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Preface

This book originates with a course MZ taught at UC Berkeley during
the spring semester of 2003, notes for which LCE took in class. In
this presentation we have tried hard to work out the full details for
many proofs only sketched in the original lectures. We have reworked
the order of presentation, added many additional topics, and included
more heuristic commentary. We have as well introduced consistent
notation, recounted in Appendix A. Relevant functional analysis and
other background mathematics have been consolidated into Appendices
B–D.

This version 0.2 represents our latest draft, the clarity of which we
(still) hope greatly to improve in later editions, to be posted on our web-
sites. We are quite aware that many errors remain in our exposition,
and so we ask our readers to please send any comments or corrections
to us at evans@math.berkeley.edu or zworski@math.berkeley.edu.

We should mention that two excellent treatments of mathematical
semiclassical analysis have appeared recently. The book [D-S] by M.
Dimassi and J. Sjöstrand starts with the WKB-method, develops the
general semiclassical calculus, and then provides high tech spectral
asymptotics. The presentation of Martinez [M] is based on a systematic
development of FBI (Fourier-Bros-Iagolnitzer) transform techniques,
with applications to microlocal exponential estimates and propagation
estimates. These notes are intended as a more elementary and broader
introduction. Except for the general symbol calculus, where we fol-
lowed Chapter 7 of [D-S], there is little overlap with these other two
texts, or with the early and influential book by Robert [R].

We are especially grateful to Hans Christianson, Sean Holmer, and
Stéphane Nonnenmacher for their careful reading of earlier versions
of these notes and for many valuable comments and corrections. Our
thanks to Faye Yeager for typing a first draft and to Jonathan Dorfman
for TeX advice. In his study of semiclassical calculus MZ has been
greatly influenced by his long collaboration with Johannes Sjöstrand,
whom he acknowledges with pleasure and gratitude.

LCE is supported in part by NSF grant DMS-0500452 and MZ by
NSF grant DMS-0200732.
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1. Introduction

1.1 Basic themes
1.2 Classical and quantum mechanics
1.3 Overview

1.1 BASIC THEMES

Our primary goal is understanding the relationships between dynam-
ical systems and the behavior of solutions to various linear PDE and
pseudodifferential equations containing a small positive parameter h.

PDE with small parameters. The principal realm of motivation
is quantum mechanics, in which case we understand h as denoting
Planck’s constant. With this interpretation in mind, we break down
our basic task into these two subquestions:

(i) How and to what extent do classical dynamics determine the
behavior as h→ 0 of solutions to Schrödinger’s equation

ih∂tu = −h2∆u+ V u

for the potential V = V (x), and the related eigenvalue equation

−h2∆u+ V u = Eu ?

The name “semiclassical” comes from this interpretation.

(ii) Conversely, given various mathematical objects associated with
classical mechanics, for instance symplectic transformations, how can
we profitably “quantize” them?

In fact the techniques of semiclassical analysis apply in many other
settings and for many other sorts of PDE. For example we will later
study the damped wave equation

(1.1) ∂2
t u+ a∂tu−∆u = 0

for large times. A rescaling in time will introduce the requisite small
parameter h.

Basic techniques. We will construct in Chapters 2–4 and 9 a wide
variety of mathematical tools to address these issues, among them:

• the apparatus of symplectic geometry (to record succintly the be-
havior of classical dynamical systems);
• the Fourier transform (to display dependence upon both the posi-

tion variables x and the momentum variables ξ);
• stationary phase (to describe asymptotics as h → 0 of various

expressions involving rescaled Fourier transforms);
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• pseudodifferential operators (to localize or, as is said in the trade,
to microlocalize functional behavior in phase space).

1.2 CLASSICAL AND QUANTUM MECHANICS

In this section we introduce and foreshadow a bit about quantum
and classical correspondences.

Observables. We can think of a given function a : Rn × Rn → C,
a = a(x, ξ), as a classical observable on phase space, where as above x
denotes position and ξ momentum. We will also call a a symbol.

Let h > 0 be given. We will associate with the observable a, a
corresponding quantum observable aw(x, hD), an operator defined by
the formula

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
x+y

2
, ξ
)
u(y) dξdy

for appropriate smooth functions u. This is Weyl’s quantization for-
mula.

We will later learn that if we change variables in a symbol, we pre-
serve the principal symbol up to lower order terms (that is, terms
involving high powers of the small parameter h.)

Equations of evolution. We are concerned as well with the evolution
in time of classical particles and quantum states.

Classical evolution. Our most important example will concern the
symbol

p(x, ξ) := |ξ|2 + V (x),

corresponding to the phase space flow{
ẋ = 2ξ

ξ̇ = −∂V.

We generalize by introducing the arbitrary Hamiltonian p : Rn×Rn →
R, p = p(x, ξ), and the corresponding Hamiltonian dynamics

(1.2)

{
ẋ = ∂ξp(x, ξ)

ξ̇ = −∂xp(x, ξ).

It is instructive to change our viewpoint somewhat, by first intro-
ducing some more notation. Let us write

ϕt = exp(tHp)

for the solution of (1.2), where

Hpq := {p, q} = 〈∂ξp, ∂xq〉 − 〈∂xp, ∂ξq〉
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is the Poisson bracket. Select a symbol a and set

at(x, ξ) := a(ϕt(x, ξ)).

Then

(1.3)
d

dt
at = {p, at}.

This equation tells us how the symbol evolves in time.

Quantum evolution. We next quantize the foregoing by putting
P = pw(x, hD), A = aw(x, hD) and defining

At := e
itP
n A e−

itP
n .

Then we have the evolution equation

d

dt
At =

i

h
[P,At],

an obvious analog of (1.3). Here is a basic principle we will later
work out in some detail: an assertion about Hamiltonian dynamics,
and so the Poisson bracket {·, ·}, will involve at the quantum level the
commutator [·, ·].

1.3 OVERVIEW

Chapters 2–4 and 9 develop the basic machinery, and the other chap-
ters cover applications to PDE. Here is a quick overview, with some of
the highpoints:

Chapter 2: We start with a quick introduction to symplectic analysis
and geometry and their implications for classical Hamiltonian dynam-
ical systems.

Chapter 3: This chapter provides the basics of the Fourier transform
and derives also important stationary phase asymptotic estimates, of
the sort

Ih = (2πh)n/2|det ∂2ϕ(x0)|−1/2e
iπ
4

sgn ∂2ϕ(x0)e
iϕ(x0)
h a(x0) +O

(
h
n+2

2

)
as h→ 0, for the oscillatory integral

Ih :=

∫
Rn
e
iϕ
h a dx.

We assume here that the gradient ∂ϕ vanishes only at the point x0.

Chapter 4: Next we introduce the Weyl quantization aw(x, hD) of
the symbol a(x, ξ) and work out various properties, chief among them
the composition formula

aw(x, hD) ◦ bw(x, hD) = cw(x, hD),
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where the symbol c := a#b is computed explictly in terms of a and b.
We will prove as well the sharp G̊arding inequality, stating that if a is
a nonnegative symbol, then

〈aw(x, hD)u, u〉 ≥ −Ch‖u‖2
L2

for all u and sufficiently small h > 0.

Chapter 5: This section introduces semiclassical defect measures, and
uses them to derive decay estimates for the damped wave equation
(1.1), where a ≥ 0, on the flat torus Tn.

Chapter 6: In Chapter 6 we begin our study of the eigenvalue problem

P (h)u(h) = E(h)u(h),

for the operator
P (h) := −h2∆ + V (x).

We prove Weyl’s Law for the asymptotic distributions of eigenvalues
as h→ 0, stating for all a < b that

#{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(|{a ≤ |ξ|2 + V (x) ≤ b}|+ o(1)).

Chapter 7: Chapter 7 continues the study of eigenfunctions, first
establishing an exponential vanishing theorem in the “classically for-
bidden” region. We derive as well a Carlemann-type inequality

‖u(h)‖L2(E) ≥ e−
C
h ‖u(h)‖L2(Rn)

where E ⊂ Rn. This provides a quantitative estimate for quantum
mechanical tunneling.

Chapter 8: Chapter 8 concerns the quantum implications of ergod-
icity for our underlying dynamical systems. A key assertion is that if
the underlying dynamical system satisfies an appropriate ergodic con-
dition, then

(2πh)n
∑

a≤Ej≤b

∣∣∣∣〈Auj, uj〉 − ∫−
{a≤p≤b}

σ(A) dxdξ

∣∣∣∣2 −→ 0

as h → 0, for a wide class of pseudodifferential operators A. In this
expression the classical observable σ(A) denotes the symbol of A.

Chapter 9: We return in Chapter 9 to the symbol calculus. We intro-
duce the useful formalism of half-densities and use them to illustrate
how changing variables in a symbol affects the Weyl quantization. We
introduce also the notion of the semiclassical wave front set and show
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how a natural localization in phase space leads to pointwise bounds
on approximate solutions. We prove as well a semiclassical version of
Beals’s Theorem, characterizing pseudodifferential operators. As an
application we show how quantization commutes with exponentiation
at the level of order functions.

Chapter 10: The concluding Chapter 10 explains how to quantize
symplectic transformations, with applications including local construc-
tions of propagators, Lp bounds on eigenfuctions, and normal forms of
differential operators.

Appendices: Appendix A records our notation in one convenient loca-
tion, and Appendix B is a quick review of differential forms. Appendix
C collects various useful functional analysis theorems (with selected
proofs). Appendix D discusses Fredholm operators within the frame-
work of Grushin problems, and Appendix E discusses general manifolds
and modifications our the symbol calculus to cover pseudodifferential
operators on manifolds.



9

2. Symplectic analysis

2.1 Flows
2.2 Symplectic structure on R2n

2.3 Changing variables
2.4 Hamiltonian vector fields

Since our task in these notes is understanding some interrelation-
ships between dynamics and PDE, we provide in this chapter a quick
discussion of the symplectric geometric structure on Rn × Rn = R2n

and its interplay with Hamiltonian dynamics.
The reader may wish to first review our basic notation and also the

theory of differential forms, set forth respectively in Appendices A and
B.

2.1 FLOWS

Let V : RN → RN denote a smooth vector field. Fix a point z ∈ RN

and solve the ODE

(2.1)

{
ż(t) = V (z(t)) (t ∈ R)

z(0) = z.

We assume that the solution of the flow (2.1) exists and is unique for
all times t ∈ R.

NOTATION. We define

ϕtz := z(t)

and sometimes also write

ϕt =: exp(tV ).

We call {ϕt}t∈R the exponential map.

The following lemma records some standard assertions from theory
of ordinary differential equations:

LEMMA 2.1 (Properties of flow map).
(i) ϕ0z = z.
(ii) ϕt+s = ϕt ◦ ϕs for all s, t ∈ R.
(iii) For each time t ∈ R, the mapping ϕt : RN → RN is a diffeomor-
phism, with

(ϕt)
−1 = ϕ−t.
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2.2 SYMPLECTIC STRUCTURE ON R2n

We henceforth specialize to the even-dimensional space RN = R2n =
Rn × Rn.

NOTATION. We refine our previous notation and henceforth denote
an element of R2n as

z = (x, ξ),

and interpret x ∈ Rn as denoting position, ξ ∈ Rn as momentum.
Alternatively, we can think of ξ as belonging to T ∗xRn, the cotangent
space of Rn at x. We will likewise write

w = (y, η)

for another typical point of R2n.

We let 〈·, ·〉 denote the usual inner product on Rn, and then define
this pairing on R2n:

DEFINITION. Given z = (x, ξ), w = (y, η) on R2n = Rn×Rn, define
their symplectic product

(2.2) σ(z, w) := 〈ξ, y〉 − 〈x, η〉.

Note that

(2.3) σ(z, w) = 〈Jz, w〉

for the 2n× 2n matrix

(2.4) J :=

(
O I
−I O

)
.

Observe

J2 = −I, JT = −J.
We will later in Section 10.2 interpret the transformation J as the
classical analog of the Fourier transform.

LEMMA 2.2 (Properties of σ). The bilinear form σ is antisym-
metric:

σ(z, w) = −σ(w, z)

and nondegenerate:

if σ(z, w) = 0 for all w, then z = 0.
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These assertions are straightforward to check.

NOTATION. We now bring in the terminology of differential forms,
reviewed in Appendix B. Using the notation discussed above, we intro-
duce for x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn) the 1-forms dxj and dξj
for j = 1, . . . , n. We then can write

(2.5) σ = dξ ∧ dx =
n∑
j=1

dξj ∧ dxj.

Observe also

(2.6) σ = dω for ω := ξdx =
n∑
j=1

ξjdxj.

It follows that

(2.7) dσ = 0.

2.3 CHANGING VARIABLES.

Suppose next that U, V ⊆ R2n are open sets and

κ : U → V

is a smooth mapping. We will write

γ(x, ξ) = (y, η) = (y(x, ξ), η(x, ξ)).

DEFINITION. We call γ a symplectic mapping, or a symplectomor-
phism, provided

(2.8) γ∗σ = σ.

Here the pull-back γ∗σ of the symplectic product σ is defined by

(γ∗σ)(z, w) := σ(γ∗(z), γ∗(w)),

γ∗ denoting the push-forward of vectors: see Appendix B.

NOTATION. We will usually write (2.8) in the more suggestive no-
tation

(2.9) dη ∧ dy = dξ ∧ dx.

EXAMPLE 1: Linear symplectic mappings. Suppose κ : R2n →
R2n is linear:

κ(x, ξ) =

(
A B
C D

)(
x
ξ

)
= (Ax+Bξ,Cx+Dξ) = (y, η),

where A,B,C,D are n× n matrices.
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THEOREM 2.3 (Symplectic matrices). The linear mapping γ is
symplectic if and only if the matrix

M :=

(
A B
C D

)
satisfies

(2.10) MTJM = J.

DEFINITION. We call a 2n×2n matrix M symplectic if (2.10) holds.

In particular the linear mapping (x, ξ) 7→ (ξ,−x) determined by J
is symplectic.

Proof. Let us compute

dη ∧ dy = (Cdx+Ddξ) ∧ (Adx+Bdξ)

= ATCdx ∧ dx+BTDdξ ∧ dξ + (ATD − CTB)dξ ∧ dx
= dξ ∧ dx

if and only if

(2.11) ATC and BTD are symmetric, ATD − CTB = I.

Then

MTJM =

(
AT CT

BT DT

)(
O I
−I O

)(
A B
C D

)
=

(
ATC − CTA ATD − CTB
BTC −DTA BTD −DTB

)
= J

if and only if (2.11) holds. �

EXAMPLE 2: Nonlinear symplectic mappings. Assume next
that κ : R2n → R2n is nonlinear:

κ(x, ξ) = (y, η)

for smooth functions y = y(x, ξ), η = η(x, ξ). Its linearization is the
2n× 2n matrix

∂κ = ∂x,ξκ =

(
∂xy ∂ξy
∂xη ∂ξη

)
.

THEOREM 2.4 (Symplectic transformations). The mapping κ
is symplectic if and only if the matrix ∂κ is symplectic at each point.
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Proof. We have

dη ∧ dy = (Cdx+Ddξ) ∧ (Adx+Bdξ)

for
A := ∂xy,B := ∂ξy, C := ∂xη,D := ∂ξη.

Consequently, as in the previous proof, we have dη ∧ dy = dξ ∧ dx if
and only if (2.11) is valid, which in turn is so if and only if ∂κ is a
symplectic matrix. �

EXAMPLE 3: Lifting diffeomorphisms. Let

γ : Rn → Rn

be a diffeomorphism on Rn, with nondegenerate Jacobian matrix ∂xγ.
We propose to extend γ to a symplectomorphism

κ : R2n → R2n

having the form

(2.12) κ(x, ξ) = (γ(x), η(x, ξ)) = (y, η),

by “lifting” to the momentum variables.

THEOREM 2.5 (Extending to a symplectic mapping). The
transformation (2.12) is symplectic for

(2.13) η(x, ξ) :=
[
∂xγ(x)−1

]T
ξ.

Proof. It turns out to be easier to look for ξ as a function of x and η.
We compute

dy = A dx, dξ = E dx+ F dη,

for
A := ∂xy, E := ∂xξ, F := ∂ηξ.

Therefore
dη ∧ dy = dη ∧ (A dx)

and

dξ ∧ dx = (Edx ∧ Fdη) ∧ dx = Edx ∧ dx+ dη ∧ F Tdx.

We would like to construct ξ = ξ(x, η) so that

A = F T and E is symmetric,

the latter condition implying that Edx∧dx = 0. To do so, let us define

ξ(x, η) := (∂xγ)T η.

Then clearly F T = A, and E = ET = ((γxixj)), as required. �
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INTERPRETATION: This example will prove useful later, when we
quantize symbols in Chapter 4 and learn that the partial differential
operator

P (h) = −h2∆

is associated with the symbol p(x, ξ) = |ξ|2. If we change variables y =

γ(x), it is natural to ask how P (h) transforms. Now ∂x = (∂xγ)T ∂y,
and so

P (h) = −h2 (∂xγ)T ∂y

(
(∂xγ)T ∂y

)
.

We will see later that the operator on the right is associated with the
symbol 〈

(∂xγ)T η, (∂xγ)T η
〉
.

All this is consistent with the transformation (2.13).

Here by the way is an instance of another general principle: if we
change variables in a symbol, we preserve the principal symbol, up to
higher order terms. �

EXAMPLE 4: Generating functions. Our last example demon-
strates that we can, locally at least, build a symplectic transformation
from a real-valued generating function.

Suppose ϕ : Rn×Rn → R, ϕ = ϕ(x, y), is smooth. Assume also that

(2.14) det(∂2
xyϕ(x0, y0)) 6= 0.

Define

(2.15) ξ = ∂xϕ, η = −∂yϕ,
and observe that the Implicit Function Theorem implies (y, η) is a
smooth function of (x, ξ) near (x0, ∂xϕ(x0, y0)).

THEOREM 2.6 (Generating functions and symplectic maps).
The mapping γ defined by

(2.16) (x, ∂xϕ(x, y)) 7→ (y,−∂yϕ(x, y))

is a symplectomorphism near (x0, ξ0).

Proof. We compute

dη ∧ dy = d(−∂yϕ) ∧ dy
= [(−∂2

yϕdy) ∧ dy] + [(−∂2
xyϕdx) ∧ dy]

= −(∂2
xyϕ)dx ∧ dy,
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since ∂2
yϕ is symmetric. Likewise,

dξ ∧ dx = d(∂xϕ) ∧ dx
= [(∂2

xϕ dx) ∧ dx] + [(∂2
xyϕ dy) ∧ dx]

= −(∂2
xyϕ)dx ∧ dy = dη ∧ dy.

�

TERMINOLOGY. In Greek, the word “symplectic” means “inter-
twined”, This is consistent with Example 4, since the generating func-
tion ϕ = ϕ(x, y) is a function of a mixture of half of the original
variables (x, ξ) and half of the new variables (y, η). “Symplectic” can
also be interpreted as “complex”, mathematical usage due to Hermann
Weyl who renamed “line complex group” the “symplectic group”: see
Cannas da Silva [CdS].

APPLICATION: Lagrangian submanifolds. A Lagrangian sub-
manifold Λ is an n-dimensional submanifold of R2n for which

σ|Λ = 0.

Then

dω|Λ = σ|Λ = 0;

and so according to Poincaré’s Theorem B.4, we locally have

ω = dϕ,

for some smooth function ϕ on Λ. We will exploit this observation in
Section 10.2. �

2.4 HAMILTONIAN VECTOR FIELDS

DEFINITION. Given f ∈ C∞(R2n), we define the corresponding
Hamiltonian vector field by requiring

(2.17) σ(z,Hf ) = df(z) for all z = (x, ξ).

This is well defined, since σ is nondegenerate. We can write explicitly
that

(2.18) Hf = 〈∂ξf, ∂x〉 − 〈∂xf, ∂ξ〉 =
n∑
j=1

fξj∂xj − fxj∂ξj .
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LEMMA 2.7 (Differentials and Hamiltonian vector fields). We
have the relation

(2.19) df = −(Hf σ),

for the contraction defined in Appendix B.

Proof. We calculate for each z that

(Hf σ)(z) = σ(Hf , z) = −σ(z,Hf ) = −df(z).

�

DEFINITION. If f, g ∈ C∞(R2n), we define their Poisson bracket

(2.20) {f, g} := Hfg = σ(∂f, ∂g).

That is,

(2.21) {f, g} = 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

fξjgxj − fxjgξj .

LEMMA 2.8 (Brackets, commutators).
(i) We have Jacobi’s identity

(2.22) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

for all functions f, g, h ∈ C∞(R2n).
(ii) Furthermore,

(2.23) H{f,g} = [Hf , Hg].

Proof. 1. A direct calculation verifies assertion (i). For an alternative
proof, note that Lemma B.1 provides the identity

0 = dσ(Hf , Hg, Hh)

= Hfσ(Hg, Hh) +Hgσ(Hh, Hf ) +Hhσ(Hf , Hg)

− σ([Hf , Hg], Hh)− σ([Hg, Hh], Hf )− σ([Hh, Hf ], Hg),

(2.24)

since dσ = 0. Now (2.20) implies

Hfσ(Hg, Hh) = {f, {g, h}}
and

σ([Hf , Hg], Hh) = [Hf , Hg]h = HfHgh−HgHfh

= {f, {g, h}} − {g, {f, h}}.
Similar identities hold for other terms. Substituting into (2.24) gives
Jacobi’s identity.
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2. We observe that

H{f,g}h = [Hf , Hg]h

is a rewriting of (2.22). �

THEOREM 2.9 (Jacobi’s Theorem). If γ is a symplectomorphism,
then

(2.25) Hf = γ∗(Hγ∗f ).

In other words, the pull-back of a Hamiltonian vector field generated
by f ,

(2.26) γ∗Hf := (γ−1)∗Hf ,

is the Hamiltonian vector field generated by the pull-back of f .

Proof. Using the notation of (2.26),

γ∗(Hf ) σ = γ∗(Hf ) γ∗σ = γ∗(Hf σ)

= −γ∗(df) = −d(γ∗f)

= Hγ∗f σ.

Since σ is nondegenerate, (2.25) follows. �

EXAMPLE. Define γ = J , so that γ(x, ξ) = (ξ,−x); and recall γ is
a symplectomorphism. We have γ∗f(x, ξ) = f(ξ,−x), and therefore

Hγ∗f = 〈∂xf(ξ,−x), ∂x〉+ 〈∂ξf(ξ,−x), ∂ξ〉.
Then

κ∗Hf = 〈∂ξf(ξ,−x), ∂ξ〉 − 〈∂xf(ξ,−x), ∂−x〉 = Hγ∗f .

�

THEOREM 2.10 (Hamiltonian flows as symplectomorphisms).
If f is smooth, then for each time t, the mapping

(x, ξ) 7→ ϕt(x, ξ) = exp(tHf )

is a symplectomorphism.

Proof. According to Cartan’s formula (Theorem B.3), we have

d

dt
((ϕt)

∗σ) = LHfσ = d(Hf σ) + (Hf dσ).

Since dσ = 0, it follows that

d

dt
((ϕt)

∗σ) = d(−df) = −d2f = 0.
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Thus (ϕt)
∗σ = σ for all times t. �

THEOREM 2.11 (Darboux’s Theorem). Let U be a neighborhood
of (x0, ξ0) and suppose η is a nondegenerate 2-form defined on U , sat-
isfying

dη = 0.

Then near (x0, ξ0) there exists a diffeomorphism γ such that

(2.27) γ∗η = σ.

This means that all symplectic structures are identical locally, in the
sense that all are equivalent to that generated by σ.

Proof. 1. Let us assume (x0, ξ0) = (0, 0). We first find a linear mapping
L so that

L∗η(0, 0) = σ(0, 0).

This means that we find a basis {ek, fk}nk=1 of R2n such that
η(fl, ek) = δkl
η(ek, el) = 0

η(fk, fl) = 0

for all 1 ≤ k, l ≤ n. Then if u =
∑n

i=1 xiei + ξifi, v =
∑n

j=1 yjej + ηjfj,
we have

η(u, v) =
n∑

i,j=1

xiyjη(ei, ej) + ξiηjη(fi, fj) + xiηjσ(ei, fj) + ξiyjσ(fi, ej)

= 〈ξ, y〉 − 〈x, η〉 = σ((x, ξ), (y, η)).

2. Next, define ηt := tη + (1− t)σ for 0 ≤ t ≤ 1. Our intention is to
find γt so that γ∗t ηt = σ near (0, 0); then γ := γ1 solves our problem.
We will construct γt by solving the flow

(2.28)

{
ż(t) = Vt(z(t)) (0 ≤ t ≤ 1)

z(0) = z,

and setting γt := ϕt.
For this to work, we must design the vector fields Vt in (2.28) so that

d
dt

(γ∗t ηt) = 0. Let us therefore calculate

d

dt
(γ∗t ηt) = κ∗t

(
d

dt
ηt

)
+ γ∗tLVtηt

= γ∗t [(η − σ) + d(Vt ηt) + Vt dηt],
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where we used Cartan’s formula, Theorem B.3. Note that dηt = tdη +
(1− t)dσ. Hence d

dt
(γ∗t ηt) = 0 provided

(2.29) (η − σ) + d(Vt ηt) = 0.

According to Poincaré’s Theorem B.4, we can write

η − σ = dα near (0, 0).

So (2.29) will hold, provided

(2.30) Vt ηt = −α (0 ≤ t ≤ 1).

Since η = σ at (0, 0), ηt = σ at (0, 0). In particular, ηt is nondegenerate
for 0 ≤ t ≤ 1 in a neighbourhood of (0, 0), and hence we can solve (2.29)
for the vector field Vt. �
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3. Fourier transform, stationary phase

3.1 Fourier transform on S
3.2 Fourier transform on S ′
3.3 Semiclassical Fourier transform
3.4 Stationary phase in one dimension
3.5 Stationary phase in higher dimensions
3.6 Important examples

We discuss in this chapter how to define the Fourier transform F and
its inverse F−1 on various classes of smooth functions and nonsmooth
distributions. We introduce also the rescaled semiclassical transforms
Fh,F−1

h depending on the small parameter h, and develop stationary
phase asymptotics to help us understand various formulas involving Fh
in the limit as h→ 0.

3.1 FOURIER TRANSFORM ON S

We begin by defining and investigating the Fourier transform of
smooth functions that decay rapidly as |x| → ∞.

DEFINITIONS (i) The Schwartz space is

S = S(Rn) :=

{ϕ ∈ C∞(Rn) | sup
Rn
|xα∂βϕ| <∞ for all multiindices α, β}.

(ii) We say

ϕj → ϕ in S
provided

sup
Rn
|xα∂β(ϕj − ϕ)| → 0

for all multiindices α, β.

DEFINITION. If ϕ ∈ S, define the Fourier transform

(3.1) Fϕ(ξ) = ϕ̂(ξ) :=

∫
Rn
e−i〈x,ξ〉ϕ(x) dx (ξ ∈ Rn).

The reader is warned that many other texts use slightly different
definitions, entailing normalizing factors involving π.

EXAMPLE: Exponential of a real quadratic form.



21

THEOREM 3.1 (Transform of a real exponential). Let Q be a
real, symmetric, positive definite n× n matrix. Then

(3.2) F(e−
1
2
〈Qx,x〉) =

(2π)n/2

(det Q)1/2
e−

1
2
〈Q−1ξ,ξ〉.

Proof. Let us calculate

F(e−
1
2
〈Qx,x〉) =

∫
Rn
e−

1
2
〈Qx,x〉−i〈x,ξ〉dx

=

∫
Rn
e−

1
2
〈Q(x+iQ−1ξ), x+iQ−1ξ〉e−

1
2
〈Q−1ξ,ξ〉dx

= e−
1
2
〈Q−1ξ,ξ〉

∫
Rn
e−

1
2
〈Qy,y〉dy.

We compute the last integral by making an orthogonal change of
variables that converts Q into diagonal form diag(λ1, . . . , λn). Then∫

Rn
e−

1
2
〈Qy,y〉dy =

∫
Rn
e−

1
2

Pn
k=1 λkw

2
k dw =

n∏
k=1

∫ ∞
−∞

e−
λk
2
w2

dw

=
n∏
k=1

21/2

λ
1/2
k

∫ ∞
−∞

e−y
2

dy

=
(2π)n/2

(λ1 · · ·λn)1/2
=

(2π)n/2

(det Q)1/2
.

�

The Fourier transform F lets us move from position variables x to
momentum variables ξ, and we need to catalog how it converts various
algebraic and analytic expressions in x into related expressions in ξ:

THEOREM 3.2 (Properties of Fourier transform).
(i) The mapping F : S → S is an isomorphism.
(ii) We have the Fourier inversion formula

(3.3) F−1 =
1

(2π)n
R ◦ F ,

where Rf(x) := f(−x). In other words,

(3.4) F−1ψ(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉ψ(ξ) dξ;

and therefore

(3.5) ϕ(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉ϕ̂(ξ) dξ.
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(iii) In addition,

(3.6) Dα
ξ (Fϕ) = F((−x)αϕ)

and

(3.7) F(Dα
xϕ) = ξαFϕ.

(iv) Furthermore,

(3.8) F(ϕψ) =
1

(2π)n
F(ϕ) ∗ F(ψ).

REMARKS. (i) In these formulas we employ the notation from Ap-
pendix A that

Dα =
1

i|α|
∂α.

(ii) We will later interpret the Fourier inversion formula (3.4) as saying
that

(3.9) δ{y=x} =
1

(2π)n

∫
Rn
ei〈x−y,ξ〉 dξ in the sense of distributions,

δ denoting the Dirac measure. �

Proof. 1. Let us calculate for ϕ ∈ S that

Dα
ξ (Fϕ) = Dα

ξ

∫
Rn
e−i〈x,ξ〉ϕ(x) dx =

1

iα

∫
Rn
e−i〈x,ξ〉(−ix)αϕ(x) dx

=

∫
Rn
e−i〈x,ξ〉(−x)αϕ(x) dx = F((−x)αϕ).

Likewise,

F(Dα
xϕ) =

∫
Rn
e−i〈x,ξ〉Dα

xϕdx = (−1)|α|
∫

Rn
Dα
x (e−i〈x,ξ〉)ϕdx

= (−1)|α|
∫

Rn

1

i|α|
(−iξ)αe−i〈x,ξ〉ϕdx = ξα(Fϕ).

This proves (iii).
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2. Recall from Appendix A the notation 〈x〉 = (1 + |x|2)
1
2 . Then for

all multiindices α, β, we have

sup
ξ
|ξβDα

ξ ϕ̂| = sup
ξ
|ξβF((−x)αϕ)|

= sup
ξ
|F(Dβ

x((−x)αϕ)|

= sup
ξ

∣∣∣∣∫
Rn
e−i〈x,ξ〉

1

〈x〉n+1
〈x〉n+1 Dβ

x((−x)αϕ) dx

∣∣∣∣
≤ sup

x
|〈x〉n+1Dβ

x((−x)αϕ)|
∫

Rn

dx

〈x〉n+1
<∞.

Hence F : S → S, and a similar calculation shows that ϕi → ϕ in S
implies F(ϕj)→ F(ϕ).

3. To show F is invertible, note that

R ◦ F ◦ F ◦Dxj = R ◦ F ◦Mξj ◦ F
= R ◦ (−Dxj) ◦ F ◦ F
= Dxj ◦R ◦ F ◦ F ,

where Mξj denotes multiplication by ξj. Thus R ◦ F ◦ F commutes
with Dxj and it likewise commutes with the multiplication operator
Mλ. According to Lemma 3.3, stated and proved below, R ◦ F ◦ F is
a multiple of the identity operator:

(3.10) R ◦ F ◦ F = cI.

From the example above, we know that

F(e−
|x|2
2 ) = (2π)n/2e−

|ξ|2
2 .

Thus F(e−
|ξ|2
2 ) = (2π)n/2e−

|x|2
2 . Consequently c = (2π)n, and hence

F−1 =
1

(2π)n
R ◦ F .

4. Lastly, since

ϕ(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉ϕ̂(ξ) dξ, ψ(x) =

1

(2π)n

∫
Rn
ei〈x,η〉ψ̂(η) dη,
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we have

ϕψ =
1

(2π)2n

∫
Rn

∫
Rn
ei〈x,ξ+η〉ϕ̂(ξ)ψ̂(η) dξdη

=
1

(2π)2n

∫
Rn
ei〈x,ρ〉

(∫
Rn
ϕ̂(ξ)ψ̂(ρ− ξ) dρ

)
dξ

=
1

(2π)n
F−1(ϕ̂ ∗ ψ̂).

But ϕψ = F−1F(ϕψ), and so assertion (iv) follows. �

LEMMA 3.3 (Commutativity). Let Mf : g 7→ fg be the multipli-
cation operator. Suppose that L : S → S is linear, and that

(3.11) L ◦Mxj = Mxj ◦ L, L ◦Dxj = Dxj ◦ L
j = 1, . . . , n. Then

L = cI

for some constant c, where I denotes the identity operator.

Proof. 1. Choose ϕ ∈ S, fix y ∈ Rn, and write

ϕ(x)− ϕ(y) =
n∑
j=1

(xj − yj)ψj(x)

for

ψj(x) :=

∫ 1

0

ϕxj(y + t(x− y)) dt.

