotient, G/T , of G by the Cartan subgroup,
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T , of G. In addition we will assume that O is an integral coadjoint orbit: O =
Ad∗(G)β0 where β0 is an integer lattice vector in the interior of the positive Weyl
chamber, t∗+, of t∗. Let γm be the character of the irreducible representation
of G with highest weight, mβ0. We will show that the sequence of functions,
γm, m = 1, 2, . . ., define, for ~ = 1/m, an element γ(g, ~) of I0(ΛO;G) and that

its symbol is χρm|νO|
1
2 where |νO|

1
2 is the canonical 1

2 -density on ΛO that we
defined in §12.5, m is a Maslov factor and χρ a conversion factor which effectively

converts |νO|
1
2 into a “ 1

2 -form”. (For more about “ 1
2 -forms” and their relation

to 1
2 -densities see [GS], chapter V, §4.)
We will in fact prove a stronger result. We will show that, with this “ 1

2 -

form” correction, the recipe we give in chapter 8 for associating to m|νO|
1
2 an

oscillatory 1
2 -density turns out to give, even for ~ = 1 an exact formula for

γ(g, ~) (not, as one would expect, a formula that’s asymptotic in ~). We will
verify this assertion by computing this 1

2 -density at regular points of the group,
G, and comparing it with the Weyl character formula for γn. This computation
will require our reviewing a few basic facts about roots and weights, but in
principle is fairly easy since the projection, ΛO → G, is just a finite-to-one
covering over the set of regular points in G. However, we will also show in the
next section that our recipe for quantizing ξρmσ

1
2 gives an exact answer in a

neighborhood of the identity element where the projection, ΛO → G is highly
singular. (This will again be a proof by observational mathematics. We’ll show

that the recipe for computing the oscillatory function associated with ξρmσ
1
2

O

by generating functions coincides with the Kirillov formula for γn.) We will also
say a few words about the computation of γn at arbitrary points of G, (in which
case the methods of chapter 8 turn out to give a generalized Kirillov formula
due toGross, Kostant, Ramond, Sternberg).

We’ll start by describing a few elementary properties of the manifold ΛO
and of the fibration, ΛO → G.

Proposition 44. There is a canonical diffeomorphism of G spaces

kO : ΛO → O × T . (12.75)

Proof. ΛO is the subset

{(g, β) ∈ G×O , (Ad)∗(g)β = β} (12.76)

of G×O; so the projection, p of ΛO onto O is a fibration with fiber,

Gβ = {h ∈ G , (Ad)∗(h)β = β} (12.77)

above β. Thus if β = gβ0, (Ad)∗(g−1hg)β = β0 and since β0 is the interior of
the positive Weyl chamber g−1hg ∈ T . Thus the map

(h, β) ∈ ΛO → (β, g−1hg) (12.78)

is a G-equivariant diffeomorphism of ΛO onto O × T .
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Another slightly more complicated description of ΛO is in terms of the pro-
jection

π : ΛO → G , (g, β)→ g . (12.79)

For this projection

π−1(g) = {β ∈ O , (Ad)∗(g)β = β} (12.80)

so in particular if K = {a ∈ G, a−1ga = g} is the centralizer of g in G then for
every β ∈ π−1(g) the (Ad)∗ orbit of K through β is in π−1(g). We claim, in
fact, that π−1(g) consists of a finite number of K orbits. To see this, we can
without loss of generality assume that g is in T . Let N(T ) be the normalizer of
T in G and W = N(T )/T the Weyl group. We claim that for g in T

π−1(g) =
⋃
Kwβ0 , w ∈W . (12.81)

Proof. Let β = hβ0, h ∈ G, be an element of π−1(g). Then Ad∗(g)β = β,
so Ad∗(gh)β0 = (Ad)∗(h)β0 and hence since β0 is in Int t∗, h−1gh is in T .
Therefore, h−1gh = aga−1 for some a ∈ N(T ) and hence ah is in K i.e. h is in
wK where w is the image of a−1 in N(T )/T = W .

Let Greg be the set of regular elements of G: elements whose centralizers are
maximal tori. As a corollary of the result above we get the following:

Proposition 45. Over Greg the map π : ΛO → G is an N to 1 covering map
where N is the cardinality of W .

Proof. It suffices to verify this for g ∈ Treg in which case K = T and hence by
(12.81):

π−1(g) = {wβ0 , w ∈W} . (12.82)

Thus over Treg, ΛO is the disjoint union of the Lagrangian manifolds

Λw = graph

(
1

2πi

dfw
f

)
, w ∈W (12.83)

where fw(t) = e2πi〈wβ0,t〉. Moreover, the complement of Greg in G is an algebraic
subvariety of G of codimension ≥ 2. Therefore since G is simply connected, Greg

is simply connected, and the covering map, Λreg → Greg is a trivial covering
map mapping the connected components,

{(g, β) ∈ Greg ×O , β = Ad∗(g)wβO}

of ΛO bijectively onto Greg.
Now let dg and dt be the standard Haar measure on G and T and µO

the symplectic volume form on O. As we explained in Section 12.5 one gets
from µO a canonical 1

2 -density on the character Lagrangian, ΛO and a simple
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computation (which we’ll spare the reader) shows that the square of this 1
2 -

density is given by
νO = k∗O(µO ⊗ dt) (12.84)

where kO is the mapping (12.75) and µO ⊗ dt is the product on O × T of the
densities, µO, and dt.

Let’s now come back to the goal of this section as enunciated above: to show
that if γm is in the character of the irreducible representation of G with highest
weight, mβ0, the oscillatory function

γ(g, ~) = γm(g) , ~ = 1/m (12.85)

defines an element, γ(g, ~)|dg| 12 , in I0(ΛO;G) and that its symbol is a 1
2 -density

on ΛO of the form, ξρm|νO|
1
2 where ξρ is a “ 1

2 -density-to- 1
2 -form” conversion

factor and m a Maslov factor (both of which will be defined shortly). Let
Λreg = π−1(Greg). Then π : Λreg → Greg is an N to 1 covering map which
splits over Treg into the union of Lagrangian manifolds, Λw. Let fw : T → S1,
be the function, (12.83), and f the unique G-invariant function on Λreg whose
restriction to Λw is π∗fw. We will prove that on Λreg (where the mapping π is
locally a diffeomorphism at every point)

π∗(f
mξρm|νO|

1
2 ) = γ(g, ~)|dg| 12

by explicitly computing the push-forward on the left hand side and comparing it
with the expression for γm(g) given by the Weyl character formula. To perform
this computation we will first review a few elementary facts about the adjoint
representation of T on the Lie algebra, g of G.

Under this representations, g⊗C, splits into T -invariant complex subspaces

n⊕ n̄⊕ t⊗ C (12.86)

where n is a nilpotent Lie subalgebra of g ⊗ C. Moreover, n and n̄ split into
direct sums of one-dimensional subspaces

n = ⊕gα , α = αk , k = 1, . . . , d (12.87)

and

n̄ = ⊕ḡα , α = −αk , k = 1, . . . , d (12.88)

where d = dimG/T , and α is the weight of the representation of T on gα. The
αk’s are by definition the positive roots of g and the −αk’s the negative roots.
We’ll denote the set of these roots by φ and the subset of positive roots by φ+.
For α ∈ φ+ let Zα be a basis vector for gα and Z−α = Z̄α the corresponding
basis vector for g−α = ḡα. Then for X ∈ T

[X,Zα] = 2πiα(X)Zα (12.89)

and hence by Jacobi’s identity

[X, [Zα, Zβ ]] = 2πi(α+ β)(X)[Zα, Zβ ] . (12.90)
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Hence either [Zα, Zβ ] = 0 or α+ β is again a root or, for β = −α, [Zα,Zβ ] is in
t⊗ C. The sum

ρ =
1

2

∑
αk , αk ∈ φ+ (12.91)

will play an important role in the computations below as will the identities

e2πiρ
∏

(1− e−2πiαk) =
∏

(eπiαk − e−πiαk) (12.92)

and ∑
w∈W

(−1)we2πiwρ = e2πiρ
∏

(1− e−2πiαk) . (12.93)

(The first identity is obvious and the second a consequence of the fact that

wφ+ = {±α1, . . . ,±αk}

and that all possible combinations of plus and minus signs can occur.)
Now fix an element, h of T . We will begin our computation of the left hand

side of the character formula (12.85) by computing the derivative of the mapping

γh : G/T → G , gT → h−1g−1hg (12.94)

at the identity coset, p0 = eT , of G/T . If we identify Tp0 ⊗ C = g/t ⊗ C with
n+ n̄ and let h = expX we get

(dγh)p0(Zα) =
d

dt
h−1(exp−tZα)h(exp tZα)|t=0

= Ad(h)Zα − Zα

and hence by (12.88):

(dγh)p0(Zα) = (e2πiα(X) − 1)Zα . (12.95)

Next consider the mapping

γ : G/T × T → G , (gT, h)→ g−1hg .

If we let TG = G× g be the right invariant trivialization of TG and identify
the complexified tangent spaces to G/T × T at (p0, h) and to G at h with
n ⊕ n̄ + t ⊗ C the determinant of (dγ)p0 is equal, by (12.95) to |D(h)|2 where
D(h) is the Weyl product

D(h) = e2πiρ(X)
∏

(1− e−2π1αk(X)) . (12.96)

Hence at (p0, h)
γ∗ dg = |D(h)|2µG/T ⊗ dt (12.97)

where µG/T is the unique G-invariant density on G/T whose integral over G/T
is 1. Thus if we make the trivial identifications, G/T = O and µG/T = µO, note
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that γ � kO = π and recall that by definition, νO = k∗O(µO ⊗ dt) we obtain from
(12.97) the formula

π∗ dg = |D(h)|2νO (12.98)

at points on ΛO above h. Therefore at regular points, h, of T

π∗νO = |W ||D(h)|−2 dg (12.99)

since there are exactly N = |W | preimage points of h in ΛO. Thus if we take
the square root of (12.99) at each of these points we also get, for the 1

2 -density,

|νO|
1
2 ,

π∗|νO| = |W ||D(h)|−1|dg| 12 (12.100)

at regular points, h, of T .
Now let m be the function on π−1(Treg) whose restriction to Λw is the pull-

back to Λw of the function

1

|W |
|D(h)|
D(h)

(−1)w (12.101)

and let ξρ be the function on π−1(Treg) whose restriction to Λw is the pull-back
to Λw of the function

e2πi〈wρ,X〉 . (12.102)

These functions extend toG-invariant functions on Λreg and by (12.100)–(12.102)

we get for π∗ξρmf
m|νO|

1
2 the expression

D(h)−1
∑

(−1)we2πi〈w(ρ+mβO,X〉)|dg| 12 (12.103)

at points, h = expX in Treg; and by the Weyl character formula the expression

(12.103) is γm|dg|
1
2 .

Remarks

1. Another corollary of the formula (12.97) is the Weyl integration theorem
which asserts that for f ∈ L1(G)∫

f(g) dg =
1

|W |

∫
G/T

f(g−1tg) dµG/T |∆(t)|2 dt (12.104)

and, in fact, one can give a simple direct proof of the Weyl character
formula itself based solely on this identity and the identity (12.93). (See
§ .)

2. Moreover the identity (12.93) has a nice interpretation in terms of the
Weyl character formula, It says that with β0 = 0 the expression (12.102)
is equal to 1, i.e. the character of the trivial representation of G is 1.
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3. We will briefly explain what the function (12.102) has to do with Maslov
indices: At X ∈ treg, ∆(h)/|∆(h)| is equal to the product

(i)d
∏ sin αk

z (X)

| sin αk
2 (X)|

= ud(−1)σ(X) (12.105)

where
σ(X) = #{k, αk(X) > O} −#{k, αk(X) < O}

and we will see in the next section that the function

X ∈ treg → id(−1)σ(X)

can be interpreted as a section of the Maslov line bundle on ΛO|T .

12.9 The Kirillov character formula

The fibration, π : ΛO → G is just a finite-to-one covering map over points of
Greg, so locally, at any point, g ∈ Greg, each sheet, Λw, of this covering map is
the graph of a one-form, dϕw, and this ϕw can be taken to be the generating
function for ΛO in a neighborhood of g. However over the identity element, π
degenerates and the pre-image of e becomes the whole orbit, O so this naive
recipe no longer works. Nonetheless, there is still a simple description of ΛO at
e in terms of generating functions.

Theorem 77. Let ϕ : O × g → R be the function ϕ(β,X) = β(X). Then via
the identification

O × g→ O ×G , (β,X)→ (β, expX) (12.106)

ϕ becomes a generating function for ΛO, locally near e, with respect to the
fibration, O ×G→ G.

Remark

The qualification “locally near e” is necessary because exp is only a diffeo-
morphism in a neighborhood of e; however the open set on which this theorem
is true turns out, in fact, to be a rather large open neighborhood of e.

To prove this result fix an X ∈ g and let `X : O → R be the function,
`X(β) = ϕ(β,X) = β(X). We will first prove

Lemma 8. `X is a Bott–Morse function whose critical set is the set

{β ∈ O , ad(X)∗β = 0} . (12.107)

Proof. (d`X)β = 0 iff, for all Y ∈ g

ad(Y )∗β(X) = 0 . (12.108)
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But ad(Y )∗β(X) = −β([Y,X]) and −β([Y,X]) = ad(X)∗β(Y ). This proves the
lemma.

To prove the theorem let Cϕ be the critical set of this generating function.
Then Cϕ intersects the fiber above g = expX in the critical set of `X which, by
the lemma is just the set

{β ∈ O , (Ad)∗(g)β = β} . (12.109)

Hence by (12.80) the inclusion map Cϕ → T ∗G maps Cϕ onto ΛO.

Let µO be the symplectic volume form on O. Then since λm(g) = γ(g, ~),
~ = 1/m, is in the space of oscillatory functions, I0(ΛO, G) there exists an
amplitude, a(β,X, ~), defined locally near X = 0 such that

γm(expX) =

∫
a(β,X, ~)e2πimϕ(β,X)µO . (12.110)

Kirillov’s theorem ([Ki]) is the following explicit formula for this amplitude.
Let γρ : O × g→ S1 be the function

γρ(β,X) = e2πi〈Ad(g)∗ρ,X〉 (12.111)

where the “g” in the expression on the right is the unique element of G modT
satisfying β = Ad(g)∗βO. Also let v(α), for α ∈ t∗, be the symplectic volume of
the coadjoint orbit through α and let j(X) be the square root of the Jacobian
at X of the exponential map, g→ G. Then for ~ = 1/m

a(β,X, ~) = j(X)−1 v(ρ+mβ0)

v(β0)
γρ(β,X) . (12.112)

Note by the way that

v(ρ+mβ0)

v(β0)
= ~−d(1 +O(h)) (12.113)

where 2d = dimO and hence by (8.1) the oscillatory integral (12.110) is in fact
in I0(ΛO;G). We won’t attempt to prove this result but we will show how to
get from it a concrete description of the Maslov factor in the symbol of γ(g, ~)
on ΛO.

We first note that for X ∈ treg, the critical points of `X are, by (12.82) and
the lemma, just the points, wβ0, w ∈W . Identifying the tangent space to O at
β0 with g/t we will prove

Lemma 9. The Hessian, (d2`X)β0 , of `X at β0 is the bilinear form

(Y, Z) ∈ g/t→ β0([Y, [Z,X]]) . (12.114)
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Remark

Since Ad(X)∗β0 = 0

0 = β0([Y,Z], X)

= β0([Y, [Z,X]])− β0([Z, [Y,X]])

so the bilinear form (12.114) is symmetric.
Proof of the lemma: By definition

(d2`X)β0
(Y,Z) = (ad(Y )∗ ad(Z)∗β0)(X)

= β0(ad(Z)(adY )X)

= β0([Z, [Y,Λ]]) .

2

By (12.86) we can identify g/t ⊗ C with n ⊕ n̄ and take as basis vectors of
n the vectors, Zα, α ∈ φ+. We then get by (12.86)

(d2`X)β0(Zα, Z̄β) = 0 (12.115)

if α 6= β and
(d2`X)β0

(Zα, Z̄α) = 2πα(X)β0(Xα) (12.116)

where
Xα =

√
−1[Zα, Z̄α] ∈ t . (12.117)

However (see for instance [FH])

β0 ∈ Int∗+ ⇔ β0(Xα) > 0 for all α ∈ φ∗ .

Hence by (12.116) we get for the signature of (d2`X)β0
the expression

2(#{α ∈ φ+, α(X) > 0} −#{α ∈ φ2, α(X) < 0}) (12.118)

and hence

exp i
Π

4
sgn(d2`X)β0

= id
Π sin 2πα(X)

π| sin 2πα(X)|
(12.119)

for points X ∈ treg close to X = 0. But for g = expX, the right hand side is
D(g)/|D(g)| where D(g) is the Weyl denominator (12.96). Thus finally

exp
iπ

4
sgn(d2`X)β0

=
D(g)

|D(g)|
. (12.120)

A similar computation shows that

exp
iπ

4
sgn(d2`X)wβ0

=
D(g)

|D(g)|
(−1)w . (12.121)

Thus the right hand side of (12.121) is just the value of the function m (in our

formula in §12.8) for the symbol of γ(g, h)|dg| 12 ) at the points (g, β0) of ΛO
above g ∈ Treg and the left hand side is the formula for the Maslov factor in
this symbol at these points as defined in § refsec8.5
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12.10 The GKRS character formula.

We will next show that Kirillov’s theorem gives a generating function description
of ΛO at arbitrary points of ΛO. To see this let k0 be an element of G (which,
without loss of generality we can assume to be in T ) and let K be its centralizer
in G. Then T is contained in K and the normalizer, NK(T ) of T in K is
contained in the normalizer, N(T ), of T in G; so one gets an inclusion of Weyl
groups:

WK = NK(T )/T → N(T )/T = W

and to each right coset, WKw, in W a K-orbit

OwK = Kwβ0 (12.122)

in O. As we saw in §12.8 the union of these K orbits is the preimage of k0

in ΛO. We will, for the moment, view (12.122) as sitting inside k∗ and apply
(a slightly modified version of) the Kirillov theorem to it. More explicitly: the
mapping, X ∈ k→ (expX)k0 ∈ K, is a diffeomorphism of a neighborhood of 0
in k onto a neighborhood, U0 of k0 in K, and since k0 is in the center of K the
function

φw : OwK × U0 → R (12.123)

defined by the pairing

φw(β, k) = 〈β, exp−1(kk−1
0 )〉 (12.124)

is a generating function for the character Lagrangian, ΛOwK → K over the neigh-
borhood, U0 of k0. Now let C(k0) be the conjugacy xlass of k0 in G and for each
g ∈ C(k0) let Kg be the group gKg−1, let Owg = Ad(g)∗OwK be the coadjoint
orbit of Kg corresponding to OwK , let Ug = gU0g

−1, let Zwg = Owg × Ug and let

ϕwg : Zwg → R (12.125)

be the function, ϕwg (β, u) = ϕw(Ad∗(g−1)β, g−1ug). Then ϕwg is a generating
function for the character Lagrangian of Owg with respect to the fibration

Zwg = Owg × Ug
πw→ Ug . (12.126)

One can easily amalgamate all these data into a single set of generating data
for ΛO on a neighborhood, U , in G of C(k0). Namely let Zw be the disjoint
union of the Zwg ’s, let U be the disjoint union of the Ug’s, let πw : Zw → U
be the fiber mapping whose restriction to Zwg is the projection (12.126) and let
φw : Zw → R be the function whose restriction to Zwg is the function (12.125).
We claim that

Theorem 78. ϕw is a generating function for the component of ΛO above U
containing wβ0.
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Proof. This is an immediate consequence of the fact that, restricted to the set,
π−1(Ug) = Owg × Ug, ϕw is a generating function for the character Lagrangian
of the coadjoint orbit, Owg , in kg.

Example

If we take k0 to be an element of Treg, K = T , OwK = wβ0, and the description
of Λ0 that we get from this theorem is just our description of Λreg in §12.8.

This result can be viewed as a semi-classical formulation of a well-known
result of Gross–Kostant–Ramond–Sternberg. (See [GKRS] and [Ko].) To de-
scribe their result and its connection with the construction above, we will begin
by making a careful choice of the representative, “w” in the right coset, WKw, of
WK\W ; i.e. the w involved in the definition of the coadjoint K-orbit (12.122).
If w0 is any element of this coset, then there exists a unique w1 ∈ WK such
that w1w0β0 is a dominant weight of the group, K, i.e. sits inside the interior
of the positive Weyl chamber (t∗K)+ of t∗. Thus letting w = w1w0, there exists
a unique w in the coset WKw such that wβ0 is a dominant weight of K. In fact
the same is true for the weights

mwβ0 + wρ− ρK (12.127)

where 2ρK is the sum of the positive roots of K and m = 1/h is a positive
integer. Let γwK(k, ~) be the character of the irreducible representation of K
with weight (12.127). Then the GKRS theorem asserts that for k ∈ T the
character of the irreducible representation of G with highest weight, mβ0, is
expressible in terms of these characters by the simple identity

γ(k, ~) =
1

∆

∑
(−1)wγwK(k, ~) (12.128)

where
∆ =

∏
eπiα − e−πiα , α ∈ Φ+ (12.129)

and φ+ is the set of positive roots of G that are not positive roots of K. Thus,
locally near k = k0 in T , the summands in (12.128) are given by oscillatory
integrals associated with the fibration (12.123) and the generating functions
(12.112), and the amplitudes in the oscillatory integrals are given by K ana-
logues of the amplitude (12.112) in the Kirillov formula.

12.11 The pseudodifferential operators on line
bundles

In their article, “Sur la formule des traces”,[PU] Thierry Paul and Alejandro
Uribe develop an approach to the theory of semi-classical pseudodifferential op-
erators which involves identifying the algebra of semi-classical pseudodifferential
operators on a manifold, X, with the algebra of S1-invariant classical pseudodif-
ferential operators on X×S1. Their idea is the following: Let X, for simplicity,
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be Rn and let A
(
x, ∂∂x ,

∂
∂θ

)
be an invariant mth order pseudodifferential differ-

ential operator having, as in §9.2, a polyhomogeneous symbol

a(x, ξ, τ) =
∑

aj(x, ξ, τ) , ∞ < j < m , (12.130)

τ being the dual variable to the angle variable, θ on S1. Then, for functions of
the form, f(x)eikθ

~mA(feikθ) =

(
A~

(
x,

∂

∂x

)
f

)
eikθ (12.131)

where ~ = 1/k and

A~

(
x,

∂

∂x

)
f = ~m

(
1

2πh

)n ∫
a(x, ξ(~, 1/~)e

i(x−y)·ξ
h f(y) dy dξ (12.132)

is a zeroth order semi-classical pseudodifferential operator with leading symbol

am(x, ξ, 1) (12.133)

where am(x, ξ, τ) is the leading symbol of A. The definitions (12.131) and
(12.132) set up a correspondence between classical pseudodifferential operators
on Rn × S1 and semi-classical pseudodifferential operators on Rn, and in [PU],
Paul and Uribe use this correspondence to give a classical proof of the semi-
classical trace formula that we discussed in §11.5.3.

We will show below that their approach adapts nicely to the theory of pseu-
dodifferential operators on line bundles: Let L → X be a complex line bundle
on X, 〈 , 〉 : L → R, a Hermitian inner product on L, and P ⊂ L the unit
circle bundle associated with 〈 , 〉. Let Γ(L) denote the space of smooth sec-
tions of L. Then the correspondence (12.131)–(12.132) can be converted into a
correspondence which associates to an S1-invariant classical pseudodifferential
operator

A : Γ(L)→ Γ(L) (12.134)

(a family of classical pseudodifferential operators

Ak : Γ(Lk)→ Γ(Lk), (12.135)

and these, in turn, can be viewed as a semi-classical pseudo-differential operator
A~, ~ = 1/k.

To see this, we will begin by identifying Γ(Lk) with the space C∞k (P ) of
functions on P which have the transformation properties

f(eiθp) = eikθf(p) , . (12.136)

Now let A be an mth order S1-invariant classical pseudodifferential operator on
P and define A~ to be the operator

A~ = ~mA|C∞k (P ) , k = 1/~ . (12.137)
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Locally the operators, A and A~ look like the operators (12.131) and (12.132).
Namely let U be an open subset of X and P |U = U × S1 a trivialization of
P over U . Then on U , A is a classical pseudodifferential operator of the form
(12.131), A~ is the operator (12.131), and its symbol is defined by the expression
(??). The global definition of its symbol, however, is a little trickier: From the
action of S1 on P one gets a Hamiltonian action of S1 on T ∗P with moment
map

(p, η) ∈ T ∗P φ→ 〈η,
(
∂

∂θ

)
p

〉 . (12.138)

Let
(T ∗P )red = φ−1(1)/S1 (12.139)

be the symplectic reduction of T ∗P at φ = 1. Then since A is S1 invariant its
leading symbol, σ(A) : T ∗P → C, is also S1 invariant so the restriction

σ(A)|φ−1(1) = σ(A~) (12.140)

is in fact a function on (T ∗P )red and this we will define to be the symbol
of A~. (Note that if PU = U × S1 is a trivialization of P then by (12.138)
, (T ∗PU )red = T ∗U and the definition, (12.140) coincides with the definition
(??).)

This correspondence between A and A~ is particularly easy to describe if A
is a differential operator. In this case the restriction of A to U is of the form

A =
∑

|µ|+r=m

aµ,r(x)

(
1

i

∂

∂θ

)r
Dµ
x (12.141)

and A~ is the operator

m∑
j=0

hi
∑

|µ|+r+j=m

aµ,r(hDX)µ . (12.142)

One can get a more intrinsic description of these operators by equipping L with
a connection

O : C∞(L)→ C∞(L⊗ T ∗X) . (12.143)

This connection extends to a connection

O : C∞(Lk)→ C∞(Lk ⊗ T ∗X) (12.144)

with the property: Osk = ksk−1Os, and in particular if s : U → P is a trivial-
izing section of L and v a vector field on U , the operator

1

i
Ov : C∞(Lk)→ C∞(Lk) (12.145)

is given locally on U by the expression:

~
i
Ovfs

k =
~
i

(Lvf + kavf)sk (12.146)
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where by (12.2 ) and (12.7)

av =
1

i
〈Os
s
, v〉 = 2π〈s∗α, v〉 . (12.147)

More generally, every semi-classical differential operator of order m

A~ : C∞(Lk)→ C∞(Lk) , k = 1/h

can be written, intrinsically, or a coordinate patch, U as an operator of this
form:

A~ =

m∑
j=0

~j
∑

µ+j+r=m

aµ,r(x)

(
~
i
O∂/∂x

)µ
(12.148)

as one can see by letting s : U → P be a local trivialization of P and comparing
the operator

s−kA~s
k =

m∑
j=0

~j
∑

|µ|+j+r=m

aµ,r(~DX + 〈s∗α, ∂/∂x〉)µ (12.149)

with the operator (12.142).
We have seen that the symbols of these semi-classical operators live globally

on (T ∗P )red; however, we will show below that these symbols can be thought
of as living on the usual tangent bundle of X. However, the price we will
have to pay for this is that we will have to equip this tangent bundle with a
non-standard symplectic form. We first observe that the zero level set of the
moment mapping (12.138) is just the pull-back, π∗T ∗X, of T ∗X with respect
to the fibration, π : P → X, i.e. each point (p, η) on this level set is of the
form, η = (dπ)∗pξ for some ξ ∈ T ∗π(p). Thus the reduced space φ−1(0)/S1 can be
canonically identified with T ∗X.

Now let α be the connection form on P , let β = 2πα and let

γβ : T ∗P → T ∗P (12.150)

be the map,
(p, η)→ (p, η + βp) .

Since 〈β, ∂/∂θ〉 = 1 this map maps the zero level set of the moment map (12.138)
onto the level set, φ = 1. Moreover if ω is the symplectic form on T ∗P

γ∗βω = ω + π∗P dβ (12.151)

where πP : T ∗P → P is the cotangent fibration. Thus if curv(O) is the curvature
form of the connection, O, and νX = 2π curv(O), dβ = π∗νX and

γ∗βω = ω + (π ◦ πP )∗νX . (12.152)

Moreover, since γβ is S1 invariant and maps the level set φ−1(0) onto the level
set φ−1(1), it induces a map of φ−1(0)/S1 onto φ−1(1)/S1, i.e. a diffeomprphism

ρβ : T ∗X → (T ∗P )red (12.153)
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and by (12.152) this satisfies

ρ∗βωred = ωX + π∗XνX (12.154)

where ωX is the standard symplectic form on T ∗X and πX : T ∗X → X is the
cotangent fibration of X. In other words (T ∗P )red with its natural “reduced”
symplectic form is symplectomorphic to T ∗X with its “α-twisted” symplectic
form (12.154). Via this isomorphism we can think of the symbol of a semi-
classical pseudodifferential operator of type (12.141) as being a function on
T ∗X; however if we want to compute the Hamiltonian flow associated with this
symbol we will have to do so with respect to the symplectic form, (12.154), not
with respect to the usual symplectic form on T ∗X.

12.12 Spectral properties of the operators, A~

In the last two sections of this chapter we will describe some applications of
the results of earlier sections to spectral theory. In this section we will show
how to extend the trace formula of chapter 10 to operators of the form (12.137)
and in the next section show how to reformulate this result as a theorem in
“equivariant” spectral theory for circle actions on manifolds. We will then make
use of the semi-classical version of the Weyl character formula that we proved
in §12.8 to generalize this theorem to arbitrary compact Lie groups. As above
let A : C∞(P ) → C∞(P ) be a classical mth order pseudodifferential operator.
We will assume in this section that A is selfadjoint and elliptic and we will also
assume, for simplicity, that X is compact. Since A is selfadjoint its symbol is
real valued and ellipticity implies that, for fixed x, |σ(A(x, ξ))| → +∞ as ξ tends
to infinity. Therefore if PU = U × S then on U , the leading terms, a0(x, ξ, τ),
in (12.130) satisfies

|a0(x, ξ, τ)| ≥ C(|ξ|2 + |τ |2)m/2 (12.155)

for some positive constant C. Hence since the operator

A~ = ~mkA|C∞k (P ) (12.156)

is a standard semi-classical pseudodifferential operator of the form (12.132) on
U with symbol a0(x, ξ, 1) its symbol satisfies an estimate of the form

|σ(A~)(x, ξ| ≥ C(|ξ|2 + 1)m/2 (12.157)

on U . Finally, the assumption that X is compact implies that A has discrete
spectrum: there is an orthonormal basis, ϕj , of L2(X) with ϕj ∈ C∞(X) and

Aϕj = λjϕj . (12.158)

the λj ’s tending to infinity as j tends to infinity. Thus, if f is in C∞0 (R) the
operator f(A) is the finite rank smoothing operator

f(A)ϕk = f(λk)ϕk . (12.159)
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It follows that similar assertions are true for the restriction of A to C∞k (P )
and hence for the semi-classical operator

A~ = ~mA|C∞k (P ) , ~ = 1/k .