Since typically ψj /∈ S, we select a smooth function χ with compact
support such that χ ≡ 1 for x near y. Write

ϕj(x) := χ(x)ψj(x) +
(xj − yj)
|x− y|2

(1− χ(x))ϕ(x).

Then

(3.12) ϕ(x)− ϕ(y) =
n∑
j=1

(xj − yj)ϕj(x)

with ϕj ∈ S.

2. We claim next that if ϕ(y) = 0, then Lϕ(y) = 0. This follows
from (3.12), since

Lϕ(x) =
n∑
j=1

(xj − yj)Lϕj = 0

at x = y.
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Therefore Lϕ(x) = c(x)ϕ(x) for some function c. Taking ϕ(x) =

e−|x|
2
, we deduce that c ∈ C∞. Finally, since L commutes with differ-

entiation, we conclude that c must be a constant. �

THEOREM 3.4 (Integral identities). If ϕ, ψ ∈ S, then

(3.13)

∫
Rn
ϕ̂ψ dx =

∫
Rn
ϕψ̂ dy

and

(3.14)

∫
Rn
ϕψ̄ dx =

1

(2π)n

∫
Rn
ϕ̂

¯̂
ψ dξ.

In particular,

(3.15) ‖ϕ‖2
L2 =

1

(2π)n
‖ϕ̂‖2

L2 .

Proof. Note first that∫
Rn
ϕ̂ψ dx =

∫
Rn

(∫
Rn
e−i〈x,y〉ϕ(y) dy

)
ψ(x) dx

=

∫
Rn

(∫
Rn
e−i〈y,x〉ψ(x) dx

)
ϕ(y) dy =

∫
Rn
ψ̂ϕ dy.

Replace ψ by
¯̂
ψ in (3.13):∫

Rn
ϕ̂

¯̂
ψ dξ =

∫
Rn
ϕ(

¯̂
ψ)∧ dx.

But
¯̂
ψ =

∫
Rn e

i〈x,ξ〉ψ̄(x) dx = (2π)nF−1(ψ̄) and so (
¯̂
ψ)∧ = (2π)nψ̄. �

We record next some elementary estimates that we will need later:

LEMMA 3.5 (Useful estimates).
(i) We have the bounds

(3.16) ‖û‖L∞ ≤ ‖u‖L1

and

(3.17) ‖u‖L∞ ≤
1

(2π)n
‖û‖L1 .

(ii) There exists a constant C such that

(3.18) ‖û‖L1 ≤ C sup
|α|≤n+1

‖∂αu‖L1 .



26

Proof. Estimates (3.16) and (3.17) follow easily from (3.1) and (3.5).
Furthermore,

‖û‖L1 =

∫
Rn
|û|〈ξ〉n+1〈ξ〉−n−1 dξ ≤ C sup(|û|〈ξ〉n+1)

≤ C sup
|α|≤n+1

|ξαû| = C sup
|α|≤n+1

|(∂αu)∧| ≤ C sup
|α|≤n+1

‖∂αu‖L1 .

This proves (3.18). �

We close this section with an application showing that we can some-
times use the Fourier transform to solve PDE with variable coefficients.

EXAMPLE: Solving a PDE. Consider the initial-value problem{
∂tu = x∂yu+ ∂2

xu on R2 × (0,∞)

u = δ(x0,y0) on R2 × {t = 0}.

Let û := Fu denote the Fourier transform of u in the variables x, y
(but not in t). Then

(∂t + η∂ξ)û = −ξ2û.

This is a linear first-order PDE we can solve by the method of charac-
teristics:

û(t, ξ + tη, η) = û(0, ξ, η)e−
R t
0 (ξ+sη)2ds

= û(0, ξ, η)e−ξ
2t−ξηt2− η

2t3

3

= û(0, ξ, η)e−
1
2
〈Bt(ξ,η),(ξ,η)〉,

for

Bt :=

(
2t t2

t2 2t3/3

)
.

Furthermore, û(0, ξ, η) = δ̂(x0,y0). Taking F−1, we find

u(t, x, y − tx) = δ(x0,y) ∗ F−1(e−
1
2
〈Bt(ξ,η),(ξ,η)〉)

=

√
3

2πt3
exp(−(x− x0)2

t
+

3(x− x0)(y − y0)

t2
− 3(y − y0)2

t3
);

and hence

u(t, x, y)

=

√
3

2πt3
exp(−(x− x0)2

t
+

3(x− x0)(y + tx− y0)

t2
− 3(y + tx− y0)2

t3
).

�

3.2 FOURIER TRANSFORM ON S ′
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Next we extend the Fourier transform to S ′, the dual space of S. We
will then be able to study the Fourier transforms of various important,
but nonsmooth, expressions.

DEFINITIONS.
(i) We write S ′ = S ′(Rn) for the space of tempered distributions,

which is the dual of S. That is, u ∈ S ′ provided u : S → C is linear
and ϕj → ϕ in S implies u(ϕj)→ u(ϕ).

(ii) We say
uj → u in S ′

if
uj(ϕ)→ u(ϕ) for all ϕ ∈ S.

DEFINITION. If u ∈ S ′, we define

Dαu, xαu,Fu ∈ S ′

by the rules

Dαu(ϕ) := (−1)|α|u(Dαϕ)

(xαu)(ϕ) := u(xαϕ)

(Fu)(ϕ) := u(Fϕ)

for ϕ ∈ S.

EXAMPLE 1: Dirac measure. It follows from the definitions that

δ̂0(ϕ) = δ0(ϕ̂) = ϕ̂(0) =

∫
Rn
ϕ dx.

We interpret this calculation as saying that

δ̂0 ≡ 1.

�

EXAMPLE 2: Exponential of an imaginary quadratic form.
The signature of a real, symmetric, nonsingular matrix Q is

sgnQ := number of positive eigenvalues of Q

− number of negative eigenvalues of Q.
(3.19)

THEOREM 3.6 (Transform of an imaginary exponential). Let
Q be a real, symmetric, nonsingular n× n matrix. Then

(3.20) F
(
e
i
2
〈Qx,x〉

)
=

(2π)n/2e
iπ
4

sgn(Q)

|det Q|1/2
e−

i
2
〈Q−1ξ,ξ〉.
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Compare this carefully with the earlier formula (3.2). The extra

phase shift term e
iπ
4

sgnQ in (3.20) arises from the complex exponential.

Proof. 1. Let ε > 0, Qε := Q+ εiI. Then

F
(
e
i
2
〈Qεx,x〉

)
=

∫
Rn
e
i
2
〈Qεx,x〉−i〈x,ξ〉 dx

=

∫
Rn
e
i
2
〈Qε(x−Q−1

ε ξ),x−Q−1
ε ξ〉e−

i
2
〈Q−1

ε ξ,ξ〉 dx

= e−
i
2
〈Q−1

ε ξ,ξ〉
∫

Rn
e
i
2
〈Qεy,y〉 dy.

Now change variables, to write Q in the form diag(λ1, . . . , λn), with
λ1, . . . , λr > 0 and λr+1, . . . , λn < 0. Then

∫
Rn
e
i
2
〈Qεy,y〉 dy =

∫
Rn
e

Pn
k=1

1
2

(iλk−ε)w2
k dw =

n∏
k=1

∫ ∞
−∞

e
1
2

(iλk−ε)w2

dw.

2. If 1 ≤ k ≤ r, then λk > 0 and we set z = (ε − iλk)1/2w, and we
take the branch of the square root so that Im(ε− iλk)1/2 < 0. Then

∫ ∞
−∞

e
1
2

(iλk−ε)w2

dw =
1

(ε− iλk)1/2

∫
Γk

e−
z2

2 dz,

for the contour Γk as drawn.

Since e−
z2

2 = e
y2−x2

2
−ixy and x2 > y2 on Γk, we can deform Γk into

the real axis.
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Hence ∫
Γk

e−
z2

2 dz =

∫ ∞
−∞

e−
x2

2 dx =
√

2π.

Thus
r∏

k=1

∫ ∞
−∞

e
1
2

(iλk−ε)w2

dw = (2π)r/2
r∏

k=1

1

(ε− iλk)1/2
.

Also for 1 ≤ k ≤ r:

lim
ε→0+

1

(ε− iλk)1/2
=

1

(−i)1/2λ
1/2
k

=
e
iπ
4

λ
1/2
k

,

since we take the branch of the square root with (−i)1/2 = e−iπ/4.

3. Similarly for r + 1 ≤ k ≤ n, we set z = (ε − iλk)1/2w, but now
take the branch of square root with Im(ε− iλk)1/2 > 0. Hence

n∏
k=r+1

∫ ∞
−∞

e
1
2

(iλk−ε)w2

dw = (2π)
n−r

2

n∏
k=r+1

1

(ε− iλk)1/2
;

and for r + 1 ≤ k ≤ n

lim
ε→0+

1

(ε− iλk)1/2
=

1

(−iλk)1/2
=

e−
iπ
4

|λk|1/2
,

since we take the branch of the square root with i1/2 = e
iπ
4 .
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4. Combining the foregoing calculations gives us

F
(
e
i
2
〈Qx,x〉

)
= lim

ε→0
F
(
e
i
2
〈Qεx,x〉

)
= e−

i
2
〈Q−1ξ,ξ〉 (2π)n/2e

iπ
4

(r−(n−r))

|λ1λ2 . . . λn|1/2

= e−
i
2
〈Q−1ξ,ξ〉 (2π)n/2e

iπ
4

sgnQ

|det Q|1/2
.

�

3.3 SEMICLASSICAL FOURIER TRANSFORM

DEFINITION. The semiclassical Fourier transform for h > 0 is

(3.21) ϕ̂(ξ) = Fhϕ(ξ) :=

∫
Rn
e−

i
h
〈x,ξ〉ϕ(x) dx

and its inverse is

(3.22) F−1
h ψ(x) :=

1

(2πh)n

∫
Rn
e
i
h
〈x,ξ〉ψ(ξ) dξ.

Consequently

(3.23) δ{y=x} =
1

(2πh)n

∫
Rn
e
i
h
〈x−y,ξ〉 dξ in S ′.

This is a rescaled version of (3.9).

We record for future reference some formulas involving the parameter
h:

THEOREM 3.7 (Properties of Fh). We have

(3.24) (hDξ)
αFhϕ = Fh((−x)αϕ);

(3.25) Fh((hDx)
αϕ) = ξαFhϕ;

and

(3.26) ‖ϕ‖L2 =
1

(2πh)n/2
‖Fhϕ‖L2 ;

We present next a scaled version of the uncertainty principle, which
in its various guises limits the extent to which we can simultaneously
localize our calculations in both the x and ξ variables.
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THEOREM 3.8 (Uncertainty principle). We have

(3.27)
h

2
‖f‖L2 ‖Fhf‖L2 ≤ ‖xjf‖L2 ‖ξjFhf‖L2 (j = 1, · · · , n).

Proof. To see this, note first that

ξjFhf(ξ) = Fh(hDxjf).

Also, if A,B are self-adjoint opertors, then

Im〈Af,Bf〉 =
1

2i
〈[B,A]f, f〉.

Let A = hD, B = x. Therefore

[x, hD]f =
h

i
[〈x, ∂f〉 − ∂(xf)] = inhf.

Thus

‖xjf‖L2 ‖ξjFhf‖L2 = ‖xjf‖L2 ‖Fh(hDxjf)‖L2

= (2πh)n/2‖xjf‖L2 ‖hDxjf‖L2

≥ (2πh)n/2|〈hDxjf, xjf〉|
≥ (2πh)n/2| Im〈hDxjf, xjf〉|

=
(2πh)n/2

2
|〈[xj, hDxj ]f, f〉|

=
(2πh)n/2

2
h‖f‖2

L2

=
h

2
‖f‖L2 ‖Fhf‖L2 .

�

3.4 STATIONARY PHASE IN ONE DIMENSION

Understanding the right hand side of (3.21) in the limit h → 0
requires our studying integral expressions with rapidly oscillating inte-
grands. We begin with one dimensional problems.

DEFINITION. Given functions a ∈ C∞c (R), ϕ ∈ C∞(R), we define
for h > 0 the oscillatory integral

Ih = Ih(a, ϕ) :=

∫ ∞
−∞

e
iϕ
h a dx.
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LEMMA 3.9 (Rapid decay). If ϕ′ 6= 0 on K := spt(a), then

(3.28) Ih = O(h∞) as h→ 0.

NOTATION. As explained in Appendix A, the identity (3.28) means
that for each positive integer N , there exists a constant CN such that

|Ih| ≤ CNh
N for all 0 < h ≤ 1.

Proof. We will integrate by parts N times. For this, observe that the
operator

L :=
h

i

1

ϕ′
∂x

is defined on K, since ϕ′ 6= 0 there. Notice also that

L
(
e
iϕ
h

)
= e

iϕ
h .

Hence LN(eiϕ/h) = eiϕ/h, for N = 1, 2, . . . . Consequently

|Ih| =
∣∣∣∣∫ ∞
−∞

LN
(
e
iϕ
h

)
a dx

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

eiϕ/h(L∗)Na dx

∣∣∣∣ ,
L∗ denoting the adjoint of L. Since a is smooth, L∗a = −h

i
∂x

(
a
ϕ′

)
is

of order h. We deduce that |Ih| ≤ CNh
N . �

Suppose next that ϕ′ vanishes at some point within K := spt(a), in
which case the oscillatory integral is no longer of order h∞. We instead
want to expand Ih in an asymptotic expansion in powers of h:

THEOREM 3.10 (Stationary phase). Let a ∈ C∞c (R). Suppose
that x0 ∈ K = spt(a) and

ϕ′(x0) = 0, ϕ′′(x0) 6= 0.

Assume further that ϕ′(x) 6= 0 on K − {x0}.
(i) There exist for each k = 0, 1, . . . differential operators A2k(x,D), of
order less than or equal to 2k, such that for all N∣∣∣∣∣Ih −

(
N−1∑
k=0

A2k(x,D)a(x0)hk+ 1
2

)
e
i
h
ϕ(x0)

∣∣∣∣∣
≤ CNh

N+ 1
2

∑
0≤m≤2N+2

sup
R
|a(m)|.

(3.29)

(i) In particular,

(3.30) A0 = (2π)1/2|ϕ′′(x0)|−1/2e
iπ
4

sgnϕ′′(x0);
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and consequently

(3.31) Ih = (2πh)1/2|ϕ′′(x0)|−1/2e
iπ
4

sgnϕ′′(x0)e
iϕ(x0)
h a(x0) +O(h3/2)

as h→ 0.

NOTATION. We will sometimes write (3.29) in the less precise form

(3.32) Ih ∼ e
i
h
ϕ(x0)

∞∑
k=0

A2k(x,D)a(x0)hk+ 1
2 .

We present two proofs of this important theorem. The second proof
is more complicated, but provides us with explicit expressions for the
terms of the expansion (3.32): see (3.35).

First proof of Theorem 3.10. 1. We may without loss assume x0 = 0,
ϕ(0) = 0. Then ϕ(x) = 1

2
ψ(x)x2, for

ψ(x) := 2

∫ 1

0

(1− t)ϕ′′(tx) dt.

Notice that ψ(0) = ϕ′′(0) 6= 0. We change variables by writing

y := |ψ(x)|1/2x

for x near 0. Thus

∂yx = |ϕ′′(0)|−1/2 at x = y = 0.

Now select a smooth function χ : R→ R such that 0 ≤ χ ≤ 1, χ ≡ 1
near 0, and sgnϕ′′(x) = sgnϕ′′(0) 6= 0 on the support of χ. Then
Lemma 3.9 implies

Ih =

∫ ∞
−∞

eiϕ(x)/hχ(x)a(x) dx+

∫ ∞
−∞

eiϕ(x)/h(1− χ(x))a(x) dx

=

∫ ∞
−∞

e
iε
2h
y2u(y) dy +O(h∞),

for ε := sgnϕ′′(0) = ±1, u(y) := χ(x(y))a(x(y))| det ∂yx|.

2. The Fourier transform formula (3.20) tells us that

F
(
e−

iεy2

2h

)
= (2πh)1/2e−

iπε
4 e

iεhξ2

2 .

Applying (3.14), we see that consequently

Ih =

(
h

2π

)1/2

e
iπε
4

∫ ∞
−∞

e−
iεhξ2

2 û(ξ) dξ +O(h∞).
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The advantage is that the small parameter h, and not h−1, occurs in
the exponential.

3. Next, write

J(h, u) :=

∫ ∞
−∞

e−
iεhξ2

2 û(ξ) dξ, J(0, u) = 2πu(0).

Then

∂hJ(h, u) =

∫ ∞
−∞

e−
iεhξ2

2

(
εξ2

2i
û(ξ)

)
dξ = J(h, Pu)

for P := (iε/2) ∂2. Continuing, we discover

∂khJ(h, u) = J(h, P ku).

Therefore

J(h, u) =
N−1∑
k=0

hk

k!
J(0, P ku) +

hN

N !
RN(h, u),

for the remainder term

RN(h, u) := N

∫ 1

0

(1− t)N−1J(th, PNu) dt.

Thus Lemma 3.5 implies

|RN | ≤ CN‖P̂Nu‖L1 ≤ CN
∑

0≤k≤2

sup
R
|∂k(PNu)|.

4. Since the definition of J gives

hkJ(0, P ku) = h2P ku(0) = (h/2i)ku(2k)(0)

and since u = χ(x(y))a(x(y))| det ∂yx|, the expansion follows. �

The second proof of stationary phase asymptotics will employ this

LEMMA 3.11 (More on rapid decay). Suppose that a ∈ C∞c (R)
and that ϕ ∈ C∞(R). For each positive integer m, there exists a con-
stant Cm such that

(3.33)

∣∣∣∣∫ ∞
−∞

eiϕ/ha dx

∣∣∣∣ ≤ Cmh
m
∑

0≤k≤m

sup
R

(|a(k)||ϕ′|k−2m).

This inequality will be useful at points where ϕ′ is small, provided
a(m) is also small.
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Proof. The proof is an induction on m, the case m = 0 being obvious.
Assume the assertion for m− 1. Then∫ ∞

−∞
eiϕ/ha dx =

h

i

∫ ∞
−∞

(
eiϕ/h

)′ a
ϕ′
dx

= −h
i

∫ ∞
−∞

eiϕ/h
(
a

ϕ′

)′
dx = −h

i

∫ ∞
−∞

eiϕ/hã dx,

for
ã := (a/ϕ′)′.

Observe that

|ã(k)| = |(a/ϕ′)(k+1)| ≤ C
∑

0≤j≤k+1

a(j)|ϕ′|j−k−2.

The induction hypothesis therefore implies∣∣∣∣∫ ∞
−∞

eiϕ(x)/ha dx

∣∣∣∣ ≤ h

∣∣∣∣∫ ∞
−∞

eiϕ(x)/hã dx

∣∣∣∣
≤ hCm−1h

m−1
∑

0≤k≤m−1

sup
R

(|ã(k)||ϕ′|k−2(m−1))

≤ Cmh
m
∑

0≤j≤m

sup
R

(|a(j)||ϕ′|j−2m).

�

Second proof of Theorem 3.10. 1. As before, we may assume x0 = 0,
ϕ(0) = ϕ′(0) = 0, ϕ′′(0) 6= 0. To find the expansion in h of our integral

Ih =

∫ ∞
−∞

eiϕ/ha dx,

we write
ϕs(x) := ϕ′′(0)x2/2 + sg(x)

for 0 ≤ s ≤ 1, where

g(x) := ϕ(x)− ϕ′′(0)x2/2.

Then ϕ = ϕ1 and g = O(x3) as x→ 0. Furthermore,

ϕ′s(x) = ϕ′′(0)x+O(x2),

and therefore

|x| ≤ |ϕ′′(0)|−1|ϕ′s(x) +O(x2)| ≤ 2|ϕ′′(0)|−1|ϕ′(x)|
for sufficiently small x. Consequently, using a cutoff function χ as in
the first proof, we may assume that

(3.34)
x

ϕ′s(x)
is bounded on K = spt(a).



36

2.We also write

Ih(s) :=

∫ ∞
−∞

eiϕs/ha dx.

Let us calculate

d2m

ds2m
Ih(s) = (i/h)2m

∫ ∞
−∞

eiϕs/hg2ma dx.

Lemma 3.11, with 3m replacing m, implies

|I(2m)
h (s)| ≤ C

h2m
h3m

∑
0≤k≤3m

sup
R

(|(ag2m)(k)||ϕ′s|k−6m).

Now the amplitude ag2m vanishes to order 6m at x = 0. Consequently,
for each 0 ≤ k ≤ 3m we recall (3.34) to estimate

|(ag2m)(k)||ϕ′s|k−6m ≤ C|x|6m−k|x|k−6m ≤ C.

Therefore

|I(2m)
h (s)| ≤Mhm.

It follows that

Ih = Ih(1) =
2m−1∑
l=0

I
(l)
h (0)/l! +

1

(2m− 1)!

∫ 1

0

(1− s)2m−1I
(2m)
h (s) ds

=
2m−1∑
l=0

I
(l)
h (0)/l! +O(hm).

3. It remains to compute the expansions in h of the terms

I
(l)
h (0) = (i/h)l

∫ ∞
−∞

eiϕ0/hgla dx

for l = 0, . . . , 2m − 1. But this follows as in the first proof, since the
phase ϕ0(x) = ϕ′′(0)x2/2 is purely quadratic. Up to constants, the
terms in the expansion are

h
1
2

+k−l(gla)(2k)(0)

for l < 2m and k = 0, 1, · · · .
This at first first looks discouraging because of −l in the power of h.

Recall however that g = O(x3) near 0; so that (gla)(2k)(0) = 0 unless
2k ≥ 3l. Also, if k − l = j, then

3j = 3k − 3l ≥ k, 2j = 2k − 2l ≥ l.

This means that there are at most finitely many values of k and l in
the expansion corresponding to the term h

1
2

+j = h
1
2

+k−l. �
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REMARK. This second proof is a one dimensional, variant of that in
Hörmander [H1, Section 7.7]. It avoids the Morse Lemma (see Theorem
3.14 below), but at some considerable technical expense. But this proof
in fact provides the explicit expansion∫

R
eiϕ/ha dx ∼ e

iπ
4

sgnϕ′′(x0)

(
2πh

|ϕ′′(0)|

) 1
2

∞∑
k=0

∞∑
l=0

(
h

2iϕ′′(0)

)k
1

l!

1

k!

d2k

dx2k
((i/h)lgla)(0).

(3.35)

�

3.5 STATIONARY PHASE IN HIGHER DIMENSIONS

We turn next to n-dimensional integrals.

DEFINITION. We call the expression

Ih = Ih(a, ϕ) =

∫
Rn
eiϕ/ha dx,

where a ∈ C∞c (Rn), ϕ ∈ C∞(Rn) are real-valued.

3.5.1 Quadratic phase function. We begin with the case of a qua-
dratic phase

ϕ(x) =
1

2
〈Qx, x〉,

where Q is a nonsingular, symmetric matrix.

THEOREM 3.12 (Quadratic phase asymptotics). For each pos-
tive integer N , we have the expansion

(3.36) Ih =

(2πh)
n
2
e
iπ
4

sgnQ

| detQ| 12

(
N−1∑
k=0

hk

k!

(
〈Q−1D,D〉

2i

)k
a(0) +O(hN)

)
.

Proof. 1. The Fourier transform formulas (3.20) and (3.14) imply

Ih =

(
h

2π

)n/2
e
iπ
4

sgnQ

| detQ| 12

∫
Rn
e−

ih
2
〈Q−1ξ,ξ〉â(ξ) dξ.

Write

J(h, a) :=

∫
Rn
e−

ih
2
〈Q−1ξ,ξ〉â(ξ) dξ;
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then

∂hJ(h, a) =

∫
Rn
e−

ih
2
〈Q−1ξ,ξ〉

(
− i

2
〈Q−1ξ, ξ〉â(ξ)

)
dξ = J(h, Pa)

for

P := − i
2
〈Q−1D,D〉.

Therefore

J(h, a) =
N−1∑
k=0

hk

k!
J(0, P ka) +

hN

N !
RN(h, a),

for the remainder term

RN(h, a) := N

∫ 1

0

(1− t)N−1J(th, PNa) dt.

2. Now (3.5) gives

J(0, P ka) =

∫
Rn

(
− i

2
〈Q−1ξ, ξ〉

)k
â(ξ) dξ = (2π)nP ka(0).

Furthermore, Lemma 3.5,(ii) implies

|RN | ≤ CN‖P̂Na‖L1 ≤ CN sup
|α|≤2N+n+1

|∂αa|.

�

3.5.2 General phase function. Assume next that the phase ϕ is a
smooth function.

LEMMA 3.13 (Rapid decay again). If ∂ϕ 6= 0 on K := spt(a),
then

Ih = O(h∞).

In particular, for each positive integer N

(3.37) |Ih| ≤ ChN
∑
|α|≤N

sup
Rn
|∂αa|,

where C depends upon only K and n.

Proof. Define the operator

L :=
h

i

1

|∂ϕ|2
〈∂ϕ, ∂〉

for x ∈ K, and observe that

L
(
eiϕ/h

)
= eiϕ/h.
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Hence LN
(
eiϕ/h

)
= eiϕ/h, and consequently

|Ih| =
∣∣∣∣∫

Rn
LN
(
eiϕ/h

)
a dx

∣∣∣∣ =

∣∣∣∣∫
Rn
eiϕ/h(L∗)Na dx

∣∣∣∣ ≤ ChN .

�

DEFINITION. We say ϕ : Rn → R has a nondegenerate critical point
at x0 if

∂ϕ(x0) = 0, det ∂2ϕ(x0) 6= 0.

We also write

sgn ∂2ϕ(x0) := number of postive eigenvalues of ∂2ϕ(x0)

− number of negative eigenvalues of ∂2ϕ(x0).

Next we change variables locally to convert the phase function ϕ into
a quadratic:

THEOREM 3.14 (Morse Lemma). Let ϕ : Rn → R be smooth,
with a nondegenerate critical point at x0. Then there exist neighbor-
hoods U of 0 and V of x0 and a diffeomorphism

γ : V → U

such that

(3.38) (ϕ ◦ γ−1)(x) = ϕ(x0) +
1

2
(x2

1 + · · ·+ x2
r − x2

r+1 · · · − x2
n),

where r is the number of positive eigenvalues of ∂2ϕ(x0).

Proof. 1. As usual, we suppose x0 = 0, ϕ(0) = 0. After a linear change
of variables, we have

ϕ(x) =
1

2
(x2

1 + · · ·+ x2
r − x2

r+1 · · · − x2
n) +O(|x|3);

and so the problem is to design a further change of variables that
removes the cubic and higher terms.

2. Now

ϕ(x) =

∫ 1

0

(1− t)∂2
t ϕ(tx) dt =

1

2
〈x,Q(x)x〉,

where

Q(0) = ∂2ϕ(0) =

(
Ir O
O −In−r

)
.
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In this expression the upper indentity matrix is r × r and the lower
identity matrix is (n−r)× (n−r). We want to find a smooth mapping
A from Rn to Mn×n such that

(3.39) 〈A(x)x,Q(0)A(x)x〉 = 〈x,Q(x)x〉.
Then

γ(x) = A(x)x

is the desired change of variable.

Formula (3.39) will hold provided

(3.40) AT (x)Q(0)A(x) = Q(x).

Let F : Mn×n → Sn×n be defined by

F (A) = ATQ(0)A.

We want to find a right inverse G : Sn×n →Mn×n, so that

F ◦G = I near Q(0).

Then

A(x) := G(Q(x))

will solve (3.40).

3. We will apply a version of the Implicit Function Theorem (Theo-
rem C.2). To do so, it suffices to find A ∈ L(Sn×n,Mn×n) such that

∂F (I)A = I.

Now

∂F (I)(C) = CTQ(0) +Q(0)C.

Define

A(D) :=
1

2
Q(0)−1D

for D ∈ Sn×n. Then

∂F (I)A(D) =
1

2
∂F (I)(Q−1(0)D)

=
1

2
[(Q(0)−1D)TQ(0) +Q(0)(Q(0)−1D)]

= D.

�

Given now a general phase function ϕ, we apply the Morse Lemma to
convert locally to a quadratic phase for which the asymptotics provided
by Theorem 3.12 apply:
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THEOREM 3.15 (Stationary phase asymptotics). Assume that
a ∈ C∞c (Rn). Suppose x0 ∈ K := spt(a) and

∂ϕ(x0) = 0, det ∂2ϕ(x0) 6= 0.

Assume further that ∂ϕ(x) 6= 0 on K − {x0}.
(i) Then there exist for k = 0, 1, . . . differential operators A2k(x,D) of
order less than or equal to 2k, such that for each N∣∣∣∣∣Ih −

(
N−1∑
k=0

A2k(x,D)a(x0)hk+n
2

)
e
iϕ(x0)
h

∣∣∣∣∣
≤ CNh

N+n
2

∑
|α|≤2N+n+1

sup
Rn
|∂αa|.

(3.41)

(ii) In particular,

(3.42) A0 = (2π)n/2|det∂2ϕ(x0)|−1/2e
iπ
4

sgn ∂2ϕ(x0);

and therefore

Ih =

(2πh)n/2|det∂2ϕ(x0)|−1/2e
iπ
4

sgn ∂2ϕ(x0)e
iϕ(x0)
h a(x0) +O

(
h
n+2

2

)(3.43)

as h→ 0.

Proof. Without loss x0 = 0, ϕ(x0) = ∂ϕ(x0) = 0. Introducing a cutoff
function χ and applying the Morse Lemma, Theorem 3.14, and then
Lemma 3.13, we can write

Ih =

∫
Rn
eiϕ(x)/ha dx =

∫
Rn
e
i

2h
〈Qx,x〉u dx+O(h∞),

where

Q =

(
Ir O
O −In−r

)
and

u(x) := a(κ−1(x))| det ∂κ−1(x)|, det ∂κ−1(0) = det ∂φ(x0)−1.

and

Q =

(
Ir O
O −In−r

)
Note that sgnQ = sgn ∂2ϕ(x0) and |detQ| = 1. We invoke Theorem
3.12 to finish the proof. �

3.6 IMPORTANT EXAMPLES.
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In Chapter 4 we will be interested in asymptotics in h of various ex-
pressions involving the Fourier transform. These involve the particular
phase function

ϕ(x, y) = 〈x, y〉
on Rn × Rn, corresponding to the Euclidean inner product. We will
also encounter important applications with the phase

ϕ(z, w) = σ(z, w) = 〈Jz, w〉
on R2n×R2n, corresponding to the symplectic structure. We therefore
record in this section the stationary phase expansions corresponding to
these special cases.

THEOREM 3.16 (Important phase functions).
(i) Assume that a ∈ C∞c (R2n). Then for each postive integer N ,

(3.44)

∫
Rn

∫
Rn
e
i
h
〈x,y〉a(x, y) dxdy =

(2πh)n

(
N−1∑
k=0

hk

k!

(
〈Dx, Dy〉

i

)k
a(0, 0) +O(hN)

)
as h→ 0.
(ii) Assume that a ∈ C∞c (R4n). Then for each postive integer N ,

(3.45)

∫
R2n

∫
R2n

e
i
h
σ(z,w)a(z, w) dzdw =

(2πh)2n

(
N−1∑
k=0

hk

k!

(
σ(Dx, Dξ, Dy, Dη)

i

)k
a(0, 0) +O(hN)

)
,

where z = (x, ξ), w = (y, η), and

σ(Dx, Dξ, Dy, Dη) := 〈Dξ, Dy〉 − 〈Dx, Dη〉.

Proof. 1. We write (x, y) to denote a typical point of R2n, and let

Q :=

(
O In
In O

)
.

Then Q is symmetric, Q−1 = Q, |detQ| = 1, sgn(Q) = 0 and Q(x, y) =
(y, x). Consequently 1

2
〈Q(x, y), (x, y)〉 = 〈x, y〉.

Furthermore, since D = (Dx, Dy),

1

2
〈Q−1D,D〉 = 〈Dx, Dy〉.

Hence Theorem 3.12 gives (3.44).
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2. We write (z, w) to denote a typical point of R4n, where z = (x, ξ),
w = (y, η). Set

Q :=

(
O −J
J O

)
.

Then Q is symmetric, Q−1 = Q, |detQ| = 1, sgn(Q) = 0 and Q(z, w) =
(−Jw, Jz). Consequently 1

2
〈Q(z, w), (z, w)〉 = 〈Jz, w〉 = σ(z, w).

We have D = (Dz, Dw) = (Dx, Dξ, Dy, Dη), and therefore

1

2
〈Q−1D,D〉 = σ(Dx, Dξ, Dy, Dη).

Theorem 3.12 now provides us with the expansion (3.45). �
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4. Quantization of symbols

4.1 Quantization formulas
4.2 Composition, asymptotic expansions
4.3 General symbol classes
4.4 Operators on L2

4.5 Inverses
4.6 G̊arding inequalities

The Fourier transform and its inverse allow us to move at will be-
tween the position x and momentum ξ variables, but what we really
want is to deal with both sets of variables simultaneously. This chapter
therefore introduces the quantization of symbols, that is, of appropriate
functions of both x and ξ. The resulting operators applied to functions
entail information in the full (x, ξ) phase space, and particular choices
of the symbol will later prove very useful, allowing us for example to
“localize” in phase space.

The plan is to introduce quantization and then to work out the re-
sulting symbol calculus, meaning the systematic rules for manipulating
symbols and their associated operators.

4.1 QUANTIZATION FORMULAS

NOTATION. For this section we take h > 0 and a ∈ S(R2n), a =
a(x, ξ). We hereafter call a a symbol.

To quantize this symbol means to associate with it an h-dependent
linear operator acting on functions u = u(x). There are several stan-
dard ways to do so:

DEFINITIONS.
(i) We define the Weyl quantization to be the operator aw(x, hD)

acting on u ∈ S(Rn) by the formula

(4.1) aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
x+y

2
, ξ
)
u(y) dydξ.

(ii) We define also the standard quantization

(4.2) a(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(x, ξ)u(y) dydξ

for u ∈ S.
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(iii) More generally, for u ∈ S and 0 ≤ t ≤ 1, we set

(4.3) Opt(a)u(x) :=

1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ)u(y) dydξ.

Hence
Op 1

2
(a) = aw(x, hD), Op1(a) = a(x, hD).

REMARKS. (i) Observe that

a(x, hD)u = F−1
h (aFhu).

This simple expression makes most of the subsequent calculations much
easier for the standard quantization, as opposed to the Weyl quanti-
zation. However the later has many better properties and will be our
principal concern.

(ii) We will only rarely be directly interested in the operators Opt
for t 6= 1

2
, 1; but they will prove useful for interpolating between the

Weyl and standard quantizations.

EXAMPLES.

(i) If a(x, ξ) = ξα, then

Opt(a)u = (hD)αu (0 ≤ t ≤ 1).

(ii) If a(x, ξ) = V (x), then

Opt(a)u = V (x)u (0 ≤ t ≤ 1).

(iii) If a(x, ξ) = 〈x, ξ〉, then

Opt(a)u = (1− t)〈hD, xu〉+ t〈x, hDu〉 (0 ≤ t ≤ 1).

(iv) If a(x, ξ) =
∑
|α|≤N aα(x)ξα and t = 1, then

a(x, hD) =
∑
|α|≤N

aα(x)(hD)αu.

These formulas follow straightforwardly from the definitions.

THEOREM 4.1 (Schwartz class symbols). Assume a ∈ S.
(i) Then for each 0 ≤ t ≤ 1, Opt(a) can be defined as an operator

mapping S ′ to S; and furthermore

Opt(a) : S ′ → S
is continuous.
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(ii) We have

(4.4) Opt(a)∗ = Op1−t(ā) (0 ≤ t ≤ 1);

and in particular the Weyl quantization of a real symbol is self-adjoint:

(4.5) aw(x, hD)∗ = aw(x, hD) if a is real.

Proof. (i) We have

Opt(a)u(x) =

∫
Rn
Kt(x, y)u(y) dy

for the kernel

Kt(x, y) :=
1

(2πh)n

∫
Rn
e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ) dξ

= F−1
h (a(tx+ (1− t)y, ·))(x− y).

Thus Kt ∈ S, and so

Opt(a)u(x) = u(Kt(x, ·))
maps S ′ continuously into S.

(ii) The kernel of Opt(a)∗ is K∗t (x, y) := Kt(y, x) = K1−t(x, y), which
is the kernel of Op1−t(ā). �

We next observe that the formulas (4.1)–(4.3) make sense if a is
merely a distribution:

THEOREM 4.2 (Distributional symbols). If a ∈ S ′, then Opt(a)
can be defined as an operator mapping S to S ′; and furthermore

Opt(a) : S → S ′ (0 ≤ t ≤ 1)

is continuous.

Proof. The formula for the distributional kernel Kt of Opt(a) shows
that Kt ∈ S ′(Rn × Rn). Hence Opt(a) is well defined as an operator
from S to S ′: if u, v ∈ S then

(Opt(a)u)(v) := Kt(u⊗ v).

�

4.2 COMPOSITION, ASYMPTOTIC EXPANSIONS

We begin now a careful study of the properties of the quantized op-
erators defined above, especially the Weyl quantization. Our particular



47

goal in this section is showing that if a and b are symbols, then there
exists a symbol c = a#b such that

aw(x, hD)bw(x, hD) = cw(x, hD).

4.2.1 Linear symbols. We begin with linear symbols of the form

(4.6) l(x, ξ) := 〈x∗, x〉+ 〈ξ∗, ξ〉
for(x∗, ξ∗) ∈ R2n. To simplify calculations later on, we will often iden-
tify the linear symbol l with the point (x∗, ξ∗).

LEMMA 4.3 (Quantizing linear symbols). Let l be given by (4.6).
Then

Opt(l) = 〈x∗, x〉+ 〈ξ∗, hD〉 (0 ≤ t ≤ 1).

NOTATION. In view of this result, we hereafter write

(4.7) l(x, hD) = lw(x, hD) = 〈x∗, x〉+ 〈ξ∗, hD〉.

Proof. Let u ∈ S and compute the derivative

d

dt
Opt(l)u =

1

(2πh)n
d

dt

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉(〈x∗, tx+ (1− t)y〉

+〈ξ∗, ξ〉)u(y) dydξ

=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉〈x∗, x− y〉u(y) dydξ

=
h

(2πh)n

∫
Rn

〈
x∗, Dξ

∫
Rn
e
i
h
〈x−y,ξ〉u(y) dy

〉
dξ

=
h

(2πh)n

∫
Rn

〈
x∗, Dξ(e

i
h
〈x,ξ〉û(ξ))

〉
dξ.

Since û(ξ)→ 0 rapidly as |ξ| → ∞, the last expression vanishes. There-
fore Opt(l) does not in fact depend upon t; and consequently for all
0 ≤ t ≤ 1, Opt(l)u = Op1(l)u = 〈x∗, x〉u+ 〈ξ∗, hD〉u. �

Next we compute the Weyl quantization of e
i
h
l.

THEOREM 4.4 (Quantizing exponentials of linear symbols).
(i) For each linear symbol l we have the identity

(4.8) (e
i
h
l)w(x, hD) = e

i
h
l(x,hD),

where

(4.9) e
i
h
l(x,hD)u(x) := e

i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x+ ξ∗).
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(ii) If l,m ∈ R2n, then

(4.10) e
i
h
l(x,hD)e

i
h
m(x,hD) = e

i
2h
σ(l,m)e

i
h

(l+m)(x,hD).

Proof. 1. Consider for u ∈ S the PDE{
ih∂tv + l(x, hD)v = 0 (t ∈ R)

v(0) = u (t = 0).

Its unique solution is denoted

v(x, t) = e
it
h
l(x,hD)u,

this formula defining the operators e
it
h
l(x,hD) for t ∈ R. But we can

check by a direct calculation using (4.7) that

v(x, t) = e
it
h
〈x∗,x〉+ it2

2h
〈x∗,ξ∗〉u(x+ tξ∗);

and therefore (4.9) holds.

2. Furthermore,

(e
il
h )wu =

1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉e

i
h(〈ξ∗,ξ〉+〈x∗,x+y2

〉)u(y) dydξ

=
e
i

2h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y+ξ∗,ξ〉

(
e
i

2h
〈x∗,y〉u(y)

)
dydξ

=
e
i

2h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉

(
e
i

2h
〈x∗,y+ξ∗〉u(y + ξ∗)

)
dydξ

= e
i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x+ ξ∗),

since

δ{y=x} =
1

(2πh)n

∫
Rn
e
i
h
〈x−y,ξ〉dξ in S ′,

according to (3.23). This proves (4.8).

3. Suppose l(x, ξ) = 〈x∗1, x〉 + 〈ξ∗1 , ξ〉 and m(x, ξ) = 〈x∗2, x〉 + 〈ξ∗2 , ξ〉.
According to (4.9),

e
i
h
m(x,hD)u(x) = e

i
h
〈x∗2,x〉+

i
2h
〈x∗2,ξ∗2〉u(x+ ξ∗2);

and consequently

e
i
h
l(x,hD)e

i
h
m(x,hD)u(x) =

e
i
h
〈x∗1,x〉+

i
2h
〈x∗1,ξ∗1〉e

i
h
〈x∗2,x+ξ∗1〉+

i
2h
〈x∗2,ξ∗2〉u(x+ ξ∗1 + ξ∗2).

Furthermore, (4.9) implies also that

e
i
h

(l+m)(x,hD)u(x) = e
i
h
〈x∗1+x∗2,x〉+

i
2h
〈x∗1+x∗2,ξ

∗
1+ξ∗2〉u(x+ ξ∗1 + ξ∗2).
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Using the formula above, we therefore compute

e
i
h

(l+m)(x,hD)u(x) = e
i

2h
(〈x∗1,ξ∗2〉−〈x∗2,ξ∗1〉)e

i
h
l(x,hD)e

i
h
m(x,hD)u(x).

This proves (4.10), since σ(l,m) = 〈ξ∗1 , x∗2〉 − 〈x∗1, ξ∗2〉. �

4.2.2 Exponentials of quadratics. We record in the section some
useful integral representation formulas for the quantization of certain
quadratic exponentials. We will later apply the stationary phase ex-
pansions from Theorems 3.12 and 3.16 to these expressions.

THEOREM 4.5 (Quantizing quadratic exponentials).
(i) Let Q denote a nonsingular, symmetric, n × n matrix. Then if
u ∈ S(Rn),

(4.11) e
ih
2
〈QD,D〉u(x) =

| detQ|− 1
2

(2πh)
n
2

e
iπ
4

sgnQ

∫
Rn
e−

i
2h
〈Q−1y,y〉u(x+ y) dy.

(ii) In particular, if u ∈ S(R2n), u = u(x, y), then

(4.12) eih〈Dx,Dy〉u(x, y) =

1

(2πh)n

∫
Rn

∫
Rn
e−

i
h
〈x1,y1〉u(x+ x1, y + y1) dx1dy1.

(iii) Suppose that u ∈ S(R4n), u = u(z, w). Then

(4.13) eihσ(Dz ,Dz)u(z, w) =

1

(2πh)2n

∫
R2n

∫
R2n

e−
i
h
σ(z1,w1)u(z + z1, w + w1) dz1dw1.

Proof. 1. Observe first that

1

(2πh)n

∫
Rn
e
i
h
〈w,ξ〉e

i
h
〈Qξ,ξ〉dξ = F−1

h (e
i
h
〈Qξ,ξ〉)(w)

=
| detQ|− 1

2

(2πh)
n
2

e
iπ
4

sgnQe−
i

2h
〈Q−1w,w〉.
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Therefore

e
ih
2
〈QD,D〉u(x) = e

i
h
〈QhD,hD〉u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉e

i
h
〈Qξ,ξ〉u(y) dydξ

=
| detQ|− 1

2

(2πh)
n
2

e
iπ
4

sgnQ

∫
Rn
e−

i
2h
〈Q−1(x−y),x−y〉u(y) dy

=
| detQ|− 1

2

(2πh)
n
2

e
iπ
4

sgnQ

∫
Rn
e−

i
2h
〈Q−1y,y〉u(x+ y) dy.

2. Assertion (4.12) is a special case of (4.11), had by replacing n by
2n and taking

Q :=

(
O In
In O

)
.

See the proof of Theorem 3.16,(i). It is a useful exercise to give a direct
derivation.

3. Similarly, assertion (4.13) is a special case of (4.11) obtained by
replacing n by 4n and taking

Q :=

(
O −J
J O

)
.

See the proof of Theorem 3.16,(ii). �

4.2.3 Composing symbols.

Next we establish the fundamental formula awbw = (a#b)w, along
with a recipe for computing the new symbol a#b:

THEOREM 4.6 (Composition for Weyl quantization).
(i) Suppose that a, b ∈ S. Then

(4.14) aw(x, hD)bw(x, hD) = (a#b)w(x, hD)

for the symbol

(4.15) a#b(x, ξ) := e
ih
2
σ(Dx,Dξ,Dy ,Dη)

(
a(x, ξ)b(y, η)

)∣∣∣
y=x
η=ξ

.

(ii) We have the integral representation formula

a#b(x, ξ) =

1

(πh)2n

∫
R2n

∫
R2n

e−
2i
h
σ(w1,w2)a(z + w1)b(z + w2) dw1dw2,

(4.16)

where z = (x, ξ).
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Proof. 1. For l ∈ R2n, define

â(l) :=

∫
Rn

∫
Rn
e−

i
h
l(x,ξ)a(x, ξ) dxdξ;

then

a(x, ξ) =
1

(2πh)2n

∫
R2n

e
i
h
l(x,ξ)â(l) dl.

Therefore Theorem 4.4,(i) implies

(4.17) aw(x, hD) =
1

(2πh)2n

∫
R2n

â(l)e
i
h
l(x,hD) dl,

and likewise

bw(x, hD) =
1

(2πh)2n

∫
R2n

b̂(m)e
i
h
m(x,hD)dm.

Theorem 4.4,(ii) lets us next compute

aw(x, hD)bw(x, hD)

=
1

(2πh)4n

∫
R2n

∫
R2n

â(l)b̂(m)e
i
h
l(x,hD)e

i
h
m(x,hD) dmdl

=
1

(2πh)4n

∫
R2n

∫
R2n

â(l)b̂(m)e
i

2h
σ(l,m)e

i
h

(l+m)(x,hD) dldm

=
1

(2πh)2n

∫
R2n

ĉ(r)e
i
h
r(x,hD)dr

for

(4.18) ĉ(r) :=
1

(2πh)2n

∫
{l+m=r}

â(l)b̂(m)e
iσ(l,m)

2h dl.

To get this, we changed variables by setting r = m+ l.

2. We will show that ĉ defined by (4.18) is the Fourier transform of
the symbol c defined by the right hand side of (4.15). We first simplify
notation by writing z = (x, ξ), w = (y, η). Then

c(z) = e
ih
2
σ(Dz ,Dw)a(z)b(w)|w=z = e

i
2h
σ(hDz ,hDw)a(z)b(w)|w=z

and

a(z) =
1

(2πh)2n

∫
R2n

e
i
h
l(z)â(l) dl,

b(w) =
1

(2πh)2n

∫
R2n

e
i
h
m(w)b̂(m) dm.

Furthermore, a direct calculation, the details of which we leave to
the reader, demonstrates that

e
i

2h
σ(hDz ,hDw)e

i
h

(l(z)+m(w)) = e
i
h

(l(z)+m(w))+ i
2h
σ(l,m).
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Consequently

c(z) =
1

(2πh)4n

∫
R2n

∫
R2n

e
i

2h
σ(hDz ,hDw)e

i
h

(l(z)+m(w))

∣∣∣∣
z=w

â(l)b̂(m) dldm

=
1

(2πh)4n

∫
R2n

∫
R2n

e
i
h

(l(z)+m(z))+ i
2h
σ(l,m)â(l)b̂(m) dldm.

The semiclassical Fourier transform of c is therefore

1

(2πh)2n

∫
R2n

∫
R2n

(
1

(2πh)2n

∫
Rn
e
i
h

(l+m−r)(z)dz

)
e
i

2h
σ(l,m)â(l)b̂(m) dldm.

According to (3.23), the term inside the parentheses is δ{l+m=r} in S ′.
Thus the foregoing equals

1

(2πh)2n

∫
{l+m=r}

e
i

2h
σ(l,m)â(l)b̂(m) dl = ĉ(r),

in view of (4.18).

3. Formula (4.16) follows from Theorem 4.5,(iii), with h
2

replacing
h. �

4.2.4 Asymptotics. We next apply stationary phase to derive a useful
asymptotic expansion of a#b:

THEOREM 4.7 (Semiclassical expansions). Assume a, b ∈ S.

(i) We have for N = 0, 1, . . . ,

(4.19) a#b(x, ξ) =

N∑
k=0

hk

k!

(
i

2
σ(Dx, Dξ, Dy, Dη)

)k
(a(x, ξ)b(y, η))

∣∣∣∣∣
y=x
η=ξ

+O(hN+1)

as h→ 0, the error taken in S.

(ii) In particular,

(4.20) a#b = ab+
h

2i
{a, b}+O(h2);

and

(4.21) [aw, bw] =
h

i
{a, b}w +O(h2).

(iii) If spt(a) ∩ spt(b) = ∅, then

a#b = O(h∞).
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Proof. 1. To prove (4.19), we apply the stationary phase Theorem
3.16,(ii), with h

2
replacing h and −σ replacing σ, to the integral formula

(4.16).

2. Next, compute

a#b = ab+
ih

2
σ(Dx, Dξ, Dy, Dη)a(x, ξ)b(y, η)

∣∣∣∣
y=x
η=ξ

+O(h2)

= ab+
ih

2
(〈Dξa,Dyb〉 − 〈Dxa,Dηb〉)

∣∣∣∣
y=x
η=ξ

+O(h2)

= ab+
h

2i
(〈∂ξa, ∂xb〉 − 〈∂xa, ∂ξb〉) +O(h2)

= ab+
h

2i
{a, b}+O(h2).

Consequently,

[aw, bw] = awbw − bwaw = (a#b− b#a)w

=

(
ab+

h

2i
{a, b} −

(
ba+

h

2i
{b, a}

)
+O(h2)

)w

=
h

i
{a, b}w +O(h2).

3. If spt(a)∩ spt(b) = ∅, each term in the expansion (4.19) vanishes.
�

4.2.5 Standard quantization. Next we replace Weyl (t = 1
2
) by

standard (t = 1) quantization in our formulas. The proofs are simpler.

THEOREM 4.8 (Composition for standard quantization).
(i) Let a, b ∈ S. Then

a(x, hD)b(x, hD) = c(x, hD)

for the symbol

(4.22) c(x, ξ) = eih〈Dξ,Dy〉(a(x, ξ)b(y, η))
∣∣
y=x
η=ξ

.

(ii) We have the integral representation formula

(4.23) c(x, ξ) :=

1

(2πh)n

∫
Rn

∫
Rn
e−

i
h
〈x1,ξ1〉a(x, ξ + ξ1)b(x+ x1, ξ) dx1dξ1.
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(iii) For each N = 0, 1, . . . ,

(4.24) c(x, ξ) =
N∑
k=0

hk

k!
(i〈Dξ, Dy〉)k (a(x, ξ)b(y, η))

∣∣∣
y=x
η=ξ

+O(hN+1)

as h→ 0, the error taken in S.

Proof. Let u ∈ S. Then

a(x, hD)b(x, hD)u(x)

=
1

(2πh)2n

∫
Rn

∫
Rn

∫
Rn
e
i
h

(〈x,η〉+〈y,ξ−η〉)a(x, η)b(y, ξ)û(ξ) dydηdξ

=
1

(2πh)n

∫
Rn
c(x, ξ)e

i
h
〈x,ξ〉û(ξ) dξ,

= c(x, hD)u(x)

for

c(x, ξ) =
1

(2πh)n

∫
Rn

∫
Rn
e−

i
h
〈x−y,ξ−η〉a(x, η)b(y, ξ) dydη.

Change variables by putting x1 = y − x, ξ1 = η − ξ, to rewrite c in the
form (4.23). Then (4.22) is a consequence of Theorem 4.5,(ii).

Finally, the stationary phase Theorem 3.16,(i) provides the asymp-
totic expansion (4.24) �

THEOREM 4.9 (Adjoints for standard quantization). If a ∈ S,
then

a(x, hD)∗ = b(x, hD),

for

(4.25) b(x, ξ) := eih〈Dx,Dξ〉ā(x, ξ).

Proof. 1. We first observe that, as in the proof of Theorem 4.4,

Opt

(
e
i
h
l(x,ξ)

)
u(x) = e

i
h
〈x,x∗〉+ i

h
(1−t)〈x∗,ξ∗〉u(x+ ξ∗).

It follows that

(4.26) Opt

(
e
i
h
l(x,ξ)

)
= e

i
h

(s−t)〈x∗,ξ∗〉Ops

(
e
i
h
l(x,ξ)

)
.

Next we record an interesting conversion formula, namely that if

A = Opt(at) (0 ≤ t ≤ 1),

then

(4.27) at(x, ξ) = ei(t−s)h〈Dx,Dξ〉as(x, ξ).
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To see this, notice that the decomposition formula (4.17) implies

Opt(at) =
1

(2πh)2n

∫
R2n

ât(l)Opt(e
i
h
l) dl.

We apply (4.26) to derive (4.27).

2. Next recall (4.4):

a(x, hD)∗ = Op1(a)∗ = Op0(ā).

We now invoke (4.27), to write

Op0(ā) = Op1(b),

the symbol b defined by (4.25). �

4.3 GENERAL SYMBOL CLASSES

We next extend our calculus to symbols a = a(x, ξ, h) which depend
on the parameter h and which can grow, along with their derivatives,
as |x|, |ξ| → ∞.

4.3.1 More definitions.

DEFINITION. A function m : R2n → (0,∞) is called an order func-
tion if there exist constants C,N such that

(4.28) m(w) ≤ C〈z − w〉Nm(z)

for all w, z ∈ Rn.

Observe that if m1,m2 are order functions, so is m1m2.

EXAMPLES. Standard examples are m(z) ≡ 1 and m(z) = 〈z〉 =
(1 + |z|2)1/2. �

DEFINITIONS.
(i) Given an order function m on R2n, we define the corresponding class
of symbols:

S(m) := {a ∈ C∞ | for each multiindex α

there exists a constant Cα so that |∂αa| ≤ Cαm}.

(ii) We as well define

Sk(m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−km for all multiindices α}

and

Skδ (m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−δ|α|−km for all multiindices α}.

The index k indicates how singular is the symbol a as h→ 0; the index
δ allows for increasing singularity of the higher derivatives. Notice that
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the more negative k is, the more rapidly a and its derivatives vanish as
h→ 0.

(iii) Write also

S−∞(m) := {a ∈ C∞ | for each α and N , |∂αa| ≤ Cα,Nh
Nm}.

So if a is a symbol belonging to S−∞(m), then a and all of its derivatives
are O(h∞) as h→ 0.

NOTATION. If the order function is the constant function m ≡ 1,
we will usually not write it:

Sk := Sk(1), Skδ := Skδ (1).

We will also omit zero superscripts. Thus

S := {a ∈ C∞(R2n) | |∂αa| ≤ Cα for all multiindices α}
Sδ := {a ∈ C∞ | |∂αa| ≤ Cαh

−δ|α| for all multiindices α}.

REMARKS: rescaling in h.
(i) We will show in the next subsection that if a ∈ Sδ, then the

quantization formula

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
x+y

2
, ξ
)
u(y)dξdy

makes sense for u ∈ S. It is often convenient to rescale to the case
h = 1, by changing to the new variables

(4.29) x̃ := h−
1
2x, ỹ := h−

1
2y, ξ̃ := h−

1
2 ξ.

Then

aw(x, hD)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
a
(
x+y

2
, ξ
)
e
i
h
〈x−y,ξ〉u(y) dydξ

=
1

(2π)n

∫
Rn

∫
Rn
ah

(
x̃+ỹ

2
, ξ̃
)
ei〈x̃−ỹ,ξ̃〉ũ(ỹ) dỹdξ̃;

and therefore

(4.30) aw(x, hD)u(x) = aw
h (x̃, D)ũ(x̃),

for

(4.31) ũ(x̃) := u(x) = u(h
1
2 x̃), ah(x̃, ξ̃) := a(x, ξ) = a(h

1
2 x̃, h

1
2 ξ̃).

(ii) Observe also that if a ∈ Sδ, then

(4.32) |∂αah| = h
|α|
2 |∂αa| ≤ Cαh

|α|( 1
2
−δ)
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for each multiindex α. If δ > 1
2
, the last term is unbounded as h→ 0;

and consequently we will henceforth always assume

0 ≤ δ ≤ 1
2
.

We see also that the case

δ = 1
2

is critical, in that we do not then get decay as h→ 0 for the terms on
the right hand side of (4.32) when |α| > 0. �

4.3.2 Quantization. Next we discuss the Weyl quantization of sym-
bols in the class Sδ(m):

THEOREM 4.10 (Quantizing general symbols). If a ∈ Sδ(m),
then

aw(x, hD) : S → S.

Proof. 1. We take h = 1 for simplicity; so that

aw(x,D)u(x) =
1

(2π)n

∫
Rn

∫
Rn
ei〈x−y,ξ〉a

(
x+y

2
, ξ
)
u(y) dydξ

for u ∈ S. Observe next that L1e
i〈x−y,ξ〉 = ei〈x−y,ξ〉, where

L1 :=
1 + 〈x− y,Dξ〉

1 + |x− y|2
;

and L2e
i〈x−y,ξ〉 = ei〈x−y,ξ〉 for

L2 :=
1− 〈ξ,Dy〉

1 + |ξ|2
.

We employ these operators and the usual integration by parts argu-
ment, to show aw(x,D) : S → L∞.

2. Furthermore,

xja
w(x,D)u =

1

(2π)n

∫
Rn

∫
Rn

(Dξj + yj)e
i〈x−y,ξ〉au dydξ.

We integrate by parts, to conclude that xαaw(x,D) : S → L∞ for each
multinomial xα. Also, since(

e−
i
2
〈Dx,Dξ〉a

)
(x,D)u = aw(x,D)u,
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we have

Dxja
w(x,D)u = Dxj

(
e−

i
2
〈Dx,Dξ〉a

)
(x,D)u

= Dxj

(
1

(2π)n

∫
Rn

∫
Rn
e−

i
2
〈Dy ,Dξ〉a(y, ξ)ei〈x−y,ξ〉u(y) dydξ

)
=

1

(2π)n

∫
Rn

∫
Rn
e−

i
2
〈Dy ,Dξ〉a(y, ξ)(−Dyje

i〈x−y,ξ〉)u(y) dydξ.

Again integrate by parts, to deduce Dβaw(x,D) : S → L∞ for each
partial derivative Dβ.

Consequently, Dβxαaw(x,D) : S → L∞, for all multiindices α, β. It
follows that aw(x,D) : S → S. �

4.3.3 Asymptotic series. Next we consider infinite sums of terms in
various symbol classes.

DEFINITION. Let a ∈ Sk0δ (m) and aj ∈ S
kj
δ (m), where kj+1 < kj,

kj → −∞. We say that a is asymptotic to
∑
aj, and write

a ∼
∞∑
j=0

aj,

provided for each N = 1, 2, . . .

(4.33) a−
N−1∑
j=0

aj ∈ SkNδ (m).

INTERPRETATION. Observe that for each h > 0, the series
∑∞

j=0 aj
need not converge in any sense. We are requiring rather in (4.33) that

for each N , the difference a −
∑N−1

j=0 aj, and its derivatives, vanish at
appropriate rates as h→ 0.

Perhaps surprisingly, we can always construct such an asymptotic
sum of symbols:

THEOREM 4.11 (Borel’s Theorem).

(i) Assume aj ∈ S
kj
δ (m), where kj+1 < kj, kj → −∞. Then there exists

a symbol a ∈ Sk0δ (m) such that

a ∼
∞∑
j=0

aj.

(ii) If also â ∼
∑∞

j=0 aj, then

a− â ∈ S−∞(m).
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Proof. 1. Choose a C∞ function χ such that

0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], χ ≡ 0 on [2,∞).

We define

(4.34) a :=
∞∑
j=0

ajχ(λjh),

where the sequence λj → ∞ must be selected. Since λj → ∞, there
are for each h > 0 at most finitely many nonzero terms in the sum
(4.34).

Now for each multiindex α, with |α| ≤ j, we have

|∂α(ajχ(λjh))| = |(∂αaj)χ(λjh)|
≤ Cj,αh

−kj−δ|α|mχ(λjh)

= Cj,αh
−kj−δ|α|λjh

λjh
mχ(λjh)(4.35)

≤ 2Cj,α
h−kj−1−δ|α|

λj
m

≤ h−kj−1−|α|δ2−jm

if λj is selected sufficiently large. We can accomplish this for all j and
multiindices α with |α| ≤ j. We may assume also λj+1 ≥ λj, for all j.

2. Then

a−
N∑
j=0

aj =
∞∑

j=N+1

ajχ(λjh) +
N∑
j=0

aj(χ(λjh)− 1).

Fix any multiindex α. Then taking N ≥ |α|, we have∣∣∣∣∣∂α
(
a−

N∑
j=0

aj

)∣∣∣∣∣ ≤
∞∑

j=N+1

|(∂αaj)|χ(λjh)

+
N∑
j=0

|∂αaj|(1− χ(λjh))

=: A+B.

According to estimate (4.35),

A ≤
∞∑

j=N+1

h−kj−1−δ|α|2−jm ≤ mh−kN+1−1−δ|α|.
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Also

B ≤
N∑
j=0

Cα,jh
−kj−δ|α|m(1− χ(λjh)).

Since χ ≡ 1 on [0, 1], B = 0 if 0 < h ≤ λ−1
N . If λ−1

N ≤ h ≤ 1, we have
1 ≤ λNh and hence

B ≤ m
N∑
j=0

Cα,jh
−|α|δ ≤ m

N∑
j=0

Cα,jλ
−kN
N h−kN−δ|α|

= mC̃α,Nh
−kN−δ|α|.

Thus ∣∣∣∣∣∂α
(
a−

N∑
j=0

aj

)∣∣∣∣∣ ≤ Cα,Nh
−kN−δ|α|m

if N ≥ |α|. Therefore, for any N∣∣∣∣∣∂α
(
a−

N−1∑
j=0

aj

)∣∣∣∣∣ ≤ Cα,Nh
−kN−δ|α|m.

�

4.3.4 Semiclassical expansions in Sδ. Next we need to reexamine
some of our earlier asymptotic expansions, deriving improved estimates
on the error terms:

THEOREM 4.12 (Semiclassical expansions in Sδ.). Let Q be
symmetric, nonsingular matrix.

(i) If 0 ≤ δ ≤ 1
2
, then

e
ih
2
〈QD,D〉 : Sδ(m)→ Sδ(m).

(ii) If 0 ≤ δ < 1
2
, we furthermore have for each symbol a ∈ Sδ(m) the

expansion

(4.36) e
ih
2
〈QD,D〉a ∼

∞∑
k=0

hk

k!

(
i
〈QD,D〉

2

)k
a in Sδ(m).

REMARK. Since we can always rescale to the case h = 1, there
cannot exist an expansion like (4.36) for δ = 1/2 .
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Proof. 1. First, let 0 ≤ δ < 1
2

and a ∈ Sδ(m). Recall from Theorem
4.5,(i) that

e
ih
2
〈QD,D〉a(z) =

| detQ|− 1
2

(2πh)n
e
iπ
4

sgnQ

∫
R2n

eϕ(w)a(z + w) dw

for the quadratic phase

ϕ(w) := −1

2
〈Q−1w,w〉.

Let χ : Rn → R be a smooth function with χ ≡ 1 on B(0, 1), χ ≡ 0
on Rn −B(0, 2). Then

e
ih
2
〈QD,D〉a(z) =

C

hn

∫
R2n

e
iϕ(w)
h a(z − w) dw

=
C

hn

∫
R2n

e
iϕ(w)
h χ(w)a(z − w) dw

+
C

hn

∫
R2n

e
iϕ(w)
h (1− χ(w))a(z − w) dw

=: A+B,

for the constant

C :=
| detQ|− 1

2

(2π)n
e
iπ
4

sgnQ.

2. Estimate of A. Since χ(w)a(z − w) has compact support, the
method of stationary phase, Theorem 4.5, gives

A ∼
∞∑
k=0

hk

k!
(i〈QD,D〉)ka(z).

Furthermore, if |w| ≤ 2, we have m(z − w) ≤ Cm(z). Consequently,
|A| ≤ Cm(z); and similarly

|∂αA| ≤ C sup
0≤β≤α

|∂βa| ≤ Ch−|α|δm(z).

Hence A ∈ Sδ(m).

3. Estimate of B. Let

L :=
〈∂ϕ, hD〉
|∂ϕ|2

;

then Leiϕ/h = eiϕ/h Furthermore, since |∂ϕ(w)| ≥ γ|w| for some posi-
tive constant γ, the operator L has smooth coefficients on the support
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of 1− χ and∣∣(L∗)M((1− χ)a)
∣∣ ≤ CM

hM

〈w〉M
sup
|α|≤M

|∂αa(z − w)|

Consequently,

|B| =
C

hn

∣∣∣∣∫
R2n

(
LMeiϕ/h

)
(1− χ(w))a(z − w) dw

∣∣∣∣
=

C

hn

∣∣∣∣∫
R2n

eiϕ/h(L∗)M((1− χ)a) dw

∣∣∣∣
≤ ChM−n

∫
R2n

〈w〉−M sup
|α|≤M

|∂αa(z − w)| dw

≤ ChM−n−δM
∫

R2n

〈w〉N−Mm(z) dw

= ChM−n−δMm(z),

provided M > 2n+N . The number N is from the definition (4.28) of
the order function m.

We similarly check also the higher derivatives, to conclude that B ∈
S−∞δ (m).

4. Now assume δ = 1/2. In this case we can rescale, by setting

w̃ = wh−1/2.

Then

eih〈QD,D〉a(z) = C

∫
Rn
eiϕ(w̃)a(z − w̃h1/2) dw̃.