In particular the operator

f(A~) = f(~mA)|C∞k (P ) (12.160)

is a finite rank smoothing operator. Moreover, the restriction to U of f(A~)
has to coincide with the operator f(A~|U) so by the results of §10, its Schwartz
kernel is of the form(

1

2π~

)n ∫
f(σ(A(x, ξ)))aU (x, ξ, h)e

i(x−y)·ξ
~ dξ (12.161)

with

aU (x, ξ, ~) ∼
∞∑
`=0

a`,U (x, ξ)~` (12.162)

and aU (x, ξ, 0) = 1.
Now let Uj , j = 1, . . . , N be an open cover of X by coordinate patches such

that, for each j, P |Uj ' Uj × S1 and let ρj and χj be functions in C∞0 (Uj)
with the property,

∑
ρj = 1, and χj ≡ 1 on the support of ρj . Then, by

pseudolocality,

f(A~) =
∑

χjf(A~|Uj)ρj (12.163)

modO(~∞); so modulo O(~∞), the trace of f(A) is given by the sum

(2πh)−n
∑
j

∫
f(σ(A)(x, ξ))ρj(x)aUj (x, ξ) dx dξ (12.164)

and hence admits an asymptotic expansion

trace f(A~) ∼ (2π~)−n
∞∑
r=0

Cr~‘r (12.165)

with leading term

c0 =

∫
(T∗P )red

f(σ(A))µ (12.166)

where µ is the symplectic volume form on (T ∗P )red. In particular one easily
deduces from this the Weyl estimate

Nh(I) ∼ (2πh)−n vol(σ(A)−1(I)) (12.167)

where I is any bounded sub-interval of R, and Nh(I) the number of eigenvalues
of A~ on I. Translating this back into an assertion about A this gives us the
estimate (12.167) for the number of eigenvalues of the operator, A|C∞k (P ) lying
on the interval, kmI.
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12.13 Equivariant spectral problems in semi-
classical analysis

Let X be a manifold, G a compact connected Lie group and τ : G→ Diff(X)
a C∞ action of G on X. Suppose that

A : C∞0 (X)→ C∞(X)

is a self-adjoint operator, e.g. a classical or semi-classical pseudodifferential
operator which commutes with this action, and suppose, for simplicity, that the
spectrum of A is discrete. Then for each eigenvalue λ, one gets a representation
ρλ, of G on the corresponding eigenspace

Vλ = {ϕ ∈ C∞(X) , Aϕ = λϕ}, (12.168)

and the equivariant spectrum of A is, by definition, the set of data

{(λ, ρλ) ; λ ∈ Spec(A)} . (12.169)

For instance if G is S1 the equivariant spectrum consists of the eigenvalues of
A plus, for each eigenvalue, λ, a list

m(λ, k) , −∞ < k <∞ (12.170)

of the multiplicities with which the irreducible representations, ρk = eiθk, of S1

occur as subrepresentations of ρλ. An example is the operator, A : C∞(P ) →
C∞(P ), in §12.12 whose equivariant spectrum is the spectrum

λ1(h) λ2(h), . . . , h = 1/k

of the operator A|C∞k (P ), i.e. a formatted version of the usual spectrum of A
in which we keep track of the dependence on k.

In equivariant spectral theory one is concerned with the same basic problem
as in ordinary spectral theory: to extract geometric information from the data,
(12.169); however, one has a larger arsenal of weapons at one’s disposal for doing
so; for instance, for A a semi-classical pseudodifferential operator of order zero,
one has twisted versions:

trace(τ∗g e
−tAh) , g ∈ G

of the heat trace invariants that we discussed in chapter 10, and twisted versions

trace
(
τ∗g e

iAh
h

)
, g ∈ G

of the wave trace invariants that we discussed in chapter 11. To cite another
example: for the operator, A, in §11, one can consider in addition to its usual
heat-trace invariants the more sophisticated heat trace invariants (12.165).
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The goal of this section will to be to generalize the trace formula (12.165)-
(12.166) viewed in this light (i.e. viewed as a theorem about equivariant spectra)
to groups other than S1. More explicitly we will let X be a compact G-manifold,
Ah : C∞(X)→ C∞(X), a G-equivariant semi-classical pseudodifferential opera-
tor of order zero and ρkα the irreducible representation of G with highest weight,
kα, and will prove an analogue of the formulas (12.165)-(12.166) involving the
spectral data,

λ,m(kα, λ) , λ ∈ Spec(A~) (12.171)

where h = 1/k and m(kα, λ) is the multiplicity with which ρkα occurs in Vλ.
Our main result will be a trace formula for the operator∫

τ∗g (A~)γkα(g) dg (12.172)

where γkα is the Weyl character of the representation, ρkα. To prove this result
we will make crucial use of the fact that γkα can be viewed as an element

γ~(g) ∈ I0(G,ΛO) , ~ = 1/k

where O is the coadjoint orbit through α. To keep the exposition below from
getting too unwieldy we will henceforth make the following simplifying assump-
tions.

1. A~ is self-adjoint as an operator on L2(X).

2. For some open subinterval, I, of R σ(A~)−1(I) is compact.

3. O is a generic coadjoint orbit of G, i.e. dimO = dimG− dimT .

4. Let Φ : T ∗X → g be the moment map associated with the lifted action of
G on T ∗X. Then G acts freely on the preimage

Σ = Φ−1(O) . (12.173)

Concerning this last hypothesis we note that if G acts freely on Σ then the
reduced space

(T ∗X)O = Σ/G (12.174)

is well-defined. We will denote by µO its symplectic volume form and by σ(A)red

the reduced symbol of A~: the function on (T ∗X)O defined by

ι∗Σσ(A~) = π∗Σσ(Ah)red (12.175)

where ι∑ is the inclusion of
∑

into T ∗X and π∑ the projection of
∑

onto
(T ∗X)O. (This is well-defined since σ(A~) is G-invariant.) With this notation
we will prove



12.13. EQUIVARIANT SPECTRAL PROBLEMS IN SEMI-CLASSICAL ANALYSIS349

Theorem 79. For f ∈ C∞0 (I) the trace of the operator (12.171) admits an
asymptotic expansion

(2π~)−m
∞∑
k=0

ck~k (12.176)

where m = dimX − 1
2 (dimT + dimG) and

c0 =

∫
(T∗X)O

f(σ(A~)red)µred . (12.177)

As a first step in the proof we will prove

Lemma 10. Let Q ∈ Ψ0(X) be a semi-classical zeroth order pseudodifferential
operator with compact microsupport. The the Schwartz kernel of the operator,
τ∗gQ, viewed as an oscillatory function on X×X×G, is an element of the space
I−n(Γτ ; X × X × G) where Γτ is the moment Lagrangian associated with the
lifted action of G on T ∗X.

Proof. We recall that if X and Y are manifolds and f : X → Y a C∞ map, this
map lifts to a canonical relation

Γf : T ∗X → T ∗Y

with the defining property: (x, ξ, y, η) ∈ Γf iff y = f(x) and ξ = (dfx)∗ν. We
pointed out in §12.5 that for the map

τ : X ×G→ X , (x, g)→ τg(x)

Γτ is just the moment Lagrangian, and we get the lemma above by applying
this observation to τ∗Q.

We now turn to the proof of the theorem:

Proof. Let M = T ∗X, and, by rearranging factors, regard Γτ as being the usual
moment canonical relation

Γτ : M− ×M → T ∗G . (12.178)

Then by the lemma the operator

LQ : C∞(G)→ C∞(X ×X) (12.179)

mapping ϕ to
∫
τ∗gQϕ(g) dg is a semi-classical Fourier integral operator quan-

tizing the canonical relation

Γ† : T ∗G→M− ×M ,

and the trace operator

trace : k(x, y) ∈ C∞(X ×X)→
∫
k(x, x) dx
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is a semi-classical Fourier integral operator quantizing the canonical relation,

∆† : M ×M → pt. .

Thus with Q = f(A) the expression (12.171) can be interpreted as the operator,
trace ◦LQ applied to γ~(g) ∈ I0(ΛO, G). But a point (p, q) ∈ M × M is in
Γt ◦ ΛO iff

(a) q = τ∗g p

(b) φ(p) ∈ O
and

(c) Ad(g)∗φ(p) = φ(p)

and such a point is in ∆† : M ×M → pt. iff, in addition

(d) p = q.

However, by (b), p is in φ−1(O), and since G acts freely on φ−1(O)

(e) g = e.

Thus the canonical relations

Γ† ◦ ΛO : pt.→M− ×M
and

∆† : M− ×M → pt.

compose cleanly and by the clean composition formula of chapter 8 §8.13, the
expression

trace

∫
τ∗gQ~(g) dg (12.180)

is an element of I−m(pt.) i.e. a formal power series

c(h) = (2π~)−m
∑

ck~k (12.181)

whose leading symbol can be computed by the “clean” symbol calculus of chap-
ter 8, i.e. as a symbolic integral over the fibers of the fibration

(∆t) ? (Γt ◦ ΛO)→ ∆† ◦ Γ† ◦ ΛO . (12.182)

But since ∆t◦Γt◦ΛO = pt., this becomes an integral over the space ∆†?(Γt◦ΛO)
itself, i.e. over the set

{(p, p) ∈M− ×M , p ∈ Σ} . (12.183)
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In other words the symbol, c0, of the series (12.181) can be computed by a
symbolic computation only involving the symbols of Q restricted to the set, Σ
and of γ~ restricted to the set

{g ∈ G , τ∗g p = p , for some p ∈ Σ} , (12.184)

and by condition (e) this is just the set {e}. Thus this symbolic integral over
(12.182) only involves the symbol of γ~ restricted to the fiber, O, of ΛO above
e ∈ G; and by the Kirillov formula this is just the symplectic volume form,
µO, on O; i.e. doesn’t involve the complicated Maslov factors in the expression
(12.105). From this one easily deduces that the integral over ∆t ∗ (Γt ◦ ΛO) in
the clean composition formula for symbols that we cited above gives us for the
symbol of the expression

trace

∫
τ∗gQγh(g) dg

the integral ∫
∑ ι∗∑σ(Q) dg(π∑)∗µred (12.185)

which in the case of Q = f(Ah) reduces the integral (12.177).

From this result we get the following generalization of the Weyl law (12.167):

Theorem 80. Let λi(~), i = 1, . . . , ` be the eigenvalues of A~ lying on the in-
terval I and let VI be the sum of the corresponding eigenspaces and N~(I) the
multiplicity with which the representation ρmα, m = 1/~ occurs as a subrepre-
sentation of the representation of G on VI . Then

N~(I) ∼ (2π~)−m vol
(
σred(A)−1(I)

)
. (12.186)
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Chapter 13

Spectral theory and Stone’s
theorem.

In this chapter we gather various facts from functional analysis that we use, or
which motivate our constructions in Chapter ??. All the material we present
here is standard, and is available in excellent modern texts such as Davies, Reed-
Simon, Hislop-Sigal, Schecter, and in the classical text by Yosida. Our problem
is that the results we gather here are scattered among these texts. So we had to
steer a course between giving a complete and self-contained presentation of this
material (which would involve writing a whole book) and giving a bare boned
listing of the results.

We also present some results relating semi-classical analysis to functional
analysis on L2 which allow us to provide the background material for the results
of Chapters 9-11. Once again the material is standard and can be found in the
texts by Dimassi-Sjöstrand, Evans-Zworski, and Martinez. And once again we
steer a course between giving a complete and self-contained presentation of this
material giving a bare boned listing of the results.

The key results are:

• The spectral theorem for self-adjoint operators. We will recall the
somewhat subtle definition of a self-adjoint operator on a Hilbert space
below. The spectral theorem then (in functional calculus form) allows the
construction of an operator f(A) for any self-adjoint operator A, and for
a reasonable class of functions f on R. The map f 7→ f(A) is to be linear,
multiplicative, and take complex conjugation into adjoint, i.e. f 7→ f(A)∗.
(The map f 7→ f(A) should be non-trivial and unique in an appropriate
sense.) For the full spectral theorem, we want the class of functions to
include the bounded Borel measurable functions on R. For our purposes it
is enough to have such a functional calculus for functions belonging to the
Schwartz space S(R), or even for smooth functions of compact support.

• Stone’s theorem. This has two parts: 1) Given any self-adjoint operator

353
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A, the family U(t) = exp itA is a unitary one parameter group of trans-
formations. This is an immediate consequence of the spectral theorem
if the class of functions in the functional calculus includes the functions
x 7→ eitx as is the case for the full spectral theorem. 2) Conversely, given
a unitary one parameter group U(t), its infinitesimal generator (see below
for the definition) is self-adjoint.

Starting from Stone’s theorem, one can get the functional calculus for
functions in the Schwartz space S(R) by a straightforward generalization
of the formula for the inverse Fourier transform, namely by setting

f(A) =
1√
2π

∫
f̂(t)U(t)dt

where f̂ is the Fourier transform of f . So it is desirable to have a proof
(and formulation) of Stone’s theorem independent of the spectral theo-
rem. In fact, Stone’s theorem is a special case of the Hille-Yosida theorem
about one-parameter semi-groups on Frechet spaces and their infiinites-
imal generators. So we discuss the Hille-Yosida theorem and its proof
below.

One of the main efforts and tools in Chapters ?? is to provide and use a
semi-classical version of Stone’s theorem.

• The Dynkin-Helffer-Sjöstrand formula. We stated this formula,
namely

f(P ) := − 1

π

∫
C

∂f̃

∂z
R(z, P )dxdy, (10.2)

in Chapter 10. In fact, it is an immediate consequence of the multiplication
version of the spectral theorem.

The Dynkin- Helffer-Sjösrand formula allows one to show that if H is a
self adjoint operator associated to a pseudo-differential operator with real
Weyl symbol p, then for f ∈ C∞0 (R), the operator f(H) provided by the
functional calculus is associated to f(p).

• The Calderon-Vallaincourt theorem. This says that if P is a semi-
classical pseudo-differential operator satisfying appropriate conditions, it
extends to a family of bounded operator on L2 whose L2 bounds are given
in terms of the sup norms of a finite number of derivatives of p.

13.1 Unbounded operators, their domains, their
spectra and their resolvents.

13.1.1 Linear operators and their graphs.

Let B and C be Banach spaces. We make B ⊕ C into a Banach space via

‖{x, y}‖ = ‖x‖+ ‖y‖.
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Here we are using {x, y} to denote the ordered pair of elements x ∈ B and
y ∈ C so as to avoid any conflict with our notation for scalar product in a
Hilbert space. So {x, y} is just another way of writing x⊕ y. A subspace

Γ ⊂ B ⊕ C

will be called a graph (more precisely a graph of a linear transformation) if

{0, y} ∈ Γ ⇒ y = 0.

Another way of saying the same thing is

{x, y1} ∈ Γ and {x, y2} ∈ Γ ⇒ y1 = y2.

In other words, if {x, y} ∈ Γ then y is determined by x.

In the language of ¶ 3.3.5 Γ is a graph if it co-injective as a relation.

The domain and the map of a graph.

So let

D(Γ) denote the set of all x ∈ B such that there is a y ∈ C with {x, y} ∈ Γ.

Then D(Γ) is a linear subspace of B, but, and this is very important, D(Γ) is
not necessarily a closed subspace. We have a linear map

T (Γ) : D(Γ)→ C, Tx = y where {x, y} ∈ Γ.

The graph of a linear transformation.

Equally well, we could start with the linear transformation: Suppose we are
given a (not necessarily closed) subspace D(T ) ⊂ B and a linear transformation

T : D(T )→ C.

We can then consider its graph Γ(T ) ⊂ B ⊕ C which consists of all

{x, Tx}, x ∈ D(T ).

Thus the notion of a graph, and the notion of a linear transformation defined
only on a subspace of B are logically equivalent. When we start with T (as
usually will be the case) we will write D(T ) for the domain of T and Γ(T ) for
the corresponding graph.

There is a certain amount of abuse of language here, in that when we write
T , we mean to include D(T ) and hence Γ(T ) as part of the definition.
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13.1.2 Closed linear transformations.

A linear transformation is said to be closed if its graph is a closed subspace of
B ⊕ C.

Let us disentangle what this says for the operator T . It says that if fn ∈ D(T )
then

fn → f and Tfn → g ⇒ f ∈ D(T ) and Tf = g.

This is a much weaker requirement than continuity. Continuity of T would say
that fn → f alone would imply that Tfn converges to Tf . Closedness says that
if we know that both

fn converges and gn = Tfn converges to g

then we can conclude that f = lim fn lies in D(T ) and that Tf = g.

13.1.3 The resolvent, the resolvent set and the spectrum.

The resolvent and the resolvent set .

Let T : B → B be an operator with domain D = D(T ). A complex number z
is said to belong to the resolvent set of T if the operator

zI − T

maps D onto all of B and has a bounded inverse. We denote this bounded
inverse by R(z, T ) or Rz(T ) or simply by Rz if T is understood. So

R(z, T ) := (zI − T )−1 maps B → D(T )

and is bounded. R(z, T ) is called the resolvent of T at the complex number z.

The spectrum.

The complement of the resolvent set is called the spectrum of T and is denoted
by spec(T ).

Theorem 81. The set spec(T ) is a closed subset of C. In fact, if z 6∈ spec(T )
and c := ‖R(z, T )‖ then the spectrum does not intersect the disk

{w ∈ C| |(w − z)| < c−1}.

For w in this disk

R(w, T ) =

∞∑
0

(−(w − z))nR(z, T )n+1

and so is an analytic operator valued function of w. Differentiating this series
term by term shows that

d

dz
R(z, T ) = −R(z, T )2.
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Proof, part 1. The series given in the theorem certainly converges in
operator norm to a bounded operator for w in the disk. For a fixed w in the
disk, let C denote the operator which is the sum of the series. Then

C = R(z, T )− (w − z)R(z, T )C.

This shows that C maps B to D(T ) and has kernel equal to the kernel of R(z, T )
which is {0}. So C is a bounded injective operator mapping B into D. Also

C = R(z, T )− (w − z)CR(z, T )

which shows that the image of R(z, T ) is contained in the image of C and so
the image of C is all of D.

Proof, part 2.

C :=

∞∑
0

(−(w − z))nR(z, T )n+1.

If f ∈ D and g = (zI − T )f then f = R(z, T )g and so Cg = f − (w− z)Cf and
hence

C(zf − Tf) = f − (w − z)Cf

or

C(−Tf) = f − wCf so C(wI − T )f = f

showing that C is a left inverse for wI − T . A similar argument shows that it
is a right inverse. So we have proved that the series converges to the resolvent
proving that the resolvent set is open and hence that the spectrum is closed.
The rest of the theorem is immediate. 2

A useful lemma.

Lemma 11. If T : B → B is an operator on a Banach space whose spectrum
is not the entire plane then T is closed.

Proof. Assume that R = R(z, T ) exists for some z. Suppose that fn is a
sequence of elements in the domain of T with fn → f and Tfn → g. Set
hn := (zI − T )fn so

hn → zf − g.

Then R(zf − g) = limRhn = lim fn = f . Since R maps B to the domain of
T this shows that f lies in this domain. Multiplying R(zf − g) = f by zI − T
gives

zf − g = zf − Tf

showing that Tf = g.
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13.1.4 The resolvent identities.

The first resolvent identity.

Let z and w both belong to the resolvent set. We have

wI − T = (w − z)I + (zI − T ).

Multiplying this equation on the left by Rw gives

I = (w − z)Rw +Rw(zI − T ),

and multiplying this on the right by Rz gives

Rz −Rw = (w − z)RwRz.

It follows (interchanging z and w) that RzRw = RwRz, in other words

all resolvents Rz commute with one another.

So we can write the preceding equation as

Rz −Rw = (w − z)RzRw. (13.1)

This equation, known as the first resolvent equation (or identity), dates back
to the theory of integral equations in the 19th century.

Relation with the Laplace transform.

Let L denote the Laplace transform:

L(G)(λ) =

∫ ∞
0

e−λtG(t)dt.

Here, say, G is a bounded continuous function with values in a Banach space.
So L(G)(λ) is defined for Re λ > 0.

If we take G to be C valued, given by G(t) = ezt where Re z ≤ 0 we have

L(G)(λ) =
1

λ− z
.

More generally, suppose that G(t) = eAt where A is a bounded operator on a
Banach space and eAt is given by the usual exponential series. Assume that A
is such that eAt is uniformly bounded (in the operator norm) in t so that the
Laplace transform L(G) is defined for Re λ > 0. Then

(λI −A)L(G)(λ) =

∫ ∞
0

(λI −A)e−(λI−A)tdt = I.

In other words,
L(G)(λ) = R(λ,A) for Re λ > 0.
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One of our tasks will be to generalize this to a broader class of operators.

Let us return to the general Laplace transform.

Integration by parts shows that L(G′)(λ) = λL(G)(λ)−G(0). Apply this
to G given by

G(t) =

∫ t

0

e−c(t−s)g(s)ds.

Then

G′(t) = g(t)− cG(t), G(0) = 0,

so L(g)(λ) = L(G′)(λ) + cL(G)(λ) = (c + λ)L(G)(λ). Thus the Laplace trans-
form of G is given by

L(G)(λ) =
1

λ+ c
L(g)(λ). (13.2)

Let F be the Laplace transform of f . Then we claim that∫ ∞
0

∫ ∞
0

e−λs−µtf(s+ t)dsdt =
F (µ)− F (λ)

λ− µ
(13.3)

when λ 6= µ.

Proof. We may assume (by analytic continuation) that λ and µ are real, and,
without loss of generality, that λ > µ. Write the integral with respect to t
as e−λs

∫∞
0
e−µtf(s + t)dt. Make the change of variables w = s + t so that∫∞

0
e−µtf(s+ t)dt

= eµs
∫ ∞
s

e−µwf(w)dw = eµsF (µ)− eµs
∫ s

0

e−µwf(w)dw.

Then apply the Laplace transform with respect to s and use (13.2) with c = −µ
for the second term

Suppose that f takes values in a Banach algebra. Then (by uniqueness of
the Laplace transform) we see that f satisfies the identity

f(s+ t) = f(s)f(t)

if and only if its Laplace transform F satisfies the identity

F (λ) · F (µ) =
F (µ)− F (λ)

λ− µ
.

In other words, the first resolvent identity is a reflection of the semigroup prop-
erty f(s + t) = f(s)f(t) in case f(s) = esA when esA is uniformly bounded in
s.
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The second resolvent identity.

The first resolvent identity relates the resolvents of a fixed operator at two
different points in the resolvent set. The second resolvent identity relates the
resolvents of two different operators at the same point. Here is how it goes:

Let a and b be operators whose range is the whole space and with bounded
inverses. Then

a−1 − b−1 = a−1(b− a)b−1

assuming that the right hand side is defined. For example, if A and B are closed
operators with D(B −A) ⊃ D(A) we get

RA(z)−RB(z) = RA(z)(B −A)RB(z). (13.4)

This is the second resolvent identity. It also dates back to the 19th century.

13.1.5 The adjoint of a densely defined linear operator.

Suppose that we have a linear operator T : D(T ) → C and let us make the
hypothesis that

D(T ) is dense in B.

Any element of B∗ is then completely determined by its restriction to D(T ).
Now consider

Γ(T )∗ ⊂ C∗ ⊕B∗

defined by

{`,m} ∈ Γ(T )∗ ⇔ 〈`, Tx〉 = 〈m,x〉 ∀ x ∈ D(T ). (13.5)

Since m is determined by its restriction to D(T ), we see that Γ∗ = Γ(T ∗) is
indeed a graph. (It is easy to check that it is a linear subspace of C∗ ⊕B∗.) In
other words we have defined a linear transformation

T ∗ := T (Γ(T )∗)

whose domain consists of all ` ∈ C∗ such that there exists an m ∈ B∗ for which
〈`, Tx〉 = 〈m,x〉 ∀ x ∈ D(T ).

The adjoint of a linear transformation is closed.

If `n → ` and mn → m then the definition of convergence in these spaces implies
that for any x ∈ D(T ) we have

〈`, Tx〉 = lim〈`n, Tx〉 = lim〈mn, x〉 = 〈m,x〉.

If we let x range over all of D(T ) we conclude that Γ∗ is a closed subspace of
C∗ ⊕B∗. In other words we have proved
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Theorem 82. If T : D(T )→ C is a linear transformation whose domain D(T )
is dense in B, it has a well defined adjoint T ∗ whose graph is given by (13.5).
Furthermore T ∗ is a closed operator.

13.2 Self-adjoint operators on a Hilbert space.

13.2.1 The graph and the adjoint of an operator on a
Hilbert space.

Now let us restrict to the case where B = C = H is a Hilbert space, so we may
identify B∗ = C∗ = H∗ with H via the Riesz representation theorem which says
that the most general continuous linear function on H is given by scalar product
with an element of H.

If T : D(T ) → H is an operator with D(T ) dense in H we may identify the
graph of T ∗ as consisting of all {g, h} ∈ H⊕ H such that

(Tx, g) = (x, h) ∀x ∈ D(T )

and then write

(Tx, g) = (x, T ∗g) ∀ x ∈ D(T ), g ∈ D(T ∗).

Notice that we can describe the graph of T ∗ as being the orthogonal complement
in H⊕ H of the subspace

M := {{Tx,−x} x ∈ D(T )}.

The domain of the adjoint.

The domain D of T ∗ consists of those g such that there is an h with (Tx, g) =
(x, h) for all x in the domain of T . We claim that D is dense in H. Suppose
not. Then there would be some z ∈ H with (z, g) = 0 for all g ∈ D(T ∗). Thus
{z, 0} ⊥ M⊥ = D(T ∗). But (M⊥)⊥ is the closure M of M . This means that
there is a sequence xn ∈ D(T ) such that Txn → z and xn → 0. So if we assume
that T is closed, we conclude that z = 0. In short, if T is a closed densely
defined operator so is T ∗.

13.2.2 Self-adjoint operators.

We now come to the central definition: An operator A defined on a domain
D(A) ⊂ H is called self-adjoint if

• D(A) is dense in H,

• D(A) = D(A∗), and

• Ax = A∗x ∀x ∈ D(A).
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The conditions about the domain D(A) are rather subtle. For the moment we
record one immediate consequence of the theorem of the preceding section:

Proposition 46. Any self adjoint operator is closed.

13.2.3 Symmetric operators.

A densely defined operator S on a Hilbert space is called symmetric if

• D(S) ⊂ D(S∗) and

• Sx = S∗x ∀ x ∈ D(S).

Another way of saying the same thing is: S is symmetric if D(S) is dense and

(Sx, y) = (x, Sy) ∀ x, y ∈ D(S).

Every self-adjoint operator is symmetric but not every symmetric operator is
self adjoint. This subtle difference will only become clear as we go along.

A sufficient condition for a symmetric operator to be self-adjoint.

Let A be a symmetric operator on a Hilbert space H. The following theorem
will be very useful:

Theorem 83. If there is a complex number z such that A+ zI and A+ zI both
map D(A) surjectively onto H then A is self-adjoint.

We must show that if ψ and f are such that

(f, φ) = (ψ,Aφ) ∀ φ ∈ D(A)

then
ψ ∈ D(A) and Aψ = f.

Once we show that ψ ∈ D(A) then, since D(A) is assumed to be dense and
(ψ,Aφ) = (Aψ, φ) for ψ, φ ∈ D(A) and this equals (f, ψ) by hypothesis, we
conclude that Aψ = f . So we must prove that ψ ∈ D(A).

Proof. Choose w ∈ D(A) such that (A+zI)w = f+zψ. Then for any φ ∈ D(A)

(ψ, (A+ zI)φ) = (f + zψ, φ) = (Aw + zw, φ) = (w,Aφ+ zφ).

Then choose φ ∈ D(A) such that (A+zI)φ = ψ−w. So (ψ,ψ−w) = (w,ψ−w)
and hence ‖ψ − w‖2 = 0, i.e ψ = w, so

ψ ∈ D(A).

Here is an important application of the theorem we just proved.
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Multiplication operators.

Let (X,F , µ) be a measure space and let H := L2(X,µ). Let a be a real
valued F measurable function on X with the property that a is bounded on any
measurable subset of X of finite measure. Let

D :=

{
u ∈ H

∣∣∣∣∫
X

(1 + a2)|u|2dµ <∞
}
.

Notice that D is dense in H. Let A be the linear operator

u 7→ au

defined on the domain D. Notice that A is symmetric.

Proposition 47. The operator A with domain D is self-adjoint.

Proof. The operator consisting of multiplication by

1

i+ a

is bounded since
∣∣∣ 1
i+a

∣∣∣ ≤ 1 and clearly maps H to D. Its inverse is multiplication

by i + a. Similarly multiplication by −i + a maps D onto H. So we may take
z = i in Theorem 83.

Notice that for any bounded measurable function f on R, we may define
the operator f(A) to consist of multiplication by f(a). It is clear that the
map f 7→ f(A) satisfies all the desired properties of the functional calculus. In
particular

R(z,A) consists of multiplication by
1

z − a
(13.6)

when Im z 6= 0.

The Dynkin-Helffer-Sjöstrand formula for multiplication operators.

Recall that if f ∈ C∞0 (R, a function f̃ ∈ C∞0 (C) is called an almost analytic
extension of f if ∣∣∣∂f̃ ∣∣∣ ≤ Cn|Im z|N ∀N ∈ N and f|R = f.

It is easy to show that almost analytic extensions always exist. For a proof,
see Davies or Dimassi-Sjöstrand. We will reproduce the proof from Dimassi-
Sjöstrand at the end of this chapter.

Recall also that for any g ∈ C∞0 (C) we have the formula

g(w) = − 1

π

∫
C

∂g

∂z
· 1

z − w
dxdy.



364 CHAPTER 13. SPECTRAL THEORY AND STONE’S THEOREM.

Applied to the function f̃ and w ∈ R we have

f(w) = − 1

π

∫
C

∂f̃

∂z
· 1

z − w
dxdy.

Letting w = a(m), m ∈ X we see that the function f(a) is given by

f(a) = − 1

π

∫
C

∂f̃

∂z
· 1

z − a
dxdy.

Hence the operator f(A) is given by

f(A) := − 1

π

∫
C

∂f̃

∂z
R(z,A)dxdy. (10.2)

This proves the Dynkin-Helffer-Sjöstrand formula (10.2) for the case of mul-
tiplication operators. A bit later we will prove the multiplication version of
the spectral theorem which says that any self-adjoint operator on a separable
Hilbert space is unitarily equivalent to a multiplication operator. This implies
that (10.2) is true in general.

Using the Fourier transform.

The Fourier transform is a unitary operator on L2(Rn) (Plancherel’s theorem) ,
and carries constant coefficent partial differential operators into multiplication
by a polynomial. So

Proposition 48. If D is a constant coefficient differential operator which is
carried by the Fourier transform into a real polynomial, then D is self-adjoint.

An example is the Laplacian, which goes over into multiplication by ‖k‖2
under the Fourier transform. The domain of the Laplacian consists of those
f ∈ L2 whose Fourier transform f̂ have the property that ‖k‖2f̂(k) ∈ L2.

We shall see below that there is a vast generalization of this fact. Namely
for a broad class of real Weyl symbols, p, the associated operators P , (originally
defined, say as maps from S(Rn)→ S(Rn)) in fact define self adjoint operators
on L2(Rn) when passing to the closure of these operators.

13.2.4 The spectrum of a self-adjoint operator is real.

The following theorem is central. Once we will have stated and proved the
spectral theorem, the following theorem will be an immediate consequence. But
we will proceed in the opposite direction, first proving the theorem and then
using it to prove the spectral theorem:

Theorem 84. Let A be a self-adjoint operator on a Hilbert space H with domain
D = D(A). Let

c = λ+ iµ, µ 6= 0
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be a complex number with non-zero imaginary part. Then

(cI −A) : D(A)→ H

is bijective. Furthermore the inverse transformation

(cI −A)−1 : H→ D(A)

is bounded and in fact

‖(cI −A)−1‖ ≤ 1

|µ|
. (13.7)

We will prove this theorem in stages:

We show that ‖f‖2 = ‖(λI −A)g‖2 + µ2‖g‖2 for g ∈ D(A).

Let g ∈ D(A) and set f := (cI −A)g = [λI −A]g+ iµg. Then ‖f‖2 = (f, f) =

‖[λI −A]g‖2 + µ2‖g‖2 + ([λI −A]g, iµg) + (iµg, [λI −A]g).

The last two terms cancel: Indeed, since g ∈ D(A) and A is self adjoint we have

(µg, [λI −A]g) = (µ[λI −A]g, g) = ([λI −A]g, µg)

since µ is real. Hence

([λI −A]g, iµg) = −i(µg, [λI −A]g).

We have thus proved that

‖f‖2 = ‖(λI −A)g‖2 + µ2‖g‖2. (13.8)

We show that ‖(cI −A)−1‖ ≤ 1
|µ| .

It follows from (13.8) that

‖f‖2 ≥ µ2‖g‖2

for all g ∈ D(A). Since |µ| > 0, we see that f = 0 ⇒ g = 0 so (cI − A) is
injective on D(A), and furthermore that (cI − A)−1 (which is defined on the
image of (cI −A)) satisfies

‖(cI −A)−1‖ ≤ 1

|µ|
.

We must show that the image of (cI −A) is all of H.



366 CHAPTER 13. SPECTRAL THEORY AND STONE’S THEOREM.

We show the image of (cI −A) is dense in H.

For this it is enough to show that there is no h 6= 0 ∈ H which is orthogonal to
im (cI −A). So suppose that

([cI −A]g, h) = 0 ∀g ∈ D(A).

Then

(g, ch) = (cg, h) = (Ag, h) ∀g ∈ D(A)

which says that h ∈ D(A∗) and A∗h = ch. But A is self adjoint so h ∈ D(A)
and Ah = ch. Thus

c(h, h) = (ch, h) = (Ah, h) = (h,Ah) = (h, ch) = c(h, h).

Since c 6= c this is impossible unless h = 0. We have now established that the
image of cI −A is dense in H.

We show that image of (cI−A) is all of H, completing the proof of the
theorem.

Let f ∈ H. We know that we can find

fn = (cI −A)gn, gn ∈ D(A) with fn → f.

The sequence fn is convergent, hence Cauchy, and from

‖(cI −A)−1‖ ≤ 1

|µ|
(13.7)

applied to elements of im D(A) we know that

‖gm − gn‖ ≤ |µ|−1‖fn − fm‖.

Hence the sequence {gn} is Cauchy, so gn → g for some g ∈ H. But we know
that A is a closed operator. Hence g ∈ D(A) and (cI −A)g = f. 2

13.3 Stone’s theorem.

As indicated in the introduction to this chapter, we will present a generalization
of Stone’s theorem due to Hille and Yosida. The setting will be the study of a one
parameter semi-group on a Frechet space. A Frechet space F is a vector space
with a topology defined by a sequence of semi-norms and which is complete. An
important example is the Schwartz space S. Let F be such a space.
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13.3.1 Equibounded continuous semi-groups.

We want to consider a one parameter family of operators Tt on F defined for
all t ≥ 0 and which satisfy the following conditions:

• T0 = I

• Tt ◦ Ts = Tt+s

• limt→t0 Ttx = Tt0x ∀t0 ≥ 0 and x ∈ F.

• For any defining seminorm p there is a defining seminorm q and a constant
K such that p(Ttx) ≤ Kq(x) for all t ≥ 0 and all x ∈ F.

We call such a family an equibounded continuous semigroup. We will
usually drop the adjective “continuous” and even “equibounded” since we will
not be considering any other kind of semigroup.

The treatment here will essentially follow that of Yosida, Functional Analysis
especially Chapter IX.

13.3.2 The infinitesimal generator.

We are going to begin by showing that every such semigroup has an “infinites-
imal generator”, i.e. can be written in some sense as Tt = eAt.

The definition of A.

We define the operator A as

Ax = lim
t↘0

1

t
(Tt − I)x.

That is, A is the operator so defined on the domain D(A) consisting of those x
for which the limit exists.

Our first task is to show that D(A) is dense in F. For this we begin with a
“putative resolvent”

R(z) :=

∫ ∞
0

e−ztTtdt (13.9)

which is defined (by the boundedness and continuity properties of Tt) for all z
with Re z > 0.

One of our tasks will be to show that R(z) as defined in (13.9) is in fact the
resolvent of A. We begin by checking that every element of imR(z) belongs to
D(A) and that (zI −A)R(z) = I: We have

1

h
(Th − I)R(z)x =

1

h

∫ ∞
0

e−ztTt+hxdt−
1

h

∫ ∞
0

e−ztTtxdt =

1

h

∫ ∞
h

e−z(r−h)Trxdr −
1

h

∫ ∞
0

e−ztTtxdt
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=
ezh − 1

h

∫ ∞
h

e−ztTtxdt−
1

h

∫ h

0

e−ztTtxdt

=
ezh − 1

h

[
R(z)x−

∫ h

0

e−ztTtdt

]
− 1

h

∫ h

0

e−ztTtxdt.

If we now let h → 0, the integral inside the bracket tends to zero, and the
expression on the right tends to x since T0 = I. We thus see that

R(z)x ∈ D(A)

and

AR(z) = zR(z)− I,

or, rewriting this in a more familiar form,

(zI −A)R(z) = I. (13.10)

This equation says that R(z) is a right inverse for zI − A. It will require a lot
more work to show that it is also a left inverse.

We show that D(A) is dense in F .

We will prove that D(A) is dense in F by showing that, taking s to be real, that

lim
s→∞

sR(s)x = x ∀ x ∈ F. (13.11)

Indeed, ∫ ∞
0

se−stdt = 1

for any s > 0. So we can write

sR(s)x− x = s

∫ ∞
0

e−st[Ttx− x]dt.

Applying any seminorm p we obtain

p(sR(s)x− x) ≤ s
∫ ∞

0

e−stp(Ttx− x)dt.

For any ε > 0 we can, by the continuity of Tt, find a δ > 0 such that

p(Ttx− x) < ε ∀ 0 ≤ t ≤ δ.

Now let us write

s

∫ ∞
0

e−stp(Ttx− x)dt = s

∫ δ

0

e−stp(Ttx− x)dt+ s

∫ ∞
δ

e−stp(Ttx− x)dt.
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The first integral is bounded by

εs

∫ δ

0

e−stdt ≤ εs
∫ ∞

0

e−stdt = ε.

As to the second integral, let M be a bound for p(Ttx) + p(x) which exists by
the uniform boundedness of Tt. The triangle inequality says that p(Ttx− x) ≤
p(Ttx) + p(x) so the second integral is bounded by

M

∫ ∞
δ

se−stdt = Me−sδ.

This tends to 0 as s → ∞, completing the proof that sR(s)x → x and hence
that D(A) is dense in F.

The differential equation.

Theorem 85. If x ∈ D(A) then for any t > 0

lim
h→0

1

h
[Tt+h − Tt]x = ATtx = TtAx.

In colloquial terms, we can formulate the theorem as saying that

d

dt
Tt = ATt = TtA

in the sense that the appropriate limits exist when applied to x ∈ D(A).

Proof. Since Tt is continuous in t, we have

TtAx = Tt lim
h↘0

1

h
[Th − I]x = lim

h↘0

1

h
[TtTh − Tt]x =

lim
h↘0

1

h
[Tt+h − Tt]x = lim

h↘0

1

h
[Th − I]Ttx

for x ∈ D(A). This shows that Ttx ∈ D(A) and

lim
h↘0

1

h
[Tt+h − Tt]x = ATtx = TtAx.

To prove the theorem we must show that we can replace h↘ 0 by h→ 0. Our
strategy is to show that with the information that we already have about the
existence of right handed derivatives, we can conclude that

Ttx− x =

∫ t

0

TsAxds.
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Since t 7→ Tt is continuous, this is enough to give the desired result. In order
to establish the above equality, it is enough, by the Hahn-Banach theorem to
prove that for any ` ∈ F∗ we have

`(Ttx)− `(x) =

∫ t

0

`(TsAx)ds.

In turn, it is enough to prove this equality for the real and imaginary parts of `.
So it all boils down to a lemma in the theory of functions of a real variable:

A lemma in the theory of functions of a real variable.

Lemma 12. Suppose that f is a continuous real valued function of t with the
property that the right hand derivative

d+

dt
f := lim

h↘0

f(t+ h)− f(t)

h
= g(t)

exists for all t and g(t) is continuous. Then f is differentiable with f ′ = g.

Proof of the lemma. We first prove that d+

dt f ≥ 0 on an interval [a, b]
implies that f(b) ≥ f(a). Suppose not. Then there exists an ε > 0 such that

f(b)− f(a) < −ε(b− a).

Set
F (t) := f(t)− f(a) + ε(t− a).

Then F (a) = 0 and
d+

dt
F > 0.

At a this implies that there is some c > a near a with F (c) > 0. On the other
hand, since F (b) < 0, and F is continuous, there will be some point s < b
with F (s) = 0 and F (t) < 0 for s < t ≤ b. This contradicts the fact that

[d
+

dt F ](s) > 0. Thus if d+

dt f ≥ m on an interval [t1, t2] we may apply the above
result to f(t)−mt to conclude that

f(t2)− f(t1) ≥ m(t2 − t1),

and if d
+

dt f(t) ≤M we can apply the above result to Mt− f(t) to conclude that

f(t2)− f(t1) ≤M(t2− t1). So if m = min g(t) = min d+

dt f on the interval [t1, t2]
and M is the maximum, we have

m ≤ f(t2)− f(t1)

t2 − t1
≤M.

Since we are assuming that g is continuous, this is enough to prove that f is
indeed differentiable with derivative g. 2.
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13.3.3 The resolvent of the infinitesimal generator.

We have already verified that

R(z) =

∫ ∞
0

e−ztTtdt

maps F into D(A) and satisfies

(zI −A)R(z) = I

for all z with Re z > 0, cf (13.10).
We shall now show that for this range of z

(zI −A)x = 0 ⇒ x = 0 ∀ x ∈ D(A)

so that (zI −A)−1 exists, and that it is given by R(z):
Suppose that

Ax = zx x ∈ D(A)

and choose ` ∈ F∗ with `(x) = 1. Consider

φ(t) := `(Ttx).

By Theorem 85 we know that φ is a differentiable function of t and satisfies the
differential equation

φ′(t) = `(TtAx) = `(Ttzx) = z`(Ttx) = zφ(t), φ(0) = 1.

So

φ(t) = ezt

which is impossible since φ(t) is a bounded function of t and the right hand
side of the above equation is not bounded for t ≥ 0 since the real part of z is
positive.

We have from (13.10) that

(zI −A)R(z)(zI −A)x = (zI −A)x

and we know that R(z)(zI − A)x ∈ D(A). From the injectivity of zI − A we
conclude that R(z)(zI −A)x = x.

From (zI −A)R(z) = I we see that zI −A maps imR(z) ⊂ D(A) onto F so
certainly zI −A maps D(A) onto F bijectively. Hence

im(R(z)) = D(A), im(zI −A) = F

and

R(z) = (zI −A)−1.
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Summary of where we are.

The resolvent R(z) = R(z,A) :=
∫∞

0
e−ztTtdt is defined as a strong limit for

Re z > 0 and, for this range of z:

D(A) = im(R(z,A)) (13.12)

AR(z,A)x =

R(z,A)Ax = (zR(z,A)− I)x, x ∈ D(A) (13.13)

AR(z,A)x = (zR(z,A)− I)x, ∀ x ∈ F (13.14)

lim
z↗∞

zR(z,A)x = x for z real ∀x ∈ F. (13.15)

The operator A is closed.

We claim that

Theorem 86. The operator A is closed.

Proof. Suppose that xn ∈ D(A), xn → x and yn → y where yn = Axn.
We must show that x ∈ D(A) and Ax = y. Set

zn := (I −A)xn so zn → x− y.

Since R(1, A) = (I −A)−1 is a bounded operator, we conclude that

x = limxn = lim(I −A)−1zn = (I −A)−1(x− y).

From (13.12) we see that x ∈ D(A) and from the preceding equation that
(I −A)x = x− y so Ax = y. 2

13.3.4 Application to Stone’s theorem.

We now have enough information to prove one half of Stone’s theorem, namely
that any continuous one parameter group of unitary transformations on a Hilbert
space has an infinitesimal generator which is skew adjoint:

Suppose that U(t) is a one-parameter group of unitary transformations on
a Hilbert space H. We have (U(t)x, y) = (x, U(t)−1y) = (x, U(−t)y) and so
differentiating at the origin shows that the infinitesimal generator A, which we
know to be closed, is skew-symmetric:

(Ax, y) = −(x,Ay) ∀ x, y ∈ D(A).

Also the resolvents (zI − A)−1 exist for all z which are not purely imaginary,
and (zI −A) maps D(A) onto the whole Hilbert space H.

Writing A = iT we see that T is symmetric and that ±iI + T is surjective.
Hence T is self-adjoint. This proves that every one parameter group of unitary
transformations is of the form eiT t with T self-adjoint.
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We now want to turn to the other half of Stone’s theorem: We want to start
with a self-adjoint operator T , and construct a (unique) one parameter group
of unitary operators U(t) whose infinitesimal generator is iT . As mentioned
in the introduction to this chapter, this fact is an immediate consequence of
the spectral theorem. But we want to derive the spectral theorem from Stone’s
theorem, so we need to provide a proof of this half of Stone’s theorem which is
independent of the spectral theorem. We will state and prove the Hille-Yosida
theorem and find that this other half of Stone’s theorem is a special case.

13.3.5 The exponential series and sufficient conditions for
it to converge.

In finite dimensions we have the formula

etB =

∞∑
0

tk

k!
Bk

with convergence guaranteed as a result of the convergence of the usual expo-
nential series in one variable. (There are serious problems with this definition
from the point of view of numerical implementation which we will not discuss
here.)

In infinite dimensional spaces some additional assumptions have to be placed
on an operator B before we can conclude that the above series converges. Here
is a very stringent condition which nevertheless suffices for our purposes:

Let F be a Frechet space and B a continuous map of F→ F. We will assume
that the Bk are equibounded in the sense that for any defining semi-norm p
there is a constant K and a defining semi-norm q such that

p(Bkx) ≤ Kq(x) ∀ k = 1, 2, . . . ∀ x ∈ F.

Here the K and q are required to be independent of k and x.
Then

p(

n∑
m

tk

k!
Bkx) ≤

n∑
m

tk

k!
p(Bkx) ≤ Kq(x)

n∑
n

tk

k!

and so
n∑
0

tk

k!
Bkx

is a Cauchy sequence for each fixed t and x (and uniformly in any compact
interval of t). It therefore converges to a limit. We will denote the map x 7→∑∞

0
tk

k!B
kx by

exp(tB).

This map is linear, and the computation above shows that

p(exp(tB)x) ≤ K exp(t)q(x).
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The usual proof (using the binomial formula) shows that t 7→ exp(tB) is a one
parameter equibounded semi-group. More generally, if B and C are two such
operators then if BC = CB then exp(t(B + C)) = (exp tB)(exp tC).

Also, from the power series it follows that the infinitesimal generator of
exp tB is B.

13.3.6 The Hille Yosida theorem.

Let us now return to the general case of an equibounded semigroup Tt with
infinitesimal generator A on a Frechet space F where we know that the resolvent
R(z,A) for Re z > 0 is given by

R(z,A)x =

∫ ∞
0

e−ztTtxdt.

This formula shows that R(z,A)x is continuous in z. The resolvent equation

R(z,A)−R(w,A) = (w − z)R(z,A)R(w,A)

then shows thatR(z,A)x is complex differentiable in z with derivative−R(z,A)2x.
It then follows that R(z,A)x has complex derivatives of all orders given by

dnR(z,A)x

dzn
= (−1)nn!R(z,A)n+1x.

On the other hand, differentiating the integral formula for the resolvent n- times
gives

dnR(z,A)x

dzn
=

∫ ∞
0

e−zt(−t)nTtdt

where differentiation under the integral sign is justified by the fact that the Tt
are equicontinuous in t.

Putting the previous two equations together gives

(zR(z,A))n+1x =
zn+1

n!

∫ ∞
0

e−zttnTtxdt.

This implies that for any semi-norm p we have

p((zR(z,A))n+1x) ≤ zn+1

n!

∫ ∞
0

e−zttn sup
t≥0

p(Ttx)dt = sup
t≥0

p(Ttx)

since ∫ ∞
0

e−zttndt =
n!

zn+1
.

Since the Tt are equibounded by hypothesis, we conclude

Proposition 49. The family of operators {(zR(z,A))n} is equibounded in Re
z > 0 and n = 0, 1, 2, . . . .
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Statement of the Hille-Yosida theorem.

Theorem 87. [Hille -Yosida.] Let A be an operator with dense domain D(A),
and such that the resolvents

R(n,A) = (nI −A)−1

exist and are bounded operators for n = 1, 2, . . . . Then A is the infinitesimal
generator of a uniquely determined equibounded semigroup if and only if the
operators

{(I − n−1A)−m}

are equibounded in m = 0, 1, 2 . . . and n = 1, 2, . . . .

If A is the infinitesimal generator of an equibounded semi-group then we
know that the {(I − n−1A)−m} are equibounded by virtue of the preceding
proposition. So we must prove the converse. Our proof of the converse will be
in several stages:

The definition of Jn.

Set

Jn = (I − n−1A)−1

so Jn = n(nI −A)−1 and so for x ∈ D(A) we have

Jn(nI −A)x = nx

or

JnAx = n(Jn − I)x.

Similarly (nI −A)Jn = nI so AJn = n(Jn − I). Thus we have

AJnx = JnAx = n(Jn − I)x ∀ x ∈ D(A). (13.16)

Idea of the proof.

The idea of the proof is now this: By the results of the preceding section on
the exponential series, we can construct the one parameter semigroup s 7→
exp(sJn). Set s = nt. We can then form e−nt exp(ntJn) which we can write as
exp(tn(Jn − I)) = exp(tAJn) by virtue of (13.16). We expect from

lim
s→∞

sR(s)x = x ∀ x ∈ F

that

lim
n→∞

Jnx = x ∀ x ∈ F. (13.17)

This then suggests that the limit of the exp(tAJn) be the desired semi-group.
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Proof that limn→∞ Jnx = x ∀ x ∈ F. (13.17).

So we begin by proving (13.17). We first prove it for x ∈ D(A). For such x we
have (Jn − I)x = n−1JnAx by (13.16) and this approaches zero since the Jn
are equibounded. But since D(A) is dense in F and the Jn are equibounded we
conclude that (13.17) holds for all x ∈ F.

Now define

T
(n)
t = exp(tAJn) := exp(nt(Jn − I)) = e−nt exp(ntJn).

We know from our study of the exponential series that

p(exp(ntJn)x) ≤
∑ (nt)k

k!
p(Jknx) ≤ entKq(x)

which implies that

p(T
(n)
t x) ≤ Kq(x). (13.18)

Thus the family of operators {T (n)
t } is equibounded for all t ≥ 0 and n = 1, 2, . . . .

The {T (n)
t } converge as n→∞ uniformly on each compact interval of

t.

We next want to prove that the {T (n)
t } converge as n → ∞ uniformly on each

compact interval of t: The Jn commute with one another by their definition,

and hence Jn commutes with T
(m)
t . By the semi-group property we have

d

dt
Tmt x = AJmT

(m)
t x = T

(m)
t AJmx

so

T
(n)
t x− T (m)

t x =

∫ t

0

d

ds
(T

(m)
t−s T

(n)
s )xds =

∫ t

0

T
(m)
t−s (AJn −AJm)T (n)

s xds.

Applying the semi-norm p and using the equiboundedness we see that

p(T
(n)
t x− T (m)

t x) ≤ Ktq((Jn − Jm)Ax).

From (13.17) this implies that the T
(n)
t x converge (uniformly in every compact

interval of t) for x ∈ D(A), and hence since D(A) is dense and the T
(n)
t are

equicontinuous for all x ∈ F. The limiting family of operators Tt are equicon-

tinuous and form a semi-group because the T
(n)
t have this property.

We show that the infinitesimal generator of this semi-group is A.

Let us temporarily denote the infinitesimal generator of this semi-group by B,
so that we want to prove that A = B. Let x ∈ D(A).
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We know that
p(T

(n)
t x) ≤ Kq(x). (13.18).

We claim that
lim
n→∞

T
(n)
t AJnx = TtAx (13.19)

uniformly in in any compact interval of t. Indeed, for any semi-norm p we have

p(TtAx− T (n)
t AJnx) ≤ p(TtAx− T (n)

t Ax) + p(T
(n)
t Ax− T (n)

t AJnx)

≤ p((Tt − T (n)
t )Ax) +Kq(Ax− JnAx)

where we have used (13.18) to get from the second line to the third. The second
term on the right tends to zero as n → ∞ and we have already proved that
the first term converges to zero uniformly on every compact interval of t. This
establishes (13.19).

Ttx− x = lim
n→∞

(T
(n)
t x− x)

= lim
n→∞

∫ t

0

T (n)
s AJnxds

=

∫ t

0

( lim
n→∞

T (n)
s AJnx)ds

=

∫ t

0

TsAxds

where the passage of the limit under the integral sign is justified by the uniform
convergence in t on compact sets. It follows from Ttx − x =

∫ t
0
TsAxds that x

is in the domain of the infinitesimal operator B of Tt and that Bx = Ax. So B
is an extension of A in the sense that D(B) ⊃ D(A) and Bx = Ax on D(A).

But since B is the infinitesimal generator of an equibounded semi-group, we
know that (I − B) maps D(B) onto F bijectively, and we are assuming that
(I −A) maps D(A) onto F bijectively. Hence D(A) = D(B).

This concludes the proof of the Hille-Yosida theorem.

13.3.7 The case of a Banach space.

In case F is a Banach space, so there is a single norm p = ‖ ‖, the hypotheses
of the theorem read: D(A) is dense in F, the resolvents R(n,A) exist for all
integers n = 1, 2, . . . and there is a constant K independent of n and m such
that

‖(I − n−1A)−m‖ ≤ K ∀ n = 1, 2, . . . , m = 1, 2, . . . . (13.20)

Contraction semigroups.

In particular, if A satisfies

‖(I − n−1A)−1‖ ≤ 1 (13.21)
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condition (13.20) is satisfied, and such an A then generates a semi-group. Under
this stronger hypothesis we can draw a stronger conclusion: In (13.18) we now
have p = q = ‖ · ‖ and K = 1. Since limn→∞ Tnt x = Ttx we see that under the
hypothesis (13.21) we can conclude that

‖Tt‖ ≤ 1 ∀ t ≥ 0.

A semi-group Tt satisfying this condition is called a contraction semi-group.

13.3.8 The other half of Stone’s theorem.

We have already given a direct proof that if S is a self-adjoint operator on a
Hilbert space then the resolvent exists for all non-real z and satisfies

‖R(z, S)‖ ≤ 1

|Im (z)|
.

This implies (13.21) for A = iS and −iS giving us a proof of the existence of
U(t) = exp(iSt) for any self-adjoint operator S, a proof which is independent
of the spectral theorem.

13.4 The spectral theorem.

13.4.1 The functional calculus for functions in S.

The Fourier inversion formula for functions f whose Fourier transform f̂ belongs
to L1 (say for f ∈ S, for example) says that

f(x) =
1√
2π

∫
R
f̂(t)eitxdt.

If we replace x by A and write U(t) instead of eitA this suggests that we define

f(A) =
1√
2π

∫
R
f̂(t)U(t)dt. (13.22)

Checking that (fg)(A) = f(A)g(A).

To check that (fg)(A) = f(A)g(A) we use the fact that (fg)̂ = f̂ ? ĝ so

(fg)(A) =
1

2π

∫
R

∫
R
f̂(t− s)ĝ(s)U(t)dsdt

=
1

2π

∫
R

∫
R
f̂(r)ĝ(s)U(r + s)drds

=
1

2π

∫
R

∫
R
f̂(r)ĝ(s)U(r)U(s)drds

= f(A)g(A).
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Checking that the map f 7→ f(A) sends f 7→ (f(A))∗.

For the standard Fourier we know that the Fourier transform of f is given by

f̂(ξ) = f̂(−ξ).

Substituting this into the right hand side of (13.22) gives

1√
2π

∫
R
f̂(−t)U(t)dt =

1√
2π

∫
R
f̂(−t)U∗(−t)dt =

(
1√
2π

∫
R
f̂(−t)U(−t)dt

)∗
= (f(A))∗

by making the change of variables s = −t.

Checking that ‖f(A)‖ ≤ ‖f‖∞.

Let ‖f‖∞ denote the sup norm of f , and let c > ‖f‖∞. Define g by

g(s) := c−
√
c2 − |f(s)|2.

So g is a real element of S and

g2 = c2 − 2c s
√
c2 − |f |2 + c2 − |f |2

= 2cg − ff
so

ff − 2cg + g2 = 0.

So by our previous results,

f(A)∗f(A)− cg(A)− c(g(A)∗ + g(A)∗g(A) = 0

i.e.
f(A)∗f(A) + (c− g(A))∗(c− g(A) = c2.

So for any v ∈ H we have

‖f(A)‖2 ≤ ‖f(A)v‖2 + ‖(c− g(A))v‖2 = c2‖v‖2

proving that
‖f(A)‖ ≤ ‖f‖∞. (13.23)

Enlarging the functional calculus to continuous functions vanishing
at infinity.

Equation (13.23) allows us to extend the functional calculus to all continuous

functions vanishing at infinity. Indeed if f̂ is an element of L1 so that its
inverse Fourier transform f is continuous and vanishes at infinity (by Riemann-
Lebesgue) the formula (13.22) applies to f .

We will denote the space of continuous functions vanishing at infinity by
C0(R).
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Checking that (13.22) is non-trivial and unique.

We checked above that for z not real the function rz given by

rz(x) =
1

z − x

has the property that

rz(A) = R(z,A) = (zI −A)−1

is given by an integral of the type (13.22). This involved some heavy lifting but
not the spectral theorem. This shows that (13.22), is not trivial. Once we know
that rz(A) = R(z, a) the Stone-Weierstrass theorem gives uniqueness.

Still missing one important item.

We still need to prove:

Proposition 50. If Supp(f) ∩ spec(A) = ∅ then f(A) = 0.

We will derive this from the multiplication version of the spectral theorem.

13.4.2 The multiplication version of the spectral theorem.

In this section we follow the treatment in Davies.

The cyclic case.

A vector v ∈ H is called cyclic for A if the linear combinations of all the vectors
R(z,A)v as z ranges over all non-real complex numbers is dense in H. Of course
there might not be any cyclic vectors.

But suppose that v is a cyclic vector. Consider the continuous linear function
` on C0(R) given by

`(f) := (f(A)v, v).

If f is real valued and non-negative, then `(f) = (f
1
2 (A)v, f

1
2 (A)v) ≥ 0.

In other words, ` is a non-negative continuous linear functional. The Riesz
representation theorem then says that there is a non-negative, finite, countably
additive measure µ on R such that

`(f) =

∫
R
fdµ.