We use χ to break the integral into two pieces A and B, as above. �

THEOREM 4.13 (Symbol class of a#b).

(i) If a ∈ Sδ(m1) and b ∈ Sδ(m2), then

(4.37) a#b ∈ Sδ(m1m2)

and

aw(x, hD)bw(x, hD) = (a#b)w(x, hD)

in the sense of operators mapping S to S.

(ii) Furthermore,

(4.38) a#b− ab ∈ S2δ−1
δ (m1m2).
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Proof. 1. Clearly

c(w, z) := a(w)b(z) ∈ Sδ(m1(w)m2(z))

in R4n. If we put D = (Dx, Dξ, Dy, Dη) and

〈QD,D〉 = σ(Dx, Dξ;Dy, Dη),

for w = (x, ξ) and z = (y, η), then according to Theorem 4.12, we have

e
1
2h
〈QD,D〉c ∈ Sδ(m1(w)m2(z)).

Since (4.16) says

a#b(z) = e
1
2h
〈QD,D〉c(z, z),

assertion (4.37) follows.

The second statement of assertion (i) follows from the density of S
in Sδ(m).

2. We leave the verification of (4.38) as an exercise.
�

Finally we describe how to obtain the symbol from the operator, in
the particularly nice case of the standard quantization:

THEOREM 4.14 (Constructing the symbol from the opera-
tor). Suppose a ∈ Sδ(m). Then

(4.39) a(x, ξ) = e
i
h
〈x,ξ〉a(x,D)(e

i
h
〈·,ξ〉).

Proof. For a ∈ S we verify this formula using the inverse Fourier trans-
form:

1

(2πh)n

∫
Rn

∫
Rn
a(x, η)e

i
h
〈x,η−ξ〉e−

i
h
〈y,η−ξ〉dydξ =∫

Rn
a(x, η)δ0(ξ − η)e

i
h
〈x,η−ξ〉 dη = a(x, ξ).

Approximation of a by elements of S concludes the proof. �

4.4 OPERATORS ON L2.

So far our symbol calculus has built operators acting on either the
Schwartz space S of smooth functions or its dual space S ′. But for ap-
plications we would like to handle functions in more convenient spaces,
most notably L2. Our next goal is therefore showing that if a ∈ Sδ for
some 0 ≤ δ ≤ 1

2
, then aw(x, hD) extends to become a bounded linear

operator acting upon L2.
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For the time being, we take

h = 1.

Preliminaries. We select χ ∈ C∞c (R2n) such that

0 ≤ χ ≤ 1, χ ≡ 0 on R2n −B(0, 2),

and ∑
α∈Z2n

χα ≡ 1,

where χα := χ(· − α) denotes χ shifted by the lattice point α ∈ Z2n.
Write

aα := χαa;

then

a =
∑
α∈Z2n

aα.

We also define

(4.40) bαβ := āα#aβ (α, β ∈ Z2n).

THEOREM 4.15 (Decay of mixed terms).

(i) For each N and each multiindex γ, we have the estimate

(4.41) |∂γbαβ(z)| ≤ Cγ,N〈α− β〉−N〈z −
α + β

2
〉−N

for z = (x, ξ) ∈ R2n.

(ii) For each N , there exists a constant CN such that

(4.42) ‖bw
αβ(x,D)‖L2→L2 ≤ CN〈α− β〉−N

for all α, β ∈ Z2n.

Proof. 1. We can rewrite formula (4.16) to read

bαβ(z) =
1

π2n

∫
R2n

∫
R2n

eiϕ(w1,w2)āα(z − w1)aβ(z − w2) dw1dw2,

for ϕ(w1, w2) = −2σ(w1, w2).

Select ζ : R4n → R such that

0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0, 1), ζ ≡ 0 on R4n −B(0, 2).
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Then

bαβ(z) =
1

π2n

∫
R2n

∫
R2n

eiϕζ(w)āα(z − w1)aβ(z − w2) dw1dw2

+
1

π2n

∫
R2n

∫
R2n

eiϕ(1− ζ(w))āα(z − w1)aβ(z − w2) dw1dw2

=: A+B.

2. Estimate of A. We have

|A| ≤ C

∫∫
{|w|≤2}

|āα(z − w1)||aβ(z − w2)| dw1dw2,

for w = (w1, w2). The integrand equals

χ(z − w1 − α)χ(z − w2 − β)|a(z − w1)||a(z − w2)|

and thus vanishes, unless

|z − w1 − α| ≤ 2 and |z − w2 − β| ≤ 2.

But then

|α− β| ≤ 4 + |w1|+ |w2| ≤ 8

and ∣∣∣∣z − α + β

2

∣∣∣∣ ≤ 4 + |w1|+ |w2| ≤ 8.

Hence

|A| ≤ CN〈α− β〉−N〈z −
α + β

2
〉−N

for any N . Similarly, for each multiindex γ we can estimate

(4.43) |∂γA| ≤ CN,γ〈α− β〉−N〈z −
α + β

2
〉−N .

3. Estimate of B. We have

|∂ϕ(w)| = 2|w|

and Leiϕ = eiϕ, for

L :=
〈∂ϕ,D〉
|∂ϕ|2

.

Since the integrand of B vanishes unless |w| ≥ 1, the usual argument
based on integration by parts shows that

|B| ≤ CM

∫
R2n

∫
R2n

〈w〉−M c̄α(z − w1)cβ(z − w2) dw1dw2
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for appropriate functions cα, cβ, with spt cα ⊆ B(α, 2), spt cβ ⊆ B(β, 2).
Thus the integrand vanishes unless

1

c
〈w〉 ≤ 〈α− β〉, 〈z − α + β

2
〉 ≤ C〈w〉.

Hence

|B| ≤ CM〈α− β〉−N〈z −
α + β

2
〉−N

∫
R2n

∫
R2n

〈w〉2N−M dw1dw2

≤ CM〈α− β〉−N〈z −
α + β

2
〉−N

if M is large enough. Likewise,

(4.44) |∂γB| ≤ CN,γ〈α− β〉−N〈z −
α + β

2
〉−N .

4. Recall next that

aw(x,D) =
1

(2π)2n

∫
R2n

â(l)eil(x,D) dl

and that, owing to (4.9), eil(x,D) is a unitary operator on L2. Conse-
quently

‖aw(x,D)‖L2→L2 ≤ C

∫
R2n

|â(l)| dl.

Therefore we can estimate

‖bw
αβ(x,D)‖L2→L2 ≤ C‖b̂αβ‖L1 ≤ C‖〈ξ〉2n+1b̂αβ‖L∞

≤ C sup
|γ|≤2n+1

‖D̂γbαβ‖L∞

≤ C sup
|γ|≤2n+1

‖Dγbαβ‖L1

≤ C sup
|γ|≤2n+1

‖〈z〉2n+1Dγbαβ‖L1

≤ C〈α− β〉−N ,
according to (4.43), (4.44). �

THEOREM 4.16 (Boundedness on L2). If the symbol a belongs
to Sδ for some 0 ≤ δ ≤ 1/2, then

aw(x,D) : L2(Rn)→ L2(Rn)

is bounded, with the estimate

(4.45) ‖aw(x,D)‖L2→L2 ≤ C
∑

|α|≤2n+1

sup
Rn
|∂αa|.
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Furthermore,

(4.46) ‖aw(x, hD)u‖L2→L2 ≤ C
∑

|α|≤2n+1

h|α|(
1
2
−δ) sup

Rn
|∂αa|.

Proof. 1. We have bw
αβ(x,D) = A∗αAβ, where Aα := aw

α(x,D). Thus
Theorem 4.15,(ii) asserts

‖A∗αAβ‖L2→L2 ≤ C〈α− β〉−N .

Therefore

sup
α

∑
β

‖AαA∗β‖1/2 ≤ C
∑
β

〈α− β〉−N/2 ≤ C;

and similarly

sup
α

∑
β

‖A∗αAβ‖1/2 ≤ C.

Since

aw(x,D) =
∑
α

Aα,

we can apply the Cotlar–Stein Theorem C.5.

2. Estimate (4.46) follows from a rescaling, the details of which for
δ = 0 we will later provide in the proof of Theorem 5.1. �

As a first application, we record the useful

THEOREM 4.17 (Composition and multiplication). Suppose
that a, b ∈ Sδ for 0 ≤ δ < 1

2
.

Then

(4.47) ‖aw(x, hD)bw(x, hD)− (ab)w(x, hD)‖L2→L2 = O(h1−2δ)

as h→ 0.

Proof. 1. In light of (4.38), we have

a#b− ab ∈ S2δ−1
δ .

Hence Theorem 4.16 implies

awbw − (ab)w = (a#b− ab)w = O(h1−2δ).

�

For the borderline case δ = 1
2
, we have this assertion:
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THEOREM 4.18 (Disjoint supports). Suppose that a, b ∈ S 1
2
, and

and

dist(spt(a), spt(b)) ≥ γ > 0,

for some constant γ. Assume also that spt(a) ⊂ K where the compact
set K and the constant γ are independent of h. Then

(4.48) ‖aw(x, hD)bw(x, hD)‖L2→L2 = O(h∞).

Proof. Remember from (4.16) that

a#b(z) =
1

(hπ)2n

∫
R2n

∫
R2n

e
i
h
ϕ(w1,w2)a(z − w1)b(z − w2) dw1dw2,

for for z = (x, ξ) and ϕ(w1, w2) = −2σ(w1, w2).

We proceed as in the proof of Theorem 4.15: |∂ϕ| = 2|w| and thus
the operator

L :=
〈∂ϕ,D〉
|∂ϕ|2

has smooth coefficients on the support of a(z−w1)b(z−w2). From our
assumption that a, b ∈ S 1

2
, we see that

(L∗)M(a(z − w1)b(z − w2)) = O(h
M
2 〈w〉−M).

The uniform bound on the support shows that a#b ∈ S−∞. Its Weyl
quantization is therefore bounded on L2, with norm of order O(h∞).

�

4.5 INVERSES

At this stage we have constructed in appropriate generality the quan-
tizations aw(x, hD) of various symbols a. We turn therefore to the prac-
tical problem of understanding how the algebraic and analytic behavior
of the function a dictates properties of the corresponding quantized op-
erators.

In this section we suppose that a : R2n → C is nonvanishing; so that
the function a is pointwise invertible. Can we draw the same conclusion
about aw(x, hD)?

DEFINITION. We say the symbol a is elliptic if there exists a con-
stant γ > 0 such that

|a| ≥ γ > 0 on R2n.
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THEOREM 4.19 (Inverses for elliptic symbols). Assume that
a ∈ Sδ for 0 ≤ δ < 1

2
and that a is elliptic.

Then for some constant h0 > 0,

aw(x, hD)−1

exists as a bounded linear operator on L2(Rn), provided 0 < h ≤ h0.

Proof. Let b := 1
a
, b ∈ Sδ. Then (4.38) gives

a#b = 1 + r1, with r1 ∈ S2δ−1
δ .

Likewise

b#a = 1 + r2, with r2 ∈ S2δ−1
δ .

Hence if A := aw(x, hD), B := bw(x, hD), R1 := rw
1 (x, hD) and R2 :=

rw
2 (x, hD), we have

AB = I +R1

BA = I +R2,

with

‖R1‖L2→L2 , ‖R2‖L2→L2 = O(h1−2δ) ≤ 1
2

if 0 < h ≤ h0.

Thus A = aw(x, hD) has an approximate left inverse and an approx-
imate right inverse. Applying then Theorem C.3, we deduce that A−1

exists. �

4.6 GÅRDING INEQUALITIES

We continue studying how properties of the symbol a translate into
properties of the corresponding quantized operators. In this section
we suppose that a is real-valued and nonnegative, and ask the conse-
quences for aw(x, hD).

THEOREM 4.20 (Easy G̊arding inequality). Assume a is a real-
valued symbol in S and

(4.49) a ≥ γ > 0 on R2n.

Then for each ε > 0 there exists h0 = h0(ε) > 0 such that

(4.50) 〈aw(x, hD)u, u〉 ≥ (γ − ε)‖u‖2
L2

for all 0 < h ≤ h0, u ∈ L2(Rn).
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Proof. We will show that

(4.51) (a− λ)−1 ∈ S if λ < γ − ε.

Indeed if b := (a− λ)−1, then

(a− λ)#b = 1 +
h

2i
{a− λ, b}+O(h2) = 1 +O(h2),

the bracket term vanishing since b is a function of a− λ. Therefore

(aw(x, hD)− λ)bw(x, hD) = I +O(h2)L2→L2 ,

and so bw(x, hD) is an approximate right inverse of aw(x, hD) − λ.
Likewise bw(x, hD) is an approximate left inverse.

Hence Theorem C.3 implies aw(x, hD)− λ is invertible for each λ <
γ − ε. Consequently,

spec(aw(x, hD)) ⊂ [γ − ε,∞).

According then to Theorem C.6,

〈aw(x, hD)u, u〉 ≥ (γ − ε)‖u‖2
L2

for all u ∈ L2. �

We next improve the preceding estimate:

THEOREM 4.21 (Sharp G̊arding inequality). Let a = a(x, ξ) be
a symbol in S and suppose that

(4.52) a ≥ 0 on R2n.

Then there exist constants h0 > 0, C ≥ 0 such that

(4.53) 〈aw(x, hD)u, u〉 ≥ −Ch‖u‖2
L2

for all 0 < h ≤ h0 and u ∈ L2(Rn).

REMARK. The estimate (4.53) is in fact true for each quantization
Opt(a) (0 ≤ t ≤ 1). And for the Weyl quantization, the stronger
Fefferman–Phong inequality holds:

〈aw(x, hD)u, u〉 ≥ −Ch2‖u‖2
L2

for 0 < h ≤ h0, u ∈ L2.

We will need
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LEMMA 4.22 (Gradient estimate). Let f : Rn → R be C2, with

|∂2f | ≤ A.

Suppose also f ≥ 0. Then

|∂f | ≤ (2Af)1/2.

Proof. By Taylor’s Theorem,

f(x+ y) = f(x) + 〈∂f(x), y〉+

∫ 1

0

(1− t)〈∂2f(x+ ty)y, y〉 dt.

Let y = −λ∂f(x), λ > 0 to be selected. Then since f ≥ 0, we have

λ|∂f(x)|2 ≤ f(x) + λ2

∫ 1

0

(1− t)〈∂2f(x− λt∂f(x))∂f(x), ∂f(x)〉 dt

≤ f(x) +
λ2

2
A|∂f(x)|2.

Put λ = 1
A

, to conclude |∂f(x)|2 ≤ 2Af(x). �

Proof of Theorem 4.21 1. The primary goal is to show that if

(4.54) λ = µh

and µ is fixed sufficiently large, then

(4.55) h(a+ λ)−1 ∈ S1/2

(
1
µ

)
,

with estimates independent of µ.

To begin the proof of (4.55) we consider for any multiindex α =
(α1, . . . , α2n) the partial derivative ∂α in the variables x and ξ.

We claim that ∂α(a+ λ)−1 has the form

(4.56) ∂α(a+ λ)−1 =

(a+ λ)−1

|α|∑
k=1

∑
α=β1+···+βk
|βj |≥1

Cβ1,...,βk

k∏
j=1

(
(a+ λ)−1∂β

j

a
)
,

for appropriate constants Cβ1,...,βk . To see this, observe that when
we compute ∂α(a + λ)−1 a typical term involves k differentiations of
(a + λ)−1 with the remaining derivatives falling on a. In obtaining
(4.56) we for each k ≤ |α| partition α into multiindices β1, . . . , βk,
each of which corresponds to one derivative falling on (a + λ)−1 and
the remaining derivatives falling on a.
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2. Now Lemma 4.22 implies for |βj| = 1 that

(4.57) |∂βja|(a+ λ)−1 ≤ Cλ−1/2

since λ1/2|∂a| ≤ Cλ1/2a1/2 ≤ C(λ+ a). Furthermore,

(4.58) |∂βja|(a+ λ)−1 ≤ Cλ−1

if |βj| ≥ 2, since a ∈ S.
Consequently, for each partition α = β1 + · · ·+ βk and 0 < λ ≤ 1:∣∣∣∣∣
k∏
j=1

(a+ λ)−1∂βja

∣∣∣∣∣ ≤ C
∏
|βj |≥2

λ−1
∏
|βj |=1

λ−1/2 ≤ C

k∏
j=1

λ−
|βj |
2 = Cλ−

|α|
2 .

Therefore

(4.59) |∂α(a+ λ)−1| ≤ Cα(a+ λ)−1λ−
|α|
2 .

But since λ = µh, this implies

(a+ λ)−1 ∈ S1/2

(
1
µh

)
;

that is,

h(a+ λ)−1 ∈ S1/2

(
1
µ

)
,

with estimates independent of µ.

3. Since a+ λ ∈ S ⊆ S 1
2
, we can define (a+ λ)#b, for b = (a+ λ)−1.

Using Taylor’s formula, we compute

(a+ λ)#b(z)

= e
ih
2
σ(Dz ,Dw)(a(z) + λ)b(w)

∣∣∣
w=z

= 1 +

∫ 1

0

(1− t)e
ith
2
σ(Dz ,Dw)

(
ih

2
σ(Dz, Dw)

)2

(a(z) + λ)b(w)|w=z dt

=: 1 + r(z),

where we have noted that {a+ λ, (a+ λ)−1} = 0.

Now according to (4.59), hb ∈ S1/2(1/µ) and so h2∂αb ∈ S1/2(1/µ)

for |α| = 2. An application of e
ih
2
σ(Dz ,Dw) preserves the symbol class

S1/2(1/µ). Consequently,

‖rw(x, hD)‖L2→L2 ≤ C

µ
≤ 1

2
,

if µ is now fixed large enough. Thus bw(x, hD) is an approximate right
inverse of aw(x, hD) + λ, and is similarly an approximate left inverse.
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So (aw(x, hD) + λ)−1 exists. Likewise (aw(x, hD) + γ + λ)−1 exists
for all γ ≥ 0. Therefore

spec(aw(x, hD)) ⊆ [−λ,∞).

According then to Theorem C.6,

〈aw(x, hD)u, u〉 ≥ −λ‖u‖2
L2

for all u ∈ L2. Since λ = µh, this inequality finishes the proof. �



74

5. Semiclassical defect measures

5.1 Construction, examples
5.2 Defect measures and PDE
5.3 Application: damped wave equation

One way to understand limits as h → 0 of a collection of functions
{u(h)}0<h≤h0 bounded in L2 is to construct corresponding semiclassical
defect measures µ, which record the limiting behavior of certain qua-
dratic forms acting on u(h). If in addition these functions solve certain
operator equations or PDE, we can deduce various properties of the
measure µ and thereby indirectly recover information about asympto-
toics as h→ 0 of the functions u(h).

5.1 CONSTRUCTION, EXAMPLES

In the first two sections of this chapter, we consider a collection of
functions {u(h)}0<h≤h0 that is bounded in L2(Rn):

(5.1) sup
0<h≤h0

‖u(h)‖L2 <∞.

For the time being, we do not assume that u(h) solves any PDE.

THEOREM 5.1 (An operator norm bound). Suppose a ∈ S.
Then

(5.2) ‖aw(x, hD)‖L2→L2 ≤ C sup
R2n

|a|+O(h
1
2 )

as h→ 0.

Proof. We showed earlier in Theorem 4.16 that if a ∈ S and h = 1,
then

(5.3) ‖aw(x,D)‖L2→L2 ≤ C sup
|α|≤2n+1

|∂αa|.

Suppose now a ∈ S and u ∈ S. We rescale by taking

x̃ := h−
1
2x, ỹ := h−

1
2y, ξ̃ := h−

1
2 ξ

and

ũ(x̃) := h
n
4 u(x) = h

n
4 u(h

1
2 x̃).

(This is a different rescaling of u from that introduced earlier in (4.31),
the advantage being that u 7→ ũ is now a unitary transformation of L2:
‖u‖L2 = ‖ũ‖L2 .)
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Then

aw(x, hD)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
a
(
x+y

2
, ξ
)
e
i
h
〈x−y,ξ〉u(y) dydξ

=
h−

n
4

(2π)n

∫
Rn

∫
Rn
ah

(
x̃+ỹ

2
, ξ̃
)
ei〈x̃−ỹ,ξ̃〉ũ(ỹ) dỹdξ̃

= h−
n
4 aw

h (x̃, D)ũ(x̃),

(5.4)

for
ah(x̃, ξ̃) := a(x, ξ) = a(h

1
2 x̃, h

1
2 ξ̃).

Hence, noting that dx = h
n
2 dx̃, we deduce from (5.4) and (5.3) that

‖aw(x, hD)u‖L2 = ‖aw
h (x̃, D)ũ‖L2

≤ ‖aw
h ‖L2→L2‖ũ‖L2

≤ C sup
|α|≤2n+1

|∂αah|‖u‖L2

≤ C sup
|α|≤2n+1

h
|α|
2 |∂αa|‖u‖L2 .

This implies (5.2). �

THEOREM 5.2 (Existence of defect measure). There exists a
Radon measure µ on R2n and a sequence hj → 0 such that

(5.5) 〈aw(x, hjD)u(hj), u(hj)〉 →
∫

R2n

a(x, ξ) dµ

for each symbol a ∈ C∞c (R2n).

DEFINITION. We call µ a microlocal defect measure associated with
the family {u(h)}0<h≤h0 .

Proof. 1. Choose {ak}∞k=0 ⊂ C∞c (R2n) to be dense in Cc(R2n). Select a
sequence h1

j → 0 such that

〈aw
1 (x, h1

jD)u(h1
j), u(h1

j)〉 → α1.

Choose next a further subsequence {h2
j} ⊆ {h1

j} such that

〈aw
2 (x, h2

jD)u(h2
j), u(h2

j)〉 → α2.

Continue, at the kth step extracting a subsequence {hkj} ⊆ {hk−1
j } such

that
〈aw
k (x, hkjD)u(hkj ), u(hkj )〉 → αk.
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By a standard diagonal argument, we see that the sequence hj := hjj
converges to 0, with

〈aw
k (x, hjD)u(hj), u(hj)〉 → αk

for all k = 1, . . . .

2. Define Φ(ak) := αk. Owing to Theorem 5.1, we see for each k
that

|Φ(ak)| = |αk| = lim
hj→∞

|〈aw
k u(hj), u(hj)〉|

≤ C lim sup
hj→∞

‖aw
k ‖L2→L2 ≤ C sup

R2n

|ak|.

The mapping Φ is bounded, linear and densely defined, and therefore
uniquely extends to a bounded linear functional on Cc(R2n), with the
estimate

|Φ(a)| ≤ C sup
R2n

|a|

for all a ∈ Cc(R2n). The Riesz Representation Theorem therefore im-
plies the existence of a (possibly complex-valued) Radon measure on
R2n such that

Φ(a) =

∫
R2n

a(x, ξ) dµ.

�

REMARK. Theorem 5.2 is also valid if we replace the Weyl quanti-
zation aw = Op1/2(a) by Opt(a) for any 0 ≤ t ≤ 1, since the error is
then O(h). �

THEOREM 5.3 (Positivity). The measure µ is real and nonnega-
tive:

(5.6) µ ≥ 0.

Proof. We must show that a ≥ 0 implies∫
R2n

a dµ ≥ 0.

Now when a ≥ 0, the sharp G̊arding inequality, Theorem 4.21, implies

aw(x, hD) ≥ −Ch;

that is,

〈aw(x, hD)u(h), u(h)〉 ≥ −Ch‖u(h)‖2
L2
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for sufficiently small h > 0. Let h = hj → 0, to deduce∫
R2n

a dµ = lim
hj→∞

〈aw(x, hjD)u(hj), u(hj)〉 ≥ 0.

�

EXAMPLE 1: Coherent states. Fix a point (x0, ξ0) and define the
corresponding coherent state

u(h)(x) := (πh)−
n
4 e

i
h
〈x−x0,ξ0〉− 1

2h
|x−x0|2 ,

where we have normalized so that ‖u(h)‖L2 = 1. Then there exists
precisely one associated semiclassical defect measure, namely

µ := δ(x0,ξ0).

To confirm this statement, take t = 1 in the quantization and calculate

〈a(x, hD)u(h), u(h)〉

=
1

(2πh)n

∫
Rn

∫
Rn

∫
Rn
a(x, ξ)e

i
h
〈x−y,ξ〉u(h)(y)u(h)(x) dydξdx

=
2
n
2

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn
a(x, ξ)e

i
h

(〈x−y,ξ〉+〈y−x0,ξ0〉−〈x−x0,ξ0〉)

e−
1
2h

(|y−x0|2+|x−x0|2) dydξdx

=
2
n
2

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn
a(x, ξ)e

i
h
〈x−y,ξ−ξ0〉

e−
1
2h

(|y−x0|2+|x−x0|2) dydξdx.

For each fixed x and ξ, the integral in y is∫
Rn
e
i
h
〈x−y,ξ−ξ0〉e−

1
2h
|y−x0|2 dy = e

i
h
〈x−x0,ξ−ξ0〉

∫
Rn
e−

i
h
〈y,ξ−ξ0〉e−

1
2h
|y|2 dy

= e
i
h
〈x−x0,ξ−ξ0〉F

(
e−

1
2h
|y|2
) (

ξ−ξ0
h

)
= (2πh)

n
2 e

i
h
〈x−x0,ξ−ξ0〉e−

1
2h
|ξ−ξ0|2 ,

where we used formula (3.2) for the last equality. Therefore

〈a(x, hD)u(h), u(h)〉

=
2
n
2

(2πh)n

∫
Rn

∫
Rn
a(x, ξ)e

i
h
〈x−x0,ξ−ξ0〉e−

1
2h

(|x−x0|2+|ξ−ξ0|2) dxdξ

= a(x0, ξ0)
2
n
2

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−x0,ξ−ξ0〉e−

1
2h

(|x−x0|2+|ξ−ξ0|2) dxdξ + o(1)

= Ca(x0, ξ0) + o(1),
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for the constant

C :=
2
n
2

(2π)n

∫
Rn

∫
Rn
ei〈x,ξ〉e−

1
2

(|x|2+|ξ|2) dxdξ.

Taking a ≡ 1 and recalling that ‖u(h)‖L2 = 1, we deduce that C =
1. �

EXAMPLE 2: Stationary phase and defect measures. For our
next example, take

u(h)(x) := e
iϕ(x)
h b(x),

where ϕ, b ∈ C∞ and ‖b‖L2 = 1. Then

〈a(x, hD)u(h), u(h)〉 =

1

(2πh)n

∫
Rn

∫
Rn

∫
Rn
a(x, ξ)e

i
h

(〈x−y,ξ〉+ϕ(y)−ϕ(x))b(y)b(x) dydξdx.

We assume a ∈ C∞c (R2n) and apply stationary phase. For a given value
of x, define

φ(y, ξ) := 〈x− y, ξ〉+ ϕ(y)− ϕ(x).

Then
∂yφ = ∂ϕ(y)− ξ, ∂ξφ = x− y;

and the Hessian matrix of φ is

∂2φ =

(
∂2ϕ −I
−I O

)
.

The signature of a matrix is integer valued, and consequently is invari-
ant if we move along a curve of nonsingular matrices. Since

sgn

(
O −I
−I O

)
= 0,

it follows that

sgn

(
t∂2ϕ −I
−I O

)
= 0

for 0 ≤ t ≤ 1; and therefore

sgn(∂2φ) = 0.

In addition, |det ∂2φ| = 1. Thus as h→ 0 the stationary phase asymp-
totic expression (3.43) implies

〈aw(x, hD)u(h), u(h)〉 →
∫

Rn
a(x, ∂ϕ(x))|b(x)|2 dx =

∫
R2n

a(x, ξ) dµ

for the semiclassical defect measure

µ := |b(x)|2δ{ξ=∂ϕ(x)} Ln,
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Ln denoting n-dimensional Lebesgue measure in the x-variables. �

5.2 DEFECT MEASURES AND PDE

We now assume more about the family {u(h)}0<h≤h0 , namely that
each function u(h) is an approximate solution of a equation involving
the operator P (h) = pw(x, hD) for some real symbol p ∈ S(〈ξ〉m)
satisfying

(5.7) |p| ≥ γ〈ξ〉m if |ξ| ≥ C

for constants C, γ > 0.

First, let us suppose P (h)u(h) vanishes up to an o(1) error term and
see what we can conclude about a corresponding semiclassical defect
measure µ.

THEOREM 5.4 (Support of defect measure). Suppose that u(h)

(5.8)

{
‖P (h)u(h)‖L2 = o(1) as h→ 0,

‖u(h)‖L2 = 1.

Then if µ is any microlocal defect measure associated with {u(h)}0<h≤h0,

(5.9) sptµ ⊆ p−1(0).

Interpretation. We sometimes call p−1(0) the characteristic variety
or zero energy surface of the symbol p. We understand (5.9) as saying
that in the semiclassical limit h→ 0, all of the “mass” of the approxi-
mate solution u(h) coalesces in phase space onto this set.

Proof. Select a ∈ C∞c (R2n) such that spt(a) ∩ p−1(0) = 0. We must
show ∫

R2n

a dµ = 0.

To do so, first select q ∈ S(〈ξ〉m) such that spt(a) ∩ spt(q) = ∅ and

|p+ iq| ≥ δ〈ξ〉m > 0 on R2n

for some δ > 0. We can for instance choose a function q ∈ C∞ that is
equal to one on p−1(0), and then modify it near the compact support
of a.

Write Q(h) := qw(x, hD). Then Theorem 4.19 ensures us that for
small enough h the operator 〈hD〉−m(P (h)+ iQ(h)) is invertible on L2.
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Next, put A(h) := aw(x, hD). We observe that

ap

p+ iq
− a = −i aq

p+ iq

Since a and q have disjoint support, Theorems 4.17 and 4.18 imply

‖A(h)(P (h) + iQ(h))−1P (h)− A(h)‖L2→L2 = O(h).

Therefore (5.8) implies

‖A(h)u(h)‖L2 = o(1);

and thus

〈A(h)u(h), u(h)〉 → 0.

But also

〈A(hj)u(hj), u(hj)〉 = 〈aw(x, hjD)u(hj), u(hj)〉 →
∫

R2n

a dµ.

�

Now we make the stronger assumption that the error term in (5.8)
is o(h).

THEOREM 5.5 (Flow invariance). Assume

(5.10)

{
‖P (h)u(h)‖L2 = o(h) as h→ 0,

‖u(h)‖L2 = 1.

Then

(5.11)

∫
R2n

{p, a} dµ = 0

for all a ∈ C∞c (R2n).

Interpretation. Let ϕt be the flow generated by the Hamiltonian
vector field Hp. Then

d

dt

∫
R2n

ϕ∗ta dµ =

∫
R2n

(Hpa)(ϕt) dµ =

∫
R2n

{p, a} dµ.

Conseqently (5.11) asserts that the semiclassical defect measure µ is
flow-invariant.

The proof below illustrates one of the basic principles mentioned in
Chapter 1, that an assertion about Hamiltonian dynamics involving the
Poisson bracket corresponds to a commutator argument at the quantum
level.
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Proof. Since p is real, P (h) = pw(x, hD) is self-adjoint on L2. Select
a as above and write A(h) = aw(x, hD). Recall that A(h) = A(h)∗.
Then

〈[P (h), A(h)]u(h), u(h)〉 = 〈(P (h)A(h)− A(h)P (h))u(h), u(h)〉
= 〈A(h)u(h), P (h)u(h)〉

−〈P (h)u(h), A(h)u(h)〉
= o(h)

as h→ 0. On the other hand,

[P (h), A(h)] =
h

i
{p, a}w(x, hD) +O(h2)L2→L2 .

Hence

〈[P (h), A(h)]u(h), u(h)〉 =
h

i
〈{p, a}wu(h), u(h)〉+ o(h).

Divide by h > 0 and let h = hj → 0:∫
R2n

{p, a} dµ = 0.

Note that even though p may not have compact support, {p, a} does.
�

We have similar statements if we replace Rn×Rn by the torus Tn×Rn.
We will need this observation for the following application.

5.3 APPLICATION: DAMPED WAVE EQUATION

A damped wave equation. In this section Tn denotes the flat n-
dimensional torus. We consider now the initial-value problem

(5.12)

{
(∂2
t + a∂t −∆)u = 0 on Tn × {t > 0}

u = 0, ut = f on Tn × {t = 0},

in which the smooth function a = a(x) is nonnegative, and thus repre-
sents a damping mechanism, as we will see.

DEFINITION. The energy at time t is

E(t) :=
1

2

∫
Tn

(∂tu)2 + |∂xu|2 dx.

LEMMA 5.6 (Elementary energy estimates).
(i) If a ≡ 0, t 7→ E(t) is constant.
(ii) If a ≥ 0, t 7→ E(t) is nonincreasing.
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Proof. These assertions follow easily from the calculation

E ′(t) =

∫
Tn
∂tu∂

2
t u+ 〈∂xu, ∂2

xtu〉 dx

=

∫
Tn
∂tu(∂2

t u−∆u) dx = −
∫

Tn
a(∂tu)2 dx ≤ 0.

�

Our eventual goal is showing that if the support of the damping
term a is large enough, then we have exponential energy decay for our
solution of the wave equation (5.12). Here is the key assumption:

DYNAMICAL HYPOTHESIS.

(5.13)


There exists a time T > 0 such that any

trajectory of the Hamiltonian vector field of

p(x, ξ) = |ξ|2, starting at time 0 with |ξ| = 1,

intersects the set {a > 0} by the time T .

Equivalently, for each initial point z = (x, ξ) ∈ Tn×Rn, with |ξ| = 1,
we have

〈a〉T :=
1

T

∫ T

0

a(x+ tξ) dt > 0.

Motivation. Since the damping term a in general depends upon x,
we cannot use Fourier transform (or Fourier series) in x to solve (5.12).
Instead we define u ≡ 0 for t < 0 and take the Fourier transform in t:

û(x, τ) :=

∫ ∞
0

e−itτu(x, t) dt (τ ∈ R).

Then

∆û =

∫ ∞
0

e−itτ∆u dt =

∫ ∞
0

e−itτ (∂2
t u+ a∂tu) dt

=

∫ ∞
0

((iτ)2 + aiτ)e−itτu dt− f = (−τ 2 + aiτ)û− f.

Consequently,

(5.14) P (τ)û := (−∆ + iτa− τ 2)û = f.

Now take τ to be complex, with Re τ ≥ 0, and define

(5.15) P (z, h) := −h2∆ + i
√
zha− z

for the rescaled variable

(5.16) z = τ 2h2.
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Then (5.14) reads

P (z, h)û = h2f ;

and so, if P (z, h) is invertible,

(5.17) û = h2P (z, h)−1f.

We therefore need to study the inverse of P (z, h).

THEOREM 5.7 (Resolvent bounds). Under the dynamical as-
sumption (5.13), there exist constants α,C, h0 > 0 such that

(5.18) ‖P (z, h)−1‖L2→L2 ≤ C

h

for

(5.19) |Im z| ≤ αh, |z − 1| ≤ α, 0 < h ≤ h0.

Proof. 1. It is enough to show that there exists a constant C such that

‖u‖L2 ≤ C

h
‖P (z, h)u‖L2

for all u ∈ L2, provided z and h satisfy (5.19).

We argue by contradiction. If the assertion were false, then for m =
1, 2, . . . there would exist zm ∈ C, 0 < hm ≤ 1/m and functions um in
L2 such that

‖P (zm, hm)um‖L2 ≤ hm
m
‖um‖L2 , |Im zm| ≤

hm
m
, |zm − 1| ≤ 1

m
.

We may assume ‖um‖L2 = 1. Then

(5.20) P (zm, hm)um = o(hm).

Also,

(5.21) zm → 1, Im(zm) = o(hm).

2. Let µ be a microlocal defect measure associated with {um}∞m=1.
Then Theorem 5.4 implies for the symbol p := |ξ|2 − 1 that

spt(µ) ⊆ p−1(0) = {|ξ|2 = 1}.
But 〈um, um〉 = 1, and so

(5.22)

∫
Tn×Rn

dµ = 1.

We will derive a contradiction to this.
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3. Hereafter write Pm := P (zm, hm). Then

Pm = −h2
m∆ + i

√
zmhma− zm,

P ∗m = −h2
m∆− i

√
z̄mhma− z̄m;

and therefore

(5.23) Pm − P ∗m = i(
√
zm +

√
z̄m)hma− zm + z̄m = 2ihma+ o(hm),

since (5.21) implies that
√
zm +

√
z̄m = 2 + o(1) and that −zm + z̄m =

−2iIm(zm) = o(hm).

Now select b ∈ C∞c (Tn × Rn) and set Bm := bw(x, hmD). Then
Bm = B∗m. Using (5.20) and (5.23), we calculate that

o(hm) = 2i Im〈BmPmum, um〉 = 〈BmPmum, um〉 − 〈u,BmPmum〉
= 〈(BmPm − P ∗mBm)um, um〉
= 〈[Bm, Pm]um, um〉

+〈(Pm − P ∗m)Bmum, um〉

=
hm
i
〈{b, p}wum, um〉

+2hmi〈(ab)wum, um〉+ o(hm).

Divide by hm and let hm → 0, through a subsequence if necessary, to
discover that

(5.24)

∫
Tn×Rn

{p, b}+ 2ab dµ = 0.

We will build a function b so that {p, b}+ 2ab > 0 on spt(µ). This will
imply

∫
Tn×Rn dµ = 0, a contradiction to (5.22).

4. For (x, ξ) ∈ Tn × Rn, with |ξ| = 1, define

c(x, ξ) :=
1

T

∫ T

0

(T − t)a(x+ ξt) dt,

where T is the time from the dynamical hypothesis (5.13). Hence

〈ξ, ∂xc〉 =
1

T

∫ T

0

(T − t)〈ξ, ∂a(x+ ξt)〉 dt

=
1

T

∫ T

0

(T − t) d
dt
a(x+ ξt) dt

=
1

T

∫ T

0

a(x+ ξt) dt− a(x)

= 〈a〉T − a.
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Let
b := ecχ(p),

where χ ∈ C∞c (R) is equal to 1 near 0. Then

〈ξ, ∂xb〉 = ec〈ξ, ∂xc〉χ(p) = ec〈a〉Tχ(p)− aecχ(p)

since Hp(χ(p)) = 0. Consequently

{p, b}+ 2ab = 2〈ξ, ∂xb〉+ 2ab = 2ec〈a〉Tχ(p) > 0 on p−1(0),

as desired. �

THEOREM 5.8 (Exponential energy decay). Assume the dy-
namic hypothesis (5.13) and suppose u solves the wave equation with
damping (5.12).

Then there exists constants C, β > 0 such that

(5.25) E(t) ≤ Ce−βt‖f‖L2 for all times t > 0.

Motivation. The following calculations are based upon this idea: to
get decay estimates of g on the positive real axis, we estimate ĝ in a
complex strip |Im z| ≤ α. Then if β < α,

êβtg(τ) =

∫ ∞
−∞

eβtg(t)e−itτ dt =

∫ ∞
−∞

g(t)e−it(τ+iβ) dt = ĝ(τ + iβ).

Hence our L2 estimate of ĝ(·+ iβ) will imply exponential decay of g(t)
for t→∞.

Proof. 1. Recall from (5.15), (5.16) that

P (τ) = h−2P (z, h) for τ 2 = h−2z.

First we assert that there exists γ > 0 such that

(5.26) ‖P (τ)−1‖L2→H1 ≤ C for |Im τ | ≤ γ, |τ | > 1/γ.

To prove (5.26), we note that provided the inequalities (5.19) hold,
then

‖h2∆P (z, h)−1u‖L2 = ‖(i
√
zha− z)P (z, h)−1u− u‖L2 ≤ C

h
‖u‖L2 ,

the last inequality holding according to Theorem 5.7. Thus

(5.27) ‖h2P (z, h)−1u‖H2 ≤ C

h
‖u‖L2 .

Recall next that z = h2τ 2. Write τ = λ + iµ, for λ > 0, and set
h = λ−1; so that

z = h2(λ2 − µ2) + i(h22λµ).
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Thus |Im z| ≤ αh and |z − 1| ≤ α provided if |µ| ≤ γ and |λ| > 1/γ
for some sufficiently small γ, and so the inequalities (5.19) hold. Hence
(5.27) implies

(5.28) ‖P (τ)−1u‖H2 ≤ C

|τ |
‖u‖L2

for |µ| ≤ γ and |λ| > 1/γ.

Also

‖P (τ)−1u‖L2 ≤ C

|τ |
‖u‖L2 .

Interpolating between the last two inequalities demonstrates that

‖P (τ)−1u‖H1 ≤ C‖u‖L2

for |Im τ | ≤ γ and |τ | > 1/γ.

This proves (5.26) except for a bounded range of τ ’s. To see the
estimate for all τ , outside of a neighborhood of 0, we simply need to
exclude the possibility of a real non-zero τ satisfying

(5.29) (−∆− τ 2 + iτa)u = 0

for some u 6= 0. Multiplying by ū, integrating, and taking the imagi-
nary part shows that ∫

Tn
a|u|2 dx = 0.

Since a ≥ 0, this implies that u ≡ 0 on spt a. Hence (−∆− τ 2)u = 0.
But this is impossible owing to unique continuation results which we
will prove in Section 7.2, since spt a has a nonempty interior. The
Fredholm alternative now guarantees that P (τ)−1 has no pole on the
real axis.

2. Since P (τ)−1 is meromorphic, we conclude that in |Imτ | ≤ α the
only possible pole occurs at τ = 0. In particular for 0 < β < α we have

(5.30) sup
τ∈R
‖P (τ + iβ)−1‖L2→H1 ≤ Cβ.

3. Next select χ : R→ R, χ = χ(t), such that

0 ≤ χ ≤ 1, χ ≡ 1 on [1,∞), χ ≡ 0 on (−∞, 0).

Then if u1 := χu, we have

(5.31) (∂2
t + a∂t −∆)u1 = g1,

for

(5.32) g1 := χ′′u+ 2χ′∂tu+ a(x)χ′u.
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Note that u1(t) = 0 for t ≤ 0, and observe also that the support of g1

lies within Tn × [0, 1]. Furthermore, using energy estimates in Lemma
5.6, we see that

‖g1‖L2(R+;L2)

≤ C
(
‖u‖L2((0,1);L2) + ‖∂tu‖L2((0,1);L2)

)
≤ C‖f‖L2 .

(5.33)

Now take the Fourier transform of (5.31) in time:

P (τ)û1(τ) = ĝ1(τ).

Then

(5.34) û1(τ) = P (τ)−1ĝ1(τ),

where, in principle, we allow the left hand side to have a pole at τ = 0.

4. We now deduce exponential decay. Noting that u1 is supported
in t > 0, we use Plancherel’s theorem to compute

‖eβtu1‖L2(R+;H1) = (2π)−
1
2‖êβtu1‖L2(R;H1)

= (2π)−
1
2‖û1(·+ iβ)‖L2(R;H1)

= (2π)−
1
2‖P (·+ iβ)−1ĝ1(·+ iβ)‖L2(R;H1)

≤ C‖ĝ1(·+ iβ)‖L2(R;H1)

Since g1 is compactly supported in t we also see that

ĝ1(·+ iβ) = êβtg1(·);
and hence

‖eβtu1‖L2(R+;H1) ≤ C‖ĝ1‖L2(R;L2)

≤ C‖g1‖L2(R+;L2) ≤ C‖f‖L2 .

Since u1 = χu, it follows that

(5.35) ‖eβtu‖L2((1,∞);H1) ≤ C‖f‖L2 .

5. Finally, fix T > 2 and

χT := χ(t− T + 1),

where χ is as in Step 2. Let u2 = χTu. Then

(5.36) (∂2
t + a∂t −∆)u2 = g2,

for

(5.37) g2 := χ′′Tu+ 2χ′T∂tu+ aχ′Tu.

Therefore sptg ⊆ Tn × (T − 1, T ).
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Define

E2(t) :=
1

2

∫
Tn

(∂tu2)2 + |∂xu2|2 dx.

Modifying the calculations in the proof of Lemma 5.6, we use (5.36)
and (5.37) to compute

E ′2(t) =

∫
Tn
∂tu2∂

2
t u2 + 〈∂xu2, ∂

2
xtu2〉 dx

=

∫
Tn
∂tu2(∂2

t u2 −∆u2) dx

= −
∫

Tn
a(∂tu2)2 dx+

∫
Tn
∂tu2g2 dx

≤ C

∫
Tn
|∂tu2|(|∂tu|+ |u|) dx

≤ CE2(t) + C

∫
Tn
u2 + (∂tu)2 dx.

Since E2(T−1) = 0 and E2(T ) = E(T ), Gronwall’s inequality implies
that

(5.38) E(T ) ≤ C
(
‖u‖2

L2((T−1,T );L2) + ‖∂tu‖2
L2((T−1,T );L2)

)
.

6. We need to control the right hand term in (5.38). For this, select
χ : R→ R, such that

0 ≤ χ ≤ 1,

χ ≡ 0 for t ≤ T − 2 and t ≥ T + 1,

χ ≡ 1 for T − 1 ≤ t ≤ T.

We multiply the wave equation (5.12) by χ2u and integrate by parts,
to find

0 =

∫ T+1

T−2

∫
Tn
χ2u(∂2

t u+ a∂tu−∆u) dxdt

=

∫ T+1

T−2

∫
Tn
−χ2(∂tu)2 − 2χχ′u∂tu+ χ2au∂tu+ χ2|∂xu|2 dxdt.

From this identity we derive the estimate

‖∂tu‖L2((T−1,T );L2) ≤ C‖u‖L2((T−2,T+1);H1).

This, (5.38) and (5.35) therefore imply

E(T ) ≤ C‖u‖2
L2((T−2,T+1);H1) ≤ Ce−βT‖f‖L2 ,

as asserted. �
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Our methods extend with no difficulty if Tn is replaced by a general
compact Riemannian manifold: see Appendix E.
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6. Eigenvalues and eigenfunctions

6.1 The harmonic oscillator
6.2 Symbols and eigenfunctions
6.3 Spectrum and resolvents
6.4 Weyl’s Law

In this chapter we are given the potential V : Rn → R, and investi-
gate how the symbol

(6.1) p(x, ξ) = |ξ|2 + V (x)

provides interesting information about the corresponding operator

(6.2) P (h) := P (x, hD) = −h2∆ + V.

We will focus mostly upon learning how p controls the aysmptotic
distribution of the eigenvalues of P (h) in the semiclassical limit h→ 0.

6.1 THE HARMONIC OSCILLATOR

Our plan is to consider first the simplest case, when the potential is
quadratic; and to simplify even more, we begin in one dimension. So
suppose that n = 1, h = 1 and V (x) = x2. Thus we start with the
one-dimensional quantum harmonic oscillator, meaning the operator

P0 := −∂2 + x2.

6.1.1 Eigenvalues and eigenfunctions of P0. We can as follows
employ certain auxiliary first-order differential operators to compute
explicitly the eigenvalues and eigenfunctions for P0.

NOTATION. Let us write

A+ := Dx + ix, A− := Dx − ix,

where Dx = 1
i
∂x, and call A+ the creation operator and A− the anni-

hilation operator. (This terminology is from particle physics.)

LEMMA 6.1 (Properties of A±). The creation and annihilation
operators satisfy these identities:

A∗+ = A−, A
∗
− = A+,

P0 = A+A− + 1 = A−A+ − 1.
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Proof..It is easy to check that D∗x = Dx and (ix)∗ = −ix. Furthermore,

A+A−u = (Dx + ix)(Dx − ix)u

=

(
1

i
∂x + ix

)(
1

i
ux − ixu

)
= −uxx − (xu)x + xux + x2u

= −uxx − u− xux + xux + x2u

= P0u− u;

and similarly,

A−A+u = (Dx − ix)(Dx + ix)u

=

(
1

i
∂x − ix

)(
1

i
ux + ixu

)
= −uxx + (xu)x − xux + x2u

= P0u+ u.

�

We can now use A± to find all the eigenvalues and eigenfunctions of
P0:

THEOREM 6.2 (Eigenvalues and eigenfunctions).

(i) We have

〈P0u, u〉 ≥ ‖u‖2
L2

for all u ∈ C∞c (Rn). That is,

P0 ≥ 1.

(ii) The function

v0 =: e−
x2

2

is an eigenfunction corresponding to the smallest eigenvalue 1.

(iii) Set

vn := An+v0

for n = 1, 2, . . . . Then

(6.3) P0vn = (2n+ 1)vn.

(iv) Define the normalized eigenfunctions

un :=
vn
‖vn‖L2

.
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Then

(6.4) un(x) = Hn(x)e−
x2

2

where Hn(x) = cnx
n + · · ·+ c0 (cn 6= 0) is a polynomial of degree n.

(v) We have
〈un, um〉 = δnm;

and furthermore, the collection of eigenfunctions {un}∞n=0 is complete
in L2(Rn).

The functions Hn mentioned in assertion (iv) are the Hermite poly-
nomials.

Proof. 1. We note that

[Dx, x]u =
1

i
(xu)x −

x

i
ux =

u

i
,

and consequently i[Dx, x] = 1. Therefore

‖u‖2
L2 = 〈i[Dx, x]u, u〉 ≤ 2‖xu‖L2‖Dxu‖L2

≤ ‖xu‖2
L2 + ‖Dxu‖2

L2 = 〈P0u, u〉.
Next, observe

A−v0 =
1

i

(
e−

x2

2

)
x
− ixe−

x2

2 = 0;

so that P0v0 = (A+A− + 1)v0 = v0.

2. We can further calculate that

P0vn = (A+A− + 1)A+vn−1

= A+(A−A+ − 1)vn−1 + 2A+vn−1

= A+P0vn−1 + 2A+vn−1

= (2n− 1)A+vn−1 + 2A+vn−1 (by induction)

= (2n+ 1)vn.

The form (6.4) of vn, un follows by induction.

3. Note also that

[A−, A+] = A−A+ − A+A−

= (P0 + 1)− (P0 − 1) = 2.

Hence if m > n,

〈vn, vm〉 = 〈An+v0, A
m
+v0〉

= 〈Am−An+v0, v0〉 (since A− = A∗+)

= 〈Am−1
− (A+A− + 2)An−1

+ v0, v0〉.
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After finitely many steps, the foregoing equals

〈(. . . )A−v0, v0〉 = 0,

since A−v0 = 0.

4. Lastly, we demonstrate that the collection of eigenfunctions we
have found spans L2. Suppose 〈un, g〉 = 0 for n = 0, 1, 2, . . . ; we must
show g ≡ 0.

Now since Hn(x) = cnx
n + . . . , with cn 6= 0, we have∫ ∞

−∞
g(x)e−

x2

2 p(x) dx = 0

for each polynomial p. Hence∫ ∞
−∞

g(x)e−
x2

2 e−ixξ dx =

∫ ∞
−∞

g(x)e−
x2

2

∞∑
k=0

(−ixξ)k

k!
dx;

and so F
(
ge−

x2

2

)
≡ 0. This implies ge−

x2

2 ≡ 0 and consequently

g ≡ 0. �

6.1.2 Higher dimensions, rescaling. Suppose now n > 1, and write

P0 := −∆ + |x|2;

this is the n-dimensional quantum harmonic oscillator. We define also

uα(x) :=
n∏
j=1

uαj(xj) =
n∏
j=1

Hαj(xj)e
− |x|

2

2

for each multiindex α = (α1, . . . , αn). Then

P0uα = (−∆ + |x|2)uα = (2|α|+ n)uα,

for |α| = α1+· · ·+αn. Hence uα is an eigenfunction of P0 corresponding
to the eigenvalue 2|α|+ n.

We next restore the parameter h > 0 by setting

(6.5) P0(h) := −h2∆ + |x|2,

(6.6) uα(h)(x) := h−
n
4

n∏
j=1

Hαj

(
xj√
h

)
e−
|x|2
2h ,

and

(6.7) Eα(h) := (2|α|+ n)h.

Then
P0(h)uα(h) = Eα(h)uα(h);
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and upon reindexing, we can write these eigenfunction equations as

(6.8) P0(h)uj(h) = Ej(h)uj(h) (j = 1, . . . ).

6.1.3 Asymptotic distribution of eigenvalues. With these explicit
formulas in hand, we can study the behavior in the semiclassical limit
of the eigenvalues E(h) of the harmonic oscillator:

THEOREM 6.3 (Weyl’s law for harmonic oscillator). Assume
that 0 ≤ a < b <∞. Then

(6.9) #{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(|{a ≤ |ξ|2 + |x|2 ≤ b}|+ o(1)).

as h→ 0.

Proof. We may assume that a = 0. Since E(h) = (2|α|+ n)h for some
multiindex α according to (6.7), we have

#{E(h) | 0 ≤ E(h) ≤ b} = #

{
α | 0 ≤ 2|α|+ n ≤ b

h

}
= # {α | α1 + · · ·+ αn ≤ R} ,

for R := b−nh
2h

. Therefore

#{E(h) | 0 ≤ E(h) ≤ b}
= |{x | xi ≥ 0, x1 + · · ·+ xn ≤ R}|+ o(Rn)

=
1

n!
Rn + o(Rn) as R→∞

=
1

n!

(
b

2h

)n
+ o(h−n) as h→ 0.

We used in this calculation the fact that the volume of the simplex
{x | xi ≥ 0, x1 + · · ·+ xn ≤ 1} is (n!)−1. Next we note that |{|ξ|2 +

|x|2 ≤ b}| = α(2n)bn, where α(k) := π
k
2 (Γ(k

2
+ 1))−1 is the volume of

the unit ball in Rk. Setting k = 2n, we compute that α(2n) = πn(n!)−1.
Hence

#{E(h) | 0 ≤ E(h) ≤ b} =
1

n!

(
b

2h

)n
+ o(h−n)

=
1

(2πh)n
|{|ξ|2 + |x|2 ≤ b}|+ o(h−n).
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�

6.2 SYMBOLS AND EIGENFUNCTIONS

For this section, we return to the general symbol (6.1) and the quan-
tized operator (6.2). We assume that the potential V : Rn → R is
smooth, and satisfies the growth conditions:

(6.10) |∂αV (x)| ≤ Cα〈x〉k, V (x) ≥ C〈x〉k for |x| ≥ R,

for appropriate constants k, C,Cα, R > 0.

Our plan in the next section is to employ our detailed knowledge
about the eigenvalues of the harmonic oscillator (6.5) to estimate the
asymptotics of the eigenvalues of P (h). This section develops some
useful techniques that will aid us in this task.

6.2.1 Concentration in phase space. First, we make the important
observation that in the semiclassical limit the eigenfunctions u(h) “are
concentrated in phase space” on the energy surface {|ξ|2 +V (x) = E}.

THEOREM 6.4 (h∞ estimates). Suppose that u(h) ∈ L2(Rn) solves

(6.11) P (h)u(h) = E(h)u(h).

Assume as well that a ∈ S is a symbol satisfying

{|ξ|2 + V (x) = E} ∩ spt(a) = ∅.
Then if

|E(h)− E| < δ

for some sufficiently small δ > 0, we have the estimate

(6.12) ‖aw(x, hD)u(h)‖L2 = O(h∞)‖u(h)‖L2 .

Proof. 1. The set K := {|ξ|2 + V (x) = E} ⊂ R2n has compact. Hence
there exists χ ∈ C∞c (R2n) such that

0 ≤ χ ≤ 1, χ ≡ 1 on K, χ ≡ 0 on spt(a).

Define the symbol

b := |ξ|2 + V (x)− E(h) + iχ = p− E(h) + iχ

and the order function

m := 〈ξ〉2 + 〈x〉k.
Therefore if |E(h)− E| is small enough,

|b| ≥ γm on R2n

for some constant γ > 0. Consequently b ∈ S(m), with b−1 ∈ S(m−1).
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2. Thus there exist c ∈ S(m−1), r1, r2 ∈ S such that{
bw(x, hD)cw(x, hD) = I + rw

1 (x, hD)

cw(x, hD)bw(x, hD) = I + rw
2 (x, hD).

where rw
1 (x, hD), rw

2 (x, hD) are O(h∞). Then

(6.13) aw(x, hD)cw(x, hD)bw(x, hD) = aw(x, hD) +O(h∞),

and

(6.14) bw(x, hD) = P (h)− E(h) + iχw(x, hD).

Furthermore

aw(x, hD)cw(x, hD)χw(x, hD) = O(h∞),

since spt(a) ∩ spt(χ) = ∅. Since P (h)u(h) = E(h)u(h), (6.13) and
(6.14) imply that

aw(x, hD)u(h) = aw(x, hD)cw(x, hD)(P (h)−E(h)+iχw)u(h)+O(h∞)

= O(h∞).

�

For the next result, we temporarily return to the case of the quantum
harmonic oscillator, developing some sharper estimates:

THEOREM 6.5 (Improved estimates for the harmonic oscil-
lator). Suppose that u(h) ∈ L2(Rn) is an eigenfuction of the harmonic
oscillator:

(6.15) P0(h)u(h) = E(h)u(h).

Assume also that a ∈ C∞c .
Then there exists R > 0, depending only on the support of a, such

that for E(h) > R,

(6.16) ‖aw(x, hD)u(h)‖L2 = O

((
h

E(h)

)∞)
‖u(h)‖L2 .

The precise form of the right hand side of (6.16) will later let us
handle eigenvalues E(h)→∞.

Proof. 1. We rescale the harmonic oscillator so that we can work near
a fixed energy level E. Set

y :=
x

E
1
2

, h̃ :=
h

E
, E(h̃) :=

E(h)

E
,
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where we choose E so that |E(h)− E| ≤ E/4. Then put

P0(h) := −h2∆x + |x|2, P0(h̃) := −h̃2∆y + |y|2;

whence
P0(h)− E(h) = E(P (h̃)− Ẽ(h̃)).

We next introduce the unitary transformation

Uu(y) := E
n
2 u(E

1
2y).

Then
UP0(h)U−1 = EP0(h̃);

and more generally

Ubw(x, hD)U−1 = b̃w(y, h̃D), b̃(y, η) := b(E
1
2y, E

1
2η).

We will denote the symbol classes defined using h̃ by the symbol S̃δ.

2. We now apply Theorem 6.4, to eigenfuctions of P0(h̃). If

(P0(h̃)− E(h̃))ũ(h̃) = 0, |E(h̃)− 1| < δ,

and b̃(y, η) ∈ S̃ has its support contained in

{|y|2 + |η|2 ≤ 1/2},
then

‖b̃w(y, h̃D)ũ(h̃)‖L2 = O(h̃∞)‖ũ(h̃)‖L2 .

Translated to the original h and x as above, this assertion provides
us with the bound

(6.17) ‖bw(x, hD)u(h)‖L2 = O((h/E)∞)‖u(h)‖L2 ,

for
b(x, ξ) = b̃(E−1/2x,E−1/2ξ) ∈ S.

Note that spt(b) ⊂ {|x|2 + |ξ|2 ≤ E/2}.
3. In view of (6.17), we only need to show that for

a ∈ C∞(R2n), spt(a) ⊂ {|x|2 + |ξ|2 ≤ 1/4},
we have

‖(aw(x, hD)(1− bw(x, hD))‖L2→L2 = O((h/E)∞),

for E large enough, where b is as in (6.17). That is the same as showing

(6.18) ‖ãw(y, h̃D)(1− b̃w(y, h̃D))‖L2→L2 = O(h̃∞),

for
ã(y, η) = a(E

1
2y, E

1
2η).
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We first observe that E = h/h̃ < 1/h̃ and hence

ã ∈ S̃ 1
2
.

Since the support of a is compact, we see that for E large enough,

dist(spt(ã), spt(1− b̃)) ≥ 1/C > 0,

uniformly in h̃. The estimate (6.18) is now a consequence of Theorem
4.18. �

6.2.2 Projections. We next study how projections onto the span of
various eigenfunctions of the harmonic oscillator P0(h) are related to
our symbol calculus.

THEOREM 6.6 (Projections and symbols). Suppose for the sym-
bol a ∈ S that

spt(a) ⊂ {|ξ|2 + |x|2 < R}.
Let

Π := projection in L2 onto

span{u(h) | P0(h)u(h) = E(h)u(h) for E(h) ≤ R}.
Then

(6.19) ‖aw(x, hD)(I − Π)‖L2→L2 = O(h∞)

and

(6.20) ‖(I − Π)aw(x, hD)‖L2→L2 = O(h∞).

Proof. First of all, observe

(I − Π) =
∑

Ej(h)>R

uj(h)⊗ uj(h),

meaning that

(I − Π)u =
∑

Ej(h)>R

〈uj(h), u〉uj(h).

Therefore

aw(x, hD)(I − Π) =
∑

Ej(h)>R

(aw(x, hD)uj(h))⊗ uj(h);

and so

(6.21) ‖aw(x, hD)(I − Π)‖L2→L2 ≤

 ∑
Ej(h)>R

‖aw(x, hD)uj(h)‖2
L2

 1
2

.
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Next, observe that Weyl’s Law for the harmonic oscillator, Theorem
6.3, implies that

Ej(h) ≥ γj
1
nh

for some constant γ > 0. According then to Theorem 6.5, for each
M < N we have

‖aw(x, hD)uj(h)‖L2 ≤ CN

(
h

Ej(h)

)N
≤ ChM

(
h

Ej(h)

)N−M
≤ ChMj−

N−M
n .

Consequently, if we fix N −M > n, the sum on the right hand side of
(6.21) is less than or equal to ChM . This proves (6.19), and the proof
of (6.20) is similar. �

6.3 SPECTRUM AND RESOLVENTS

We next show that the spectrum of P (h) consists entirely of eigen-
values.

THEOREM 6.7 (Resolvents and spectrum). There exists a con-
stant h0 > 0 such that if 0 < h ≤ h0, then the resolvent

(P (h)− z)−1 : L2(Rn)→ L2(Rn)

is a meromorphic function of z with only simple, real poles.

In particular, the spectrum of P (h) is discrete.

Proof. 1. Let |z| ≤ E, where E is fixed; and as before let P0(h) =
−h2∆ + |x|2 be the harmonic oscillator. As in Theorem 6.6 define

Π := projection in L2 onto

span{u | P0(h)u = E(h)u for E(h) ≤ R + 1}.

Suppose now spt(a) ⊂ {|x|2 + |ξ|2 ≤ R}. Owing to Theorem 6.6, we
have

‖aw(x, hD)− aw(x, hD)Π‖L2→L2 = O(h∞).

and
‖aw(x, hD)− Πaw(x, hD)‖L2→L2 = O(h∞).

2. Fix R > 0 so large that

{|ξ|2 + V (x) ≤ E} ⊂ {|x|2 + |ξ|2 < R}.
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Select χ ∈ C∞(R2n) with spt(χ) ⊂ {|x|2 + |ξ|2 ≤ R} so that

|ξ|2 + V (x)− z + χ ≥ γm

for m = 〈ξ〉2 + 〈x〉k and all |z| ≤ E. Then χ = ΠχΠ + O(h∞). Recall
that the symbolic calculus guarantees that P (h)− z+χ is invertible, if
h is small enough. Consequently, so is P (h)− z + ΠχΠ, since the two
operators differ by an O(h∞) term.

3. Now write

P (h)− z = P (h)− z + ΠχΠ− ΠχΠ

Consequently

P (h)− z = (P (h)− z + ΠχΠ)(I − (P (h)− z + ΠχΠ)−1ΠχΠ)

Note that ΠχΠ is an operator of finite rank. So Theorem D.4 asserts
that the family of operators

(I − (P (h)− z + ΠχΠ)−1ΠχΠ)−1

is meromorphic in z. It follows that (P (h)−z)−1 is meromorphic on L2.
The poles are the eigenvalues, and the self-adjointness of P (h) implies
these eigenvalues are real and simple. �

REMARK: Theorem 6.7 can be obtained more directly by using the
Spectral Theorem and compactness of (P (h) + i)−1.

6.4 WEYL’S LAW

We are now ready for the main result of this chapter:

THEOREM 6.8 (Weyl’s Law). Suppose that V satisfies the condi-
tions (6.10) and that E(h) are the eigenvalues of P (h) = −h2∆+V (x).

Then for each a < b, we have

(6.22) #{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(|{a ≤ |ξ|2 + V (x) ≤ b}|+ o(1)).

as h→ 0.

Proof. 1. Let

N(λ) = #{E(h) | E(h) ≤ λ}.
Select χ ∈ C∞c (R2n) so that

χ ≡ 1 on {p ≤ λ+ ε}, χ ≡ 0 on {p ≥ λ+ 2ε}.
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Then
a := p+ (λ+ ε)χ− λ ≥ γεm,

for m = 〈ξ〉2 + 〈x〉m and some constant γε > 0. Hence a is elliptic; and
so for small h > 0, aw(x, hD) is invertible.

2. Claim #1: We have

(6.23) 〈(P (h) + (λ+ ε)χw(x, hD)− λ)u, u〉 ≥ γ‖u‖2
L2

for some γ > 0.
To see this, take b ∈ S(m1/2) so that b2 = a. Then b2 = b#b + r0,

where r0 ∈ S−1(m). We also recall from Theorem 4.19, or rather its
proof, that bw(x, hD)−1 exists and

bw(x, hD)−1rw
0 (x, hD)bw(x, hD)−1 = O(1)L2→L2 .

Thus
aw(x, hD) = bw(x, hD)bw(x, hD) + rw

0 (x, hD)

= bw(x, hD)

(1 + bw(x, hD)−1rw
0 (x, hD)bw(x, hD)−1)bw(x, hD)

= bw(x, hD)(1 +O(h)L2→L2)bw(x, hD).

Hence for sufficiently small h > 0,

〈(P (h) + (λ+ ε)χw − λ)u, u〉 = 〈aw(x, hD)u, u〉
≥ ‖bw(x, hD)u‖2

L2(1−O(h))

≥ γ‖u‖2
L2 ,

for some γ > 0, since bw(x, hD)−1 exists. This proves (6.23).

3. Claim #2: For each δ > 0, there exists a bounded linear operator
Q such that

(6.24) χw(x, hD) = Q+O(h∞)L2→L2

and

(6.25) rank(Q) ≤ 1

(2πh)n
(|{p ≤ λ+ 2ε}|+ δ).