In fact, from its definition, the total measure µ(R) ≤ ‖v‖2.
Let us consider C0(R) as a (dense) subset of L2(R, µ), and let (·, ·)2 denote

the scalar product on this L2 space. Then for f, g ∈ C0(R) we have

(f, g)2 = `(gf) = (g(A)∗f(A)v, v) = (f(A)v, g(A)v),
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(where the last two scalar products are in H). This shows that the map

f 7→ f(A)v

is an isometry from C0(R) to the subspace of H consisting of vectors of the form
f(A)v. The space of vectors of the form f(A)v is dense in H by our assumption
of cyclicity (since already the linear combinations of vectors of the form rz(A),
z 6∈ R are dense). The space C0(R) is dense in L2(R). So the map above extends
to a unitary map from L2(R, µ) to H whose inverse we will denote by U .

So U : H→ L2(R, µ) is a unitary isomorphism such that

U(f(A)) = f, ∀ f ∈ C0(R).

Now let f, g, h ∈ C0(R) and set

φ := g(A)v, ψ := h(A)v.

Then

(f(A)φ, ψ) =

∫
R
fghdµ = (fU(φ), U(ψ))2

where, in this last term, the f denotes the operator of multiplication by f .
In other words,

Uf(A)U−1

is the operator of multiplication by f on L2(R, µ). In particular, U of the image
of the operator f(A) is the image of multiplication by f in L2.

Let us apply this last fact to the function f = rz, z 6∈ R, i.e.

rz(x) =
1

z − x
.

We know that the resolvent rz(A) maps H onto the domain D(A), and that
multiplication by rz, which is the resolvent of the operator on L2 maps L2 to
the domain of the operator of multiplication by x. This latter domain is the set
of k ∈ L2 such that xk(x) ∈ L2. Now (zI −A)rz(A) = I , so

Arz(A) = zrz(A)− I.

Applied to U−1g, g ∈ L2(R, µ) this gives .

Arz(A)U−1g = zrz(A)U−1g − U−1g.

So
AU−1Urz(A)U−1g = zU−1Urz(A)U−1g − U−1g,

and multiplying by U gives

UAU−1rz · g = zrz · g − g.

So if we set h = rz · g so zrz · g − g = xh we see that

UAU−1h = x · h. (13.24)

If y 6∈ Supp(µ) then multiplication by ry is bounded on L2(R, µ) and conversely.
So the support of µ is exactly the spectrum of A.
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The general case.

Now for a general separable Hilbert space H with a self-adjoint operator A we
can decompose H into a direct sum of Hilbert spaces each of which has a cyclic
vector. Here is a sketch of how this goes. Start with a countable dense subset
{x1, x2, . . . } of H. Let L1 be the cyclic subspace generated by x1, i.e. L1 is the
smallest (closed) cyclic subspace containing x1. Let m(1) be the smallest integer
such that xm(1) 6∈ L1. Let ym(1) be the component of xm(1) orthogonal to L1,
and let L2 be the cyclic subspace generated by ym(1). Proceeding inductively,
suppose that we have constructed the cyclic subspaces Li, i = 1, . . . , n and let
m(n) be the smallest integer for which xm(n) does not belong to the (Hilbert
space direct sum) L1 ⊕ L2 ⊕ · · · ⊕ Ln. Let ym(n) be the component of xm(n)

orthogonal to this direct sum and let Ln+1 by the cyclic subpace generated by
y(m). At each stage of the induction there are two possibilities: If no m(n)
exists, the H is the finite direct sum L1 ⊕ L2 ⊕ · · · ⊕ Ln. If the induction
continues indefinitely, then the closure of the infinite Hilbert space direct sum
L1 ⊕ L2 ⊕ · · · ⊕ Ln ⊕ · · · contains all the xi and so coincides with H.

By construction, each of the spaces Li is invariant under all the R(z,A) so
we can apply the results of the cyclic case to each of the Li. Let us choose the
cyclic vector vi ∈ Li to have norm 2−n so that the total measure of R under
the corresponding measure µi is 2−2n. Recall that S denotes the spectrum of
A and each of the measures µi is supported on S. So we put a measure µ on
S ×N so that the restriction of µ to S ×{n} is µn. Then combine the Un given
above in the obvious way.

We obtain the following theorem:

Theorem 88. Let A be a self-adjoint operator on a separable Hilbert space H
and let S = spec(A). There exists a finite measure µ on S × N and a unitary
isomorphism

U : H→ L2(S × N, µ)

such that UAU−1 is multiplication by the function a(s, n) = s. More precisely,
U takes the domain of A to the set of functions h ∈ L2 such that ah ∈ L2 and
for for all such functions h we have

UAU−1h = ah.

For any f ∈ C0(R) we have

Uf(A)U−1 = multiplication by f.

In particular, if supp(f) ∩ S = ∅ then f(A) = 0.

The general version of the Dynkin-Helffer-Sjöstrand formula is true.

As a corollary of the preceding theorem, we conclude, as mentioned above, that
the Dynkin-Helffer-Sjöstrand formula (10.2) is true in general.
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Enlarging the functional calculus to bounded Borel functions.

We can now use the preceding theorem to define f(A) where f is an arbitrary
bounded Borel function, in such a way that it extends the preceding functional
calculus. Here is how it goes: Let B denote the space of bounded Borel functions
on R. We say that fn ∈ B increases monotonically to f ∈ B if fn(x) increases
monotonically to f(x) for every x ∈ R. In particular the

‖fn‖ = ‖fn‖0 = sup
x∈R
|fn(x)|

are uniformly bounded.

Theorem 89. There exists a map from B to to bounded operators on H, f 7→
f(A) extending the map defined in Section 13.4.1 on S having all of the same
properties (including the property that if Supp(f) ∩ S = ∅ then f(A) = 0.)
This map is unique subject to the additional condition that whenever fn ∈ B
converges monotonically to f ∈ B then

fn(A)→ f(A)

in the sense of strong limits.

Proof. We may identify H with L2(S×N, µ) and A with the multiplication
operator by a where a(s, n) = s by the preceding theorem. Then for any f ∈ B
define f(A) to be multiplication by f◦a. This has all the desired properties. The
monotone convergence property is a consequence of the monotone convergence
theorem in measure theory. This establishes the existence of the extension of
the map f 7→ f(A) to B.

For the uniqueness we use a monotone class argument. We have the unique-
ness of the extension to C0(R). So let C denote the class on which two putative
extension agree. Then C is mbonotone class containing C0(R). But the smallest
such class is B. 2

Corollary 2. The spectrum of A equals the essential range of a defined as the
set of all λ ∈ R such that

µ (x|a({x} × N)− λ|) < ε > 0

for all ε > 0. If λ 6∈ spec(A) then

‖(λI −A)−1)‖ = ‖R(λ,A)‖ = |dist (λ, S)|−1.

By the multiplicative form of the spectral theorem it is enough to prove this
when A = a is a multiplication operator, and we will leave the details in this
case to the reader, or refer to Davies page 17.
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The projection valued measure form of the spectral theorem.

Let us return to Theorem 89. If B is any Borel subset of R and 1B denotes the
indicator function of B (i.e. the function which equals 1 on B and zero else-
where) then 1B(A) is a self-adjoint projection operator which we will sometimes
denote by PB (where the operator A is understood). We have:

Theorem 90. If B is any Borel subset of R then 1B(A) is a projection which
commutes with A. If B1 and B2 ∈ B and B1 ∩ B2 = ∅ then 1B1∪B2(A) =
1B1

(A) + 1B2
(A). If (a, b) is an open interval and fn is an increasing sequence

of continuous functions which converge to 1(a,b) then fn(A) converge strongly
to the projection P(a,b) := 1(a,b). We have P(a,b)A = 0 ⇐⇒ (a, b) ∩ S = ∅.

13.5 The Calderon-Vallaincourt theorem.

In Chapters 9-11 we considered operators associated to symbols a = a(x, ξ, ~),
namely

(Opta(x, ~D, ~)u) (x) :=
1

(2π~)n

∫ ∫
e
i
~ (x−y)·ξa(tx+ (1− t)y, ξ, ~)u(y)dydξ.

If (for each fixed ~) the function a(·, ·, ~) belongs to S(R2n) then this operator
is given by a kernel K = K~ ∈ S(R2n):

(Optau)(x) =

∫
Rn
K~(x, y)u(y)dy

where

K~(x, y) =
1

(2π~)n

∫
Rn
e
i
~ (x−y)·ξa(tx+ (1− t)y, ξ, ~)dξ.

As an operator, K~ maps S ′(Rn)→ S(Rn). At the other extreme, if a ∈ S ′(R2n)
the above formula for K = K~ shows that K ∈ S ′(R2n). Hence Opta is defined
as an operator from S to S ′ given by

〈Opt(a)u, v〉 = 〈K,u⊗ v〉.

The Schwartz kernel theorem guarantees that a continuous map from S → S ′
is in fact given by a kernel K ∈ S ′(R2n) and the above relation between K and
a shows that every such map is of the form Opt(a) for a unique a.

The Calderon-Vallaincourt theorem imposes conditions on a to guarantee
that Opta gives a family of bounded operators on L2. For simplicity we state
for the case t = 1

2 , i.e Weyl quantization.
The conditions are: For each α and β there are constants Cα,β such that

‖∂αx ∂
β
ξ a‖∞ ≤ Cα,β .

Here ‖‖̇∞ denotes the sup norm on Rn × Rn × R+. Then
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Theorem 91. [Calderon-Vallancourt.] Under the above hypotheses, the op-
erators OpW~ a are continuous in the L2 norm and so extend to bounded operators
on L2. Furthermore, there exists a positive constant Mn depending only on n,
and a positive constant Cn depending only on n and ~0 such that

‖OpW~ a‖L2 ≤ Cn

 ∑
|α|+|β|≤Mn

‖‖∂αx ∂
β
ξ a‖∞

 .

The proof of this important theorem can be found in Evans-Zworski, Sjostrand-
Dimassi, or in Martinez.

For a fixed ~ (so that a is now a function of just x and ξ) the change of
variables ξ 7→ ~ξ converts OpW~ a into OpW1 a(x, ~ξ) and

∂αx ∂
β
ξ a(x, ~ξ) = ~|β|(∂αx ∂

β
ξ a)(x, ~ξ)

which is bounded by ~β‖∂αx ∂
β
ξ a‖∞. So as long as ~ lies in a bounded interval,

it is enough to prove the theorem for ~ = 1. In other words, if a = a(x, ξ) is
bounded with all its derivatives on Rn × Rn and we define the operator A on
C∞0 (Rn) by

Au(x) =

∫ ∫
a

(
x+ y

2
, ξ, ~

)
u(y)ei(x−y)·ξdydξ

then

Theorem 92. Calderon-Vaillancourt A is bounded as an operator on L2

with bound

Cn

 ∑
|α|≤Mn

‖∂αa‖∞


where Cn and Mn depend only on n.

The proof consists of a partition of unity argument followed by an application
of a lemma in Hilbert space theory known as the Cotlar-Stein lemma. We refer
to Martinez pp. 43-49 for an exceptionally clear presentation of this proof.

13.5.1 Existence of inverses.

In this section we present an important application of the Calderon-Vallaincourt
theorem. We follow the exposition in Martinez. We begin by imposing some
growth conditions on symbols.

A function g : R2n → R+ is called an order function if

∂αz g = O(g)

for any α ∈ N2n and uniformly on R2n. For us, the key examples are

g(x, ξ) = 〈ξ〉m = (1 + ‖ξ‖2)m/2
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and
g(x, ξ) = (1 + ‖x‖2 + ‖ξ‖2)m/2

for various values of m.
Notice that it follows from Leibnitz’s rule that if g is an order function then

so is 1/g.
A function a = a(x, ξ, ~) defined on R2n × (0, ~0] for some ~0 > 0 is said to

belong to S(g) if it depends smoothly on (x, ξ) and for any α ∈ N2d

∂αa(x, ξ, ~) = O(g)

uniformly with respect to (x, ξ, ~) ∈ R2n × (0, ~0].
For example, if g = 1 then S(1) consists of C∞ functions on R2n parametrized

by ~ ∈ (0, ~0] which are uniformly bounded together with all their derivatives.
If g = 〈ξ〉m then the condition for a to belong to S(g) is different from

the condition on symbols that we imposed in Chapter 9 in that we are now
demanding uniform bounds on all of R2n whereas in Chapter 9 we allowed the
bounds to depend on compact subsets of Rn. On the other hand, in Chapter 9
we imposed the condition that locally ∂βx∂

α
ξ a = O(〈ξ〉m−|α| where here we are

demanding that ∂βx∂
α
ξ a = O(〈ξ〉m).

Notice that if g1 and g2 are order functions then so is g1g2, and if a ∈ S(g1)
and b ∈ S(g2) then ab ∈ S(g1g2).

Here is an unfortunate definition which seems to be standard in the subject:
A symbol a ∈ S(g) is called elliptic if there is a positive constant C0 such that

|a| ≥ 1

C0
g

uniformly on R2n × (0, ~0] for some ~0 > 0.
For example, if

a(x, ξ, ~) = a0(x, ξ) + ~a1(x, ξ) + · · ·+ ~N−1aN−1(x, ξ) + ~Nc(x, ξ, ~)

with c ∈ S(g), and if there is a constant C1 such that

|a0| ≥
1

C1
g

then a is elliptic.
From Leibniz’s rule it follows that if a ∈ S(g) is elliptic, then 1/a ∈ S(1/g).

But more is true: using the symbolic calculus of Chapter 9:

Proposition 51. Let a ∈ S(g) be elliptic. Then there exists b ∈ S(1/g) such
that

Op~(a) ◦Op~(b) = 1 +Op~(r)

Op~(b) ◦Op~(a) = 1 +Op~(r′)

with r, r′ ∈ O(~∞) in S(1).
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Proof. Let b0 := 1/a. We know that b0 ∈ S(1/g). Looking for b ∼
∑

~jbj we
solve for bj ∈ S(1/g) recursively so that

a]b = 1 +O(~∞) in S(1).

Similarly, find b′ such that

b′]a = 1 +O(~∞) in S(1).

So

Op~(a) ◦Op~(b) = 1 +Op~(r)

Op~(b′) ◦Op~(a) = 1 +Op~(r′)

with r, r′ = O(~∞) in S3n(1). So

(1 +Op~(r′)) ◦Op~(b) = Op~(b′)(1 +Op~(r)).

Multiplying out gives

Op~(b) = Op~(b′) +Op~(b′) ◦Op~(r)−Op~(r′) ◦Op~(b).

The last two terms together are of the form Op~(r1) with r1 = O(~∞) in S(1).
So

Op~(b) ◦Op~(a) = Op~(b′) ◦Op~(a) +Op~(r1) ◦Op~(a)

= 1 +Op~(r2)

with r2 = O(~∞) in S(1). So b does the trick.

Let A be be the (family of) operator(s) Op~(a). (say defined on C∞0 (Rn) ⊂
L2(Rn)) Suppose that g ≥ 1 so that 1/g ≤ 1 and hence B = Oph(b) is a family
of bounded operators on L2 = L2(Rn) for suffficiently small ~ by the Calderon-
Vallaincourt theorem, and let R1 := Op~(r) and R2 := Op~(r′). Again by the
Calderon-Vallaincourt theorem, R1 and R2 define bounded operators on L2 and
their norms as L2 operators satisfy

‖R1‖+ ‖R2‖ = O(~∞).

In particular, the Neumann series for (1+R2)−1 converges for ~ small enough
and hence (1 + R2)−1B is a left inverse for A. (In case A were a bounded
operator, so defined on all of L2 we could similarly construct a right inverse and
then the two inverses would coincide.) We wish to know that the inverse we
constructed belongs to S(g−1).

For this we apply Beal’s characterization of operators C = C~ :→ S → S ′
which are of the form C = Op~(c) for c ∈ S(1). Here is a statement of Beal’s
theorem: First some notation: If ` = `(x, ξ) is a linear function of (x, ξ) we
denote the corresponding operators Op~(`) by `(~D).
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Theorem 93. [Semi-classical form of Beal’s theorem.] Let C = C~ : S →
S ′ be a continuous (family of) linear operators and so is of the form Ophc for
c ∈ S ′(R2n. The following conditions are equivalent:

1. c ∈ S(1).

2. For every N ∈ N and every collection `1, . . . , `N of linear functions on
R2n the operators ad(`1(x, ~D)) ◦ · · · ◦ ad(`N (x, ~D))C are bounded in the
L2 operator norm and their operator norm is O(~N ).

For a proof of Beal’s theorem, see Dimassi-Sjöstrand pp. 98-99 or Evans-
Zworski (Theorem 8.13).

Let us go back to our construction of the inverse the operator Op(p) cor-
responding to an elliptic p ∈ S(q). If we define q̃ = 1/p then our functional
calculus tells us that p]q̃ = 1− ~r with r ∈ S(1). So 1− ~r satisfies condition 2
in Beal’s theorem. But

ad(`)
(
(1− ~r)−1

)
= −

(
(1− ~r)−1

)
(ad(`)(1− ~r))

(
(1− ~r)−1

)
.

Repeated application of this identity shows that (1 − ~r)−1 ∈ S(1) so q :=
q̃]l
(
(1− ~r)−1

)
∈ S(1) and the corresponding operator is the inverse of Op(p).

13.6 The functional calculus for Weyl operators.

Let g ≥ 1 be an order function, and let p ∈ S(g) be real valued. Let pw(x, ~D, ~)
be the corresponding Weyl operators, so initially all we know is that pw(x, ~D, ~)
maps S → S ′. The main result of this section is that if g = O((1+‖x‖2+‖ξ‖2)m)
for some m, then pw defines an essentially self-adjoint operator on L2.

We begin by sketching the fact that if g = O((1 + ‖x‖2 + ‖ξ‖2)m) for some
m, and a ∈ S(g) then Op(a) : S → S. The idea is to use integration by parts to
rewrite the operator Op(a) for a ∈ S(R2n using integration by parts, and then
to approximate a ∈ S(g) by elements of S(g). We use the operators

Ly :=
1− ~ξ ·Dy

1 + ‖ξ‖2
and Lξ :=

1 + ~(x− y) ·Dξ

1 + ‖x− y‖2
.

Both operators satisfy

Lei
(x−y)·ξ

~ = ei
(x−y)·ξ

~ .

Integration by parts p times with respect to y using Lygives

1

(2π~)n

∫
ei

(x−y)·ξ
~ a(x, y, ξ, ~)u(y)dξdy

=
1

(2π~)n

∫
ei

(x−y)·ξ
~ (tL)p(au)dξdy

for a ∈ S(R2n. But this last integral makes sense when m − p < −n for
a ∈ S(g), and so, by continuity, we see that Op(a) maps S into functions, in
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fact C∞ functions on Rn and Op(a) has the above form. We then integrate by
parts with respect to ξ using Lξ to conclude that xα∂βx (Op(a))u lies in S. For
details, see Martinez pages 24-25.

We now know that

pw : S → S ⊂ L2.

We will let P = pw when thought of as an operator on L2. We may (initially)
consider P as a symmetric operator with domain S = S(Rn) ⊂ L2.

Also assume that p±i is elliptic, so that we can construct their inverses as in
the preceding section, and the symbols corresponding to them as above which
we shall denote by (p±i)−1 ∈ S(g−1) for small enough ~, and the corresponding
bounded operators on L2 which we denote by (pw ± i)−1.

The following discussion is taken directly from Dimassi-Sjöstrand page 101:

It is easy to check that (pw ± i)−1L2 is independent of the choice of ±. We
denote it by DP .

Proposition 52. The closure P of P has domain DP and is self-adjiont.

Proof. To say that u is in the domain of P means that there exists a sequence
uj → u with vj = Puj converging to some v (both in the L2 norm). (In
particular this converges as elements of S ′ and pwu = v as elements of S ′ and
hence as elements of L2). We have

(pw + i)uj = vj + iuj

and hence uj = (pw + i)−1(vj + iuj), and since (pw + i)−1 is a bounded operator
on L2 we conclude that u = (pw + i)−1(v + iu) ∈ DP .

Conversely, suppose that u ∈ DP , so that u = (pw + i)−1w for some w ∈ L2.
Choose fj ∈ S with fj → w in L2, and let uj = (pw + i)−1fj . So uj ∈ S and
uj → u. Also (pw + i)uj = fj so pwuj → v − iu. This shows that u ∈ DP . So
we have proved that P has domain DP and coincides with pw there.

Suppose that u is in the domain of P ∗ and P ∗u = v. From the formal self-
adjointness of pw it follows that pwu = v as elements of S ′ and hence as elements
of L2 and hence that (pw+i)u = v+iu and therefore u = (pw+i)−1(v+iu) ∈ Dp.
So we have shown that the domain of P ∗ is DP and P = P ∗.

In fact we have proved that P has a unique self-adjoint extension (with
domain DP ) which we will now write simply as P instead of P .

For example, consider the operators ~2∆ +V where V ≥ 0 is a real function
with V ∈ S(〈x〉m) for some m and such that 1 + V is an order function. This
operator corresponds to the symbol ‖ξ‖2 +V (x) which belongs to S(1+ξ2 +V ).
So the operator 1 + ~2∆ + V (and hence the operator ~2∆ + V ) is essentially
self-adjoint.

(Of course, for the case of the Schrödinger operator, much weaker conditions
guarantee that it is essentially self adjoint; for example that the potential be
≥ 0 and locally L2. See for example, Hislop-Segal page 86.)
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We know from the preceding paragraph (via Beal’s theorem) that the re-
solvent R(z, P ) is a Weyl operator for Im z 6= 0 (Proposition 8.6 of Dimassi-
Sjöstrand). Then using the Dynkin-Helffer-Sjöstrand formula we obtain

Theorem 94. [Theorem 8.7 of Dimassi-Sjöstrand.] If f ∈ C∞0 (R) then
f(P ) ∈ Oph(g−k) for any k ∈ N. Furthermore, the two leading terms in the
symbol of f(P ) are a0 = f(p0) and a1 = p1f

′(p0).

13.6.1 Trace class Weyl operators.

Suppose that J ⊂ R is an interval such that p−1
0 (J) = ∅. Then for any smaller

interval I ⊂ J (say with compact closure), the inverse of rI − P exists for all
r ∈ I and sufficiently small ~. In other words, spec(P )∩ I = ∅. So if f ∈ C∞0 (R
has support in I then f(P ) = 0.

Now suppose only that p−1
0 (J) is contained in a compact subset K ⊂ R2n,

and suppose that f has support in I. We will conclude that f(P ) is of trace
class by the following beautiful argument due to Dimassi-Sjöstrand page 115:

Let p̃ be a real symbol which coincides with p outside some larger compact set
and p̃ takes no values in J . So a := p̃−p compact support and its corresponding
operator A is of trace class with

trA =
1

(2π)n

∫ ∫
a(x, ξ, ~)dxdξ

as can easily be checked.
Now apply the second resolvent identity to P = pw and P̃ = p̃w which says

that
R(z, P ) = R(z, P̃ ) +R(z, P )(P − P̃ )R(z, P̃ ).

Plug this into the Dynkin-Helffer-Sjöstrand formula to obtain

f(P ) = f(P̃ )− 1

π
+

∫
∂f̃R(z, P )(P − P̃ )R(z, P̃ )dz.

The first term vanishes since the support of f lies in I and p̃−1(J) = ∅. In the
second term, the two resolvents blow up to order |Im z|−1| while ∂f̃ vanishes to
infinite order in |Im z|. Since P − P̃ is a trace class operator we conclude that
f(P ) is a trace class operator!

13.7 Kantorovitz’s non-commutative Taylor’s for-
mula.

13.7.1 A Helffer-Sjöstrand formula for derivatives.

Recall that if f ∈ C∞0 (R) and if f̃ is an almost holomorphic extension of f then
for any w ∈ R we have

f(w) = − 1

π

∫
C
∂f̃ · 1

z − w
dxdy.
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The term ∂f̃ vanishes to infinite order along the real axis. So we may differen-
tiate under the integral sign as often as we like and conclude that

1

j!
f (j)(w) = − 1

π

∫
C
∂f̃ · 1

(z − w)j+1
dxdy.

We may now apply the multiplication form of the spectral theorem as above to
conclude

Proposition 53. Let f ∈ C∞0 (R) and f̃ an almost holomorphic extension of f .
Then for any self-adjoint operator A we have

1

j!
f (j)(A) = − 1

π

∫
∂f̃R(z,A)j+1dxdy. (13.25)

Let B be another self-adjoint operator. We will use the above proposition to
obtain a formula (due to Kantorovitz) which expresses f(B) in terms of f(A)
as a sort of “Taylor expansion” about A.

13.7.2 The exponential formula.

Before proceeding to the general case, we illustrate it in a very important special
case. Let A be a Banach algebra (say the algebra of bounded operators on a
Hilbert space), and let a, b ∈ A. The usual formula for the exponential series
converges, so we have

eta = I + ta+
1

2
t2a2 + · · ·

with a similar formula for etb. We can regard the exponential formula as an
asymptotic series if we like, i.e.

eta = I + ta+ · · ·+ 1

n!
tnan +O(tn+1).

The special case of Kantorovitz’s non-commutative Taylor formula that we study
in this section expresses etb in terms of eta as follows: Define

X0 := I, X1 = b− a, X2 := b2 − 2ba+ a2,

and, in general,

Xn := bn − nbn−1a+

(
n
2

)
bn−2a2 + · · · ± an. (13.26)

In other words, Xn looks like the binomial expansion of (b− a)n with all the b’s
moved to the left and all the a’s to the right. The formula we want says that

etb =

(
I + tX1 +

1

2
t2X2 + · · ·

)
eta. (13.27)
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Proof. If a and b commute, this is simply the assertion that etb = et(b−a)eta.
But in trying to verify (13.27) all the a’s lie to the right of all the b’s, and we
never move an a past a b, so (13.27) is true in general.

An asymptotic consequence of (13.27) is

etb =

(
I + tX1 +

1

2
t2X2 + · · ·+ 1

n!
tnXn

)
eta +O(tn+1). (13.28)

Polterovitch’s idea.

Notice that we can obtain the Xn inductively as X0 = I and

Xn+1 = (b− a)Xn + [a,Xn]. (13.29)

Suppose that a and b are themselves asymptotic series in ~:

a ∼ a0 + a1~ + a2~2 + · · · , b = b0 + b1~ + b2~2 + · · · .

Suppose that a− b = O(~) and that bracket by a raises degree, i.e if Y = O(~j)
then [a, Y ] = O(~j+1). Then it follows from the inductive definition (13.29)
that

Xn = O(~n).

Polterovich and Hilkin-Polterovitch use this idea to greatly simplify an old for-
mula of Agmon-Kannai about the asymptotics of the resolvents of elliptic oper-
ators. See our discussion in Chapter 11.

13.7.3 Kantorovitz’s theorem.

We continue with the above notations, so A is a Banach algebra and a, b ∈ A.
We let σ(a), σ(b) denote the spectra of a and b and R(z, a), R(z, b) denote the
resolvents of a and b.

Let La denote the operator of left multiplication by a and Rb denote the
operator of right multiplication by b and

C(a, b) := La −Rb.

so
C(a, b)x = ax− xb.

Since right and left multiplications commute (by the associative law) we have
the “binomial formula”

C(a, b)n = Lna − nLn−1
a Rb +

(
n
2

)
Ln−2
a R2

b + · · · .

Ω ⊂ C denotes an open set containing σ(a) ∪ σ(b) and Γ denotes a finite
union of closed curves lying in Ω and containing σ(a) ∪ σ(b) in its interior.

Finally, f is a complex function defined and holomorphic on Ω.
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Theorem 95. [Kantorovitch For n = 0, 1, 2, . . .

f(b) =

n∑
j=0

(−1)jf (j)(a)[C(a, b)j1]/j! + Ln(f, a, b) (13.30)

=

n∑
j=0

[C(b, a)j1] · f (j)(a)/j! +Rn(f, a, b) (13.31)

where

Ln(f, a, b) := (−1)n+1 1

2πi

∫
Γ

f(z)R(z, a)n+1[C(a, b)n+11] ·R(z, b)dz(13.32)

Rn(f, a, b) :=
1

2πi

∫
Γ

f(z)R(z, b)[C(b, a)1| ·R(z, a)n+1dz. (13.33)

Example. In (13.31) take f(x) = etx so that

f (j)(a) = tjeta

(and letting n = ∞ and ignoring the remainder) we get the formula of the
preceding section for exponentials.

Proof. Let φ and ψ be invertible elements of a Banach algebra. Clearly

ψ = φ+ φ(φ−1 − ψ−1)ψ.

Suppose that z is in the resolvent set of a and b and take

φ = R(z, a) = (zI − a)−1, ψ = R(z, b) = (zI − b)1

in the above formula. We get

R(z, b) = R(z, a) +R(z, a)(b− a)R(z, b).

This is our old friend, the second resolvent identity. Now let

Q := φ(ψ−1 − φ−1) = φψ−1 − I

so
(I +Q)−1 = φψ−1 − I

so I +Q = φψ−1 is invertible and

(I +Q)−1 = ψφ−1.

On the other hand, from high school algebra (the geometric sum) we know that
for any integer n ≥ 0 we have

(I +Q)−1 =

n∑
j=0

(−1)jQj + (−1)n+1Qn+1(I +Q)−1,
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as can be verified by multiplying on the right by I + Q. Multiplying this geo-
metric sum on the right by φ gives

ψ =

n∑
j=0

[
φ(ψ−1 − φ−1)

]n
φ+ (−1)n+1

[
φ(ψ−1 − φ−1)

]n+1
ψ.

Substituting
φ = R(z, a), ψ = R(z, b)

gives Kantorovitz’s extension of the second resolvent identity:

R(z, b) =

n∑
j=0

(−1)j [R(z, a)(a− b)]j R(z, a)+(−1)n+1 [R(z, a)(a− b)]n+1
R(z, b). (13.34)

In case a and b commute, the expression

n∑
j=0

(−1)j [R(z, a)(a− b)]j R(z, a) + (−1)n+1 [R(z, a)(a− b)]n+1
R(z, b)

simplifies to

n∑
j=0

R(z, a)j+1(a− b)j + (−1)n+1R(z, a)n+1R(z, b)(a− b)n+1.

Now La and Rb always commute and Lc−1 = (Lc)
−1 for any invertible c and

similarly Rc−1 = (Rc)
−1. So the above equation with a replaced by La and b

replaced by Rb becomes

RR(z,b) =

n∑
j=0

(LR(z,a))
j+1C(a, b)j + (−1)n+1(LR(z,a))

j+1RR(z,b)C(a, b)n+1.

If we apply this operator identity to the element 1 ∈ A we get

R(z, b) =

n∑
j=0

(−1)jR(z, a)j+1C(a, b)j · 1

+(−1)n+1R(z, a)n+1
[
C(a, b)n+1 · 1

]
R(z, b). (13.35)

If we replace a by Ra and b by Lb in

n∑
j=0

R(z, a)j+1(a− b)j + (−1)n+1R(z, a)n+1R(z, b)(a− b)n+1

and apply to I we obtain

R(z, b) =

n∑
j=0

XjR(z, a)j+1 +R(z, b)Xn+1R(z, a)n+1 (13.36)
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where, we recall, Xj = [C(b, a)j ]I.
The Riesz-Dunford functional calculus (which is basically an extension to

Banach algebras of the Cauchy integral formula) says that for a function f
analytic in Ω,

f(b) =
1

2πi

∫
Γ

f(z)R(z, b)dz

and
1

j!
f (j)(a) =

1

2πi

∫
Γ

f(z)R(z, a)j+1dz.

Applied to (13.35) this gives (13.30) and (13.32).
A similar argument using (13.36) gives (13.31) and (13.33).

13.7.4 Using the exended Helffer-Sjöstrand formula.

For possibly unbounded operators we have to worry about domains. So the
operators C(a, b)jI (where I is the identity operator) will be defined on the
domain

Dj := D
[
(C(a, b)jI

]
=

j⋂
k=0

D(akbj−k)

and (13.35) holds as an operator with domain Dn+1.

If we multiply this equation by ∂f̃ and integrate over C we obtain, as an
analogue of Kantorovitz’s first formula, for f ∈ C∞0 (R):

f(b) =

n∑
j=0

(−1)jf (j)(a)[C(a, b)j1]/j! + Ln(f, a, b)

=

n∑
j=0

[C(b, a)j1] · f (j)(a)/j! +Rn(f, a, b)

where

Ln(f, a, b) =
(−1)n

π

∫
C
∂f̃(z)R(z, a)n+1[C(a, b)n+11] ·R(z, b)dxdy. (13.37)

A similar expression holds for the right remainder.

13.8 Appendix: The existence of almost holo-
morphic extensions.

We follow the discussion in Dimassi-Sjöstrand.
Let f ∈ C∞0 (R), ψ ∈ C∞0 (R), with ψ ≡ 1 on Supp(f), and χ ∈ C∞0 (R)

with χ ≡ 1 near 0. Define

f̃(x+ iy) :=
ψ(x)√

2π

∫
R
ei(x+iy)ξχ(yξ)f̂(ξ)dξ,
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where f̂ is the Fourier transform of f . By the Fourier inversion formula

f̃|R = f. (13.38)

With ∂ := 1
2 (∂x + i∂y) we have

∂f̃ =
i

2

ψ(x)√
2π

∫
ei(x+iy)ξ)(−ξχ(yξ) + χ′(yξ))ξf̂(ξ)dξ

+
1

2

ψ(x)√
2π

∫
R
ei(x+iy)ξiξχ(yξ)f̂(ξ)dξ +

1

2

ψ′(x)√
2π

∫
R
ei(x+iy)ξχ(yξ)f̂(ξ)dξ

=
i

2

ψ(x)√
2π

∫
ei(x+iy)ξ)χ′(yξ)ξf̂(ξ)dξ +

1

2

ψ′(x)√
2π

∫
R
ei(x+iy)ξχ(yξ)f̂(ξ)dξ.

Define
χN (t) := t−Nχ′(t).

We can insert and extract a factor of yN in the first integral above and write
this first integral as

yN
i

2

ψ(x)√
2π

∫
ei(x+iy)ξ)χN (yξ)ξN+1f̂(ξ)dξ

and so get a bound on this first integral of the form

CN |y|N‖ξN+1f̂(ξ)‖L1 .

For the second integral we put in the expression of f̂ as the Fourier transform
of f to get

1

2

ψ′(x)

2π

∫
R

∫
R
ei(x−r+iy)ξχ(yξ)f(r)drdξ.

Now ψ′ = 0 on Supp(f) so x− r 6= 0 on Supp(ψ′(x)f(r)) so this becomes

1

4π
ψ′(x)

∫ ∫
Dξ

(
ei(x−r+iy)ξ

) χ(yξ)

x− r + iy
f(r)drdξ.

Integration by parts turns this into

1

4π
ψ′(x)

∫ ∫
ei(x−r+iy)ξ χ′(yξ)y

x− r + iy
f(r)drdξ.

We can insert and extract a factor of yN and also of (ξ+ i)2 so that the double
integral becomes

yN
∫ ∫

ei(x−r+iy)ξ(ξ + i)2 χN (yξ)y

(x− r + iy)(ξ + i)2
f(r)drdξ
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= yN
∫ ∫

(i−Dr)
2(−Dr)

N
(
ei(x−r+iy)ξ

) χN (yξ)y

(x− r + iy)
f(r)

1

(ξ + i)2
drdξ.

Integration by parts again brings the derivatives over to the the term f(r)
x−r+iy

and shows that the second integral is also O(|y|N ). So we have proved that

|∂f̃(z)| ≤ CN |Imz|N . (13.39)

Thus for any f ∈ C∞0 (R) we have produced an “almost holomorphic” extension
f̃ satisfying (13.39) and (13.38).
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Chapter 14

Differential calculus of
forms, Weil’s identity and
the Moser trick.

The purpose of this chapter is to give a rapid review of the basics of the calculus
of differential forms on manifolds. We will give two proofs of Weil’s formula for
the Lie derivative of a differential form: the first of an algebraic nature and then
a more general geometric formulation with a “functorial” proof that we learned
from Bott. We then apply this formula to the “Moser trick” and give several
applications of this method.

14.1 Superalgebras.

A (commutative associative) superalgebra is a vector space

A = Aeven ⊕Aodd

with a given direct sum decomposition into even and odd pieces, and a map

A×A→ A

which is bilinear, satisfies the associative law for multiplication, and

Aeven ×Aeven → Aeven

Aeven ×Aodd → Aodd

Aodd ×Aeven → Aodd

Aodd ×Aodd → Aeven

ω · σ = σ · ω if either ω or σ are even,

ω · σ = −σ · ω if both ω and σ are odd.

399
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We write these last two conditions as

ω · σ = (−1)degσdegωσ · ω.

Here deg τ = 0 if τ is even, and deg τ = 1 (mod 2) if τ is odd.

14.2 Differential forms.

A linear differential form on a manifold, M , is a rule which assigns to each
p ∈ M a linear function on TMp. So a linear differential form, ω, assigns to
each p an element of TM∗p . We will, as usual, only consider linear differential
forms which are smooth.

The superalgebra Ω(M) is the superalgebra generated by smooth functions
on M (taken as even) and by the linear differential forms, taken as odd.

Multiplication of differential forms is usually denoted by ∧. The number of
differential factors is called the degree of the form. So functions have degree
zero, linear differential forms have degree one.

In terms of local coordinates, the most general linear differential form has
an expression as a1dx1 + · · ·+ andxn (where the ai are functions). Expressions
of the form

a12dx1 ∧ dx2 + a13dx1 ∧ dx3 + · · ·+ an−1,ndxn−1 ∧ dxn

have degree two (and are even). Notice that the multiplication rules require

dxi ∧ dxj = −dxj ∧ dxi

and, in particular, dxi ∧ dxi = 0. So the most general sum of products of two
linear differential forms is a differential form of degree two, and can be brought
to the above form, locally, after collections of coefficients. Similarly, the most
general differential form of degree k ≤ n on an n dimensional manifold is a sum,
locally, with function coefficients, of expressions of the form

dxi1 ∧ · · · ∧ dxik , i1 < · · · < ik.

There are

(
n
k

)
such expressions, and they are all even, if k is even, and odd

if k is odd.

14.3 The d operator.

There is a linear operator d acting on differential forms called exterior differ-
entiation, which is completely determined by the following rules: It satisfies
Leibniz’ rule in the “super” form

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ).
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On functions it is given by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

and, finally,
d(dxi) = 0.

Since functions and the dxi generate, this determines d completely. For example,
on linear differential forms

ω = a1dx1 + · · · andxn

we have

dω = da1 ∧ dx1 + · · ·+ dan ∧ dxn

=

(
∂a1

∂x1
dx1 + · · · ∂a1

∂xn
dxn

)
∧ dx1 + · · ·(

∂an
∂x1

dx1 + · · ·+ ∂an
∂xn

dxn

)
∧ dxn

=

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 + · · ·+

(
∂an
∂xn−1

− ∂an−1

∂xn

)
dxn−1 ∧ dxn.

In particular, equality of mixed derivatives shows that d2f = 0, and hence that
d2ω = 0 for any differential form. Hence the rules to remember about d are:

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ)

d2 = 0

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

14.4 Derivations.

A linear operator ` : A→ A is called an odd derivation if, like d, it satisfies

` : Aeven → Aodd, ` : Aodd → Aeven

and
`(ω · σ) = (`ω) · σ + (−1)degω ω · `σ.

A linear map ` : A→ A,

` : Aeven → Aeven, ` : Aodd → Aodd

satisfying
`(ω · σ) = (`ω) · σ + ω · (`σ)

is called an even derivation. So the Leibniz rule for derivations, even or odd, is

`(ω · σ) = (`ω) · σ + (−1)deg`degω ω · `σ.
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Knowing the action of a derivation on a set of generators of a superalgebra
determines it completely. For example, the equations

d(xi) = dxi, d(dxi) = 0 ∀i

implies that

dp =
∂p

∂x1
dx1 + · · ·+ ∂p

∂xn
dxn

for any polynomial, and hence determines the value of d on any differential form
with polynomial coefficients. The local formula we gave for df where f is any
differentiable function, was just the natural extension (by continuity, if you like)
of the above formula for polynomials.

The sum of two even derivations is an even derivation, and the sum of two
odd derivations is an odd derivation.

The composition of two derivations will not, in general, be a derivation, but
an instructive computation from the definitions shows that the commutator

[`1, `2] := `1 ◦ `2 − (−1)deg`1deg`2 `2 ◦ `1

is again a derivation which is even if both are even or both are odd, and odd if
one is even and the other odd.

A derivation followed by a multiplication is again a derivation: specifically,
let ` be a derivation (even or odd) and let τ be an even or odd element of A.
Consider the map

ω 7→ τ`ω.

We have

τ`(ωσ) = (τ`ω) · σ + (−1)deg`degωτω · `σ

= (τ`ω) · σ + (−1)(deg`+degτ)degωω · (τ`σ)

so ω 7→ τ`ω is a derivation whose degree is

degτ + deg`.

14.5 Pullback.

Let φ : M → N be a smooth map. Then the pullback map φ∗ is a linear map
that sends differential forms on N to differential forms on M and satisfies

φ∗(ω ∧ σ) = φ∗ω ∧ φ∗σ
φ∗dω = dφ∗ω

(φ∗f) = f ◦ φ.

The first two equations imply that φ∗ is completely determined by what it
does on functions. The last equation says that on functions, φ∗ is given by
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“substitution”: In terms of local coordinates on M and on N φ is given by

φ(x1, . . . , xm) = (y1, . . . , yn)

yi = φi(x1, . . . , xm) i = 1, . . . , n

where the φi are smooth functions. The local expression for the pullback of a
function f(y1, . . . , yn) is to substitute φi for the yis as into the expression for f
so as to obtain a function of the x′s.

It is important to observe that the pull back on differential forms is de-
fined for any smooth map, not merely for diffeomorphisms. This is the great
advantage of the calculus of differential forms.

14.6 Chain rule.

Suppose that ψ : N → P is a smooth map so that the composition

ψ ◦ φ : M → P

is again smooth. Then the chain rule says

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

On functions this is essentially a tautology - it is the associativity of composition:
f ◦ (ψ ◦ φ) = (f ◦ ψ) ◦ φ. But since pull-back is completely determined by what
it does on functions, the chain rule applies to differential forms of any degree.

14.7 Lie derivative.

Let φt be a one parameter group of transformations of M . If ω is a differential
form, we get a family of differential forms, φ∗tω depending differentiably on t,
and so we can take the derivative at t = 0:

d

dt
(φ∗tω)|t=0 = lim

t=0

1

t
[φ∗tω − ω] .

Since φ∗t (ω ∧ σ) = φ∗tω ∧ φ∗tσ it follows from the Leibniz argument that

`φ : ω 7→ d

dt
(φ∗tω)|t=0

is an even derivation. We want a formula for this derivation.
Notice that since φ∗t d = dφ∗t for all t, it follows by differentiation that

`φd = d`φ

and hence the formula for `φ is completely determined by how it acts on func-
tions.



404CHAPTER 14. DIFFERENTIAL CALCULUS OF FORMS,WEIL’S IDENTITY AND THEMOSER TRICK.

Let X be the vector field generating φt. Recall that the geometrical signifi-
cance of this vector field is as follows: If we fix a point x, then

t 7→ φt(x)

is a curve which passes through the point x at t = 0. The tangent to this curve
at t = 0 is the vector X(x). In terms of local coordinates, X has coordinates
X = (X1, . . . , Xn) where Xi(x) is the derivative of φi(t, x1, . . . , xn) with respect
to t at t = 0. The chain rule then gives, for any function f ,

`φf =
d

dt
f(φ1(t, x1, . . . , xn), . . . , φn(t, x1, . . . , xn))|t=0

= X1 ∂f

∂x1
+ · · ·+Xn ∂f

∂xn
.

For this reason we use the notation

X = X1 ∂

∂x1
+ · · ·+Xn ∂

∂xn

so that the differential operator

f 7→ Xf

gives the action of `φ on functions.
As we mentioned, this action of `φ on functions determines it completely. In

particular, `φ depends only on the vector field X, so we may write

`φ = DX

where DX is the even derivation determined by

DXf = Xf, DXd = dDX .

14.8 Weil’s formula.

But we want a more explicit formula for DX . For this it is useful to introduce
an odd derivation associated to X called the interior product and denoted by
i(X). It is defined as follows: First consider the case where

X =
∂

∂xj

and define its interior product by

i

(
∂

∂xj

)
f = 0

for all functions while

i

(
∂

∂xj

)
dxk = 0, k 6= j
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and

i

(
∂

∂xj

)
dxj = 1.

The fact that it is a derivation then gives an easy rule for calculating i(∂/∂xj)
when applied to any differential form: Write the differential form as

ω + dxj ∧ σ

where the expressions for ω and σ do not involve dxj . Then

i

(
∂

∂xj

)
[ω + dxj ∧ σ] = σ.

The operator

Xji

(
∂

∂xj

)
which means first apply i(∂/∂xj) and then multiply by the function Xj is again
an odd derivation, and so we can make the definition

i(X) := X1i

(
∂

∂x1

)
+ · · ·+Xni

(
∂

∂xn

)
. (14.1)

It is easy to check that this does not depend on the local coordinate system
used.

Notice that we can write

Xf = i(X)df.

In particular we have

DXdxj = dDXxj

= dXj

= di(X)dxj .

We can combine these two formulas as follows: Since i(X)f = 0 for any function
f we have

DXf = di(X)f + i(X)df.

Since ddxj = 0 we have

DXdxj = di(X)dxj + i(X)ddxj .

Hence
DX = di(X) + i(X)d = [d, i(X)] (14.2)

when applied to functions or to the forms dxj . But the right hand side of the
preceding equation is an even derivation, being the commutator of two odd
derivations. So if the left and right hand side agree on functions and on the
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differential forms dxj they agree everywhere. This equation, (14.2), known as
Weil’s formula, is a basic formula in differential calculus.

We can use the interior product to consider differential forms of degree k as
k−multilinear functions on the tangent space at each point. To illustrate, let
σ be a differential form of degree two. Then for any vector field, X, i(X)σ is
a linear differential form, and hence can be evaluated on any vector field, Y to
produce a function. So we define

σ(X,Y ) := [i(X)σ] (Y ).

We can use this to express exterior derivative in terms of ordinary derivative
and Lie bracket: If θ is a linear differential form, we have

dθ(X,Y ) = [i(X)dθ] (Y )

i(X)dθ = DXθ − d(i(X)θ)

d(i(X)θ)(Y ) = Y [θ(X)]

[DXθ] (Y ) = DX [θ(Y )]− θ(DX(Y ))

= X [θ(Y )]− θ([X,Y ])

where we have introduced the notation DXY =: [X,Y ] which is legitimate since
on functions we have

(DXY )f = DX(Y f)− Y DXf = X(Y f)− Y (Xf)

so DXY as an operator on functions is exactly the commutator of X and Y .
(See below for a more detailed geometrical interpretation of DXY .) Putting the
previous pieces together gives

dθ(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]), (14.3)

with similar expressions for differential forms of higher degree.

14.9 Integration.

Let
ω = fdx1 ∧ · · · ∧ dxn

be a form of degree n on Rn. (Recall that the most general differential form of
degree n is an expression of this type.) Then its integral is defined by∫

M

ω :=

∫
M

fdx1 · · · dxn

where M is any (measurable) subset. This, of course is subject to the condition
that the right hand side converges if M is unbounded. There is a lot of hidden
subtlety built into this definition having to do with the notion of orientation.
But for the moment this is a good working definition.
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The change of variables formula says that if φ : M → Rn is a smooth
differentiable map which is one to one whose Jacobian determinant is everywhere
positive, then ∫

M

φ∗ω =

∫
φ(M)

ω.

14.10 Stokes theorem.

Let U be a region in Rn with a chosen orientation and smooth boundary. We
then orient the boundary according to the rule that an outward pointing normal
vector, together with the a positive frame on the boundary give a positive frame
in Rn. If σ is an (n− 1)−form, then∫

∂U

σ =

∫
U

dσ.

A manifold is called orientable if we can choose an atlas consisting of charts
such that the Jacobian of the transition maps φα◦φ−1

β is always positive. Such a
choice of an atlas is called an orientation. (Not all manifolds are orientable.) If
we have chosen an orientation, then relative to the charts of our orientation, the
transition laws for an n−form (where n = dimM) and for a density are the same.
In other words, given an orientation, we can identify densities with n−forms
and n−form with densities. Thus we may integrate n−forms. The change of
variables formula then holds for orientation preserving diffeomorphisms as does
Stokes theorem.

14.11 Lie derivatives of vector fields.

Let Y be a vector field and φt a one parameter group of transformations whose
“infinitesimal generator” is some other vector field X. We can consider the
“pulled back” vector field φ∗tY defined by

φ∗tY (x) = dφ−t{Y (φtx)}.

In words, we evaluate the vector field Y at the point φt(x), obtaining a tangent
vector at φt(x), and then apply the differential of the (inverse) map φ−t to
obtain a tangent vector at x.

If we differentiate the one parameter family of vector fields φ∗tY with respect
to t and set t = 0 we get a vector field which we denote by DXY :

DXY :=
d

dt
φ∗tY|t=0.

If ω is a linear differential form, then we may compute i(Y )ω which is a
function whose value at any point is obtained by evaluating the linear function
ω(x) on the tangent vector Y (x). Thus

i(φ∗tY )φ∗tω(x) = 〈(d(φt)x)∗ω(φtx), dφ−tY (φtx)〉 = {i(Y )ω}(φtx).
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In other words,
φ∗t {i(Y )ω} = i(φ∗tY )φ∗tω.

We have verified this when ω is a differential form of degree one. It is trivially
true when ω is a differential form of degree zero, i.e. a function, since then both
sides are zero. But then, by the derivation property, we conclude that it is true
for forms of all degrees. We may rewrite the result in shorthand form as

φ∗t ◦ i(Y ) = i(φ∗tY ) ◦ φ∗t .

Since φ∗t d = dφ∗t we conclude from Weil’s formula that

φ∗t ◦DY = Dφ∗tY
◦ φ∗t .

Until now the subscript t was superfluous, the formulas being true for any fixed
diffeomorphism. Now we differentiate the preceding equations with respect to t
and set t = 0. We obtain,using Leibniz’s rule,

DX ◦ i(Y ) = i(DXY ) + i(Y ) ◦DX

and
DX ◦DY = DDXY +DY ◦DX .

This last equation says that Lie derivative (on forms) with respect to the vector
field DXY is just the commutator of DX with DY :

DDXY = [DX , DY ].

For this reason we write
[X,Y ] := DXY

and call it the Lie bracket (or commutator) of the two vector fields X and Y .
The equation for interior product can then be written as

i([X,Y ]) = [DX , i(Y )].

The Lie bracket is antisymmetric in X and Y . We may multiply Y by a function
g to obtain a new vector field gY . Form the definitions we have

φ∗t (gY ) = (φ∗t g)φ∗tY.

Differentiating at t = 0 and using Leibniz’s rule we get

[X, gY ] = (Xg)Y + g[X,Y ] (14.4)

where we use the alternative notation Xg for DXg. The antisymmetry then
implies that for any differentiable function f we have

[fX, Y ] = −(Y f)X + f [X,Y ]. (14.5)

From both this equation and from Weil’s formula (applied to differential forms
of degree greater than zero) we see that the Lie derivative with respect to X at
a point x depends on more than the value of the vector field X at x.
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14.12 Jacobi’s identity.

From the fact that [X,Y ] acts as the commutator of X and Y it follows that
for any three vector fields X,Y and Z we have

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.

This is known as Jacobi’s identity. We can also derive it from the fact that
[Y, Z] is a natural operation and hence for any one parameter group φt of dif-
feomorphisms we have

φ∗t ([Y,Z]) = [φ∗tY, φ
∗
tZ].

If X is the infinitesimal generator of φt then differentiating the preceding equa-
tion with respect to t at t = 0 gives

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]].

In other words, X acts as a derivation of the “mutliplication” given by Lie
bracket. This is just Jacobi’s identity when we use the antisymmetry of the
bracket. In the future we we will have occasion to take cyclic sums such as
those which arise on the left of Jacobi’s identity. So if F is a function of three
vector fields (or of three elements of any set) with values in some vector space
(for example in the space of vector fields) we will define the cyclic sum Cyc F
by

Cyc F (X,Y, Z) := F (X,Y, Z) + F (Y,Z,X) + F (Z,X, Y ).

With this definition Jacobi’s identity becomes

Cyc [X, [Y, Z]] = 0. (14.6)

14.13 A general version of Weil’s formula.

Let W and Z be differentiable manifolds, let I denote an interval on the real
line containing the origin, and let

φ : W × I → Z

be a smooth map. We let φt : W → Z be defined by

φt(w) := φ(w, t).

We think of φt as a one parameter family of maps from W to Z. We let ξt
denote the tangent vector field along φt. In more detail:

ξt : W → TZ

is defined by letting ξt(w) be the tangent vector to the curve s 7→ φ(w, s) at
s = t.
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If σ is a differential form on Z of degree k+1, we let the expression φ∗t i(ξt)σ
denote the differential form on W of degree k whose value at tangent vectors
η1, . . . , ηk at w ∈W is given by

φ∗t i(ξt)σ(η1, . . . , ηk) := (i(ξt)(w))σ)(d(φt)wη1, . . . , d(φt)wηk). (14.7)

It is only the combined expression φ∗t i(ξt)σ which will have any sense in general:
since ξt is not a vector field on Z, the expression i(ξt)σ will not make sense as
a stand alone object (in general).

Let σt be a smooth one-parameter family of differential forms on Z. Then

φ∗tσt

is a smooth one parameter family of forms on W , which we can then differentiate
with respect to t. The general form of Weil’s formula is:

d

dt
φ∗tσt = φ∗t

dσt
dt

+ φ∗t i(ξt)dσ + dφ∗t i(ξt)σ. (14.8)

Before proving the formula, let us note that it is functorial in the following
sense: Suppose that that F : X → W and G : Z → Y are smooth maps, and
that τt is a smooth family of differential forms on Y . Suppose that σt = G∗τt
for all t. We can consider the maps

ψt : X → Y, ψt := G ◦ φt ◦ F

and then the smooth one parameter familiy of differential forms

ψ∗t τt

on X. The tangent vector field ζt along ψt is given by

ζt(x) = dGφt(F (x)) (ξt(F (x))) .

So
ψ∗t i(ζt)τt = F ∗ (φ∗t i(ξt)G

∗τt) .

Therefore, if we know that (14.8) is true for φt and σt, we can conclude that
the analogous formula is true for ψt and τt.

Consider the special case of (14.8) where we take the one parameter family
of maps

ft : W × I →W × I, ft(w, s) = (w, s+ t).

Let
G : W × I → Z

be the map φ, and let
F : W →W × I

be the map
F (w) = (w, 0).
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Then
(G ◦ ft ◦ F )(w) = φt(w).

Thus the functoriality of the formula (14.8) shows that we only have to prove
it for the special case φt = ft : W × I →W × I as given above!

In this case, it is clear that the vector field ξt along ψt is just the constant
vector field ∂

∂s evaluated at (x, s+t). The most general differential (t-dependent)
on W × I can be written as

ds ∧ a+ b

where a and b are differential forms on W . (In terms of local coordinates
s, x1, . . . , xn these forms a and b are sums of terms that have the expression

cdxi1 ∧ · · · ∧ dxik

where c is a function of s, t and x.) To show the full dependence on the variables
we will write

σt = ds ∧ a(x, s, t)dx+ b(x, s, t)dx.

With this notation it is clear that

φ∗tσt = ds ∧ a(x, s+ t, t)dx+ b(x, s+ t, t)dx

and therefore

dφ∗tσt
dt

= ds ∧ ∂a
∂s

(x, s+ t, t)dx+
∂b

∂s
(x, s+ t, t)dx

+ds ∧ ∂a
∂t

(x, s+ t, t)dx+
∂b

∂t
(x, s+ t, t)dx.

So
dφ∗tσt
dt

− φ∗t
dσt
dt

= ds ∧ ∂a
∂s

(x, s+ t, t)dx+
∂b

∂s
(x, s+ t, t)dx.

Now

i

(
∂

∂s

)
σt = adx

so
φ∗t i(ξt)σt = a(x, s+ t, t)dx.

Therefore

dφ∗t i(ξt)σt = ds ∧ ∂a
∂s

(x, s+ t, t)dx+ dW (a(x, s+ t, t)dx).

Also

dσt = −ds ∧ dW (adx) +
∂b

∂s
ds ∧ dx+ dW bdx

so

i

(
∂

∂s

)
dσt = −dW (adx) +

∂b

∂s
dx
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and therefore

φ∗t i(ξt)dσt = −dWa(x, s+ t, t)dx+
∂b

∂s
(x, s+ t, t)dx.

So

dφ∗t i(ξt)σt + φ∗t i(ξt)dσt = ds ∧ ∂a
∂s

(x, s+ t, t)dx+
∂b

∂s
(x, s+ t, t)dx

=
dφ∗tσt
dt

− φ∗t
dσt
dt

proving (14.8).
A special case of (14.8) is the following. Suppose that W = Z = M and φt

is a family of diffeomorphisms ft : M →M . Then ξt is given by

ξt(p) = vt(ft(p))

where vt is the vector field

vt(f(p)) =
d

dt
ft(p).

In this case i(vt)σt makes sense, and so we can write (14.8) as

dφ∗tσt
dt

= φ∗t
dσt
dt

+ φ∗tDvtσt. (14.9)

14.14 The Moser trick.

Let M be a differentiable manifold and let ω0 and ω1 be smooth k-forms on
M . Let us examine the following question: does there exist a diffeomorphism
f : M →M such that f∗ω1 = ω0?

Moser answers this kind of question by making it harder! Let ωt, 0 ≤ t ≤ 1
be a family of k-forms with ωt = ω0 at t = 0 and ωt = ω1 at t = 1. We look for
a one parameter family of diffeomorphisms

ft : M →M, 0 ≤ t ≤ 1

such that
f∗t ωt = ω0 (14.10)

and
f0 = id .

Let us differentiate (14.10) with respect to t and apply (14.9). We obtain

f∗t ω̇t + f∗t Dvtωt = 0

where we have written ω̇t for dωt
dt . Since ft is required to be a diffeomorphism,

this becomes the requirement that

Dvtωt = −ω̇t. (14.11)



14.14. THE MOSER TRICK. 413

Moser’s method is to use “geometry” to solve this equation for vt if possible.
Once we have found vt, solve the equations

d

dt
ft(p) = vt(ft(p), f0(p) = p (14.12)

for ft. Notice that for p fixed and γ(t) = ft(p) this is a system of ordinary
differential equations

d

dt
γ(t) = vt(γ(t)), γ(0) = p.

The standard existence theorems for ordinary differential equations guarantees
the existence of of a solution depending smoothly on p at least for |t| < ε. One
then must make some additional hypotheses that guarantee existence for all
time (or at least up to t = 1). Two such additional hypotheses might be

• M is compact, or

• C is a closed subset of M on which vt ≡ 0. Then for p ∈ C the solution
for all time is ft(p) = p. Hence for p close to C solutions will exist for a
long time. Under this condition there will exist a neighborhood U of C
and a family of diffeomorphisms

ft : U →M

defined for 0 ≤ t ≤ 1 such

f0 = id, ft|C = id∀t

and (14.10) is satisfied.

We now give some illustrations of the Moser trick.

14.14.1 Volume forms.

Let M be a compact oriented connected n-dimensional manifold. Let ω0 and
ω1 be nowhere vanishing n-forms with the same volume:∫

M

ω0 =

∫
M

ω1.

Moser’s theorem asserts that under these conditions there exists a diffeomor-
phism f : M →M such that

f∗ω1 = ω0.

Moser invented his method for the proof of this theorem.
The first step is to choose the ωt. Let

ωt := (1− t)ω0 + tω1.
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Since both ω0 and ω1 are nowhere vanishing, and since they yield the same
integral (and since M is connected), we know that at every point they are either
both positive or both negative relative to the orientation. So ωt is nowhere
vanishing. Clearly ωt = ω0 at t = 0 and ωt = ω1 at t = 1. Since dωt = 0 as ωt
is an n-from on an n-dimensional manifold,

Dvtωt = di(vt)ωt

by Weil’s formula. Also
ω̇t = ω1 − ω0.

Since
∫
M
ω0 =

∫
M
ω1 we know that

ω0 − ω1 = dν

for some (n− 1)-form ν. Thus (14.11) becomes

di(vt)ωt = dν.