To prove this, cover the set {p ≤ λ+ 2ε} with balls

Bj := B((xj, ξj), rj) (j = 1, · · · , N)

such that
N∑
j=1

|Bj| ≤ |{p ≤ λ+ 2ε}|+ δ

2
.

Define the “shifted” harmonic oscillator

Pj(h) := |hDx − ξj|2 + |x− xj|2;
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and set

Π := orthogonal projection in L2 onto V , the span of

{u | Pj(h)u = Ej(h)u, Ej(h) ≤ rj, j = 1, . . . , N}.
We now claim that

(6.26) (I − Π)χw(x, hD) = O(h∞)L2→L2 .

To see this, let χ =
∑N

j=1 χj, where sptχj ⊂⊂ B((xj, ξj), rj), and put

Πj := orthogonal projection in L2 onto the span of

{u | Pj(h)u = Ej(h)u, Ej(h) ≤ rj}.
Theorem 6.6 shows that (I − Πj)χ

w
j (x, hD) = O(h∞). We note that

ΠΠj = Πj and hence

(I − Π)χw(x, hD) =
N∑
j=1

(I − Π)χw
j (x, hD)

=
N∑
j=1

(I − Π)(I − Πj)χ
w
j (x, hD)

= O(h∞)L2→L2 .

This proves (6.26).

It now follows that

χw(x, hD) = Πχw(x, hD) + (I − Π)χw(x, hD) = Q+O(h∞)

for
Q := Πχw(x, hD).

Clearly Q has finite rank, since

rankQ = dim(image of Q) ≤ dim(image of Π)

≤
N∑
j=1

#{Ej(h) | Ej(h) ≤ rj}

=
1

(2πh)n

(
N∑
j=1

|Bj|+ o(1)

)
,

according to Weyl’s law for the harmonic oscillator, Theorem 6.3. Con-
sequently

(6.27) rankQ ≤ 1

(2πh)n

(
|{p ≤ λ+ 2ε}|+ δ

2
+ o(1)

)
.

This proves Claim #2.
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4. We next employ Claims #1,2 and Theorem C.8. We have

〈P (h)u, u〉 ≥ (λ+ γ)‖u‖2
L2 − (λ+ ε)〈Qu, u〉+ 〈O(h∞)u, u〉

≥ λ‖u‖2
L2 − (λ+ ε)〈Qu, u〉,

where the rank of Q is bound by (6.27). Theorem C.8,(i) implies then
that

N(λ) ≤ 1

(2πh)n
(|{p ≤ λ+ 2ε}|+ δ + o(1)).

This holds for all ε, δ > 0, and so

(6.28) N(λ) ≤ 1

(2πh)n
(|{p ≤ λ}|+ o(1))

as h→ 0.

5. We must prove the opposite inequality.

Claim #3: Suppose Bj = B((xj, ξj), rj) ⊂ {p < λ}. Then if

Pj(h)u = Ej(h)u

and E(h) ≤ rj, we have

(6.29) 〈P (h)u, u〉 ≤ (λ+ ε+O(h∞))‖u‖2
L2

To prove this claim, select a symbol a ∈ C∞c (R2n), with

a ≡ 1 on {p ≤ λ}, spt(a) ⊂ {p ≤ λ+ ε}.
Let c := 1−a. Then u−aw(x, hD)u = cw(x, hD)u = O(h∞) according
to Theorem 6.6, since spt(1− a) ∩Bj = ∅.

Define bw := P (h)aw(x, hD). Now p ∈ S(m) and a ∈ S(m−1). Thus
b = pa + O(h) ∈ S and so bw is bounded in L2. Observe also that
b ≤ λ+ ε

2
, and so

bw(x, hD) ≤ λ+
3ε

4
.

Therefore

〈P (h)aw(x, hD)u, u〉 = 〈bw(x, hD)u, u〉 ≤
(
λ+

3ε

4

)
‖u‖2

L2 .

Since aw(x, hD)u = u+O(h∞), we deduce

〈P (h)u, u〉 ≤ (λ+ ε+O(h∞))‖u‖2
L2 .

This proves Claim #3.

6. Now find disjoint balls Bj ⊂ {p < λ} such that

|{p < λ}| ≤
N∑
j=1

|Bj|+ δ.
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Let V := span{u | Pj(h)u = Ej(h)u,Ej(h) ≤ rj, j = 1, . . . , N}. Owing
to Claim #3,

〈Pu, u〉 ≤ (λ+ δ)‖u‖2
L2

for all u ∈ V . Also, Theorem 6.3 implies

dimV ≥
N∑
j=1

#{Ej(h) ≤ rj}

=
1

(2πh)n

(
N∑
j=1

|Bj|+ o(1)

)

≥ 1

(2πh)n
(|{p < λ}| − δ + o(1)).

According then to Theorem C.8,(ii),

N(λ) ≥ 1

(2πh)n
(|{p < λ}| − δ + o(1)).

�
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7. Exponential estimates for eigenfunctions

7.1 Classically forbidden regions
7.2 Tunneling
7.3 Order of vanishing

This chapter continues our study of semiclassical behavior of eigen-
functions:

(7.1) P (h)u(h) = E(h)u(h)

for the operator

P (h) = −h2∆ + V (x)

and corresponding symbol

p(x, ξ) = |ξ|2 + V (x).

We first demonstrate that if E(h) is close to the energy level E, then
u(h) exponentially small within the classically forbidden region

V −1(E,∞) = {x ∈ Rn | V (x) > E}.
Then we show, conversely, that in any open set the L2 norm of u(h)
is bounded from below by a quantity exponentially small in h. We
conclude with a discussion of the order of vanishing of eigenfunctions
in the semiclassical limit.

7.1 CLASSICALLY FORBIDDEN REGIONS

We begin with some definitions and general facts.

DEFINITION. Let U ⊂ Rn be an open set. The semiclassical Sobolev
norms are defined as

‖u‖Hk
h(U) :=

∑
|α|≤k

∫
U

|(hD)αu|2 dx

1/2

for u ∈ C∞(U), k = 0, 1, . . . .
These differ from the standard Sobolev norms by the introduction of

appropriate powers of h.

LEMMA 7.1 (Semiclassical elliptic estimates). Let W ⊂⊂ U be
open sets. Then there exists a constant C such that

(7.2) ‖u‖H2
h(W ) ≤ C(‖P (h)u‖L2(U) + ‖u‖L2(U))

for all u ∈ C∞(U).
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Proof. 1. Let χ ∈ C∞c (U), χ ≡ 1 on W . We multiply P (h)u by χ2ū
and integrate by parts:∫

U

h2〈∂(χ2ū), ∂u〉+ (V − E)|u|2χ2 dx =

∫
U

P (h)uūχ2 dx.

Therefore

h2

∫
U

χ2|∂u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx;

and so

h2

∫
W

|∂u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx

2. Similarly, multiply P (h)u by χ2∆ū and integrate by parts, to
deduce

h4

∫
W

|∂2u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx.

�

Before turning again to eigenfunctions, we present the following gen-
eral estimates. Our primary tool will be properly designed conjugations
of the operator P (h).

DEFINITION Given ϕ ∈ C∞(Rn), we define the conjugation of P (h)
by eϕ/h:

(7.3) Pϕ(h) := eϕ/hPe−ϕ/h.

LEMMA 7.2 (Symbol of conjugation). We have

(7.4) Pϕ(h) = (pϕ)w +O(h)

for the symbol

(7.5) pϕ(x, ξ) := |ξ + i∂ϕ(x)|2 + V (x).

Proof. We calculate for functions u ∈ C∞(Rn) that

Pϕ(h)u = eϕ/h(−h2∆ + V )(e−ϕ/hu)

= −h2∆u+ 2h〈∂ϕ, ∂u〉 − |∂ϕ|2u+ V u+ h∆ϕu.

The expression on the right is (pϕ)wu+O(h)u. �

THEOREM 7.3 (Exponential estimate from above). Suppose
that U is an open set such that

U ⊂⊂ V −1(E,∞).
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For each open set W ⊃⊃ U and for each λ near E, there exist
constants h0, δ, C > 0, such that

(7.6) ‖u‖L2(U) ≤ Ce−δ/h‖u‖L2(W ) + C‖(P (h)− λ)u‖L2(W )

for u ∈ C∞c (Rn) and 0 < h ≤ h0.

We call (7.6) an Agmon-type estimate.

Proof. 1. Select ψ, ϕ ∈ C∞c (W ) such that 0 ≤ ψ, ϕ ≤ 1, ψ ≡ 1 on U ,
and ϕ ≡ 1 on spt ψ. We may assume as well that W ⊂⊂ V −1(E,∞).

As in Lemma 7.2, we observe that the symbol of

A(h) := eδψ/h(P (h)− λ)e−δψ/h

is
|ξ + iδ∂ψ|2 + V − λ+O(h).

Now for λ close to E, x ∈ W and δ sufficiently small, we have

(|ξ + iδ∂ψ|2 + V − λ)2 ≥ γ > 0

for some positive constant γ. Then according to the sharp G̊arding
inequality, Theorem 4.21, we see that provided δ > 0 is sufficiently
small,

ϕA(h)∗A(h)ϕ ≥ σ2ϕ2 −OL2→L2(h),

for some constant σ > 0. Hence if h is small enough, we have

ϕA(h)∗A(h)ϕ ≥ 1

2
σ2ϕ2

in the sense of operators.

2. This implies that

‖eδψ/hϕu‖L2 ≤ C‖A(h)(eδψ/hϕu)‖L2 = C‖eδψ/h(P (h)− λ)ϕu‖L2

≤ C‖eδψ/hϕ(P (h)− λ)u‖L2 + C‖eδψ/h[P (h), ϕ]u‖L2 ,

for u ∈ C∞c (Rn).
Next is the key observation that since ϕ ≡ 1 on spt ψ, we have ψ ≡ 0

on spt [P (h), ϕ]u. Thus Lemma 7.1 implies

‖eδψ/h[P (h), ϕ]u‖L2 = ‖[P (h), ϕ]u‖L2

≤ C
(
‖hDxu‖L2(W ) + ‖u‖L2(W )

)
≤ C‖u‖L2(W ) + C‖(P (h)− λ)u‖L2(W ).

Combining these estimates, we conclude that

eδ/h‖u‖L2(U) ≤ ‖eδψ/hu‖L2

≤ C‖u‖L2(W ) + C(eδ/h + 1)‖(P (h)− λ)u‖L2(W ).
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�

Specializing to eigenfunctions, we deduce

THEOREM 7.4 (Exponential decay estimates). Suppose that
U ⊂⊂ V −1(E,∞), and that u(h) ∈ L2(Rn) solves

P (h)u(h) = E(h)u(h),

where

E(h)→ E as h→ 0.

Then there exists a constant δ > 0 such that

(7.7) ‖u(h)‖L2(U) ≤ e−δ/h‖u(h)‖L2(Rn).

7.2 TUNNELING

We continue to assume in this section u = u(h) solves the eigenvalue
problem (7.1).

In the previous section we showed that u(h) is exponentially small
in the physically forbidden region. In this section we will show that it
can never be smaller than this: for small h > 0 and any bounded, open
subset U of Rn, we have the lower bound

‖u‖L2(U) ≥ e−
C
h ‖u‖L2(Rn).

This is a mathematical version of quantum mechanical “tunneling into
the physically forbidden region”.

DEFINITION. Hörmander’s hypoellipticity condition is the require-
ment for the symbol pϕ, defined by (7.5), that

(7.8) if pϕ = 0, then i{pϕ, pϕ} > 0.

Observe that for any complex function q = q(x, ξ),

i{q, q̄} = i{Re q + i Im q, Re q − i Im q} = 2{Re q, Im q}.

Hence the expression i{pϕ, pϕ} is real.

THEOREM 7.5 (L2-estimate for Pϕ(h)). If Hörmander’s condi-
tion (7.8) is valid within W ⊂⊂ Rn, then

(7.9) h1/2‖u‖L2(W ) ≤ C‖Pϕ(h)u‖L2(W )

for all u ∈ C∞c (W ), provided 0 < h ≤ h0 for h0 > 0 sufficiently small.
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Proof. We calculate

‖Pϕ(h)u‖2
L2 = 〈Pϕ(h)u, Pϕ(h)u〉 = 〈P ∗ϕ(h)Pϕu, u〉

= 〈Pϕ(h)P ∗ϕ(h)u, u〉+ 〈[P ∗ϕ(h), Pϕ(h)]u, u〉
= ‖P ∗ϕ(h)u‖L2 + 〈[P ∗ϕ(h), Pϕ(h)]u, u〉.

The idea will be to use the positivity of the second term on the right
hand side wherever P ∗ϕ(h) fails to be elliptic. More precisely, for any
M > 1 and h small enough the calculation above gives

‖Pϕ(h)u‖2
L2 ≥Mh‖P ∗ϕ(h)u‖L2 + 〈[P ∗ϕ(h), Pϕ(h)]u, u〉

= h〈(M |pϕ|2 + i{pϕ, p̄ϕ})wu, u〉 −O(h2)‖u‖2
H2
h
,

the last term resulting from estimates of the lower order terms in p̄ϕ#pϕ
and the commutator. Hörmander’s hypoellipticity condition (7.8) im-
plies for M large enough that

M |pϕ(x, ξ)|2 + i{pϕ, p̄ϕ}(x, ξ) ≥ γ > 0.

for x ∈ W̄ . Then Theorem 4.20, the easy G̊arding inequality, and
Lemma 7.1 show us that

‖Pϕ(h)u‖2
L2 ≥ Ch‖u‖2

L2 −O(h2)(‖Pϕ(h)u‖2
L2 + ‖u‖2

L2).

�

Next we carefully design a weight ϕ, to ensure that Pϕ(h) satisfies
the hypothesis of Theorem 7.5.

LEMMA 7.6 (Constructing a weight). Let 0 < r < R. There ex-
ists a nonincreasing radial function ϕ ∈ C∞(Rn) such that Hörmander’s
hypoellipticity condition (7.8) holds on B(0, R)−B(0, r).

Proof. 1. Recall that

pϕ = |ξ + i∂ϕ|2 + V − E = |ξ|2 + 2i〈ξ, ∂ϕ〉 − |∂ϕ|2 + V − E.

So pϕ = 0 implies both

(7.10) |ξ|2 − |∂ϕ|2 + V − E = 0

and

(7.11) 〈ξ, ∂ϕ〉 = 0.
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Furthermore,

i

2
{pϕ, pϕ} = {Re pϕ, Im pϕ}

= 〈∂ξ(|ξ|2 − |∂ϕ|2 + V − E), 2∂x〈ξ, ∂ϕ〉〉
−〈∂x(|ξ|2 − |∂ϕ|2 + V − E), 2∂ξ〈ξ, ∂ϕ〉〉(7.12)

= 4〈∂2ϕξ, ξ〉+ 4〈∂2ϕ∂ϕ, ∂ϕ〉 − 2〈∂V, ∂ϕ〉.
2. Assume now

ϕ = eλψ,

where λ > 0 will be selected and ψ : Rn → R is positive and radial,
ψ = ψ(|x|). Then

∂ϕ = λ∂ψeλψ

and
∂2ϕ = (λ2∂ψ ⊗ ∂ψ + λ∂2ψ)eλψ.

Hence

〈∂2ϕξ, ξ〉 = (λ2〈∂ψ, ξ〉2 + λ〈∂2ψξ, ξ〉)eλψ = λ〈∂2ψξ, ξ〉eλψ,
since (7.11) implies 〈∂ψ, ξ〉 = 0. Also

〈∂2ϕ∂ϕ, ∂ϕ〉 = λ4|∂ψ|4e3λψ + λ3〈∂2ψ∂ψ, ∂ψ〉e3λψ,

and
〈∂V, ∂ϕ〉 = λ〈∂V, ∂ψ〉eλψ.

According to (7.12), we have

i

2
{pϕ, pϕ} = 4λ〈∂2ψξ, ξ〉eλψ + 4λ4|∂ψ|4e3λψ

+ 4λ3〈∂2ψ∂ψ, ∂ψ〉e3λψ − 2λ〈∂V, ∂ψ〉eλψ.
(7.13)

3. Now take
ψ := µ− |x|,

for a constant µ so large that ψ ≥ 1 on B(0, R). Then ϕ is radial and
nonincreasing. Furthermore

|∂ψ| = 1, |∂2ψ| ≤ C on B(0, R)−B(0, r).

Owing to (7.10) we have

|ξ|2 ≤ C + |∂ϕ|2 ≤ C + Cλ2e2λψ on B(0, R)−B(0, r).

Plugging these estimates into (7.13), we compute

i

2
{pϕ, pϕ} ≥ 2λ4e3λψ − Cλ3e3λψ − C ≥ 1,

in B(0, R)−B(0, r), if λ is selected large enough.
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Lastly, we modify ψ within B(0, r) to obtain a smooth fuction on
B(0, R). �

THEOREM 7.7 (Exponential estimate from below). Let a < b
and suppose U ⊂ Rn is an open set. There exist constants C, h0 > 0
such that if u(h) solves

P (h)u = E(h)u(h) in Rn

for E(h) ∈ [a, b] and 0 < h ≤ h0, then

(7.14) ‖u(h)‖L2(U) ≥ e−
C
h ‖u(h)‖L2(Rn).

We call (7.14) a Carleman-type estimate.

Proof. 1. We may assume without loss that U = B(0, 3r) for some
0 < r < 1

3
. Select R > 1 so large that

p(x, ξ)− λ = |ξ|2 + V (x)− λ ≥ |ξ|2 + 〈x〉k

for |x| ≥ R and a ≤ λ ≤ b. Since p − E(h) is therefore elliptic on
Rn −B(0, R), we have the estimate

(7.15) ‖v‖L2(Rn−B(0,R)) ≤ C‖(P (h)− E(h))v‖L2(Rn−B(0,R))

for all v ∈ C∞c (Rn −B(0, R)).

2. Select two radial functions χ1, χ2 : Rn → R such that 0 ≤ χ1 ≤ 1
and 

χ1 ≡ 0 on B(0, r),

χ1 ≡ 1 on B(0, R + 2)−B(0, 2r),

χ1 ≡ 0 on R2n −B(0, R + 3);

and 0 ≤ χ2 ≤ 1, {
χ2 ≡ 0 on B(0, R)

χ2 ≡ 1 on R2n −B(0, R + 1).

Applying (7.15) to v = χ2u gives

‖χ2u‖L2 ≤ C‖(P (h)− E(h))(χ2u)‖L2 = C‖[P (h), χ2]u‖L2 .
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Now [P (h), χ2]u = −h2u∆χ2−2h2〈∂χ2, ∂u〉, and consequently [P (h), χ2]u
is supported within B(0, R + 1)−B(0, R). Hence Lemma 7.1 implies

‖[P (h), χ2]u‖L2 ≤ Ch‖u‖H1
h(B(0,R+1)−B(0,R))

≤ Ch(‖P (h)u‖L2(B(0,R+2)−B(0,R−1))

+ ‖u‖L2(B(0,R+2)−B(0,R−1)))

≤ Ch‖u‖L2(B(0,R+2)−B(0,R−1))

≤ Ch‖χ1u‖L2

Therefore

(7.16) ‖χ2u‖L2 ≤ Ch‖χ1u‖L2 .

3. Next apply Theorem 7.5:

h1/2‖e
ϕ
hχ1u‖L2 ≤ C‖e

ϕ
h (P (h)− E(h))(χ1u)‖L2 = C‖e

ϕ
h [P (h), χ1]u‖L2

Now [P (h), χ1] is supported within the union of B(0, 2r) − B(0, r)
and B(0, R + 3)− B(0, R + 2). Since ϕ is nonincreasing, we therefore
have

‖e
ϕ
h [P (h), χ1]u‖L2 ≤ Che

ϕ(R+2)
h ‖χ2u‖H1

h(B(0,R+3)−B(0,R+2))))

+ Che
ϕ(0)
h ‖u‖H1

h(B(0,2r).

The right hand sides can be estimated by Lemma 7.1. This gives

(7.17) ‖e
ϕ
hχ1u‖L2 ≤ Ch1/2e

ϕ(R+2)
h ‖χ2u‖L2 + Ch1/2e

ϕ(0)
h ‖u‖L2(U).

4. Select a constant A > 0 so that{
ϕ > A on B(0, R + 1)−B(0, R)

ϕ < A on B(0, R + 3)−B(0, R + 2).

Multiply (7.16) by eA/h and add to (7.17):

‖e
A
h χ2u‖L2 + ‖e

ϕ
hχ1u‖L2

≤ Ch‖e
ϕ
hχ1u‖L2 + Ch1/2‖e

A
h χ2u‖L2 + Ch1/2e

ϕ(0)
h ‖u‖L2(U).

Take 0 < h ≤ h0, for h0 sufficiently small, to deduce

‖e
A
h χ2u‖L2 + ‖e

ϕ
hχ1u‖L2 ≤ Ch1/2e

ϕ(0)
h ‖u‖L2(U).

Since χ1 +χ2 ≥ 1 on Rn−B(0, 2r) = Rn−U , the Theorem follows. �

7.3 ORDER OF VANISHING

Assume, as usual, that

(7.18) P (h)u(h) = E(h)u(h),
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where E(h) ∈ [a, b]. To simplify notation, we will in this subsection
write u for u(h).

We propose now to give an estimate for the order of vanishing of u,
following a suggestion of N. Burq.

DEFINITION. We say u vanishes to order N at the point x0 if

u(x) = O(|x− x0|N) as x→ x0.

We will consider potentials which are analytic in x and, to avoid tech-
nical difficulties, make a strong assumption on the growth of deriva-
tives:

(7.19) V (x) ≥ 〈x〉m/C0 − C0, |∂αV (x)| ≤ C
1+|α|
0 |α||α|〈x〉m

for some m > 0 and all multiindices α.

We note that the second condition holds when V has a holomorphic
extension bounded by |z|m into a conic neighbourhood of Rn in Cn.

THEOREM 7.8 (Semiclassical estimate on vanishing order).
Suppose that u ∈ L2 solves (7.18) for a ≤ E(h) ≤ b and that V a real
analytic potential satisfying (7.19). Let K be compact subset of Rn.

Then there exists a constant C such that if u vanishes to order N at
a point x0 ∈ K, we have the estimate

(7.20) N ≤ Ch−1.

We need the following lemma to establish analyticity of the solution
in a semiclassically quantitative way:

LEMMA 7.9 (Semiclassical derivative estimates). If u satisfies
the assumptions of Theorem 7.8, then there exists a constant C1 such
that for any positive integer k:

(7.21) ‖u‖Hk
h(Rn) ≤ Ck

1 (1 + kh)k‖u‖L2(Rn).

Proof. 1. By adding C0 to V we can assume without loss that V (x) ≥
〈x〉m/C0. The Lemma will follow from the following stronger estimate,
which we will prove by induction:

‖〈x〉m/2(hD)αu‖L2 + ‖(h∂)(hD)αu‖L2

≤ Ck+2
2 (1 + kh)k+1‖u‖L2 .

(7.22)

for |α| = k.
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2. To prove this inequality, we observe first that our multiplying
(7.18) by ū and integrating by parts shows that estimate (7.22) holds
for |α| = 0

Next, note that

‖V
1
2 (hD)αu‖2

L2 + ‖(h∂)(hD)αu‖2
L2

= 〈(−h2∆ + V − E(h))(hD)αu, (hD)αu〉+ E(h)‖(hD)αu‖2
L2

= 〈V −
1
2 [V, (hD)α]u, V

1
2 (hD)αu〉+ E(h)‖(hD)αu‖2

L2

≤ 2‖V −
1
2 [V, (hD)α]u‖2

L2 +
1

2
‖V

1
2 (hD)αu‖2

L2 + E(h)‖(hD)αu‖2
L2 .

Hence

1

2
‖V

1
2 (hD)αu‖2

L2 + ‖(h∂)(hD)αu‖2
L2

≤ 2‖V −
1
2 [V, (hD)α]u‖2

L2 + E(h)‖(hD)αu‖2
L2 .

(7.23)

3. We can now expand the commutator, to deduce from (7.19) (with
V replaced by V + C0) the inequality:

‖V −
1
2 [V, (hD)α]u‖L2 ≤

k−1∑
l=0

(
k

l

)
Ck−l+1

0 (h(k − l))k−l sup
|β|=l
‖〈x〉m/2(hD)βu‖L2 .

(7.24)

We proceed by induction, and so now assume that (7.22) is valid for
|α| < k. Now Stirling’s formula implies(

k

l

)
≤ C

kk

ll(k − l)k−l
.

Hence, in view of (7.23) and (7.24), it is enough to show that there
exists a constant C2 such that

k−1∑
l=0

hk−l
kk

ll
Ck−l+1

0 C l+2
2 (1 + lh)l+1 + Ck+1

2 (1 + hk)k ≤ Ck+2
2 (1 + hk)k+1.

This estimate we can rewrite as

C0

k−1∑
l=1

(
C0

C2

)k−l
(hl)−l(1 + hl)l(1 + hl) + C−1

2 (hk)−k(1 + hk)k

≤ (hk)−k(1 + hk)k(1 + hk).
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Since we can choose C2 to be large and since we can estimate the (1+hl)
factor in the sum by (1 + hk), this will follow once we show that for ε
small enough,

k−1∑
l=0

εk−lal ≤ ak for al := (1 + (hl)−1)l.

This is true by induction if ak−1/ak is bounded:

k−1∑
l=0

εk−lal ≤ 2εak−1.

In our case,

ak−1

ak
=

(
1 + (h(k − 1))−1

1 + (hk)−1

)k−1

(1 + (hk)−1)−1

=

(
1 +

1

(k − 1)(1 + hk)

)k−1

(1 + (hk)−1)−1

≤ exp

(
1

1 + hk

)
hk

1 + hk
< 1.

�

Proof of Theorem 7.8: Assume now that ‖u‖L2 = 1 and that u vanishes
to order N at a point x0 ∈ K.

Then Dαu(x0) = 0 for |α| < N and Taylor’s formula shows that

(7.25) |u(x)| ≤ εN

N !
sup
|α|=N

sup
y∈Rn
|Dαu(y)| for |x− x0| < ε.

The Sobolev inequality (Lemma 3.5) and Lemma 7.9 allow us to
estimate the derivatives. If say M = N + n and |α| = N , then

sup
y∈Rn
|Dαu(y)| ≤ ‖u‖HM ≤ h−M‖u‖HM

h
≤ h−MCM

1 (1 + hM)M .

Inserting this into (7.25) and using Stirling’s formula, we deduce that
if for |x− x0| < ε, then

|u(x)| ≤
(eε
N

)N (C
h

)M
(1 + hM)M ≤

(
N

eε

)n(
eεC

Nh

)M
(1 + hM)M .
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If we put A := Mh, then for ε small enough we have, with K = Cε−1

large,

|u(x)| ≤ (KAh−1)n
(

1

KA

)Ah−1

(1 + A)Ah
−1

= (KAh−1)n(1 + 1/A)Ah
−1

exp(−Ah−1 logK).

We can assume that A is large, as otherwise there is nothing to prove.
Hence

|u(x)| ≤ exp(−αAh−1),

for α > 0 and |x− x0| < ε. It follows that∫
{|x−x0|<ε}

|u(x)|2 dx ≤ C1e
−2αA/h,

uniformly in h. But according to Theorem 7.7,∫
{|x−x0|<ε}

|u(x)|2 dx > e−C2/h.

Consequently A = Mh = (N + n)h is bounded, and this means that
N ≤ Ch−1, as claimed. �

EXAMPLE : Optimal order of vanishing. Theorem 7.8 is optimal
in the semiclassical limit, meaning as regards the dependence on h in
estimate (7.20).

We can see this by considering the harmonic oscillator in dimension
n = 2. In polar coordinates (r, θ) the harmonic oscillator for h = 1
takes the form

P0 = r−2((rDr)
2 +D2

θ + r4).

The eigenspace corresponding to the eigenvalue 2k + 2 has dimension
k + 1, corresponding to the number of multiindicies α = (α1, α2), with
|α| = α1 + α2 = k. Separating variables, we look for eigenfunctions of
the form

u = ukm(r)eimθ.

Then
r−2((rDr)

2 +m2 + r4 − (2n+ 1)r2)ukm(r) = 0.

Since the number of linearly independent eigenfunctions is k+ 1, there
must be solution for some integer m > k/2. Near r = 0, we have the
asymptotics ukm ' r±m, and the case ukm ' r−m is impossible since
u ∈ L2. Therefore u ' rm has to vanish to order m.

Rescaling to the semiclassical case, we see that for the eigenvalue
E(h) = (2k + 1)h ' 1 we have an eigenfunction vanishing to order
' 1/h. �
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8. Quantum ergodicity

8.1 Classical ergodicity
8.2 Egorov’s Theorem
8.3 Weyl’s Theorem generalized
8.4 A quantum ergodic theorem

In this chapter we are given a smooth potential V on a compact
Riemannian manifold (M, g) and write

(8.1) p(x, ξ) = |ξ|2g + V (x)

for (x, ξ) ∈ T ∗M , the cotangent space of M . As explained in Appendix
E, the associated quantum operator is

(8.2) P (h) = −h2∆g + V,

and the Hamiltonian flow generated by p is denoted

ϕt = exp(tHp) (t ∈ R).

We address in this chapter quantum implications of ergodicity for the
classical evolution {ϕt}t∈R. The proofs will rely on various advanced
material presented in Appendix E.

8.1 CLASSICAL ERGODICITY

We hereafter select a < b, and assume that

(8.3) |∂p| ≥ γ > 0 on {a ≤ p ≤ b}.
According then to the Implicit Function Theorem, for each a ≤ c ≤ b,
the set

Σc := p−1(c)

is a smooth, 2n − 1 dimensional hypersurface in the cotangent space
T ∗M . We can interpret Σc as an energy surface.

NOTATION. For each c ∈ [a, b], we denote by µ Liouville measure
on the hypersurface Σc = p−1(c) corresponding to p. This measure is
characterized by the formula∫∫

p−1[a,b]

f dxdξ =

∫ b

a

∫
Σc

f dµ dc

for all a < b and each continuous function f : T ∗M → Rn.

DEFINITION. Let m ∈ Σc and f : T ∗M → C. For T > 0 we define
the time average

(8.4) 〈f〉T :=
1

T

∫ T

0

f ◦ ϕt(m) dt =

∫
−
T

0

f ◦ ϕt(m) dt,
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the slash through the second integral denoting an average. Note care-
fully that 〈f〉T = 〈f〉T (m) depends upon the starting point m.

DEFINITION. We say the flow ϕt is ergodic on p−1[a, b] if for each
c ∈ [a, b],

(8.5)

{
if E ⊆ Σc is flow invariant, then

either µ(E) = 0 or else µ(E) = µ(Σc).

In other words, we are requiring that each flow invariant subset of the
energy level Σc have either zero measure or full measure.

THEOREM 8.1 (Mean Ergodic Theorem). Suppose the flow is
ergodic on Σc := p−1(c). Then for each f ∈ L2(Σc, µ) we have

(8.6) lim
T→∞

∫
Σc

(
〈f〉T −

∫
Σc

f dµ

)2

dµ = 0.

REMARK. According to Birkhoff’s Ergodic Theorem,

〈f〉T →
∫

Σc

f dµ as T →∞,

for µ–a.e. point m belonging to Σc, But we will only need the weaker
statement of Theorem 8.1. �

Proof. 1. Define

A := {f ∈ L2(Σc, µ) | ϕ∗tf = f for all times t},
B0 := {Hpg | g ∈ C∞(Σc)}, B := B̄0.

We claim that

(8.7) h ∈ B⊥0 if and only if h ∈ A.
To see this, first let h ∈ A and f = Hpg ∈ B0. Then∫

Σc

hf̄ dµ =

∫
Σc

hHpg dµ =
d

dt

∫
Σc

hϕ∗tg dµ|t=0

=
d

dt

∫
Σc

ϕ∗−thg dµ|t=0 =
d

dt

∫
Σc

hg dµ|t=0 = 0;

and consequently h ∈ B⊥0 .

Conversely, suppose h ∈ B⊥0 . Then for any g ∈ C∞, we have

0 =

∫
Σc

hHpϕ∗−tg dµ =
d

dt

∫
Σc

hϕ∗−tg dµ =
d

dt

∫
Σc

ϕ∗th g dµ.
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Therefore for all times t and all functions g,∫
Σc

ϕ∗th g dµ =

∫
Σc

h g dµ.

Hence ϕ∗th ≡ h, and so h ∈ A.

2. It follows from (8.7) that we have the orthogonal decomposition

L2(Σc, µ) = A⊕B.
Thus if we write f = fA + fB, for fA ∈ A, fB ∈ B, then

〈fA〉T ≡ fA

for all T .
Now suppose fB = Hpg ∈ B0. We can then compute∫

Σc

|〈fB〉T |2 dµ =
1

T 2

∫
Σc

∣∣∣∣∫ T

0

(d/dt)ϕ∗tgdt

∣∣∣∣2 dµ
=

1

T 2

∫
Σc

|ϕ∗Tg − g|
2 dµ

≤ 4

T 2

∫
Σc

|g|2dµ−→ 0,

as T →∞. Since fB ∈ B := B0, we have 〈fB〉T → 0 in L2(Σc, dµ).

3. The ergodicity hypothesis is equivalent to saying that A consists
of constant functions. Indeed, for any h ∈ A, the set h−1([α,∞)) is
invariant under the flow, and hence has either full measure or measure
zero. Since the functions in L2(Σc, dµ) are defined up to sets of measure
zero, h is equivalent to a constant function.

Lastly, observe that the orthogonal projection f 7→ fA is just the
space average with respect to µ. This proves (8.6). �

8.2 EGOROV’S THEOREM

We next estimate the difference between the classical and quantum
evolutions governed by our symbol p(x, ξ) = |ξ|2 + V (x).

NOTATION. (i) We write

(8.8) e−
itP (h)
h (t ∈ R)

for the unitary group on L2(M) generated by the self-adjoint operator
P (h).

Note that since P (h)uj(h) = Ej(h)uj(h), we have

(8.9) e−
itP (h)
h uj(h) = e−

itEj
h uj(h) (t ∈ R).
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(ii) If A is a symbol in Ψ−∞, we also write

(8.10) At := e
itP (h)
h Ae−

itP (h)
h (t ∈ R).

THEOREM 8.2 (Weak form of Egorov’s Theorem). Fix a time
T > 0 and define for 0 ≤ t ≤ T

(8.11) Ãt := Op(at),

where

(8.12) at(x, ξ) := a(ϕt(x, ξ)).

Then

(8.13) ‖At − Ãt‖L2→L2 = O(h) uniformly for 0 ≤ t ≤ T.

Proof. We have
d

dt
at = {p, at}.

Recall from Appendix E that σ denotes the symbol of an operator.
Then, since σ

(
i
h
[P (h), B]

)
= {p, σ(B)}, it follows that

(8.14)
d

dt
Ãt =

i

h
[P (h), Ãt] + Et,

with an error term ‖Et‖L2→L2 = O(h). Hence

d

dt

(
e−

itP (h)
h Ãte

itP (h)
h

)
= e−

itP (h)
h

(
d

dt
Ãt −

i

h
[P (h), Ãt]

)
e
itP (h)
h

= e−
itP (h)
h

(
i

h
[P (h), Ãt] + Et −

i

h
[P (h), Ãt]

)
e
itP (h)
h

= e−
itP (h)
h Ete

itP (h)
h = O(h).

Integrating, we deduce

‖e−
itP (h)
h Ãte

itP (h)
h − A‖L2→L2 = O(h);

and so

‖Ãt − At‖L2→L2 = ‖Ãt − e
itP (h)
h Ae−

itP (h)
h ‖L2→L2 = O(h),

uniformly for 0 ≤ t ≤ T . �

8.3 WEYL’S THEOREM GENERALIZED
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NOTATION. We hereafter consider the eigenvalue problems

P (h)uj(h) = Ej(h)uj(h) (j = 1, . . . ).

To simplify notation a bit, we write uj = uj(h) and Ej = Ej(h). We
assume as well the normalization

(8.15) ‖uj‖L2(M) = 1.

The following result generalizes Theorem 6.8, showing that we can
localize the asymptotics using a quantum observable:

THEOREM 8.3 (Weyl’s Theorem generalized). Let B ∈ Ψ(M).
Then

(8.16) (2πh)n
∑

a≤Ej≤b

〈Buj, uj〉 →
∫∫
{a≤p≤b}

σ(B) dxdξ.

REMARK. If B = I, whence σ(B) ≡ 1, (8.16) reads

(2πh)n#{a ≤ Ej ≤ b} → Vol({a ≤ p ≤ b}).
This is the usual form of Weyl’s Law, Theorem E.7. �

Proof. 1. We first assume that B ∈ Ψ−∞; so that the operator B :
L2(M)→ L2(M) is of trace class. According to Lidskii’s Theorem C.9
from Appendix B, we have

(8.17) tr(B) =
1

(2πh)n

(∫
M

∫
Rn
σ(B) dxdξ +O(h)

)
.

2. Fix a small munber ε > 0 and write Ωε := p−1(a − ε, a + ε) ∪
p−1(b− ε, b+ ε). Select ψε ∈ C∞c , ϕε ∈ C∞ so that

WFh(ψε) ⊂ {a < p < b}
WFh(ϕε) ⊂ {p < a} ∪ {p > b}
WFh(I − ϕε + ψε) ⊂ Ωε.

Define

Π := projection onto the span of {uj | a ≤ Ej ≤ b}.
We claim that

(8.18)

{
ψεΠ = ψε +O(h∞)

ϕεΠ = O(h∞).

The second assertion follows by an adaptation of the proof of Theorem
E.7.
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To establish the first part, we need to show that ψε(I−Π) = O(h∞).
We can find f satisfying the assumptions of Theorem 7.6 and such
that ψε(x, ξ)/f(p(x, ξ)) is smooth. Using a symbolic construction we
can find Tε ∈ Ψ−∞ with WFh(Tε) = WFh(ψε), for which

ψε(I − Π) = Tεf(P )(I − Π) +O(h).

The first term on the right hand side can be rewritten as∑
Ej(h)<a,Ej(h)>b

f(Ej(h))Tεuj ⊗ ūj.

The rough estimate (E.31) and the rapid decay of f show that for
all M we have the bound

f(Ej(h)) ≤ CM(hj)−M .

The proof of Theorem 6.4 shows also that Tεuj = O(h∞), uniformly in
j. Hence

‖Tεf(P )(I − Π)‖L2→L2 = O(h∞).

3. We now write∑
a≤Ej≤b

〈Buj, uj〉 = tr(ΠBΠ)

= tr(ΠB(ψε + ϕε + (1− ϕε − ψε)Π).

Using (8.18) we see that

(2πh)ntr(ΠBϕεΠ) = O(h).

The Weyl Law given in Theorem E.7 implies

(2πh)ntr(ΠB(1− ϕε − ψε)Π) = O(ε),

since 1− ϕε − ψε 6= 0 only on Ωε. Furthermore,

(2πh)ntr(ΠBψεΠ)

= (2πh)ntr(ΠBψε) +O(h∞)

= (2πh)ntr(((ψε + ϕε

+ (1− ϕε − ψε)ΠBψε) +O(h∞)

= (2πh)ntr(ψεBψε) +O(h∞) +O(ε).
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Combining these calculations gives

(2πh)n
∑

a≤Ej≤b

〈Buj, uj〉 = (2πh)ntr(ψεBψε) +O(h) +O(ε)

=

∫∫
σ(ψε)

2σ(B) dxdξ +O(h) +O(ε)

→
∫∫
{a≤p≤b}

σ(B) dxdξ

as h→ 0, ε→ 0.

4. Finally, to pass from B ∈ Ψ−∞ to an arbitrary B ∈ Ψ, we
decompose the latter as

B = B0 +B1,

with B0 ∈ Ψ−∞ and

WFh(B0) ⊂ {a− 2 < p < b+ 2},
WFh(B1) ∩ {a− 1 < p < b+ 1} = ∅.

We have B1uj = O(h∞) for a ≤ Ej(h) ≤ b; and hence only the B0 part
contributes to the limit. �

8.4 A QUANTUM ERGODIC THEOREM

Assume now that A ∈ Ψ(M) has the symbol σ(A) with the property
that

(8.19) α :=

∫
−

Σc

σ(A) dµ is the same for all c ∈ [a, b],

where the slash through the integral denotes the average. In other
words, we are requiring that the averages of the symbol of A over each
level surface p−1(c) are equal.

THEOREM 8.4 (Quantum ergodicity). Assume the ergodic con-
dition (8.5) and that A ∈ Ψ(M) satisfies the condition (8.19).

(i) Then

(8.20) (2πh)n
∑

a≤Ej≤b

∣∣∣∣〈Auj, uj〉 − ∫−
{a≤p≤b}

σ(A) dxdξ

∣∣∣∣2 −→ 0.

(ii) In addition, there exists a family of subsets Λ(h) ⊆ {a ≤ Ej ≤ b}
such that

(8.21) lim
h→0

#Λ(h)

#{a ≤ Ej ≤ b}
= 1;
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and for each A ∈ Ψ(M) satisfying (8.19), we have

(8.22) 〈Auj, uj〉 →
∫
−
{a≤p≤b}

σ(A) dxdξ as h→ 0

for Ej ∈ Λ(h).

Proof. 1. We first show that assertion (i) implies (ii). For this, let

(8.23) B := A− αI,
α defined by (8.19). Then

∫
{a≤p≤b} σ(B) dxdξ = 0. According to (8.20),

(2πh)n
∑

a≤Ej≤b

〈Buj, uj〉2 =: ε(h)→ 0.

Define
Γ(h) := {a ≤ Ej ≤ b | 〈Buj, uj〉2 ≥ ε1/2(h)};

so that
(2πh)n#Γ(h) ≤ ε(h)1/2.

Next, write
Λ(h) := {a ≤ Ej ≤ b} − Γ(h).

Then if Ej ∈ Λ(h),

|〈Buj, uj〉| ≤ ε1/4(h);

and so
|〈Auj, uj〉 − α| ≤ ε1/4(h).

Also,
#Λ(h)

#{a ≤ Ej ≤ b}
= 1− #Γ(h)

#{a ≤ Ej < b}
.

But according to Weyl’s law,

#Γ(h)

#{a ≤ Ej ≤ b}
=

(2πh)n#Γ(h)

Vol({a ≤ p ≤ b}) + o(1)
≤ Cε(h)1/2 → 0.

This proves (ii).

2. Next we establish assertion (i). Let B be again given by (8.23);
so that in view of our hypothesis (8.19)

(8.24)

∫
Σc

σ(B) dµ = 0 for each c ∈ [a, b].

Define
ε(h) := (2πh)n

∑
a≤Ej≤b

〈Buj, uj〉2;

we must show ε(h)→ 0.
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Now

〈Buj, uj〉 = 〈Be−
itEj
h uj, e

−
itEj
h uj〉 = 〈Be−

itP (h)
h uj, e

− itP (h)
h uj〉

according to (8.9). Consequently

(8.25) 〈Buj, uj〉 = 〈e
itP (h)
h Be−

itP (h)
h uj, uj〉 = 〈Btuj, uj〉

in the notation of (8.10). This identity is valid for each time t ∈ R.
We can therefore average:

(8.26) 〈Buj, uj〉 = 〈
∫
−
T

0

Bt dt uj, uj〉 = 〈〈B〉Tuj, uj〉,

for

〈B〉T :=
1

T

∫ T

0

Bt dt =

∫
−
T

0

Bt dt.

Now since ‖uj‖2 = 1, (8.26) implies

〈Buj, uj〉2 = 〈〈B〉Tuj, uj〉2 ≤ ‖〈B〉Tuj‖2 = 〈〈B∗〉T 〈B〉Tuj, uj〉.
Hence

(8.27) ε(h) ≤ (2πh)n
∑

a≤Ej≤b

〈〈B∗〉T 〈B〉Tuj, uj〉

3. Theorem 8.2 tells us that

〈B〉T = 〈B̃〉T +OT (h), 〈B̃〉T :=

∫
−
T

0

B̃t dt,

where B̃t ∈ Ψ(M) and σ(B̃t) = ϕ∗tσ(B). Hence

σ(〈B̃〉T ) =

∫
−
T

0

σ(B) ◦ ϕt dt+OT (h) = 〈σ(B)〉T +OT (h).

as h→ 0.

Since modulo O(h) errors we can replace eitP (h)/hBe−itP (h)/h by B̃t,
Theorem 8.3 shows that

lim sup
h→0

ε(h) ≤
∫∫
{a≤p≤b}

σ(〈(B̃∗〉T 〈B̃〉T ) dxdξ

=

∫∫
{a≤p≤b}

|σ(〈B〉T ))|2 dxdξ,
(8.28)

as the symbol map is multiplicative and the symbol of an adjoint is
given by the complex conjugate.

4. We can now apply Theorem 8.1 with f = σ(B), to conclude that∫
p−1[a,b]

|〈σ(B)〉T |2dxdξ → 0,
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as T →∞. Since the left hand side of (8.28) is independent of T , this
calculation shows that the limit must in fact be zero. �

APPLICATION. The simplest and most striking application con-
cerns the complete set of eigenfuctions of the Laplacian on a compact
Riemannian manifold:

−∆guj = λjuj (j = 1, . . . ),

normalized so that
‖uj‖L2(M) = 1.

THEOREM 8.5 (Equidistribution of eigenfunctions). There ex-
ists a sequence jk →∞ of density one,

lim
m→∞

#{k | jk ≤ m}
m

= 1,

such that for any f ∈ C∞(M),

(8.29)

∫
M

|ujk |2f dvolg →
∫
M

f dvolg.
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9. More on the symbol calculus

9.1 Wavefront sets, essential support
9.2 Application: L∞ bounds
9.3 Beals’s Theorem
9.4 Application: exponentiation of operators
9.5 Invariance, half-densities
9.6 Changing variables
9.7 New symbol classes

This chapter collects together various more advanced topics concern-
ing the symbol calculus, discussing in particular a semiclassical version
of Beals’s characterization of pseudodifferential operators and invari-
ance properties under changes of variable. Chapter 10 will provide
further applications.

9.1 WAVEFRONT SETS, ESSENTIAL SUPPORT

We devote this section to a few concepts built around the semiclas-
sical wavefront set of a collection of functions bounded in L2:

DEFINITION. Let u = {u(h)}0<h≤h0 be a family of functions bounded
in L2(Rn). We define the semiclassical wavefront set

WFh(u)

to the complement of the set of points (x0, ξ0) ∈ R2n for which there
exists a symbol a ∈ S such that

(9.1) a(x0, ξ0) 6= 0

and

(9.2) ‖aw(x, hD)u(h)‖L2 = O(h∞).

The definition of wavefront sets does not depend on the choice of co-
ordinates. We note that this is a local property of the family {u(h)}0<h≤h0

in phase space: see Theorem 9.2 below. The meaning of the wavefront
set is elucidated by the following

THEOREM 9.1 (Localization and wavefront sets). Suppose that

(x0, ξ0) /∈WFh(u).

Then for any b ∈ C∞c (R2n) with support sufficiently close to (x0, ξ0),
we have

bw(x, hD)u(h) = OL2(h∞).
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Proof. 1. Suppose a ∈ S, a(x0, ξ0) 6= 0. There exists χ ∈ C∞(R2n)
supported near (x0, ξ0) such that

|χ(x, ξ)(a(x, ξ)− a(x0, ξ0)) + a(x0, ξ0)| ≥ γ > 0

for (x, ξ) ∈ R2n. Then according to Theorem 4.19 there exists c ∈ S
such that

cw(x, hD)(χw(x, hD)aw(x, hD) + a(x0, ξ0)(I − χw(x, hD))) = I.

2. Now consider

bw(x, hD)u(h) =bw(x, hD)cw(x, hD)χw(x, hD)aw(x, hD)u(h)

+ bw(x, hD)a(x0, ξ0)(I − χw(x, hD)))u(h).

If we choose a to be the symbol appearing in (9.2), then the first term
on the right hand side is bounded by O(h∞) in L2. If the support of
b is sufficiently close to (x0, ξ0) then spt(b) ∩ spt(1 − χ) = ∅ and the
second term has the same property, according to Theorem ????? �

Since compactness of the support is not preserved by changes of
variables or by other operations such as composition, we introduce the
more flexible notion of the essential support.

DEFINITION. Let a = {a(x, ξ, h)}0<h≤h0 be an h-dependent family
of symbols in S. The essential support of a is the smallest closed set
K ⊆ Rn × Rn such that

(9.3) sptχ ∩K = ∅ implies χa = OS(h∞)

for each χ ∈ S. We write

ess-spt(a)

for the essential support.
Recall that a symbol b = b(x, ξ, h) satisfies b = OS(h∞) if

|∂αb| ≤ Cα,Nh
N

for all multiindices α and nonnegative integers N .

REMARK. We will see later, in the proof of Theorem 9.12, that this
notion does not depend on the choice of coordinates. In particular, if
γ is a diffeomorphism and Op(aγ) = Op((γ−1)∗Op(a)γ∗), then

(9.4) ess-spt(aγ) = {(γ(x), (∂γ(x)T )−1ξ) | (x, ξ) ∈ ess-spt(a)}.
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THEOREM 9.2 (Wavefront sets and pseudodifferential oper-
ators). Suppose that a = {a(x, ξ, h)}0<h≤h0 ⊂ S(m) for some order
function m, and that u = {u(h)}0<h≤h0 is bounded in L2(Rn).

Then

(9.5) WFh(a
wu) ⊂WFh(u) ∩ ess-spt(a)

for awu := {aw(x, hD, h)u(h)}0<h≤h0 .

Proof: 1. We need to show that if (x0, ξ0) /∈ WFh(u) or if (x, ξ) /∈
ess-spt(a), then (x, ξ) /∈WFh(a

wu).

2. Suppose first that (x0, ξ0) /∈WFh(u). Choose b ∈ C∞c (R2n), with
b(x0, ξ0) 6= 0 and bw(x, hD)u(h) = OL2(h∞). The existence of such b
is clear from Theorem 9.1. Now the pseudodifferential calculus shows
that

bw(x, hD)aw(x, hD, h) = cw(x, hD, h) + rw(x, hD, h),

where spt c ⊂ spt b and r ∈ S−∞(1). Theorem 9.1 implies that

‖bw(x, hD)aw(x, hD, h)u(h)‖L2 = O(h∞).

This shows that (x0, ξ0) /∈WFh(a
wu).

3. Now assume that (x0, ξ0) /∈ ess-spt(a) and use the same b as
above. If the support of b is sufficiently close to (x0, ξ0), (9.3) im-
plies that bw(x, hD)aw(x, hD, h) = cw(x, hD, h), where c = OL2(h∞).
Consequently

‖bw(x, hD)aw(x, hD, h)u(h)‖L2 = O(h∞).

�

REMARK. In view of (9.5) we have an alternative definition of
ess-spt(a), which makes sense on manifolds:

(9.6)

{
(x, ξ) /∈ ess-spt(a) if and only if (x, ξ) /∈WFh(a

wu)

for each family u = {u(h)}0<h≤h0 bounded in L2.

Theorem 9.2 also motivates the following

DEFINITION. Let A be an h-dependent family of operators. We
define the wavefront set of A to be

(9.7) WFh(A) :=
⋃

WFh(u) ∩WFh(Au),

the union taken over all families {u(h)}0<h≤h0 bounded in L2.
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In view of (9.6), if A = aw, then

WFh(A) = ess-spt(a)

and hence is a closed set.

9.2 APPLICATION: L∞ BOUNDS

Here we will show how a natural frequency localization condition
on approximate solutions to pseudodifferential equations implies h-
dependent L∞ bounds. As an application we will provide bounds on
eigenfuction clusters for compact Riemannian manifolds.

We start with the following semiclassical version of the Sobolev in-
equality (Lemma 3.5):

THEOREM 9.3 (Basic L∞ bounds). Suppose that {u(h)}0<h≤h0

is bounded in L2(Rn) and there exists ψ ∈ C∞c (Rn) such that

(9.8) ‖(1− ψ(hD))u(h)‖L2(Rn) = O(h∞)‖u(h)‖Hk(Rn) , for all k.

Then

(9.9) ‖u(h)‖L∞(Rn) ≤ Ch−n/2‖u(h)‖L2(Rn).

We regard (9.8) as a frequency localization condition.

Proof: 1. We can assume that ‖u(h)‖L2 = 1.
We can also suppose that u(h) is compactly supported. Indeed, if

ϕ ∈ C∞c (Rn), then

(1− ψ(hD))ϕ = ϕ(1− ψ(hD)) + r(x, hD)

with r ∈ S and ess-spt(r) compact. We now choose ψ1 ∈ C∞c for which

(1− ψ1)(1− ψ) = (1− ψ1), (1− ψ1)|ess-spt(r) = 0.

Then

(1− ψ1(hD))ϕu(h) = (1− ψ1(hD))ψ(1− ψ(hD))u(h)

+ (1− ψ1(hD))r(x, hD)u(h)

= OL2(h∞).

2. The condition (9.8) implies that

‖〈hD〉ku(h)‖ ≤ h−Nk
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for every k. Hence

‖〈hD〉k(1− ψ(hD))u(h)‖2
L2 =

1

(2π)n
‖〈ξ〉k(1− ψ(ξ))û‖2

L2

≤ 1

(2π)n
‖〈ξ〉2kû‖L2‖(1− ψ(ξ))2û‖L2

= ‖〈hD〉2ku(h)‖L2‖(1− ψ(hD))2u(h)‖L2

= O(h∞),

Lemma 3.5 then implies

‖(1− ψ(hD))u(h)‖L∞ = O(h∞).

3. It remains to estimate ‖ψ(hD)u‖L∞ . For this we use the semi-
classical inverse Fourier transform (3.22):

‖ψ(hD)u‖L∞ ≤
1

(2πh)n
‖ψ‖L2‖Fhu‖L2 =

1

(2πh)n/2
‖ψ‖L2‖u‖L2 .

�
We will later need the following

LEMMA 9.4 (A simple L2 estimate). Suppose that a ∈ S(Rn+1×
Rn) is real valued, and that{

(hDt + aw(x, t, hDx))u = f

u(·, 0) = u0.

Then

(9.10) ‖u(·, t)‖L2(Rn) ≤
√
|t|
h
‖f‖L2(R×Rn) + ‖u0‖L2(Rn).

Proof: Since aw(t, x, hD) is family of bounded operators on L2(Rn), the
existence of solutions follows from existence theory for (linear) ordinary
differential equations in the variable t.

Suppose first that f ≡ 0. Then

1

2

d

dt
‖u(·, t)‖2

L2(Rn) = Re〈∂tu(·, t), u(·, t)〉L2(Rn)

=
1

h
Re〈iaw(x, t, hD)u(·, t), u(·, t)〉 = 0.

Thus, if we set E(t)u0 := u(t), we have

‖E(t)u0‖L2(Rn) = ‖u0‖L2(Rn).

If f 6= 0, Duhamel’s formula gives

u(·, t) = E(t)u0 +
i

h

∫ t

0

E(t− s)f(·, s) ds.
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Hence

‖u(·, t)‖L2(Rn) ≤ ‖u0‖L2(Rn) +
1

h

∫ t

0

‖f(·, s)‖L2(Rn) ds.

The estimate (9.10) is an immediate consequence. �

THEOREM 9.5 (L∞ bounds for approximate solutions). Let
m = m(x, ξ) an order function. Suppose that p ∈ S(m) is real valued,
and for some compact set K ⊂ Rn × Rn,

(9.11) ∂ξp(x, ξ) 6= 0 if (x, ξ) ∈ K, p(x, ξ) = 0.

If u = {u(h)}0<h≤h0 is bounded in L2(Rn) and satisfies the frequency
localization condition (9.8), if

WFh(u) ⊂ K,

and if

(9.12) ‖pw(x, hD)u(h)‖L2(Rn) = O(h)‖u(h)‖L2(Rn),

then

(9.13) ‖u(h)‖L∞(Rn) ≤ Ch−(n−1)/2‖u(h)‖L2(Rn).

The point is that if u(h) is an approximate solution in the sense of
satisfying the estimate (9.12), we can improve the earlier L∞ estimate

(9.9) by a factor of h
1
2 .

Proof: 1. First we observe that, as in Theorem 9.3, we can assume that
the functions u(h) are uniformly compactly supported. We also note
that the hypothesis on u(h) is local in phase space: if χ ∈ C∞c (T ∗Rn)
then, normalizing to ‖u(h)‖L2 = 1, we have

P (h)χw(x, hD)u(h) = χw(x, hD)P (h)u(h) + [P (h), χw(x, hD)]u(h)

= OL2(h).

According to Theorem 9.2, WFh(χ
wu) ⊂ K.

2. Hence it is enough to prove the theorem for u(h) replaced by
χwu(h), where χ is supported near a given point in K as a partition of
unity argument will then give the bound on u(h).

Suppose that p 6= 0 on the support of χ. Then we can use Theorem
4.19 as in part 1 of the proof of Lemma 9.1 to see that P (h)χwu(h) =
OL2(h) implies that χwu(h) = OL2(h). Theorem 9.3 then shows that

‖χwu(h)‖L∞ ≤ Chh−n/2 ≤ Ch−(n−1)/2.
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3. Now suppose that p vanishes in the support of χ. By applying
a linear change of variables we can assume that pξ1 6= 0 there. The
Implicit Function Theorem shows that in a neighborhood of sptχ, we
have

(9.14) p(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)),

where ξ = (ξ1, ξ
′) and e(x, ξ) > 0.

We extend e arbitrarily to e ∈ S so that e ≥ γ > 0 and extend
a(x, ξ′) to a real valued a(x, ξ′) ∈ S. The pseudodifferential calculus
shows that

ew(x, hD)(hDx1 − a(x, hDx′))(χ
wu(h)) = P (h)(χwu(h)) +OL2(h)

= OL2(h).

Since ew is elliptic,

(9.15) (hDx1 − a(x, hDx′))(χ
wu(h)) = OL2(h).

4. The proof will be completed once we show

(9.16) ‖(χwu)(x1, ·)‖L2(Rn−1) = O(1),

and for that we use (9.15) and Lemma 9.4. We now apply Theorem
9.3 in x′ variables only, that is with n − 1 replacing n and t replacing
x1. That is allowed since we clearly have

‖(1− ψ(hD′))χwu(h)(x1, ·)‖L2(Rn−1) = O(h∞),

uniformly in x1. �

REMARK. The bound given in Theorem 9.5 is already optimal in
the simplest case in which the assumptions are satisfied: p(x, ξ) = ξ1.
Indeed, write x = (x1, x

′) and let φ ∈ C∞c (R), and χ ∈ C∞c (Rn−1).
Then

u(h) := h−(n−1)/2φ(x1)χ(x′/h)

satisfies ‖u(h)‖L2 = O(1),

P (h)u(h) = hDx1u(h) = OL2(h);

and for any non-trivial choices of φ and χ, ‖u(h)‖L∞ ' h−(n−1)/2.
The condition (9.11) is in general necessary as shown by another

simple example. Let p(x, ξ) = x1, and

u(h) = h−n/2φ(x1/h)χ(x′/h).

Then ‖u(h)‖L2 = O(1),

P (h)u(h) = hh−n/2(tφ(t))|t=x1/hχ(x′/h) = OL2(h),

and ‖u(h)‖L∞ ' h−n/2. This is the general bound of Lemma 9.3. �
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As an application we present an L∞ bound on “spectral clusters”,
that is, linear combinations of eigenfunctions for the Laplacian on a
compact manifold. The statement requires the material presented in
Appendix E.3.

THEOREM 9.6 (Bounds on eigenfuction clusters). Suppose that
M is an n-dimensional compact Riemannian manifold and let ∆g be
its Laplace-Beltrami operator. Assume that

0 = λ0 < λ1 ≤ · · ·λj →∞
are the eigenvalues of −∆g and that

−∆gϕj = λjϕj (j = 1, . . . )

are a corresponding orthonormal basis of eigenfunctions.
There exists a constant C such that for any choices of constants

cj ∈ C, we have the inequality

(9.17)
∣∣∣∣∣∣∑µ≤

√
λj≤µ+1

cjϕj

∣∣∣∣∣∣
L∞
≤ Cµ(n−1)/2

∣∣∣∣∣∣∑µ≤
√
λj≤µ+1

cjϕj

∣∣∣∣∣∣
L2
.

In particular,

(9.18) ‖ϕj‖L∞ ≤ Cλ
(n−1)/4
j ‖ϕj‖L2 .

Proof: Put h = 1/µ, P (h) := −h2∆g − 1, and

u(h) :=
∑

µ≤
√
λj≤µ+1

cjϕj.

Then the assumption (9.11) holds everywhere. Also

‖P (h)u(h)‖L2 =
∣∣∣∣∣∣∑µ≤

√
λj≤µ+1

cj(h
2λj − 1)ϕj

∣∣∣∣∣∣
L2

=
(∑

µ≤
√
λj≤µ+1

|cj|2(h2λj − 1)2‖ϕj‖2
L2

) 1
2

≤ 2h‖u(h)‖L2 .

Thus the assumption (9.12) holds. On a compact manifold the fre-
quency localization condition (9.8) follows from

‖(1− ϕ(−h2∆g))u(h)‖ = O(h∞)‖u(h)‖2
L

for ϕ ∈ C∞c (R) satisfying ϕ(t) ≡ 1 for |t| ≤ 2. But this is a consequence
of the Spectral Theorem. �

The estimate (9.17) is essentially optimal. On the other hand the
optimality of (9.18) is very rare: see [S-Z] for a recent discussion.

9.3 BEALS’S THEOREM
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We next present a semiclassical version of Beals’s Theorem, a char-
acterization of pseudodifferential operators in terms of h-dependent
bounds on commutators. Beals’s Theorem answers a fundamental ques-
tion: when can a given linear operator be represented using our symbol
calculus?

We start with

THEOREM 9.7 (Estimating a symbol by operator norms).
Take h = 1. There exist constants C,M > 0 such that

(9.19) ‖b‖L∞ ≤ C
∑
|α|≤M

‖(∂αb)w(x,D)‖L2→L2 ,

for all b ∈ S ′(R2n).

Proof. 1. We will first consider the classical quantization

b(x,D)u(x) =
1

(2π)n

∫
Rn
b(x, ξ)ei〈x,ξ〉û(ξ) dξ,

where by the integration we mean the Fourier transform in S ′.
Then if ϕ = ϕ(x), ψ = ψ(ξ) are functions in the Schwartz space S,

we can regard F(bϕ̄ψ̂ei〈x,ξ〉) as a function of the dual variables (x∗, ξ∗) ∈
R2n. We have

1

(2π)n
|F(bϕ̄ψ̂ei〈x,ξ〉)(0, 0)|

=
1

(2π)n

∣∣∣∣∫
Rn

∫
Rn
b(x, ξ)ϕ̄(x)ψ̂(ξ)ei〈x,ξ〉dxdξ

∣∣∣∣
= |〈b(x,D)ψ, ϕ〉| ≤ ‖b‖L2→L2‖ϕ‖L2‖ψ‖L2 .

Fix (x∗, ξ∗) ∈ R2n and rewrite this inequality with ϕ(x)ei〈x
∗,x〉 re-

placing ϕ(x) and ψ(ξ)e−i〈ξ
∗,ξ〉 replacing ψ(ξ), a procedure which does

not change the L2 norms. It follows that

(9.20)
1

(2π)n
|F(bϕ̄ψ̂ei〈x,ξ〉)(x∗, ξ∗)| ≤ ‖b‖L2→L2‖ϕ‖L2‖ψ‖L2 .

2. Now take χ ∈ C∞c (R2n). Select ϕ, ψ ∈ S so that{
ϕ(x) = 1 if (x, ξ) ∈ sptχ

ψ̂(ξ) = 1 if (x, ξ) ∈ sptχ.

Write

(9.21) ϕ = χe−i〈x,ξ〉.
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Then
χ(x, ξ) = ϕ(x, ξ)ϕ(x)ψ̂(ξ)ei〈x,ξ〉.

According to (3.18),

‖Fχ‖L1 ≤ C
∑

|α|≤2n+1

‖∂αχ‖L1 ;

and so (9.21) implies

(9.22) ‖Fϕ‖L1 ≤ C
∑

|α|≤2n+1

‖∂αχ‖L1 .

Thus (9.20) shows that for any (x∗, ξ∗) ∈ R2n we have

|F(χb)(x∗, ξ∗)| ≤ ‖F(ϕbϕ̄ψ̂ei〈x,ξ〉)‖L∞

=
1

(2π)n
‖F(ϕ) ∗ F(bϕ̄ψ̂ei〈x,ξ〉)‖L∞

≤ 1

(2π)n
‖F(bϕ̄ψ̂ei〈x,ξ〉)‖L∞‖F(ϕ)‖L1

≤ C‖b‖L2→L2 ,

the constant C depending on ϕ, ψ and χ, but not (x∗, ξ∗). Hence

(9.23) ‖F(χb)‖L∞ ≤ C‖b‖L2→L2

with the same constant for any translate of χ.

3. Next, we assert that
(9.24)

|F(χb)(x∗, ξ∗)| ≤ C〈(x∗, ξ∗)〉−2n−1
∑

|α|≤2n+1

‖(∂αb)(x, hD)‖L2→L2 .

To see this, compute

(x∗)α(ξ∗)βF(χb)(x∗, ξ∗) =

∫
R2n

(x∗)α(ξ∗)βe−i(〈x
∗, x〉+〈ξ∗, ξ〉)χb(x, ξ) dxdξ

=

∫
R2n

e−i(〈x
∗, x〉+〈ξ∗, ξ〉)Dα

xD
β
ξ (χb) dxdξ.

Summing absolute values of the left hand side over all (α, β) with |α|+
|β| ≤ 2n+ 1 and using the estimate (9.23), we obtain the bound

‖〈(x∗, ξ∗)〉2n+1F(χb)‖L∞ ≤ C1

∑
|α|+|β|≤2n+1

‖F(Dα
xD

β
ξ (χb))‖L∞

≤ C2

∑
|α|≤2n+1

‖(∂αb)(x, hD)‖L2→L2 .

This gives (9.24).
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Consequently,

‖χb‖L∞ ≤ C‖F(χb)‖L1 ≤ C
∑

|α|≤2n+1

‖(∂αb)(x, hD)‖L2→L2 .