We will certainly have solved this equation if we solve the harder equation

i(vt)ωt = ν.

But this equation has a unique solution since ωt is no-where vanishing. QED

14.14.2 Variants of the Darboux theorem.

We present these in Chapter 2.

14.14.3 The classical Morse lemma.

Let M = Rn and φi ∈ C∞(Rn), i = 0, 1. Suppose that 0 is a non-degenerate
critical point for both φ0 and φ1, suppose that φ0(0) = φ1(0) = 0 and that they
have the same Hessian at 0, i.e. suppose that(

d2φ0

)
(0) =

(
d2φ1

)
(0).

The Morse lemma asserts that there exist neighborhoods U0 and U1 of 0 in Rn
and a diffeomorphism

f : U0 → U1, f(0) = 0

such that
f∗φ1 = φ0.

Proof. Set
φt := (1− t)φ0 + tφ1.

The Moser trick tells us to look for a vector field vt with

vt(0) = 0, ∀ t
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and
Dvtφt = −φ̇t = φ0 − φ1.

The function φt has a non-degenerate critical point at zero with the same Hessian
as φ0 and φ1 and vanishes at 0. Thus for each fixed t, the functions

∂φt
∂xi

form a system of coordinates about the origin.
If we expand vt in terms of the standard coordinates

vt =
∑
j

vj(x, t)
∂

∂xj

then the condition vj(0, t) = 0 implies that we must be able to write

vj(x, t) =
∑
i

vij(x, t)
∂φt
∂xi

.

for some smooth functions vij . Thus

Dvtφt =
∑
ij

vij(x, t)
∂φt
∂xi

∂φt
∂xj

.

Similarly, since −φ̇t vanishes at the origin together with its first derivatives, we
can write

−φ̇t =
∑
ij

hij
∂φt
∂xi

∂φt
∂xj

where the hij are smooth functions. So the Moser equation Dvtφt = −φ̇t is
satisfied if we set

vij(x, t) = hij(x, t).

Notice that our method of proof shows that if the φi depend smoothly on
some paramters lying in a compact manifold S then the diffeomorphism f can
be chosen so as to depend smoothly on s ∈ S.

In Section 5.11 we give a more refined version of this argument to prove the
Hörmander-Morse lemma for generating functions.

In differential topology books the classical Morse lemma is usually stated as
follows:

Theorem 96. Let M be a manifold and φ : M → R be a smooth function.
Suppose that p ∈M is a non-degenerate critical point of φ and that the signature
of d2φp is (k, n − k). Then there exists a system of coordinates (U, x1, . . . , xn)
centered at p such that in this coordinate system

φ = c+

k∑
i=1

x2
i −

n∑
i=k+1

x2
i .
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Proof. Choose any coordinate system (W, y1, . . . yn) centered about p and
apply the previous result to

φ1 = φ− c

and
φ0 =

∑
hijyiyj

where

hij =
∂2φ

∂yi∂yi
(0).

This gives a change of coordinates in terms of which φ − c has become a non-
degenerate quadratic form. Now apply Sylvester’s theorem in linear algebra
which says that a linear change of variables can bring such a non-degenerate
quadratic form to the desired diagonal form.



Chapter 15

The method of stationary
phase

15.1 Gaussian integrals.

We recall a basic computation in the integral calculus:

1√
2π

∫ ∞
−∞

e−x
2/2dx = 1. (15.1)

This is proved by taking the square of the left hand side and then passing to
polar coordinates: [

1√
2π

∫ ∞
−∞

e−x
2/2dx

]2

=

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2dxdy

=
1

2π

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ

=

∫ ∞
0

e−r
2/2rdr

= 1.

15.1.1 The Fourier transform of a Gaussian.

Now
1√
2π

∫ ∞
−∞

e−x
2/2e−ηxdx

converges for all complex values of η, uniformly in any compact region. Hence
it defines an analytic function which may be evaluated by taking η to be real

417
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and then using analytic continuation. For real η we complete the square and
make a change of variables:

1√
2π

∫ ∞
−∞

exp(−x
2

2
− xη)dx =

=
1√
2π

∫ ∞
−∞

exp
1

2
(−(x+ η)2 + η2)dx

= exp(η2/2)
1√
2π

∫ ∞
−∞

exp(−(x2 + η2)/2)dx

= exp(η2/2).

As we mentioned, this equation is true for any complex value of η. In
particular, setting η = −iξ we get

1√
2π

∫ ∞
−∞

exp(−x2/2 + iξx)dx = exp(−ξ2/2). (15.2)

In short,

1. The Fourier transform of the Gaussian function x 7→ exp(−x2/2) is ξ 7→
e−ξ

2/2.

If f is any smooth function vanishing rapidly at infinity, and f̂ denotes its
Fourier transform, then the Fourier transform of x 7→ f(cx) is ξ 7→ 1

c f̂(ξ/c). In

particular, if we take λ > 0, c = λ
1
2 we get

1√
2π

∫ ∞
−∞

exp(−λx2/2 + iξx)dx =

(
1

λ

) 1
2

exp(−ξ2/2λ). (15.3)

We proved this formula for λ real and positive. But the integral on the left
makes sense for all λ with Re λ > 0, and hence this formula remains true in the
entire open right hand plane Re λ > 0, provided we interpret the square root
occurring on the right as arising by analytic continuation from the positive real
axis.

We can say more: The integral on the left converges uniformly (but not
absolutely) for λ in any region of the form

Re λ ≥ 0, |λ| > δ > 0.

To see this, observe that for any S > R > 0 we have

e−λx
2/2 = − 1

λx

d

dx
exp(−λx2/2) for R ≤ x ≤ S

so we can apply integration by parts to get∫ S

R

e−λx
2/2eiξxdx =
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2/2H(X)DX. 419

1

λ

(
1

R
e−λR

2/2+iξR − 1

S
e−S

2/2+iξS +

∫ S

R

e−λx
2/2 d

dx

(
eiξx

x

)
dx

)
and integrate by parts once more to bound the integral on the right. We conclude
that ∣∣∣∣∣

∫ S

R

e−λx
2/2eiξxdx

∣∣∣∣∣ = O(
1

|λR|
).

15.2 The integral
∫
e−λx

2/2h(x)dx.

This same argument shows that∫
e−λx

2/2h(x)dx

is convergent for any h with two bounded continuous derivatives. Indeed,∫ S

R

e−λx
2/2h(x)dx =

= − 1

λ

∫ S

R

h(x)

x

d

dx
e−λx

2/2dx

= − λ−1e−λx
2/2(h(x)/x)

∣∣∣S
R

+
1

λ

∫ S

R

e−λx
2/2 d

dx
(h(x)/x)dx

= − λ−2e−λx
2/2[λ(h(x)/x)− (1/x)

d

dx
(h(x)/x)]

∣∣∣∣S
R

+λ−2

∫ S

R

e−λx
2/2[(1/x)(h(x)/x)′]′dx.

This last integral is absolutely convergent, and the boundary terms tend to zero
as R→∞.

This argument shows that if M is a bound for h and its first two derivatives,
the above expressions can all be estimated purely in terms of M . Thus if
h depends on some auxiliary parameters, and is uniformly bounded together
with its first two derivatives with respect to these parameters, then the integral∫∞
−∞ h(x) exp(−λx2/2)dx converges uniformly with respect to these parameters.

Let us push this argument one step further. Suppose that h has derivatives
of all order which are bounded on the entire real axis, and suppose further that
h ≡ 0 in some neighborhood, |x| < ε, of the origin. If we do the integration by
parts ∫ S

R

e−λx
2/2h(x)dx
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= − λ−1e−λx
2/2(h(x)/x)

∣∣∣S
R

+
1

λ

∫ S

R

e−λx
2/2 d

dx
(
h(x)

x
)dx,

choose R < ε and let S →∞. We conclude that∫ ∞
−∞

e−λx
2/2h(x)dx =

1

λ

∫ ∞
−∞

e−λx
2/2 d

dx
(h(x)/x)dx.

The right hand side is a function of the same sort as h. We conclude that∫
R
e−λx

2/2h(x)dx = O(λ−N )

for all N if h vanishes in some neighborhood of the origin has derivatives of all
order which are each bounded on the entire line.

15.3 Gaussian integrals in n dimensions.

Getting back to the case h ≡ 1, if we take λ = ∓ir, r > 0 and set ξ = 0 in
(15.3) then analytic continuation from the positive real axis gives λ

1
2 = e∓πi/4

and we obtain ∫ ∞
−∞

e±irx
2/2dx =

(
2π

r

) 1
2

e±πi/4. (15.4)

Doing the same computation in n - dimensions gives

∫
eiτQ/2dy =

(
2π

τ

)n
2
(

1

r1 · r2 · · · rn

) 1
2

ei sgnQπ/4 (15.5)

if

Q(y) =
∑
±ri(yi)2.

Now r1 · r2 · · · rn = |detQ|. So we can rewrite the above equation as

∫
eiτQ/2dy =

(
2π

τ

)n
2 1√
|detQ|

ei sgnQπ/4 (15.6)

We proved this formula under the assumption that Q was in diagonal form. But
if Q is any non-degenerate quadratic form, we know that there is an orthogonal
change of coordinates which brings Q to diagonal form. By this change of
variables we see that

2. (15.6) is valid for any non-degenerate quadratic form.
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15.4 Using the multiplication formula for the
Fourier transform.

Recall that in one dimension this says that if f, g ∈ S(R) and f̂ , ĝ denote their
Fourier transforms then∫

R
f̂(ξ)g(ξ)dξ =

∫
R
f(x)ĝ(x)dx.

In this formula let us take

g(ξ) = e−
ξ2

2λ

where Re λ > 0 so that
ĝ(x) = λ

1
2 e−λx

2/2

where the square root is given by the positive square root on the positive axis
and extended by analytic continuation. So the multiplication formula yields∫

R
f̂(ξ)e−

ξ2

2λ dξ = λ
1
2

∫
R
f(x)e−

λx2

2 dx.

Take
λ = ε− ia, ε > 0, a ∈ R− {0}

and let ε↘ 0. We get∫
R
f̂(ξ)e−

iξ2

2a = |a| 12 e−πi4 sgn a

∫
R
f(x)e

iax2

2 dx

which we can rewrite as∫
R
f(x)ei

ax2

2 dx = |a|− 1
2 e

πi
4

∫
R
f̂(ξ)e−

iξ2

2a dξ.

We can pass from this one dimensional formula to an n - dimensional formula
as follows: Let A = (ak`) be a non-singular symmetric n×n matrix and let sgnA
denote the signature of the quadatic form

Q(x) = 〈Ax, x〉 =
∑

aijxixj .

Let
B := A−1.

Then for any t > 0 we have∫
Rn
f(x)ei

t
2 〈Ax,x〉dx = t−

n
2 |detA|− 1

2 e
πi
4 sgnA

∫
Rn
f̂(ξ)e−

i
2t 〈Bξ,ξ〉dξ. (15.7)

The proof is via diagonalization as before. We may make an orthogonal change
of coordinates relative to which A becomes diagonal. Then if f is a product
function

f(x1, . . . , xn) = f(x1) · f(x2) · · · f(xn)

the formula reduces to the one dimensional formula we have already proved.
Since the linear combination of these functions are dense, the formula is true in
general.



422 CHAPTER 15. THE METHOD OF STATIONARY PHASE

15.5 A local version of stationary phase.

In order to conform with standard notation let us set t = ~−1 in (15.7). The
right hand side of (15.7) becomes

~
n
2 |detA|− 1

2 e
πi
4 sgnAa(~)

where

a(~) =

∫
Rn
f̂(ξ)e−i

~
2 〈Bξ,ξ〉dξ.

Let us now use the Taylor formula for the exponential:∣∣∣∣∣eix −
m∑
k=0

(ix)k

k!

∣∣∣∣∣ ≤ |x|m+1

(m+ 1)!
.

Thus the function a can be estimated by the sum

m∑
k=0

1

k!

(
− i~

2

)k ∫
Rn
〈Bξ, ξ〉kf̂(ξ)dξ

with an error that is bounded by

1

(m+ 1)!

(
~
2

)m+1 ∫
Rn

∣∣∣〈Bξ, ξ〉m+1f̂(ξ)
∣∣∣ dξ.

In the “Taylor expansion”

a(~) =
∑

ak~k

we can interpret the coefficient

ak =

(
− i

2

)k ∫
Rn
〈Bξ, ξ〉kf̂(ξ)dξ

as follows: Let b(D) be the constant coefficient differential operator

b(D) :=
∑

bk`DkD`

where

Dk =
1

i

∂

∂xk
.

Then 〈Bξ, ξ〉kf̂(ξ) is the Fourier transform of the function b(D)kf . So by the
Fourier inversion formula,

(b(D)kf)(0) = (2π)−n/2
∫
Rn
〈Bξ, ξ〉kf̂(ξ)dξ.

We can thus state our local version of the stationary phase formula as follows:
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Theorem 97. If f ∈ S(Rn) and

I(~) :=

∫
Rn
f(x)ei

〈Ax,x〉
2~ dx

then

I(~) =

(
~

2π

)n
2

γAa(~)

where
γA = |detA|− 1

2 e
πi
4 sgnA

and a ∈ C∞(R). Furthermore a has the asymptotic expansion

a(~) ∼
(

exp(−i~
2
b(D)f

)
(0).

The next step in our program is to use Morse’s lemma.

15.6 The formula of stationary phase.

15.6.1 Critical points.

Let M be a smooth compact n-dimensional manifold, and let ψ be a smooth
real valued function defined on M . Recall that a point p ∈M is called a critical
point of ψ if dψ(p) = 0. This means that (Xψ)(p) = 0 for any vector field X on
M , and if X itself vanishes at p then Xφ vanishes at p “to second order” in the
sense that Y Xψ vanishes at p for any vector field Y . Thus (Y Xψ)(p) depends
only on the value X(p). Furthermore

(XY ψ)(p)− (Y Xψ)(p) = ([X,Y ]ψ)(p) = 0

so we get a well defined symmetric bilinear form on the tangent space TMp

called the Hessian of ψ at p and denoted by d2
pψ. For any pair of tangent

vectors v, w ∈ TMp it is given by

d2
pψ(p)(v, w) := (XY ψ)(p)

where X and Y are any vector fields with

X(p) = v, Y (p) = w.

Recall that a critical point p is called non-degenerate if this symmetric bi-
linear form is non-degenerate. We can then talk of the signature of the quadratic
form d2

pψ – i.e. the number of +’s minus the number of -’s when we write d2
pψ

in canonical form as a sum of ±(xi)2 where the xi form an appropriate basis of
TM∗p . We will write this signature as sgn d2

pψ or more simply as sgnp ψ. The
symmetric bilinear form d2

pψ determines a symmetric bilinear form on all the
exterior powers of TMp, in particular on the highest exterior power, ∧nTMp.
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This then in turn defines a density at p, assigning to every basis v1, . . . , vn of
TMp the number

|d2
p(ψ)(v1 ∧ · · · ∧ vn, v1 ∧ · · · ∧ vn)| 12 .

Replacing v1, . . . , vn by Av1, . . . , Avn has the effect of multiplying the above
number by |detA| which is the defining property of a density. In particular, if
we are given some other positive density at p the quotient of these two densities
is a number, which we will denote by

|det d2
pψ|

1
2 ,

the second density being understood. The reason for this somewhat perverse
notation is as follows: Suppose, as we always can, that we have introduced
coordinates y1, . . . , yn at p such that our second density assigns the number one
to the the basis

v1 =

(
∂

∂y1

)
p

, . . . vn =

(
∂

∂yn

)
p

.

Then

d2
p(ψ)(v1 ∧ · · · ∧ vn, v1 ∧ · · · ∧ vn) = det

(
∂2ψ

∂yi∂yj

)
(p)

so

|det d2
pψ|

1
2 =

∣∣∣∣det

(
∂2ψ

∂yi∂yj

)
(p)

∣∣∣∣ 12 .
15.6.2 The formula.

With these notations let us first state a preliminary version of the formula of
stationary phase. Suppose we are given a positive density, Ω, on M and that all
the critical points of ψ are non-degenerate (so that there are only finitely many
of them). Then for any smooth function a on M we have∫

M

eiτψaΩ =

(
2π

τ

)n
2 ∑
p|dψ(p)=0

e
1
4πi sgnp ψ

eiτψ(p)a(p)

|det d2
pψ|

1
2

+O(τ−
n
2−1) (15.8)

as τ →∞.
In fact, we can be more precise. Around every critical point we can introduce

coordinates such that the Hessian of ψ is given by a quadratic form. We can also
write Ω = b(y)dy for some smooth function b. We can also pull out the factor
eiτψ(p) and set τ−1 = ~. We may then get the complete asymptotic expansion
as given by Theorem 97.

We will prove the stationary phase formula by a series of reductions. Given
any finite cover of M by coordinate neighborhoods, we may apply a partition
of unity to reduce our integral to a finite sum of similar integrals, each with the
function a supported in one of these neighborhoods.
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By partition of unity, our proof of the stationary phase formula thus reduces
to estimating integrals over Euclidean space of the form∫

eiτψ(y)a(y)dy

where a is a smooth function of compact support and where either

1. dψ 6= 0 on supp a so that

|dψ|2 :=

(
∂ψ

∂y1

)2

+ · · ·+
(
∂ψ

∂yn

)2

> ε > 0

on supp a, or

2. ψ is a non-degenerate quadratic form, which, by Sylvester’s theorem in
linear algebra, we may take to be of the form

ψ(y) =
1

2

(
(y1)2 + · · · (yk)2 − (yk+1)2 − · · · − (yn)2

)
(with, of course, the possibility that k = 0 in which case all the signs
are negative and k = n in which case all the signs are positive). The
number 2k − n is the signature of the quadratic form ψ and is what we
have denoted by sgn(d2

0ψ) in the stationary phase formula.

We treat each of these two cases separately:

The case of no critical points.

In this case we will show that∫
eiτψady = O(τ−k) (15.9)

for any k.
Consider the vector field

X :=
∂ψ

∂y1

∂

∂y1
+ · · ·+ ∂ψ

∂yn
∂

∂yn
.

This vector field does not vanish, and in fact

X
(
eiτψ

)
= iτ |dψ|2eiτψ.

So we can write∫
eiτψady =

1

iτ

∫
X(eiτψ)

a

|dψ|2
dy =

1

τ

∫
eiτψbdy

where

b = iX

(
a

|dψ|2

)
by integration by parts. Repeating this integration by parts argument proves(15.9).
This takes care of the case where there are no critical points.
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The case near a critical point.

We assume that p is an isolated critical point, and we have chosen coordinates
y about p such that p has coordinates y = 0 and that ψ = ψ(p)+ 1

2Q(y) in these
coordinates where Q(y) is a diagonal quadratic form. We now have a single
summand on the right of (15.8) and by pulling out the factor eiτψ(p) we may
assume that ψ(p) = 0. Now apply Theorem 97. 2

15.6.3 The clean version of the stationary phase formula.

Suppose now that the phase function, ψ, on the left hand side of (15.8) is a
Bott-Morse function: i.e. satisfies

1. The critical set,

Cψ = {p ∈M ,dψ(p) = 0}

is a submanifold of M , and

2. For every p ∈ Cψ the quadratic form d2ψ2 on the normal space NpCψ is
non-degenerate.

Then for every connected component, W of Cψ the restriction of ψ to W
has to be constant, and we will denote this constant by γW .

Also as explained in §14.6.1 The Hessian, d2ψ2, gives rise to a density
on NpW . Hence since

TpM = TpW ⊕NpW

the quotient of the density Ω(p) by this density is now a density |det d2ψp|−
1
2 ΩW (p)

on TpW . The clean version of stationary phase asserts that for Bott-Morse func-
tions the integral ∫

M

eiτψs dΩ

on the left hand side of (15.8) is equal to the sum over the connected components,
W of Cψ of the expressions(

2π

τ

)nW
2
(
e

1
4πi sgn(W )eiτγW

∫
W

|det d2ψ|− 1
2 aΩW +O(τ−1)

)
(15.10)

where nW is the codimension of W and sgn(W ) the signature of d2 ψp at points,
p ∈W .

Remark: As in (15.8) one can replace the O(τ−1) by an asymptotic
expansion

τ−1
∞∑
i=0

ai,W τ
−i

where the ai,W τ
−i’s are integrals over W of derivatives of a.
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Proof. By localizing we can assume, as above, that M = Rn, that W is defined
by the equation xk+1 = xn = 0 and that Ω = dx1 · · · dxn. Then by integration
by parts ∫

eiτψaΩ =

∫
dxk+1 . . . dxn

(∫
eiτψadx1 . . . dxk

)
and (15.10) follows by applying the version of stationary phase proved in §14.5
to the inner integral.

We now turn to various applications of the formula of stationary phase.

15.7 Group velocity.

In this section we describe one of the most important applications of stationary
phase to physics. Let ~ be a small number (eventually we will take ~ = h/2π
where h is Planck’s constant, but for the moment we want to think of ~ as
a parameter which approaches zero, so that τ := (1/~) → ∞). We want to
consider a family of “traveling waves”

e−(i/~)(E(p)t−p·x).

For simplicity in exposition we will take p and x to be scalars, but the discussion
works as well for x a vector in three (or any) dimensional space and p a vector
in the dual space. For each such wave, and for each fixed time t, the wave
number of the space variation is h/p. Since we allow E to depend on p, each
of these waves will be traveling with a possibly different velocity. Suppose we
superimpose a family of such waves, i.e. consider an integral of the form∫

a(p)e−(i/~)(E(p)t−p·x)dp. (15.11)

Furthermore, let us assume that the function a(p) has its support in some neigh-
borhood of a fixed value, p0. Stationary phase says that the only non-negligible
contributions to the above integral will come from values of p for which the
derivative of the exponent with respect to p vanishes, i.e. for which

E′(p)t− x = 0.

Since a(p) vanishes unless p is close to p0, this equation is really a constraint on
x and t. It says that the integral is essentially zero except for those values of x
and t such that

x = E′(p0)t (15.12)

holds approximately. In other words, the integral looks like a little blip called a
wavepacket when thought of as a function of x, and this blip moves with velocity
E′(p0) called the group velocity.
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Let us examine what kind of function E can be of p if we demand invariance
under (the two dimensional version of) all Lorentz transformations, which are
all linear transformations preserving the quadratic form c2t2 − x2. Since (E, p)
lies in the dual space to (t, x), the dual Lorentz transformation sends (E, p) 7→
(E′, p′) where

E2 − c2p2 = (E′)2 − c2(p′)2

and given any (E, p) and (E′, p′) satisfying this condition, we can find a Lorentz
transformation which sends one into the other. Thus the only invariant relation
between E and p is of the form

E2 − (pc)2 = constant.

Let us call this constant m2c4 so that E2 − (pc)2 = m2c4 or

E(p) =
(
(pc)2 +m2c4

)1/2
.

Then

E′(p) =
pc2

E(p)
=

p

M

where M is defined by

E(p) = Mc2 or M =

(
m2 +

(p
c

)2
)1/2

.

Notice that if p/c is small in comparison with m then M
.
= m. If we think of M

as a mass, then the relationship between the group velocity E′(p) and p is pre-
cisely the relationship between velocity and momentum in classical mechanics.
In this way have associated a wave number k = p/h to the momentum p and if
we think of E as energy we have associated the frequency ν = E/h to energy.
We have established the three famous formulas

E = c2
(
m2 +

(
p
c

)2)1/2 .
= mc2 Einstein’s mass energy formula

λ = 1
k = h

p de Broglie’s formula

E = hν Einstein’s energy frequency formula.

In these formulas we have been thinking of h or ~ as a small parameter
tending to zero. The great discovery of quantum mechanics is that h should
not tend to zero but is a fundamental constant of nature known as Planck’s
constant. In the energy frequency formula it occurs as a conversion factor from
inverse time to energy, and hence has units energy × time. It is given by

h = 6.626× 10−34J s.
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15.8 The Fourier inversion formula.

We used the Fourier transform and the Fourier inversion formula to derive the
lemma of stationary phase. But if we knew stationary phase then we could
derive the fourier inversion formula as follows:

Consider the function p = p(x, ξ) on Rn ⊕ Rn given by

p(x, ξ) = x · (ξ − η)

where η ∈ Rn. This function has only one critical point, at

x = 0, ξ = η

where its signature is zero. We conclude that for any such function a = a(x, ξ) ∈
S(Rn ⊕ Rn we have∫ ∫

eiτx·(ξ−η)a(x, ξ)dxdξ =

(
2π

τ

)n
a(0, η) +O(τ−(n+1)).

Let us choose a(x, ξ) = f(x)g(ξ) where f and g are smooth functions vanishing
rapidly with their derivatives at infinity. We get(

1

τn

)
f(0)g(η) =

1

(2π)n

∫ ∫
eiτx·(ξ−η)f(x)g(ξ)dxdξ +O(τ−(n+1)).

Let us set u = τx in the integral, so that dx = τ−ndu. Multiplying by τn we
get

f(0)g(η) =
1

(2π)n

∫ ∫
f
(u
τ

)
g(ξ)eiu·(ξ−η)dudξ +O(τ−1).

So if we define

ĝ(u) :=
1

(2π)n/2

∫
g(ξ)eiξ·udξ

we have proved that

f(0)g(η) =
1

(2π)n/2

∫
R
f
(u
τ

)
ĝ(u)eiu·ηdu+O(τ−1).

If we choose f such that f(0) = 1 and let τ →∞ we obtain the Fourier inversion
formula:

g(η) =
1

(2π)n/2

∫
R
ĝ(u)eiu·ηdu.

15.9 Fresnel’s version of Huygen’s principle.

15.9.1 The wave equation in one space dimension.

As a warm up to the study of spherical waves in three dimensions we study the
homogeneous wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0
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where u = u(x, t) with x and t are real variables.
If we make the change of variables p = x+ t, q = x− t this equation becomes

∂2u

∂p∂q
= 0

and so by integration

u = u1(p) + u2(q)

where u1 and u2 are arbitrary differentiable functions. Reverting to the original
coordinates this becomes

u(x, t) = u1(x+ t) + u2(x− t). (15.13)

Any such function is clearly a solution. The function u2(x− t) can be thought
of dynamically: At each instant of time t, the graph of x 7→ u2(x − t) is given
by the graph of x 7→ u2(x) displaced t units to the right. We say that u2(x− t)
represents a traveling wave moving without distortion to the right with unit
speed.

Thus the most general solution of the homogeneous wave equation in one
space dimension is given by the superposition of two undistorted traveling wave,
one moving to the right and the other moving to the left.

15.9.2 Spherical waves in three dimensions.

In three space dimensions the wave equation (in spherical coordinates) is

∂2u

∂t2
=

1

r2

∂

∂r
r2 ∂u

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂u

∂θ
+

1

r2 sin2 θ

∂2u

∂φ2
.

If u = u(r, t) the last two terms on the right disappear while

1

r2

∂

∂r
r2 ∂u

∂r
=

1

r

[
2
∂u

∂r
+ r

∂2u

∂r2

]
=

1

r

∂2(ru)

∂r2
.

Thus v := ru satisfies the wave equation in one space variable, and so the general
spherically symmetric solution of the wave equation in three space dimensions
is given by

u(r, t) =
f(r + t)

r
+
g(r − t)

r
.

The first term represents and incoming spherical wave and the second term an
outgoing spherical wave. In particular, if we take f = 0 and g(s) = eiks then

wk(r, t) :=
eik(r−t)

r

is an outgoing spherical sinusoidal wave of frequency k.
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15.9.3 Helmholtz’s formula

Recall Green’s second formula (a consequence of Stokes’ formula) which says
that if u and v are smooth functions on a bounded region V ⊂ R3 with piecewise
smooth boundary ∂V then∫

∂V

(u ? dv − v ? du) =

∫
V

(v∆u− u∆v)dx ∧ dy ∧ dz.

In particular, if u and v are both solutions of the reduced wave equation ∆φ−
k2φ = 0 the right hand side vanishes, and we get∫

∂V

(u ? dv − v ? du) = 0.

Now

d

(
eikr

r

)
=
eikr

r

[
ik − 1

r

]
dr. (15.14)

Let D be a bounded domain with piecewise smooth boundary, let rP denote the
distance from a point P interior to D, and take V to consist of those points of
D exterior to a small sphere about P . Then if v is a solution to the reduced
wave equation and we take u = eikr/r we obtain Helmhotz’s formula

v(P ) =
1

4π

∫
∂D

[
eikrP

rP
? dv − v ? de

ikrP

rP

]
by shrinking the small sphere to zero.

Green’s formula also implies that if P is exterior to D the integral on the
right vanishes.

Now let D consist of all points exterior to a surface S but inside a ball of
radius R centered at P . If ΣR denotes the sphere of radius R centered at P ,
then the contribution to Helmhotz’s formula coming from integrating over σR
will be the integral over the unit sphere∫

eikr
[
r

(
∂v

∂r
− iku

)
+ v

]∣∣∣∣
r=R

dω

where dω is the area element of the unit sphere. This contribution will go to
zero if the Sommerfeld radiation conditions∫

|v|dω = o(1), and

∫ ∣∣∣∣∂v∂r − iku
∣∣∣∣ dω = o(R−1)

are satisfied (where the integrals are evaluated at r = R).
Assuming these conditions, we see that if P is exterior to S then

v(P ) =
1

4π

∫
S

[
eikrP

rP
? dv − v ? de

ikrP

rP

]
. (15.15)

while the integral vanishes if P is inside S.
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Huyghens had the idea that propagated disturbances in wave theory could
be represented as the superposition of secondary disturbances along an inter-
mediate surface such as S. But he did not have an adequate explanation as
to why there was no “backward wave”, i.e. why the propagation was only in
the outward direction. Fresnel believed that if all the original sources of radi-
ation were inside S, the integrand in Helmholtz’s formula would vanish due to
interference. The above argument due to Helmholtz was the first rigorous math-
ematical treatment of the problem, and shows that the internal cancellation is
due to the total effect of the boundary.

However, we will see, by using stationary phase, that Fresnel was right up
to order 1/k.

15.9.4 Asymptotic evaluation of Helmholtz’s formula

We will assume that near S the v that enters into (15.15) has the form

v = aeikφ

where a and φ are smooth and ‖ gradφ‖ ≡ 1. For example, if v represent
radiation from some point Q interior to S then this would hold with φ = rQ.

We assume that P is sufficiently far from S so that 1/rP is negligible in com-
parison with k, and we also assume that a and da are negligible in comparison
with k. As P will be held fixed, we will write r for rP . Then inserting (15.14)
into (15.15) shows that the leading term in(15.15) (in powers of k) is

ik

4π

∫
S

a

r
eik(φ+r)(?dφ− ?dr).

We want to apply stationary phase to this integral. The critical points are those
points y on S at which the restriction of dφ+ dr to S vanishes. This says that
the projection of gradφ(y) onto the tangent space to S at y is the negative of the
projection of grad r(y) onto this tangent space. Since ‖ gradφ‖ = ‖ grad r‖ = 1,
this implies that the projections of gradφ(y) and grad r(y) onto the normal have
the same absolute value. There are thus two possibilities:

1. gradφ(y) = − grad r(y). In this case ?dφ(y) = − ? dr(y) when restricted
to the tangent space to S at y.

2. gradφ(y) = 2(gradφ(y), n)n − grad r(y). In this case ?dφ(y) = ?dr(y)
when restricted to the tangent space to S at y.

Let us assume for the moment that the critical points are non-degenerate.
(We will discuss this condition below.)

Suppose we are in case 2). Then the leading term in the integral in (15.15)
vanishes, and hence the contribution from (15.15) is of order 1/k. If S wre
convex and grad φ pointed outward, then for any P insised S we would be
in case 2). This justifies Fresnel’s view that there is local cancellation of the
backward wave (at least up to terms of order 1/k).
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15.9.5 Fresnel’s hypotheses.

Suppose we are in case 1). Then the leading term in (15.15) is

ik

4π

∫
S

a

r
eik(φ+r) ? dr.

This shows that up to terms of order 1/k the “induced secondary radiation”
coming from S behaves as if it

• has amplitude equal to 1/λ times the amplitude of the primary wave where
λ = 2π/k is the wave length, and

• has phas one quarter of a period ahead of the primary wave. (This is one
way of interpreting the factor i.)

Fresnel made these two assumptions directly in his formulation of Huyghen’s
principle leading many to regard them as ad hoc. We see that it is a consequence
of Helmholtz’s formula and stationary phase.

15.10 The lattice point problem.

Let D be a domain in the plane with piecewise smooth boundary. The high
school method of computing the area of D is to superimpose a square grid on
the plane and count the number of squares “associated” with D. Since some
squares may intersect D but not be contained in D, we must make a choice: let
us choose to count all squares which intersect D. Furthermore, in order to avoid
unnecessary notation, let us assume that D is taken to include its boundary, i.e.
D is closed: D = D. If we let Z2 denote the lattice determined by the corners
of our grid, then our procedure is to count the number of points in

D ∩ Z2.

Of course this is only an approximation to the area of D. To get better and
better approximations we would shrink the size of the grid. Our problem is to
find an estimate for the error in this procedure.

For notational reasons, it is convenient to keep the lattice fixed, and dilate
the domain D. That is, we want to count the number of lattice points in λD
where λ is a (large) positive real number. So we set

N ]
D(λ) := #(λD ∩ Z2). (15.16)

Equally well, if χD denotes the indicator function (sometimes called the char-
acteristic function) of D:

χD(x) = 1 if x ∈ D, χD(x) = 0 if x 6∈ D,

then
N ]
D(λ) =

∑
ν∈Z2

χDλ (ν), (15.17)
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where
χλ(x) := χ

(x
λ

)
.

(Frequently, in what follows, we will drop the D when D is fixed. Also, we
will pass from 2 to n with the obvious minor changes in notation.)

Now it is clear that

N ]
D(λ) = λ2 ·Area(D) + error.

Our problem is to estimate the error. Without any further assumptions, it is
relatively easy to see that we can certainly say that the error can be estimated
by a constant times λ where the constant involves only the length of ∂D. In
general, we can not do better, especially if the boundary of D contains straight
line segments of rational slope: For the worst possible scenario, consider the
case where D is a square centered at the origin. Then every time that λ is such
that the vertices of λD lie in Z2, then the number of boundary points lying
in Z2 will be proportional to λ times the length of the perimeter of D. But
a slightly larger or small value of λ will yield no boundary points in Z2. We
might expect that if the boundary is curved everywhere, we can improve on the
estimate of the error.

The main result of this section, due to Van der Corput, asserts that if D
is convex, with smooth boundary whose curvature is everywhere positive (we
will give more precise definitions later) then we can estimate the error terms as
being

O(λ
2
3 ).

In fact, Van der Corput shows that this result is sharp if we allow all such
strongly convex smooth domains, although we will not establish this result here.

15.10.1 The circle problem.

Suppose that we take D to be the unit disk. In this case

N ]
D(λ) = N(λ)

where
N(λ) = #{ν = (m,n) ∈ Z2|m2 + n2 ≤ λ2}. (15.18)

In this case, there will only be lattice points on the boundary of λD if λ2 is an
integer which can be represented as a sum of two squares, and the number of
points on the boundary will be the number of ways of representing λ2 as a sum
of two squares.

The number of ways of representing an integer N as the sum of two integer
squares is closely related to the number of prime factors of N of the form 4k+ 1
and the number of prime square factors of the form 4k + 3. In fact, as we shall
remind you later on, if r(N) denotes the number of ways of writing N as a sum
of two squares then r(N) can be evaluated as follows: Suppose we factorize N
into prime powers, collect all the powers of 2, collect all the primes congruent
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to 1 (mod 4), and collect all the primes which are congruent to 3 (mod 4). In
other words, we write

N = 2fN1N2 (15.19)

where

N1 =
∏

pr p ≡ 1(mod 4)

and

N2 =
∏

qs q ≡ 3(mod 4).

Then r(N) = 0 if any s is odd. If all the s are even, then

r(N) = 4d(N1). (15.20)

So there are relatively few points on the boundary of λD when D is the unit
disk, and we might expect special results in this case. Of course our problem is
to estimate the number of lattice points close to a given circle, not necessarily
exactly on it.

Let us set

t := λ2, (15.21)

as the square of λ is the parameter used frequently in the number theoretical
literature. Let us define R(t) as the error in terms of t, so∑

n≤t

r(n) = πt+R(t). (15.22)

Then the result of Van der Corput cited above asserts that

R(t) = O(t
1
3 ). (15.23)

In fact, later work of Van der Corput himself in the twenties and early thirties,
involving the theory of “exponent pairs” improves upon this estimate. For
example, one consequence of the method of “exponent pairs” is that

R(t) = O(t
27
82 ). (15.24)

In fact, the long standing conjecture (going back to Gauss, I believe) has
been that

R(t) = O(t
1
4 +ε) for any ε > 0. (15.25)

Notice the sequence of more and more refined results: trivial arguments, valid
for any region with piecewise smooth boundary give an estimate R(t) = O(tρ)
where ρ = 1

2 . The Van der Corput method valid for all smooth strongly convex
domains gives ρ = 1

3 . The method of exponent pairs gives ρ = (k + `)/(2k + 2)
whenever (k, `) is an exponent pair, but although this method improved on 1

3 ,
it did not yield the desired conjecture - that we may take ρ = 1

4 + ε for any
ε > 0.



436 CHAPTER 15. THE METHOD OF STATIONARY PHASE

15.10.2 The divisor problem.

Let d(n) denote the number of divisors of the positive integer n. Using elemen-
tary arguments, Dirichlet (1849) showed that∑

n≤t

d(n) = t(log t+ 2γ − 1) +O(t
1
2 ) (15.26)

where γ is Euler’s constant

γ := lim
N→∞

∑
n≤N

1

n
− logN

 .

Dirichlet’s argument is as follows: First of all observe that we can regard
the divisor problem as a lattice point counting problem. Indeed, consider the
region, Tt, in the (x, y) plane bounded by the hyperbola xy = t and the straight
line segments from (1, 1) to (1, t) and from (1, 1) to (t, 1). So Tt is a “triangle”
with the hypotenuse replaced by a hyperbola. Then d(n) is the number of lattice
points on the “integer hyperbola” xy = n, n ≤ t, and so

∑
n≤t d(n) is the total

number of lattice points in Tt. The area of Tt is t log t − t + 1, which has the
same leading term as above. To count the number of lattice points in Tt, observe
that Tt is symmetric about the line y = x, and there are [

√
t] lattice points in

Tt on this line. For each integer d ≤ [
√
t] the number of lattice points on the

horizontal line) y = d in Tt to the right of the diagonal is[
t

d

]
− d

so ∑
n≤t

d(n) = 2
∑
d≤
√
t

([
t

d

]
− d
)

+
[√

t
]
.

Since [s] = s+O(1) we can write this as

2t
∑
d≤
√
t

1

d
− 2 ·

√
t(
√
t+ 1)

2
+O(

√
t).

The formula leading to Euler’s constant has error term 1/s:∑
n≤s

1

d
= log s+ γ +O(

1

s
) (15.27)

as follows from Euler MacLaurin (see later on). So setting s =
√
t in the above

we get (15.26).
Once again we may ask if this estimate can be improved: Define

∆(t) :=
∑
n≤t

d(n)− t(log t+ 2γ − 1) (15.28)
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and ask for better σ such that

∆(t) = O(tσ) (15.29)

It turns out, that the method of exponent pairs yields the same answer as in
the circle problem case: If (k, `) is an “exponent pair” then

σ = (k + `)/(2k + 2)

is a suitable exponent in (15.29). Once again, the conjectured theorem has been
that we may take σ = 1

4 + ε for any positive ε.
These “lattice point problems” are closely related to studying the growth of

the Riemann zeta function on the critical line, i.e. to obtain power estimates
for ζ( 1

2 + it). Furthermore, the Riemann hypothesis itself is known to be closely
related to somewhat deeper “approximation” problems. See, for example, the
book Area, Lattice Points, and Exponential Sums by M.N Huxley, page 15.

15.10.3 Using stationary phase.

Van der Corput revolutionized the study of the lattice point problem in the
1920’s by bringing to bear two classical tools of analysis - the Poisson summation
formula and the method of stationary phase.

Our application will be of the following nature: Recall that a subset of Rn is
convex if it is the intersection of all the half spaces containing it. Suppose that
D is a (compact) convex domain with smooth boundary, containing the origin
and that u is a unit vector. Then the function y 7→ u·y achieves a maximum m+

and a minimum m− on D and the condition that these be taken on at exactly
one point each is what is usually meant by saying that D is strictly convex. We
want to impose the stronger condition that restriction of the function y 7→ u · y
to the boundary is non-degenerate having only two critical points, the maximum
and the minimum, for all unit vectors. This has the following consequence: Let
K be a compact subset of Rn − {0} and consider the Fourier transform of the
indicator function χ = χD evaluated at τx for x ∈ K:

χ̂(τx) =

∫
D

eiτx·ydy.

(For today it will be convenient to use this definition of the Fourier transform
so that

χ̂(0) = vol (D)

without the factors of 2π.)
Holding x fixed, we have (as differential forms in y)

d
(
eiτx·yx1dy2 ∧ · · · ∧ dyn

)
= iτ(x1)2eiτx·ydy1 ∧ · · · dyn

so

eiτx·ydy = eiτx·ydy1 ∧ · · · ∧ dyn =
1

iτ |x|2
d
(
eiτx·yω

)
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where

ω := x1dy2 ∧ · · · ∧ dyn − x2dy1 ∧ dy3 · · · ∧ dyn + · · · ± xndy1 ∧ · · · ∧ dyn−1.

By Stokes,

χ̂(τx) =
1

iτ |x|2

∫
∂D

eiτx·yω.

The integral on the right is O(τ−
n−1
2 ) by stationary phase, and hence

χ̂(τx) = O(τ−
n+1
2 ) (15.30)

uniformly for x ∈ K where K is any compact subset of Rn−{0}. As this is the
property we will use, we might as well take this as the definition of a strongly
convex region.

15.10.4 Recalling Poisson summation.

The second theorem from classical analysis that goes into the proof of Van der
Corput’s theorem is the Poisson summation formula. This says that if f is a
smooth function vanishing rapidly with its derivatives at infinity on Rn then
(in the current notation) ∑

µ∈Zn
f̂(2πµ) =

∑
ν∈Zn

f(ν). (15.31)

We recall the elementary proof of this fact :
Set

h(x) :=
∑
ν∈Zn

f(x+ ν)

so that h is a smooth periodic function with period the unit lattice, Zn. By
definition

h(0) =
∑
ν∈Zn

f(ν).

Since h is periodic, we may expand it into a Fourier series

h(x) =
∑
µ∈Zn

cµe
−2πiµ·x

where

cµ =

∫ 1

0

· · ·
∫ 1

0

h(x)e2πiµ·xdx =

∫ 1

0

· · ·
∫ 1

0

∑
ν∈Zn

f(x+ ν)e2πiµ·xdx.

We may interchange the order of summation and integration and make the
change of variables x+ ν 7→ x to obtain

cµ = f̂(2πµ).
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Setting x = 0 in the Fourier series

h(x) =
∑
µ∈Zn

f̂(2πµ)e−2πiµ·x

gives

h(0) =
∑
µ∈Zn

f̂(2πµ).

Equating the two expressions for h(0) is (15.31).

15.11 Van der Corput’s theorem.

In n-dimensions this says:

Theorem 98. Let D be a strongly convex domain. Then

N ]
D(λ) = λn vol(D) +O(λn−2+ 2

n+1 ) (15.32)

Proof. Let χ = χD be the indicator function of D so that χλ defined by

χλ(y) := χ(
y

λ
)

is the indicator (characteristic) function of λD. Thus

N ](λ) =
∑
ν∈Zn

χλ(ν)

where we have written N ] for N ]
D. The Fourier transform of χλ is given in

terms of the Fourier transform of χ by

χ̂λ(x) = λnχ̂(λx).

Furthermore,
χ̂(0) = vol(D).

If we could apply the Poisson summation formula directly to χλ then the con-
tribution from 0 would be λn vol(D), and we might hope to control the other
terms using (15.30). (For example, if we could brutally apply (15.30) to control
all the remaining terms in the case of the circle, we would be able to estimate
the error in the circle problem as λ2−3/2 = λ1/2 which is the circle conjecture.)
But this will not work directly since χλ is not smooth. We must first regularize
χλ and the clever idea will be to choose this regularization to depend the right
way on λ.

So let ρ be a non-negative smooth function on Rn supported in the unit ball
with integral one. Let

ρε(y) =
1

εn
ρ
(y
ε

)
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so ρε is supported in the ball of radius ε and has total integral one. Thus

ρ̂ε(x) = ρ̂(εx)

and

ρ̂(0) = 1.

Define

N ]
ε (λ) =

∑
ν∈Zn

(χλ ? ρε)(ν)

where ? denotes convolution. If ν lies a distance greater than ε from the bound-
ary of λD, then (χλ ? ρε)(ν) = χλ(ν). Thus

N ]
ε (λ− Cε) ≤ N ](λ) ≤ N ]

ε (λ+ Cε)

where C is some constant depending only on D. Suppose we could prove that
N ]
ε satisfies an estimate of the type (15.32). Then we could conclude that

(λ− Cε)n vol(D) +O(λn−2+ 2
n+1 ) ≤ N ](λ) ≤ (λ+ Cε)n +O(λn−2+ 2

n+1 ).

Suppose we set

ε = λ−1+ 2
n+1 . (15.33)

Then

(λ± Cε)n = λn +O(λn−2+ 2
n+1 )

and we obtain the Van der Corput estimate for N ](λ). So it is enough to prove
the analogue of (15.32) with N ]

ε watching out for the dependence on ε.
Since χλ ? ρε is smooth and of compact support, and since

(χλ ? ρε)ˆ = χ̂λ · ρ̂ε

we may apply the Poisson summation formula to conclude that

N ]
ε (λ) = λn vol(D) +

∑
ν∈Zn−{0}

λnχ̂(2πλν)ρ̂(2πεν)

and we must estimate the sum on the right hand side. Now since ρ is of compact
support its Fourier transform vanishes faster than any inverse power of (1+|x|2).
So, using (15.30) we can estimate this sum by

λn−
n+1
2

∑
ν∈Zn−{0}

|ν|−
n+1
2 (1 + |εν|2)−K

were K is large, or, what is the same by

λ
n−1
2

∫
1

|x|n+1
2

(1 + |εx|2)−Kdx
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where K is large. Making the change of variables x = εz this becomes

λ
n−1
2 ε−

n−1
2

∫
1

|z|n+1
2

(1 + |z|)−Kdz.

The integral does not depend on anything, and if we substitute (15.33) for ε,
the power of λ that we obtain is

n− 1

2
− n− 1

2

(
−1 +

2

n+ 1

)
=
n− 1

2
+
n− 1

2
− n+ 1

n+ 1
+

2

n+ 1
= n−2+

2

n+ 1

proving (15.32). 2
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Chapter 16

The Weyl Transform.

A fundamental issue lying at the interface of classical and quantum mechanics
is to choose a means of associating an operator H on a Hilbert space, the “quan-
tum Hamiltonian”, to a function H, the “classical Hamiltonian” on phase space.
The celebrated Groenwald - van-Hove theorem shows that Dirac’s original idea
- to associate operators to all functions in such a way that Poisson brackets
go over into operator brackets - can not work. Indeed, if the phase space is a
symplectic vector space, and if one insists that linear functions are “quantized”
in such a way that the Heisenberg commutation relations hold, then these de-
termine how to “quantize” all polynomials of degree two or less (the metaplectic
representation) but we can not add any polynomial of higher degree to our col-
lection of functions we wish to “quantize” without running into a violation of
Dirac’s prescription. The method of “geometric quantization” is to take the
Dirac prescription as primary, but apply it to a Lie subalgebra of the algebra
of all functions (under Poisson bracket), a subalgebra which will not include all
linear functions. For the physicist faced with the problem of finding a quantum
model corresponding to a classical approximation given by a Hamiltionian H,
this involves finding an appropriate (and sufficiently large) group of symmetries
(canonical transformations) whose Lie algebra contains H.

Another approach, suggested by Hermann Weyl is to take the Heisenberg
commutation relations as primary, and give up on the Dirac program.

The Weyl transform thus associates to “any” function (or generalized func-
tion) on phase space an operator on Hilbert space. To describe its structure,
consider the following: If % is a unitary representation of a (locally compact,
Hausdorff, toplogical) group G on a Hilbert space H, and φ is a continuous
function of compact support on G then we can define

%(φ) :=

∫
G

%(g)φ(g)dg

where dg is Haar measure. This associates an operator R(φ) to each continuous
function of compact support on G in such a way that convolution goes over into
operator multiplication: R(φ ? ψ) = R(φ)R(ψ).

443
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For the Weyl transform, the group G is the Heisenberg group V × R or
V × (R/(2πZ). For a more detailed description of these groups see Section 16.4
below. The Haar measure has the form µ×dt where µ is the Liouville measure.

For each non-zero value of ~ there is a unique (up to equivalence) irre-
ducible representation %~ characterized by the image of the center. This is the
Stone - von-Neumann theorem, originally conjectured by Weyl, see below. Let
p1, . . . , pn, q1, . . . , qn a symplectic basis of V , so we can write the most general
element of V as

ξp+ ηq = ξ1p1 + · · · ξnpn + η1q1 + · · · ηnqn.

Then the Weyl transform is given by

W (φ) =

∫
V

%(ξp+ ηq)φ̃(ξ, η)dξdη (16.1)

where φ̃ is the Fourier transform of φ and we have have suppressed the depen-
dence on ~. In other words, instead of %(φ) we have something that looks like
%(φ̃) except that the integral is over V and not over all of G.

Unfortunately, this is not how the Weyl transform is written either in the
physics or in the mathematics literature.

16.1 The Weyl transform in the physics litera-
ture.

The representation % induces a representation %̇ of the Lie algebra g of G which
can be identified with V ×R. Let exp : g→ G denote the exponential map. So

ξp+ ηq = exp(ξP + ηQ)

where (P,Q) = (p, q) but thought of as elements of the Lie algebra g. Then

%(ξp+ ηq) = exp(ξ%̇(P ) + η%̇(Q))

where the exponential on the right is the exponential of skew adjoint operators
in Hilbert space.

The physicists like self-adjoint operators rather than skew adjoint operators,
so set

p̂ :=
1

i
%̇(P ), q̂ :=

1

i
%̇(Q).

Then (16.1) can be written as

W (φ) =

∫
exp[i(ξp̂+ ηq̂)]φ̃(ξ, η)dξdη. (16.2)
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16.1.1 The Weyl transform and the Weyl ordering.

Let us apply (16.2) to the generalized function q2p in two dimensions whose
Fourier transform is (up to factors of 2π and ±1 in front of the i depending on
convention) (

i
∂

∂ξ

)(
i
∂

∂η

)2

δ.

Then (16.2) with ~ = 1 gives

(
−i ∂
∂ξ

)(
−i ∂
∂η

)2

exp[i(ξp̂+ ηq̂)

∣∣∣∣∣
ξ=0,η=0

.

Only the cubic term in the expansion of the exponential contributes, and we get

W (q2p) =
1

3

[
q̂2p̂+ q̂p̂q̂ + p̂q̂2

]
.

This (and its generalization to an arbitrary monomial) is a version of the famous
Weyl ordering.

In fact, the Weyl ordering in the physics literature is also presented somewhat
differently, e.g.

W (q2p) =
1

4

[
q̂2p̂+ 2q̂p̂q̂ + p̂q̂2

]
.

But straightforward manipulations of the commutation relations shows that this
definition of W (q2p) is the same as that given above, and that this is true for
arbitrary polynomials in p and q.

16.2 Definition of the semi-classical Weyl trans-
form.

In the mathematical literature, especially in the literature of semi-classical anal-
ysis, the Weyl transform is usually defined as follows: Assume (temporarily) that
σ ∈ S(R2n). Define the Weyl transform Weylσ,~ acting on S(Rn) by

(
Weylσ,~ φ

)
(x) =

1

(2π~)n

∫
e
i
~ (x−y)·ξσ

(
x+ y

2
, ξ

)
φ(y)dydξ. (16.3)

When ~ = 1 we will sometimes write Weylσ instead of Weylσ,1. We will also
use various other notations (as found in the literature) for Weylσ,~. We will see
below in Section 16.11.2 that this is in fact the same as (16.1), see, in particular,
equation (16.25).
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16.3 Group algebras and representations.

16.3.1 The group algebra.

If G is a locally compact Hausdorff topological group with a given choice of
Haar measure, we define the convolution of two continuous functions of compact
support on G by

(φ1 ? φ2)(g) :=

∫
G

φ1(u)φ2(u−1g)du.

If ψ is another continuous function on G we have∫
G

(φ1 ? φ2)(g)ψ(g)dg =

∫
G×G

φ1(u)φ2(h)ψ(uh)dudh.

This right hand side makes sense if G is a Lie group, φ1 and φ2 are distributions
of compact support and ψ is smooth. Also the left hand side makes sense if φ1

and φ2 belong to L1(G) and ψ is bounded, etc.

16.3.2 Representing the group algebra.

If we have a continuous unitary representation τ of G on a Hilbert space H, we
can define

τ(φ) :=

∫
G

φ(g)τ(g)dg

which means that for u and v ∈ H

(τ(φ)u, v) =

∫
G

φ(g)(τ(g)u, v)dg. (16.4)

This integral makes sense if φ is continuous and of compact support, or if G is
a Lie group, if u is a C∞ vector in the sense that τ(g)u is a C∞ function of g
and φ is a distribution. In either case we have

τ(φ1 ? φ2) = τ(φ1)τ(φ2).

If the left invariant measure is also invariant under the map g 7→ g−1 and so
right invariant, and if we define

φ∗(g) := φ(g−1) (16.5)

then

τ(φ∗) = τ(φ)∗. (16.6)

A group whose Haar measure is both left and right invariant is called uni-
modular.
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16.3.3 Application that we have in mind.

We are going to want to apply this construction to the case where G is the
Heisenberg group and where τ = ρ~ is the Schrödinger representation (see Sec-
tion 16.10) associated with the parameter ~ (thought of as “Planck’s constant”).
So we need to make some definitions:

16.4 The Heisenberg algebra and group.

16.4.1 The Heisenberg algebra.

Let V be a symplectic vector space. So V comes equipped with a skew symmetric
non-degenerate bilinear form ω. We make

h := V ⊕ R

into a Lie algebra by defining

[X,Y ] := ω(X,Y )E

where E = 1 ∈ R and

[E,E] = 0 = [E,X] ∀X ∈ V.

The Lie algebra h is called the Heisenberg algebra. It is a nilpotent Lie
algebra. In fact, the Lie bracket of any three elements is zero.

16.4.2 The Heisenberg group.

We will let N denote the simply connected Lie group with this Lie algebra.
We may identify the 2n + 1 dimensional vector space V + R with N via the
exponential map, and with this identification the multiplication law on N reads

exp(v + tE) exp(v′ + t′E) = exp

(
v + v′ + (t+ t′ +

1

2
ω(v, v′))E

)
. (16.7)

Let dv be the Euclidean (Lebesgue) measure on V . Then the measure dvdt is
invariant under left and right multiplication. So the group N is unimodular.

It will be useful to record a commutator computation in N : Let x, y ∈ V
Then

exp(−x)(exp y) = exp(y − x− 1

2
ω(x, y)E)

while

exp(y) exp(−x) = exp(y − x− 1

2
ω(y, x)E)

so, since ω is antisymmetric, we get

(exp(−x))(exp y) = (exp y)(exp(−x)) exp(−ω(x, y)E). (16.8)
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16.4.3 Special representations.

Schur’s lemma says that if τ is an irreducible (unitary) representation of a group
G on a Hilbert space H and T : H→ H is a bounded operator such that

Tτ(g) = τ(g)T ∀ g ∈ G

then T must be a scalar multiple of the identity.
For the Heisenberg group, this implies that any irreducible unitary repre-

sentation must send the elements exp(tE) into scalar multiples of the identity
where the scalar has absolute value one. So there are two alternatives, either
this scalar is identically one, or not. It turns out that the first case corresponds
to certain finite dimensional represetntions. It is the second case that is inter-
esting:

Let ~ be a non-zero real number. So we are interested in unitary represen-
tations of N which have the property that

exp(tE) 7→ e~itId.

The Stone-von-Neumann theorem asserts that for each non-zero ~ there
exists a unique such irreducible representation ρ~ up to unitary equiva-
lence. This theorem was conjectured by Hermann Weyl in the 1920’s and proved
(independently) by Stone and von-Neumann in the early 1930’s.

16.5 The Stone-von-Neumann theorem.

In fact, to be more precise, the theorem asserts that any unitary representation
of N such that

exp(tE) 7→ e~itId

must be isomorphic to a multiple of ρ~ in the following sense:

Let H1 and H2 be Hilbert spaces. We can form their tensor product as vector
spaces, and this tensor product inherits a scalar product determined by

(u⊗ v, x⊗ y) = (u, x)(v, y).

The completion of this (algebraic) tensor product with respect to this scalar
product will be denoted by H1⊗̂H2 and will be called the (Hilbert space) tensor
product of H1 and H2. If we have a representation τ of a group G on H1 we get
a representation

g 7→ τ(g)⊗ IdH2

on H1⊗̂H2 which we call a multiple of the representation τ .

Theorem 99. [The Stone-von-Neumann theorem.] Let ~ be a non-zero
real number. Up to unitary equivalence there exists a unique irreducible unitary
representation ρ~ satisfying

ρ~(eitE) = ei~tId. (16.9)
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Any representation such that exp(tE) 7→ ei~tId is isomorphic to a multiple of
ρ~.

Here is an outline of the proof: The first step is to explicitly construct a
model for the representation ρ~ by the method of induced representations. The
second step is to prove that it is irreducible by showing that the image of the
group algebra will contain all Hilbert-Schmidt operators. From this the rest of
the theorem will follow. We follow the presentation in [?].

We will do the first step now and postpone the second step until later in this
chapter.

16.6 Constructing ρ~.

Fix ~ 6= 0. If ` is a Lagrangian subspace of V , then `⊕R is an Abelian subalgebra
of h, and in fact is maximal Abelian. Similarly

L := exp(`⊕ R)

is a maximal Abelian subgroup of N .
Define the function

f = f~ : N → T1

(where T1 is the unit circle) by

f(exp(v + tE)) := ei~t. (16.10)

We have

f ((exp(v + tE))(exp(v′ + t′E))) = ei~(t+t′+ 1
2ω(v,v′)). (16.11)

Therefore
f(h1h2) = f(h1)f(h2)

for
h1, h2 ∈ L.

We say that the restriction of f to L is a character of L.
Consider the quotient space

N/L

which has a natural action of N (via left multiplication). In other words N/L
is a homogeneous space for the Heisenberg group N . Let `′ be a Lagrangian
subspace transverse to `. Every element of N has a unique expression as

(exp y)(exp(x+ sE)) where y ∈ `′ x ∈ `.

This allows us to make the identification

N/L ∼ `′
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and the Euclidean measure dv′ on `′ then becomes identified with the (unique
up to scalar multiple) measure on N/L invariant under N .

Consider the space of continuous functions φ on N which satisfy

φ(nh) = f(h)−1φ(n) ∀ n ∈ N h ∈ L (16.12)

and which in addition have the property that the function on N/L

n 7→ |φ(n)|

(which is well defined on N/L on account of (16.12)) is square integrable on
N/L. We let H(`, ~) denote the Hilbert space which is the completion of this
space of continuous functions relative to this L2 norm. So φ ∈ H(`, ~) is a
“function” on N satisfying (16.12) with norm

‖φ‖2 =

∫
N/L

|φ|2dṅ

where dṅ is left invariant measure on N/L.
Define the representation ρ`,~ of N on H(`) by left translation:

(ρ`.~(m)φ)(n) := φ
(
m−1n

)
. (16.13)

This is an example of the standard method of constructing an induced repre-
sentation from a character of a subgroup.

For the rest of this section we will keep ` and ~ fixed, and so may write H
for H(`, ~) and ρ for ρ`,~. Since exp tE is in the center of N , we have

ρ(exp tE)φ(n) = φ ((exp−tE)n) = φ (n(exp−tE)) = ei~tφ(n).

In other words

ρ (exp tE) = ei~tIdH . (16.14)

Suppose we choose a complementary Lagrangian subspace `′ and then iden-
tify N/L with `′ as above. Condition (16.12) becomes

φ ((exp y)(exp(x))(exp tE)) = φ(exp y)e−i~t.

So φ ∈ H is completely determined by its restriction to exp `′. In other words
the map

φ 7→ ψ, ψ(y) := φ(exp y)

defines a unitary isomorphism

R : H → L2(`′)

and if we set

σ := RρR−1
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then
[σ (expx)ψ](y) = ei~ω(x,y)ψ(y) x ∈ `, y ∈ `′
[σ(expu)ψ](y) = ψ(y − u) y, u ∈ `′
σ(exp(tE)) = ei~tIdL2(`′).

(16.15)

The first of these equations follows from (16.8) and the definition (16.13) and
the last two follow immediately from (16.13).

We can regard the three equations of (16.15) as an “integrated version” of
the Heisenberg commutation relations.

16.7 The “twisted convolution”.

Let Φ denote the collection of continuous functions on N which satisfy

φ(n exp tE) = e−i~tφ(n).

Let
B = B~ := N/Γ~

where
Γ~ = {exp kE, k ∈ (2π/~)Z‖.

The effect of replacing N by B is to replace the center of N which is R with the
circle T = T1

~ = R/(2π/~)Z.
Every φ ∈ Φ can be considered as a function on B, and every n ∈ B has a

unique expression as n = (exp v)(exp tE) with v ∈ V and t ∈ T. We take as our
left invariant measure on B the measure dvdt where dv is Lebesgue measure on
V and dt is the invariant measure on the circle T with total measure one. The
set of elements of Φ are then determined by their restriction to exp(V ). Then
for φ1, φ2 ∈ Φ of compact support (as functions on B) we have (with ? denoting
convolution on B)

(φ1 ? φ2)(exp v)

=

∫
V

∫
T

φ1((expu)(exp tE))φ2((− expu)(exp(−tE))(exp v))dudt

=

∫
V

φ1(expu)φ2((exp−u)(exp v))du

=

∫
V

φ1(expu)φ2(exp(v − u) exp(−1

2
ω(u, v)E))du

=

∫
V

φ1(expu)φ2(exp(v − u))e
1
2 i~ω(u,v)du.

So if we use the notation
ψ(u) = φ(expu)

and ψ1 ? ψ2 for the ψ corresponding to φ1 ? φ2 we have

(ψ1 ? ψ2)(v) =

∫
V

ψ1(u)ψ2(v − u)e
1
2 i~ω(u,v)du. (16.16)

We thus get a “twisted” convolution on V .
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16.8 The group theoretical Weyl transform.

If φ ∈ Φ and if we define φ∗ as in (16.5), then φ∗ ∈ Φ and the corresponding
transformation on the ψ’s is

φ∗(exp v) = ψ(−v).

We now define

Wτ (ψ) = τ(φ) =

∫
B

φ(b)τ(b)db =

∫
V

ψ(v)τ(exp v)dv.

The last equation holds because of the opposite transformation properties of τ
and φ ∈ Φ.

If φ ∈ Φ then δm ? φ is given by

(δm ? φ)(n) = φ(m−1n)

which belongs to Φ if φ does and if m = exp(w) then

(δm ? φ)(expu) = eπiω(w,u)ψ(u− w).

Similarly,
(φ ? δm)(expu) = e−πiω(w,u)ψ(u− w).

Let us write w ? ψ for the function on V corresponding to δm ? φ under our
correspondence between elements of Φ and functions on V .

Then the facts that we have proved such as

τ(φ1 ? φ2) = τ(φ1)τ(φ2)

translate into

Wτ (ψ1 ? ψ2) = Wτ (ψ1)Wτ (ψ2) (16.17)

Wτ (ψ∗) = Wτ (ψ)∗ (16.18)

Wτ (w ? ψ) = τ(expw)Wτ (ψ) (16.19)

Wτ (ψ ? w) = Wτ (ψ)τ(expw). (16.20)

We now temporarily to leave this group theoretical side of the Weyl trans-
form and turn our original subject which is the semi-classical Weyl transform.
For the completion of the proof of the Stone - von-Neumann theorem, the reader
can skip ahead to Section 16.16.

16.9 Two two by two matrices.

In studying semi-classical Weyl transform we will be frequently making certain
changes of variables, so let us put these up front:
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We have (
1 1

2
1 − 1

2

)(
1
2

1
2

1 −1

)
=

(
1 0
0 1

)
and both matrices on the left have determinant −1. So if we define the operators
T and T−1 on L2(R2n) = L2(Rn)⊗̂L2(Rn) by

(TF )(x, y) := F
(
x+

y

2
, x− y

2

)
, (T−1F )(x, y) = F

(
x+ y

2
, x− y

)
then T and T−1 are inverses of one another and are both unitary.

16.10 Schrödinger representations.

Define

(R~)(q, p, t)(f)(x) = ei~(q·x+ 1
2 q·p+

1
4 t)f(x+ p).

It is easy to check that this is a representation of the Heisenberg group where
the symplectic form on Rn ⊕ Rn is

ω ((q, p), (q′, p′)) = 2(q′ · p− q · p′)

and that it is unitary and irreducible. So it is a model for the Stone - von-
Nuemann representation with parameter ~/4.

We will let

%~(q, p) := R~(q, p, 0)

and V~(f, g)(q, p) = 1/(2π)n/2× the matrix element of %~ for f, g ∈ L2(Rn) so

V~(f, g)(q, p) =
1

(2π)n/2

∫
ei~(q·x+ 1

2 q·p)f(x+ p)g(x)dx.

Under the change of variables y = x+ p
2 this becomes

V~(f, g)(q, p) :=
1

(2π)n/2

∫
ei~q·yf

(
y +

p

2

)
g
(
y − p

2

)
dy. (16.21)

We let W~ = W~(x, ξ) = W~(f, g)(x, ξ) denote the Fourier transform of V~(f, g)
(in 2n variables) so

W~(x, ξ) =
1

(2π)3n/2

∫ ∫ ∫
e−ix·q−iξ·p+i~q·yf

(
y +

p

2

)
g
(
y − p

2

)
dydqdp.

Doing the q integration first (with the usual distributional justification) this
gives∫
δ(x−~y)e−iξ·pf

(
y +

p

2

)
g
(
y − p

2

)
dydp = ~−n

∫
e−ip·ξf

(x
~

+
p

2

)
g
(x
~
− p

2

)
dp.
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So let D~ denote the unitary operator on L2(Rn)

(D~f)(x) := ~−n/2f
(x
~

)
and set p = ~p′. Then the above equation gives

W~(f, g)(x, ξ) = W (D~f,D~g)

(
x,
ξ

~

)
(16.22)

where we have written W for W1. So we can work with ~ = 1. We will work
with a slightly different “rescaling” later. In any event, we will work for the
moment with

W (f, g)(x, ξ) =
1

(2π)n/2

∫
e−iξ·pf

(
x+

p

2

)
g
(
x− p

2

)
dp. (16.23)

A direct computation using Plancherel shows that if f1, g1, f2, g2 ∈ S(Rn)
then W (f1, g1) and W (f2, g2) are in S(R2n) and

(W (f1, g1),W (f2, g2))L2(R2n = (f1, f2)L2(Rn)(g1, g2)L2(Rn

so W extends to a map

L2(Rn)× L2(Rn)→ L2(R2n).

16.11 The Weyl transform.

16.11.1 Repeat of the definition of the semi-classical Weyl
transform.

Assume (temporarily) that σ ∈ S(R2n). We defined the Weyl transform Weylσ,~
acting on S(Rn) by (16.3):

(
Weylσ,~ φ

)
(x) =

1

(2π~)n

∫
e
i
~ (x−y)·ξσ

(
x+ y

2
, ξ

)
φ(y)dydξ.

When ~ = 1 we will sometimes write Weylσ instead of Weylσ,1. We will also
use various other notations (as found in the literature) for Weylσ,~.

16.11.2 Weylσ and the Schrödinger representation of the
Heisenberg group.

By definition,

(Weylσ(φ)) (x) =
1

(2π)n

∫ ∫
ei(x−y)·ξσ

(
x+ y

2
, ξ

)
φ(y)dydξ.
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We claim that the matrix coefficients of Weylσ are given by

(Weylσ f, g) =

∫ ∫
σ(x, ξ)W (f, g)(x, ξ)dxdξ. (16.24)

Indeed, the double integral on the right is the triple integral

1

(2π)n/2

∫ ∫ ∫
σ(x, ξ)e−iξ·pf

(
x+

p

2

)
g
(
x− p

2

)
dpdxdξ

(where we have interchanged the order of integration). If we set u = x+ p
2 , v =

x− p
2 (see our two by two matrices above) this becomes

1

(2π)n/2

∫ ∫ ∫
σ

(
u+ v

2
, ξ

)
ei(v−u)·ξf(u)g(v)dudξdv

proving (16.24).
Since W (f, g) is the Fourier transform of the matrix coefficient of %(q, p) =

%1(q, p) we can use the theorem∫
F̂G =

∫
FĜ

(in 2n dimensions) to conclude that

(Weylσ f, g) =
1

(2π)n

((∫
σ̂(q, p)%(q, p)dqdp

)
(f), g

)
. (16.25)

In other words, we see that the Weyl transform is the extension to S(R2n) of
the Schrödinger representation applied to the Fourier transform of σ:

Weylσ =
1

(2π)n

∫
σ̂(q, p)ρ1/4(q, p)dqdp. (16.26)

We will see by suitable “rescaling” that the Weyl transform Weylσ,~ is associated
to the Stone - von-Neumann representation with parameter ~/4.

Also, we can use the right hand side of (16.24) to define the Weyl transfor-
mation of an element of S ′(R2n) as a map from S(Rn) to S ′(Rn): For f ∈ S(Rn)
we define Weylσ(f) ∈ S ′(Rn) by

(Weylσ(f)) (g) =
1

(2π)n/2
σ (W (f, g)) , g ∈ S(Rn).

In particular this applies when σ is a symbol. We will want to define various
subspaces of S ′(R2n) and describe the properties of the corresponding operators.

16.12 Weyl transforms with symbols in L2(R2n).

Again we are working with a fixed ~ and so may assume that ~ = 1. We wish
to show that the set of all Weyl transforms with symbols σ ∈ L2(R2n) coincides
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with the set of all Hilbert Schmidt operators on L2(Rn). For the definition and
elementary properties of Silbert-Schmidt operators see Section 16.16 below.

We will let F denote the Fourier transform on Rn and F1, F2 denote the par-
tial Fourier transforms on L2(R2n) with respect to the first and second variables
so that

F1(f ⊗ g) = (F(f))⊗ g, F2(f ⊗ g) = f ⊗ (F(g)).

Since the linear combinations of the f ⊗g are dense in L2(R2n), these equations
determine F1 and F2. If we go back to the definition of the operator T in
Section 16.9 and the definition (16.23) of W we see that

W (f, g) = F2T (f ⊗ g).

So if σ ∈ L2(R2n) then (16.24) says that

(Weylσ f, g) =
1

(2π)n/2
(W (f, g), σ)L2(R2n =

1

(2π)n/2
(F2T (f ⊗ g), σ)L2(R2n

=
1

(2π)n/2
(f ⊗ g, T−1F−1

2 (σ)L2(R2n)

This shows that Wσ is given by the integral kernel Kσ ∈ L2(R2n) where

Kσ(x, y) =
1

(2π)n/2
T−1F2σ(y, x)

and hence is Hilbert-Schmidt. Since all this is reversible, we see that every
Hilbert-Schmidt operator comes in this fashion from a Weyl transform.

16.13 Weyl transforms associated to linear sym-
bols and their exponentials.

16.13.1 The Weyl transform associated to ξα is (~D)α.

When α = 0 this says that

u(x) =
1

(2π~)n

∫ ∫
ei

(x−y)·ξ
~ u(y)dydξ.

Under the change of variables ξ = ~η the right hand side becomes u(x) by the
inversion formula for the Fourier transform.

Differentiating under the integral sign then proves the formula stated in the
title of this subsection.

16.13.2 The Weyl transform associated to a = a(x) is mul-
tiplication by a.

This again follows from the Fourier inversion formula.
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16.13.3 The Weyl transform associated to a linear func-
tion.

If ` = (j, k) ∈ (Rn)∗ ⊕ Rn = (Rn ⊕ (Rn)∗)
∗

then combining the two previous
results we see that the Weyl transform associated to ` is the first order linear
differential operator

u(x) 7→ j(x)u(x) + (k(~D)u)(x).

We will write this as
L = `(x, ~D)

where we are using A to denote the Weyl operator Weyla,~ associated to a.
Another notation in use (and suggested by the above formulas) is

a(x, ~D)

for Weyla,~ for a general a.

16.13.4 The composition L ◦B.

We want to prove the following formula

L ◦B = C

where

c = `b+
~
2i
{`, b} (16.27)

where {a, b} denotes Poisson bracket on Rn ⊕ (Rn)∗:

{a, b} = 〈∂ξa, ∂xb〉 − 〈∂xa, ∂ξb〉

For the case that a = ` = (j, k) is a linear function the Poisson bracket becomes

{`, b} = k(∂xb)− j(∂ξb).

We will prove (16.27) under the assumption that b ∈ S(R2n). It will then
follow that it is true for any tempered function on R2n. It suffices to prove
(16.27) separately for the cases k = 0 and j = 0 since the general result follows
by linearity.

• k = 0. In this case L is the operator of multiplication by the linear function
j = j(x) so

((L ◦B)u) (x) =
1

(2π~)n

∫
j(x)e

i
~ (x−y)·ξb

(
x+ y

2
.ξ

)
u(y)dydξ.

Write

j(x) = j

(
x+ y

2

)
+ j

(
x− y

2

)
.
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The first term has the effect of replacing b by `b. As to the second term,
we have

x− y
2

e
i
~ (x−y)·ξ =

~
2i
∂ξe

i
~ (x−y)·ξ

so integration by parts gives (16.27).

• j = 0 so L = k(~D). Differentiation under the integral sign gives (16.27). 2

16.14 The one parameter group generated by L.

Let ` = (j, k) as above and consider the operators U`(t) on S(Rn) defined by

(U`(t)ψ)(x) := e
i
~ t〈j,

1
2 tk−x〉ψ(x− tk).

A direct check shows that

U`(s+ t) = U`(s) ◦ U`(t)

and

i~
d

dt
U`(t) = L ◦ U`(t).

So as operators we can write

U`(t) = exp

(
− i
~
tL

)
.

Also, it is clear that the U`(t) are unitary with respect to the L2 norm on S(Rn)
and hence extend uniquely to a one parameter group of unitary transformations
on L2(Rn). By Stone’s theorem this shows that L (with domain S(Rn)) is
essentially self adjoint and so extends to a unique self adjoint operator on L2(Rn)
which we can continue to write as L.

On the other hand, consider the operator associated to the symbol e−
it
~ `,

call it temporarily V`(t). Then

i~
(
d

dt
Vt

)
ψ(x) =

1

(2π~)n

∫ ∫
e
i
~ (x−y)·ξ)`

(
x+ y

2
, ξ

)
e−

it
~ `(

x+y
2 ,ξ)ψ(y)dydξ.

Since {
`, e

i
~ `
}

= 0

we see from (16.27) that this is L ◦ V`(t)ψ so V`(t) = U`(t).

In other words, the operator associated to e−
i
~ ` is e−

i
~L. Since L = L(x, ~D) =

j(x) + k(~D) we see from taking t = 1 in the definition of U`(t) that

e−
i
~L = µ

(
e−

i
2~ 〈j,x〉

)
◦ Tk ◦ µ

(
e−

i
2~ 〈j.x〉

)
. (16.28)

Here µ denotes the operator of multiplication: µ(f)u = fu and T denotes the
translation operator:

Tku(x) = u(x− k).
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From this we see that

e−i
i
~L◦−i i~M = e

i
2~{`,m}e−i

i
~ (L+M)

which brings us back to a Schrödinger representation of the Heisenberg group.
Let me here follow (approximately and temporarily) the conventions of

Dimassi-Sjöstrand and Evans-Zworsky and define the ~ Fourier transform of
a ∈ S(R2n) by

âh(`) =

∫ ∫
e−

i
~ `(x,ξ)a(x, ξ)dxdξ.

Writing z = (x, ξ) this shortens to

â~(`) =

∫
e−

i
~ `·za(z)dz.

So the Fourier inversion formula gives

a(z) =
1

(2π~)2n

∫
e
i
~ 〈`,z〉â~`d`.

So we get the Weyl quantization A of a as the superposition

A =
1

(2π~)2n

∫
â~(`)e

i
~Ld`. (16.29)

D-S and E-Z write this as

aw(x, ~D) =
1

(2π~)2n

∫
â~(`)e

i
~ `(x,~D)d`.

Since the e
i
~L are unitary, this convergence is also in the operator norm on

L2(Rn and we conclude that

‖A‖2 ≤
1

(2π~)2n
‖â‖L1(R2n). (16.30)

We shall make some major improvements on this estimate.

16.15 Composition.

The decomposition (16.29) allows us to (once again) get the formula for the
composition of two Weyl operators by “twisted convolution”:

A ◦B = C

where

ĉ~(r) =
1

(2π~)2n

∫
`+m=r

â~(`)b̂~(m)e
i
~{`,m}d`. (16.31)
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This can also be expressed as follows: Let z = (x, ξ) and similarly z1, w1, w2

denote points of R2n. The claim is that

c(z) =
1

(4π~)4n

∫
R2n

∫
R2n

e
i
~ (`(z)+m(z)+ 1

2{`,m})â(`)b̂(m)d`dm. (16.32)

To check that this is so, we need to check that the Fourier transform of the c
given by (16.32) is the ĉ given in (16.31). Taking the Fourier transform of the c
given by (16.32) and interchanging the order of integration gives the following
function of r:

1

(2π~)2n

∫ ∫ (
1

(2π~)2n

∫
e
i
~ (`(z)+m(w)−r(z)dz

)
e
i
~ ({`,m}d`dm.

The inner integral is just δ(`+m− r) giving (16.31) as desired. If we insert the
definition of the Fourier transform into (16.32) we get

1

(2π~)4n

∫
R2n

∫
R2n

∫
R2n

∫
R2n

e
i
~ (`(z−w1)+m(z−w2)+ 1

2{`,m})a(w1)b(w2)d`dmdw1dw2.

We will make some changes of variable in this four-fold integral. First set
w3 = z − w1, w4 = z − w2 so we get

1

(2π~)4n

∫
R2n

∫
R2n

∫
R2n

∫
R2n

e
i
~ (`(w3)+m(w4)+ 1

2ω(`,m))a(z−w3)b(z−w4)d`dmdw3dw4.

Next write the symplectic form in terms of the standard dot product on R2n

ω(`,m) = ` · Jm.

So

`(w3) +
1

2
ω(`,m) = ` · (w3 + Jm) .

So doing the integral with respect to ` gives

(2π~)2nδw3+ 1
2m
.

The integral with respect to m becomes

(2π~)2n

∫
R2n

e
i
2m·w4δw3+ 1

2Jm
dm.

Make the change of variables m′ = w3 + 1
2Jm in the above integral. We get

(2π~)2n

∫
R2n

e
i
~ (2J(w3−m′)·w4δ(m′)dm′

where now the delta function is at the origin. So this integral becomes

(2π~)2n22ne
i
~ 2Jw3·w4 = (2π~)2n22ne−

2i
~ ω(w3,w4).
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Putting this back into the four-fold integral above and replacing 3, 4 by 1, 2 gives

a]b(z) =
1

(π~)2n

∫
R2n

∫
R2n

e−
2i
~ ω(w1,w2)a(z − w1)b(z − w2)dw1dw2, (16.33)

where we let a]b denote the c such that C = A ◦B.

BACK TO THE STONE-VON-NEUMANN THEOREM.

16.16 Hilbert-Schmidt Operators.

Let H be a separable Hilbert space. An operator A on H is called Hilbert-
Schmidt if in terms of some orthonormal basis {ei} we have∑

‖Aei‖2 <∞.

Since
Aei =

∑
(Aei, ej)ej

this is the same as the condition∑
ij

|(Aei, ej)|2 <∞

or ∑
|aij |2 <∞

where
aij := (Aei, ej)

is the matrix of A relative to the orthonormal basis. This condition and sum
does not depend on the orthonormal basis and is denoted by

‖A‖2HS .

This norm comes from the scalar product

(A,B)HS = trB∗A =
∑

(B∗Aei, ei) =
∑

(Aei, Bei).

Indeed,

(A∗Aei, ei) = (Aei, Aei)

=

∑
j

(Aei, ej)ej , Aei


=

∑
j

(Aei, ej)(ej , Aei)

=
∑
j

aijaij

=
∑
j

|aij |2,
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and summing over i gives ‖A‖2HS .
The rank one elements

Eij , Eij(x) := (x, ej)ei

form an orthonormal basis of the space of Hilbert-Schmidt operators. We can
identify the space of Hilbert-Schmidt operators with the completed tensor prod-
uct H⊗̂H where H is the space H with scalar multiplication and product given
by the complex conjugate, e.g multiplication by c ∈ C is given by multiplication
by c in H.

If H = L2(M,dm) where (M,dm) can be any measure space with measure
dm, we can describe the space of Hilbert-Schmidt operators as being given by
integral operators with L2 kernels: Indeed, let {ei} be an orthonormal basis of
H = L2(M,dm) so that the eij ∈ L2(M ×M)

eij(x, y) := ei(x)ej(y)

form an orthonormal basis of L2(M ×M). Consider the rank one operators Eij
introduced above. Then

(Eijψ) (x) = (ψ, ej)ei(x) =

∫
V

ψ(y)ej(y)ei(x)dy

=

∫
Y

Kij(x, y)ψ(y)dy

where
Kij(x, y) = ei(x)ej(y).

This has norm one in L2(M ×M) and hence the most general Hilbert-Schmidt
operator A is given by the L2(M ×M) kernel

K =
∑

aijKij

with aij the matrix of A as above.

16.17 Proof of the irreducibility of ρ`,~.

We go back to our earlier notation.
Let us consider the case where τ = ρ = ρ`,~. We claim that the map Wρ

defined on the elements of Φ of compact support extends to an isomorphism
from L2(V ) to the space of all Hilbert-Schmidt operators on H(`). Indeed,
write

Wρ(ψ) =

∫
V

ψ(v)ρ(exp v)dV

and decompose
V = `⊕ `′
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v = y + x, s ∈ `, y ∈ `′

so

exp(y + x) = exp(y) exp(x) exp(−1

2
ω(y, x))

so

ρ(exp(y + x)) = ρ(y)ρ(x)e−i
1
2~ω(y,x)

and hence

Wρ(ψ) =

∫ ∫
ψ(y + x)ρ(exp y)ρ(expx)e−

1
2~iω(y,x)dxdy.

So far the above would be true for any τ , not necessarily ρ. Now let us use
the explicit realization of ρ as σ on L2(Rn) in the form given in (16.15).

We obtain

[Wσ(ψ)(f)](ξ) =

∫ ∫
e−

1
2 i~ω(y,x)ψ(y + x)e~iω(x,ξ−y)f(ξ − y)dxdy.

Making the change of variables y 7→ ξ − y this becomes∫ ∫
e−

1
2 i~ω(ξ−y,x)ei~ω(x,y)ψ(ξ − y + x)f(y)dxdy.

so if we define

Kψ(ξ, y) :=

∫
e

1
2 i~ω(x,y+ξ)ψ(ξ − y + x)dx

we have

[Wσ(ψ)f)](ξ) =

∫
Kψ(ξ, y)f(y)dy.

Here we have identified `′ with Rn and V = `′ + ` where ` is the dual space of
`′ under ω. So if we consider the partial Fourier transform

Fx : L2(`′ ⊕ `)→ L2(`′ ⊕ `′)

(Fxψ)(y, ξ) =

∫
e−2πiω(x,ξ)ψ(y + x)dx

(which is an isomorphism) we have

Kψ(ξ, y) = (Fxψ)(ξ − y,−1

2
(y + ξ)).

We thus see that the set of all Kψ is the set of all Hilbert-Schmidt operators on
L2(Rn).

Now if a bounded operator C commutes with all Hilbert-Schmidt operators
on a Hilbert space, then CEij = EijC implies that cij = cδij , i.e. C = cId. So
we have proved that every bounded operator that commutes with all the ρ`(n)
must be a constant. Thus ρ(`) is irreducible.



464 CHAPTER 16. THE WEYL TRANSFORM.

16.18 Completion of the proof.

We fix `, `′ as above, and have the representation ρ realized as σ on L2(`′) which
is identified with L2(Rn) all as above. We want to prove that any representation
τ satisfying (16.14) is isomorphic to a multiple of σ.

We consider the “twisted convolution” (16.16) on the space of Schwartz
functions S(V). If ψ ∈ S(V ) then its Weyl kernel Kψ(ξ, y) is a rapidly decreasing
function of (ξ, y) and we get all operators with rapidly decreasing kernels as such
images of the Weyl transform Wσ sending ψ into the kernel giving σ(φ).

Consider some function u ∈ S(`′) with

‖u‖L2(`′) = 1.

Let P1 be the projection onto the line through u, so P1 is given by the kernel

p1(x, y) = u(y)u(x).

We know that it is given as

p1 = Wσ(ψ) for some ψ ∈ S(V ).

We have P 2
1 = P1, P

∗
1 = P1 and

P1σ(n)P1 = α(n)P1 with α(n) = (σ(n)u, u).

Recall that φ 7→ σ(φ) takes convolution into multiplication, and that Kψ is
the kernel giving the operator Wσ(ψ) = σ(φ) where φ ∈ Φ corresponds to
ψ ∈ S(V ). Then in terms of our twisted convolution ? given by (16.16) the
above three equations involving P1 get translated into

ψ ? ψ = ψ, ψ∗ = ψ, ψ ? n ? ψ = α(n)ψ. (16.34)

Now let τ be any unitary representation of N on a Hilbert space H satisfying
(16.14). We can form Wτ (ψ).

Lemma 13. The set of linear combinations of the elements

τ(n)Wτ (ψ)x, x ∈ H, n ∈ N

is dense in H.

Proof. Suppose that y ∈ H is orthogonal to all such elements and set
n = expw. Then for any x ∈ H

0 = (y, τ(n)Wτ (ψ)τ(n)−1x) =

∫
V

(y, τ(expw)τ(exp(v)τ(exp(−w)ψ(v)dv

=

∫
V

(y, τ(exp(v + ω(w, v)E)x)ψ(v)dv =

∫
V

(y, τ(exp v)x)e−2πiω(w,v)ψ(v)dv

= F [(y, τ(exp v)x)ψ].
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The function is square brackets whose Fourier transform is being taken is con-
tinuous and rapidly vanishing. Indeed, x and y are fixed elements of H and τ
is unitary, so the expression (y, τ(exp v)x) is bounded by ‖y‖‖x‖ and is contin-
uous, and ψ is a rapidly decreasing functions of v. Since the Fourier transform
of the function

v 7→ (y, τ(exp(v))x)ψ(v)

vanishes, the function itself must vanish. Since ψ does not vanish everywhere,
there is some value v0 with ψ(v0) 6= 0, and hence

(y, τ(exp v0)x) = 0 ∀x ∈ H.

Writing x = τ(exp v0)−1z we see that y is orthogonal to all of H and hence
y = 0. QED

Now from the first two equations in (16.34) we see that Wτ (ψ) is an orthog-
onal projection onto a subspace, call it H1 of H. We are going to show that H
is isomorphic to H(`)⊗ H1 as a Hilbert space and as a representation of N .

We wish to define

I : H(`)⊗ H1 → H, ρ(n)u⊗ b 7→ τ(n)b

where b ∈ H1.
We first check that if

b1 = Wτ (ψ)x1 and b2 = Wτ (ψ)x2

then for any n1, n2 ∈ N we have

(τ(n1)Wτ (ψ)x1, τ(n2)Wτ (ψ)x2)H = (ρ(n1)u, ρ(n2)u)H(`) · (b1, b2)H1
. (16.35)

Proof. Since τ(n) is unitary and Wτ (ψ) is self-adjoint, we can write the left
hand side of (16.35) as

(τ(n1)Wτ (ψ)x1, τ(n2)Wτ (ψ)x2)H = (Wτ (ψ)τ(n−1
2 n1)Wτ (ψ)x1, x2)H

and by the last equation in (16.34) this equals

= α(n−1
2 n1)(Wτ (ψ)x1, x2)H.

From the definition of α we have

α(n−1
2 n1) = (ρ(n−1

2 n1)u, u)H(`) = (ρ(n1)u, ρ(n2)u)`

since ρ(n2) is unitary. This is the first factor on the right hand side of (16.35).
Since Wτ (ψ) is a projection we have

(Wτ (ψ)x1, x2)H = (Wτ (ψ)x1,Wτ (ψ)x2)H = (b1, b2)H1
,

which is the second factor on the right hand side of (16.35). We have thus
proved (16.35).
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Now define

I :

N∑
i=1

ρ(ni)u⊗ bi 7→
∑

τ(ni)bi.

This map is well defined, for if

N∑
i=1

ρ(ni)u⊗ bi = 0

then

‖
N∑
i=1

ρ(ni)u⊗ bi‖H(`)⊗H1
= 0

and (16.35) then implies that

‖
N∑
i=1

ρ(ni)u⊗ bi‖H(`)⊗H1
= ‖

N∑
i=1

τ(ni)bi‖H = 0.

Equation (16.35) also implies that the map I is an isometry where defined. Since

ρ is irreducible, the elements
∑N
i=1 ρ(ni)u are dense in H(`), and so I extends to

an isometry from H(`)⊗ H1 to H. By Lemma 13 this map is surjective. Hence
I extends to a unitary isomorphism (which clearly is also a morphism of N
modules) between H(`)⊗H1 and H. This completes the proof of the Stone - von
Neumann Theorem.