4. This implies the desired inequality (9.19), except that we used the
classical (t = 1), and not the Weyl (t = 1/2) quantization. To remedy
this, recall from Theorem ?? that if

b = e
i
2
〈Dx,Dξ〉b̃,

then {
bw(x,D) = b̃(x,D)

(∂αb)w(x,D) = (∂αb̃)(x,D).

The continuity statement in Theorem ?? shows that

‖b‖L∞ ≤ C
∑
|α|≤K

‖∂αb̃‖L∞ ,

and reduces the argument to the classical quantization.
�

NOTATION. We henceforth write

adBA := [B,A];

“ad” is called the adjoint action.

Recall also that we identify a pair (x∗, ξ∗) ∈ R2n with the linear
operator l(x, ξ) = 〈x∗, x〉+ 〈ξ∗, ξ〉.

THEOREM 9.8 (Semiclassical form of Beals’s Theorem). Let
A : S → S ′ be a continuous linear operator. Then

(i) A = aw for a symbol a ∈ S

if and only if

(ii) for all N = 0, 1, 2, . . . and all linear functions l1, . . . , lN , we have

(9.25) ‖adl1(x,hD) ◦ · · · ◦ adlN (x,hD)A‖L2→L2 = O(hN).

Proof. 1. That (i) implies (ii) follows from the symbol calculus devel-
oped in Chapter 4. Indeed, ‖A‖L2→L2 = O(1) and each commutator
with an operator lj(x, hD) yields a term of order h.
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2. That (ii) implies (i) is harder. First of all, the Schwartz Kernel
Theorem (Theorem C.1) asserts that we can write

(9.26) Au(x) =

∫
Rn
KA(x, y)u(y) dy

for KA ∈ S ′(Rn × Rn). We call KA the kernel of A.

3. We now claim that if we define a ∈ S ′(R2n) by

(9.27) a(x, ξ) :=

∫
Rn
e−

i
h
〈w,ξ〉KA

(
x+ w

2
, x− w

2

)
dw,

then

(9.28) KA(x, y) =
1

(2πh)n

∫
Rn
a
(
x+y

2
, ξ
)
e
i
h
〈x−y,ξ〉 dξ,

where the integrals are a shorthand for the Fourier transforms defined
on S ′.

To confirm this, we calculate that

1

(2πh)n

∫
Rn
a
(
x+y

2
, ξ
)
e
i
h
〈x−y,ξ〉dξ

=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y−w,ξ〉KA

(
x+y

2
+ w

2
, x+y

2
− w

2

)
dwdξ

= KA(x, y),

since

1

(2πh)n

∫
Rn
e
i
h
〈x−y−w,ξ〉dξ = δx−y(w) in S ′.

In view of (9.26) and (9.28), we see that A = aw, for a defined by
(9.27).

4. Now we must show that a belongs to the symbol class S; that is,

(9.29) sup
R2n

|∂αa| ≤ Cα

for each multiindex α.



139

To do so we will make use of our hypothesis (9.25) with l = xj, ξj,
that is, with l(x, hD) = xj, hDj. We compute

Op(hDξja)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
hDξj

(
a
(
x+y

2
, ξ
))
ei
〈x−y,ξ〉

h u(y) dξdy

= − 1

(2πh)

∫
Rn

∫
Rn
a
(
x+y

2
, ξ
)
hDξj

(
e
i〈x−y,ξ〉

h

)
u(y) dξdy

= − 1

(2πh)

∫
Rn

∫
Rn
a
(
x+y

2
, ξ
)
e
i〈x−y,ξ〉

h (xj − yj)u(y) dξdy

= −[xj, A]u = −adxjAu(x).

Likewise,

Op(hDxja)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn
axj
(
x+y

2
, ξ
)
e
i〈x−y,ξ〉

h u(y) dξdy

=
1

(2πh)n

∫
Rn

∫
Rn
h(Dxj +Dyj)

(
a
(
x+y

2
, ξ
))

e
i〈x−y,ξ〉

h u(y) dξdy

=
1

(2πh)n

∫
Rn

∫
Rn
hDxj

(
a
(
x+y

2
, ξ
))
e
i〈x−y,ξ〉

h u(y) dξdy

+
1

(2πh)n

∫
Rn

∫
Rn
a
(
x+y

2
, ξ
)
e
i〈x−y,ξ〉

h (ξj −Dyju(y)) dξdy

= hDxj(Au)− A(hDxju)

= [hDxj , A]u = adhDxjAu(x).

In summary, for j = 1, . . . , n,

(9.30)

{
adxjA = −Op(hDξja)

adhDxjA = Op(hDxja).

5. Next we convert to the case h = 1 by rescaling. For this, define

Uhu(x) := hn/4u(h1/2x)

and check that Uh : L2 → L2 is unitary. Then

Uha
w(x, hD)U−1

h = aw(h1/2x, h1/2D) = Op(ah)

for

(9.31) ah(x, ξ) := a(h1/2x, h1/2ξ).
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Our hypothesis (9.25) is invariant under conjugation by Uh, and is
consequently equivalent to

(9.32) adl1(h1/2x,h1/2D) ◦ · · · ◦ alN (h1/2x,h1/2D)Op(ah) = O(hN).

But since lj is linear, lj(h
1/2x, h1/2D) = h1/2l(x,D). Thus (9.32) is

equivalent to

(9.33) adl1(x,D) ◦ · · · ◦ alN (x,D) ◦Op(ah) = O(hN/2).

Taking lk(x, ξ) = xj or ξj, it follows from (9.33) that

(9.34) ‖Op(∂βah)‖ ≤ Ch
|β|
2

for all multiindices β.

6. Finally, we claim that

(9.35) |∂αah| ≤ Cαh
|α|/2 for each multiindex α.

But this follows from Theorem 9.7, owing to estimate (9.34):

‖aαh‖L∞ ≤ C
∑
|β|≤n+1

‖Op(∂α+βah)‖L2→L2 ≤ Cαh
|α|.

Recalling (9.31), we rescale to derive the desired inequality (9.29). �

EXAMPLE: resolvents. Suppose a ∈ S is real-valued, so that A =
aw(x, hD) is a self-adjoint operator on L2(Rn). The resolvent (A+ i)−1

is then a bounded operator on L2(Rn). Can we represent (A+ i)−1 as
a pseudodifferential operator?

Since

adlB = −B(adlA)B,

we see that the assumptions of Beals’s Theorem are satisfied, and con-
sequently (A+ i)−1 = bw(x, hD) for some symbol b ∈ S. �

9.4 APPLICATION: EXPONENTIATION OF OPERATORS

In this section we will consider one parameter families of operators
which give exponentials of self-adjoint pseudodifferential operators. As
we have seen in Theorem 4.4, quantization of exponentiation commutes
with quantization for linear symbols. This is of course not true for
nonlinear symbols: see Section 10.2 for the subtleties involved in expo-
nention of skew-adjoint pseudodifferential operators.
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THEOREM 9.9 (Exponentials and order functions). Let m =
m(x, ξ) be an order function and suppose that g = g(x, ξ, h) satisfies

(9.36) g(x, ξ)− logm(x, ξ) = O(1)

and

(9.37) ∂αg ∈ Sδ
for |α| = 1 and 0 ≤ δ ≤ 1

2
.

Then the equation

(9.38)

{
d
dt
B(t) = gw(x, hD)B(t),

B(0) = I,

has a unique solution B(·). Furthermore, for each t ≥ 0, we have

(9.39) B(t) = bw
t (x, hD),

for a symbol

bt ∈ S(mt).

Here mt means m raised to the power t.

Theorem 9.9 identifies exp(tgw(x, hD)) as a quantization of an el-
ement of Sδ(m

t). Thus we are asserting that on the level of order
functions exponentiation commutes with quantization. Here is an ap-
plication. Given an operator P , it is often very useful to consider its
conjugations of the form

P (t) := e−tg
w(x,hD)Petg

w(x,hD).

As an application of Theorem 9.9 we observe that if g is as above and
P is bounded on L2, then P (t) is bounded on L2. To see this, apply
Theorems 4.13 and 4.16.

To prove Theorem 9.9 we start with

LEMMA 9.10 (Inverting exponentials). Consider

U(t) := (exp tg)w(x,D)

as a mapping from S(Rn) to itself. There exists ε0 = ε0(g) > 0 such
that the operator U(t) is invertible for |t| < ε0 and

U(t)−1 = bw
t (x,D)

for a symbol

bt ∈ S(m−t).
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Proof: 1. We apply the composition formula given in Theorem 4.13 to
obtain

U(−t)U(t) = I + ew
t (x,D)

where et ∈ S.
More explicitly, we write

et(x1, ξ) =

∫ s

0

esA(D)A(D)(e−tg(x1,ξ1)+tg(x2,ξ2))|x2=x1=x,ξ2=ξ1=ξ ds

=

∫ s

0

itesA(D)Fe−tg(x1,ξ1)+tg(x2,ξ2)|x2=x1=x,ξ2=ξ1=ξ ds/2,

where

A(D) = iσ(Dx1 , Dξ1 ;Dx2 , Dξ2)/2,

F = ∂x1g(x1, ξ1) · ∂ξ2g(x2, ξ2)− ∂ξ1g(x1, ξ1) · ∂x2g(x2, ξ2).

2. It follows that et = tẽt, for ẽt ∈ S. Therefore

ew
t (x,D) = OL2→L2(t);

this shows that I + ew
t (x,D) is invertible for |t| small enough. Then

Theorem 9.8 implies

(I + ew
t (x,D))−1 = cw

t (x,D)

for a symbol ct ∈ S. Hence bt = ct# exp(−tg(x, ξ)) ∈ S(m−t). �

Proof of Therem 9.9: 1. We first note that we only need to prove the
result in the case h = 1 by using the rescaling given in (4.29).

2. The hypotheses on g in (9.36) are equivalent to the statement
that exp(tg) ∈ S(mt) for all t ∈ R. We now observe that

(9.40)
d

dt
(U(−t) exp(tgw(x,D))) = V (t) exp(tgw(x,D))

whereV (t) = aw
t (x,D) and at ∈ S(m−t) . In fact, we see that

(9.41)
d

dt
U(−t) = −(g exp(−tg))w(x,D)

and

(9.42) U(−t)gw(x,D) = (exp(tg)#g)w(x,D).

As before, the composition formula (??) gives

exp(−tg)#g − g exp(−tg) =∫ 1

0

exp(sA(D))A(D) exp(−tg(x1, ξ1)g(x2, ξ2)|x1=x2=x,ξ1=ξ2=ξ,

A(D) = iσ(Dx1 , Dξ1 ;Dx2 , Dξ2)/2.
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From the hypothesis on g we see that A(D) exp(tg(x1, ξ1))g(x2, ξ2) is
a sum of terms of the form a(x1, ξ1)b(x2, ξ2) where a ∈ S(m−t) and
b ∈ S(1). The continuity of exp(A(D)) on the spaces of symbols in
Theorem ?? gives (9.40).

3. If we put
C(t) := −V (t)U(−t)−1,

then by Lemma 9.10, C(t) = cw
t where ct ∈ S(1). Symbolic calculus

shows that ct depends smoothly on t and

(∂t + C(t))(U(−t) exp(tgw(x,D))) = 0.

4. The proof of Theorem 9.9 is now reduced to showing

LEMMA 9.11 (Solving an operator equation). Suppose that

C(t) = cw
t (x,D),

where the symbols ct ∈ S depends continuously on t ∈ (−ε0, ε0).
Assume q ∈ S. Then the solution of

(9.43)

{
(∂t + C(t))Q(t) = 0,

Q(0) = qw(x,D)

is
Q(t) = qw

t (x,D),

where qt ∈ S depend continuously on t ∈ (−ε0, ε0).

Proof: 1. The Picard existence theorem for ODE shows that Q(t)
is bounded on L2. Assume now that lj(x, ξ) are linear functions on
Rn × Rn. Then

d

dt
adl1(x,D) ◦ · · · ◦ adlN (x,D)Q(t)+

adl1(x,D) ◦ · · · ◦ adlN (x,D)(C(t)Q(t)) = 0,

adl1(x,D) ◦ · · · ◦ adlN (x,D)Q(0) : L2(Rn)→ L2(Rn).

If we show that for any choice of l′js and any N

(9.44) adl1(x,D) ◦ · · · ◦ adlN (x,D)Q(t) : L2(Rn)→ L2(Rn),

then Beals’s Theorem concludes the proof.

2. We proceed by induction on N :

adl1(x,D) ◦ · · · ◦ adlN (x,D)(C(t)Q(t)) =

C(t)adl1(x,D) ◦ · · · ◦ adlN (x,D)Q(t) +R(t),

where R(t) is the sum of terms of the form

Ak(t)adl1(x,D) ◦ adlk(x,D)Q(t)
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for k < N , Ak(t) = ak(t)
w , and ak(t) ∈ S depend continuously on t.

This also follows by an inductive based on the derivation property of
adl:

adl(CD) = (adlC)D + C(adlD).

Hence by the induction hypothesis R(t) is bounded on L2, and depends
continuously on t. Thus

(∂t + C(t)) adl1(x,D) ◦ · · · ◦ adlN (x,D)Q(t) = R(t)

is bounded on L2. Since (9.44) is valid at t = 0, we obtain it for all
t ∈ (−ε0, ε0). �

9.5 INVARIANCE, HALF-DENSITIES

Invariance. We begin with a general discussion concerning the
invariance of various quantities under the change of variables

(9.45) x̃ = γ(x),

where γ : Rn → Rn is a diffeomorphism.

Functions. We note first that functions transform under (9.45) by
pull-back. This means that we transform u into a function of the new
variables x̃ by the rule

(9.46) ũ(x̃) = ũ(γ(x)) := u(x),

for x ∈ Rn. Observe however that in general the integral of u over a
Borel set E is not then invariant:∫

γ(E)

ũ(x̃) dx̃ 6=
∫
E

u(x) dx.

Densities. One way to repair this defect is to change our definition
(9.46) to include the Jacobian of the transformation γ. We elegantly
accomplish this by turning our attention to densities, which we denote
symbolically as

u(x)|dx|.
We therefore modify our earlier definition (9.46), now to read

(9.47) ũ(x̃) = ũ(γ(x)) := u(x)| det(∂γ(x))|−1.

Then we have the invariance assertion

“ ũ(x̃)|dx̃| = u(x)|dx|”,
meaning that ∫

γ(E)

ũ(x̃) dx̃ =

∫
E

u(x) dx

for all Borel sets E ⊆ Rn.
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Half-densities. Next recall our general motivation coming from
quantum mechanics. The eigenfunctions u we study are then inter-
preted as wave functions and the squares of their moduli are the prob-
ability densities in the position representation: the probability of “find-
ing our state in the set E” is given by∫

E

|u(x)|2 dx.

This probability density should be invariantly defined, and so should
not depend on the choice of coordinates x. As above, this means that it
is not the function u(x) which should be defined invariantly but rather
the density |u(x)|2dx, or up to the phase information, the half-density

u(x)|dx|
1
2 .

For half-densities we therefore demand that

“ ũ(x̃)|dx̃|
1
2 = u(x)|dx|

1
2 ”,

which means that integrals of the squares should be invariantly defined.
To accomplish this, we once again modify our original definition (9.46),
this time to become

(9.48) ũ(x̃) = ũ(γ(x)) := u(x)| det(∂γ(x))|−
1
2 .

Then ∫
γ(E)

|ũ(x̃)|2 dx̃ =

∫
E

|u(x)|2 dx.

for all Borel subsets E ⊆ Rn.

DISCUSSION. The foregoing formalism is at first rather unintuitive,
but turns out later to play a crucial role in the rigorous semiclassical
calculus, in particular in the theory of Fourier integral operators, which
we will touch upon later. Section 9.2 will demonstrate how the half-
density viewpoint fits naturally within the Weyl calculus, and Section
10.2 will explain how half-densities simplify some related calculations
for a propagator.

Our Appendix E provides a more careful foundation of these concepts
in terms of the s-density line bundles over Rn, denoted Ωs(Rn). In this
notation, a density is a smooth section of Ω1(Rn) and a half-density is

a smooth section of Ω
1
2 (Rn).

We therefore write

u|dx| ∈ C∞(Rn,Ω1(Rn))
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for densities, and

u|dx|
1
2 ∈ C∞(Rn,Ω

1
2 (Rn))

for half-densities. �

REMARK: Half density operator kernels. Half-densities ele-
gantly appear when we use introduce operator kernels. Suppose that

K ∈ C∞(Rn × Rn; Ω
1
2 (Rn × Rn)).

Then K, acting as an integral kernel, defines a map

K : C∞c (Rn,Ω
1
2 (Rn)) → C∞(Rn,Ω

1
2 (Rn)),

in an invariant way, independently of the choice of densities:

Ku(x)|dx|
1
2 =

∫
Rn
K(x, y)|dx|

1
2 |dy|

1
2u(y)|dy|

1
2

:=

(∫
Rn
K(x, y)u(y)dy

)
|dx|

1
2 .

(9.49)

�

9.6 CHANGING VARIABLES

In this section we illustrate the usefulness of half-densities in charter-
izing invariance properties of quantization under changes of variables.

When we fix the symplectic form σ = dξ ∧ dx on R2n = Rn × Rn,
the half-density sections over Rn2 are identified with functions using
the canononical density

dξ1 ∧ · · · ∧ dξn ∧ dx1 ∧ · · · ∧ dxn =
1

n!
σn.

In other words, half-densities transform as functions under symplectic
changes of variables, and in particular for symplectic transformations
arising as in Example 1 of Section 2.3:

(9.50) (x, ξ) 7→ (γ(x), (∂γ(x)T )−1ξ).

We will consider the Weyl quantization of a symbol a ∈ S(R2n) as an
operator acting on half-densities. That is done as in (9.49) by defining

Ka(x, y)|dx|
1
2 |dy|

1
2

:=
1

(2πh)n

∫
Rn
a
(
x+y

2
, ξ
)
ei
〈x−y,ξ〉

h dξ|dx|
1
2 |dy|

1
2

(9.51)

and

(9.52) Op(a)(u|dy|
1
2 )|dx|

1
2 :=

∫
Rn
Ka(x, y)u(y) dy|dx|

1
2 .
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The arguments of Chapter 4 show that for a ∈ S we obtain a bounded
operator that quantizes a:

Op(a) : L2(Rn,Ω
1
2 (Rn)) → L2(Rn,Ω

1
2 (Rn)).

Next, let γ : Rn → Rn be a smooth diffeomorphism which for simplic-
ity we assume to be the identity outside a compact set. Take a ∈ S. We
write A = Op(a) for the operator acting on half-densities. As above, if
we write x̃ = γ(x), we define ũ by

(9.53) ũ(x̃)|dx̃|
1
2 = u(x)|dx|

1
2 .

Then Ã = (γ−1)∗Aγ∗, acting on half-densities, is given by the rule

(9.54) Ãũ(x̃) = Au(x),

when acting on functions.

THEOREM 9.12 (Operators and half-densities). Let a ∈ S(R2n)
and let A be its quantization acting on half-densities.

(i) Then

(9.55) (γ−1)∗Aγ∗ = Op(ã)

for the symbol

(9.56) ã(x, ξ) := a(γ−1(x), ∂γ(x)T ξ) +OS(h2).

That is,

(9.57) a(x, ξ) = ã(γ(x), (∂γ(x)T )−1ξ) +OS(h2).

(ii) Consider A acting on functions and define

A1 = (γ−1)∗Aγ∗,

then

A1 = Op(a1),

for the symbol

(9.58) a1(x, ξ) := a(γ−1(x), ∂γ(x)T ξ) +OS(h).

That is,

(9.59) a(x, ξ) = a1(γ(x), (∂γ(x)T )−1ξ) +OS(h).
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INTERPRETATION. A further motivation for half-densities is that
assertion (i) for half-densities (with error term of order OS(h2)) is more
precise than the assertion (ii) for functions (with error term OS(h)).
The notation b = OS(h) means that

|xαξβ∂γb| ≤ Cαβ,γh

for all multiindices α, β, γ: see §A.5. �

Proof. 1. Since a ∈ S, we have Ka ∈ S. Take ã ∈ S(R2n) for which
(κ−1)∗Aκ∗ = Op(ã).

2. Remember that

Au(x)|dx|
1
2 =

∫
Rn
Ka(x, y)|dx|

1
2 |dy|

1
2u(y)|dy|

1
2

for

Ka(x, y) :=
1

(2πh)n

∫
Rn
a
(
x+y

2
, ξ
)
e
i
h
〈x−y,ξ〉 dξ.

Likewise

Ãũ(x̃) =

∫
Rn
Kã(x̃, ỹ)|dx̃|

1
2 |dỹ|

1
2 ũ(ỹ) |dỹ|

1
2

for

Kã(x̃, ỹ) :=
1

(2πh)n

∫
Rn
ã
(
x̃+ỹ

2
, ξ̃
)
e
i
h
〈x̃−ỹ,ξ̃〉 dξ̃.

Since ũ(ỹ)|dỹ| 12 = u(y)|dy| 12 and dỹ = |det ∂γ(y)|dy, it follows that

Ãũ(x) =

∫
Rn
Kã(x̃, ỹ)|det ∂γ(y)|

1
2 |det ∂γ(x)|

1
2u(y) dy.

Hence

(9.60) Ka(x, y) = Kã(x̃, ỹ)|det ∂γ(y)|
1
2 |det ∂γ(x)|

1
2 .

3. Now

Kã(x̃, ỹ) =
1

(2πh)n

∫
Rn
ã
(
x̃+ỹ

2
, ξ̃
)
e
i
h
〈x̃−ỹ,ξ̃〉 dξ̃

=
1

(2πh)n

∫
Rn
ã
(
γ(x)+γ(y)

2
ξ̃
)
e
i
h
〈γ(x)−γ(y),ξ̃〉 dξ̃.

We have

(9.61) γ(x)− γ(y) = 〈g(x, y), x− y〉,
where

(9.62) g(x, y) = ∂γ

(
x+ y

2

)
+O(|x− y|2).
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Also

(9.63) γ(x) + γ(y) = 2γ

(
x+ y

2

)
+O(|x− y|2).

Let us also write

(9.64) ξ̃ = (g(x, y)T )−1ξ.

Substituting above, we deduce that

Kã(x̃, ỹ)

=
1

(2πh)n

∫
Rn

[
ã
(
γ(x+y

2
), (g(x, y)T )−1ξ

)
+O(|x− y|2)

]
e
i
h
〈κ(x)−κ(y),(g(x,y)T )−1ξ〉 dξ̃.

We now use the so-called “Kuranishi trick” to rewrite this expression
as a pseudodifferential operator. First,

〈γ(x)− γ(y), (g(x, y)T )−1ξ〉 = 〈g(x, y)−1(γ(x)− γ(y)), ξ〉 = 〈x− y, ξ〉,
according to (9.61). Remembering also (9.62), we compute

Kã(x̃, ỹ) =

1

(2πh)n

∫
Rn

[
ã
(
γ(x+y

2
), (∂γ(x+y

2
)T )−1ξ

)
+O(|x− y|2)

]
e
i
h
〈x−y,ξ〉dξ̃

=
1

(2πh)n

∫
Rn

[
a(x+y

2
, ξ) +O(|x− y|2)

]
e
i
h
〈x−y,ξ〉dξ̃.

Furthermore dξ̃ = |det g(x, y)|−1dξ and

det g(x, y) = det ∂γ(x+y
2

) +O(|x− y|2).

Also, we claim that∣∣det ∂γ(x+y
2

)
∣∣2 = |det ∂γ(x)||det ∂γ(y)|+O(|x− y|2).

This identity is clear if we add a term 〈A(x+y
2

), x−y〉 on the right hand
side. But the symmetry under switching x and y shows that A ≡ 0.

4. Finally we observe that

(9.65) (x− y)αe
i
h
〈x−y,ξ〉 = (hDξ)

αe
i
h
〈x−y,ξ〉.

Hence integrating by parts in the terms with O(|x−y|2) gives us terms
of order O(h2). So

Kã(x̃, ỹ) =

1

(2πh)n

∫
Rn

(
a(x+y

2
, ξ) +O(h2)

)
e
i
h
〈x−y,ξ〉dξ

|det ∂γ(x)|−1/2|det ∂γ(y)|−1/2.
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This proves (9.60) with ã satisfying (9.56).

5. When A acts on functions, then Ka has to transform as a density.
In other words, we need to show

(9.66) Ka(x, y) = Ka1(x̃, ỹ)|det ∂γ(y)|+O(h),

instead of (9.60). Since

|det ∂γ(y)| = |det ∂γ(y)|1/2|det ∂γ(x)|1/2 +O(|x− y|),
we see from (9.65) that (9.66) follows from (9.60) with a1 = ã+O(h).

�

9.7 NEW SYMBOL CLASSES

Suppose that

γ : Rn → Rn

is a diffeomorphism equal to the identity outside of a compact set. In
§9.6 we discussed the operator (γ−1)∗Op(a)γ∗ for a ∈ S(Rn). We want
now to introduce more general classes of symbols a than those provided
by Chapter 4, and to discuss their invariance under the mapping κ.

DISCUSSION. To motivate the need for these new classes, let m be
an order function and recall the class S(m) introduced in Chapter 4:

S(m) := {a ∈ C∞(R2n) | |∂αa(x, ξ)| ≤ Cαm(x, ξ)}.
In view of Theorem 9.12, for a symbol a in S(m) to be invariant under
γ, we would need

(9.67) |∂α
(
a(γ−1(x), ∂γ(x)T ξ)

)
| ≤ Cαm(x, ξ).

Since differentiation in x falling on the second set of variables produces
factors of the form

∂xj(∂γ(x)T ξ),

the bound (9.67) is in general false unless

|m(x, ξ)| ≤ CN〈ξ〉−N

for all N . This requirement is clearly too restrictive, as it would exclude
all differential operators.

An estimate of the type (9.67) would however hold if differentiation
in ξ improves the decay in ξ. This observation leads us to the following
definition, in which we restrict to the simplest order functions 〈ξ〉m:

DEFINITIONS. (i) The classical symbols are

(9.68) Sm,k = {a ∈ C∞(R2n) | |∂αx∂
β
ξ a| ≤ Cαβh

−k〈ξ〉m−|β|}.
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(ii) We also write

Ψm,k = {aw(x, hD) | a ∈ Sm,k}
to denote the corresponding class of operators obtained by the quanti-
zation procedure described in Theorem 4.10.

Since Sm,k ⊂ Sk(〈ξ〉m) all the results of Chapter 4 are applicable but
due to the improvement under differentiation in ξ there are many new
features, important in the study of partial differential equations. We
will only present the improved composition formula and the change of
variables formula.

THEOREM 9.13 (Composition for Ψm,k). Suppose that a ∈ Sm1,k1

and b ∈ Sm2,k2. Then

aw(x, hD) ◦ bw(x, hD) = cw(x, hD)

where c ∈ Sm1+m2,k1+k2 is given by (??).
Moreover,

c(x, ξ) =

N∑
k=0

1

k!

(
ih

2
σ(Dx, Dξ, Dy, Dη)

)k
a(x, ξ)b(y, η)|x=ξ,y=η

+OSm1+m2−N−1,k1+k2 (hN+1)

(9.69)

where

σ(Dx, Dξ, Dy, Dη) := 〈Dξ, Dy〉 − 〈Dx, Dη〉.

REMARK. Similar statements hold for the usual quantization:

a(x, hD) ◦ b(x, hD) = c1(x, hD) = eih〈Dξ,Dy〉a(x, ξ)b(y, η)|y=x,η=ξ

and

c1(x, ξ) =
∑
|α|≤N

1

α!
∂αξ a(x, ξ)(hDx)

αb(x, ξ) +OSm1+m2−N−1,k1+k2 (hN+1).

Proof: 1. To simplify the notation let us make the harmless assump-
tion that k1 = k2 = 0. Since Smj ,0 ⊂ S(〈ξ〉mj) the validity of (??)
follows from Theorem 4.6. Similarly, (9.69) is valid but with an error
OS(〈ξ〉m1+m2 )(h

N+1).

2. Now we observe that(
ih

2
σ(Dx, Dξ, Dy, Dη)

)k
a(x, ξ)b(y, η)|x=ξ,y=η ∈ Sm1+m2−k,−k,
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and we will show that the remainder satisfies

c(x, ξ)−
N∑
k=0

1

k!

(
ih

2
σ(Dx, Dξ, Dy, Dη)

)k
a(x, ξ)b(y, η)|x=ξ,y=η

∈ SN+1(〈ξ〉m1+m2−N−1).

(9.70)

Since N is arbitrary it follows that

|∂αx∂
β
ξ c(x, ξ)| ≤ Cα,β〈ξ〉m1+m2−|β|,

uniformly for 0 < h ≤ 1.
3. To check (9.70) we recall that (??) (and hence (9.69)) was proved

by consider the action of expA(D), where A is a quadratic form, on
symbol classes – see Theorem ??. Using Taylor’s formula we write
exp(ihA(D)) =

N∑
k=0

(ihA(D))k

k!
+

1

N !

∫ 1

0

(1− t)N exp(ithA(D))(ihA(D))N+1dt.

In our case we have A(D) = hσ(Dx, Dξ;Dy, Dη)/2, so that

c(x, ξ) = exp(ihA(D))a(x, ξ)b(y, η)|x=y,η=ξ,

and the remainder in (9.70) is given by

1

N !

∫ 1

0

(1− t)N exp(ithA(D))(ihA(D))N+1(a(x, ξ)b(y, η))|x=y,ξ=ηdt.

Since a ∈ Sm1,0 and b ∈ Sm2,0, we see that

(hA(D))N+1(a(x, ξ)b(y, η)) ∈
N+1∑
k=0

SN+1(〈ξ〉m1−k〈η〉m2−N−1+k).

Theorem ?? shows that exp(ithA(D)) :

SN+1(〈ξ〉m1−k〈η〉m2−N−1+k) −→ SN+1(〈ξ〉m1−k〈η〉m2−N−1+k),

with bounds uniform for 0 ≤ t ≤ 1, 0 < h ≤ 1. Also,

SN+1(R2n
(x,ξ) × R2n

(y,η), 〈ξ〉m1−k〈η〉m2−N−1+k)|x=y,ξ=η =

SN+1(R2n
(x,ξ), 〈ξ〉m1+m2−N−1),

from which (9.70) follows. �

We also record the following useful lemma:
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LEMMA 9.14 (Schwartz kernels of operators in Ψm,k).
(i) Suppose that a ∈ Sm,k and that Ka ∈ S ′(Rn×Rn) is the Schwartz

kernel of Op(a). Then

(9.71) Ka(x, y) ∈ C∞(Rn × Rn \∆)

for the diagonal ∆ := {(x, x) : x ∈ Rn}. Furthermore, we have the
estimates

(9.72) |(hDx)
α(hDy)

βKa(x, y)| ≤ CNh
−k
(

h

|x− y|

)N
for (x, y) ∈ Rn × Rn \∆ and N > |α|+ |β|+m+ n.

(ii) If Ka satisfies

(9.73) |∂αx∂βyKa(x, y)| ≤ CN

(
h

〈x− y〉

)N
for all (x, y) ∈ Rn × Rn, then Ka is the Schwartz kernel of Op(a) for
a ∈ S−∞,−∞.

The lemma shows one of the many advantages of symbol classes Sm,k

since we now have smoothness and rapid decay away from the diagonal.

Proof. 1. We can consider either the Weyl quantization, Op, or the
standard quantization, Op1. That follows from Theorem ?? since as in
Part 3 of the proof of Theorem 9.13 we see that

(9.74) exp (i(t− s)h〈Dx, Dξ〉) : Sm,k −→ Sm,k.

So for simplicity of notation we opt for Op1(a).
2. Suppose first that a ∈ S so that

Ka(x, y) =
1

(2πh)n

∫
a(x, ξ)ei〈x−y,ξ〉/hdξ,

and the integral is taken in the usual sense. We note that

(x− y)γKa(x, y) =
1

(2πh)n

∫
(−hDξ)

γa(x, ξ)ei〈x−y,ξ〉/hdξ,

and hence

|(x− y)γKa(x, y)| ≤ Cγh
|γ|‖〈ξ〉n+1∂γξ a‖∞

∫
〈ξ〉−n−1dξ.

Observe next that

sup
|γ|=N

|(x− y)γ| ≥ n−
N
2 |x− y|N .

(It is enough to prove this inequality for y = 0, |x| = 1. It then says
that we can choose γ, γ1 + · · · γn = N , so that |x1|γ1 · · · |xn|γn ≥ n−N/2
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for any x2
1 + · · ·x2

n = 1. The last condition implies that there exists m,
1 ≤ m ≤ n such that |xm| ≥ 1/

√
n. We then take γj = δjmN .)

Therefore we obtain

|Ka(x, y)| ≤ CN

(
h

|x− y|

)N
sup
|γ|=N

‖〈ξ〉n+1∂γξ a‖∞.(9.75)

Similarly,

|(hDx)
α(hDy)

β((x− y)γKa(x, y))| ≤
Cγ,α,β sup

|ρ|≤|α|
h|γ|‖〈ξ〉n+1+|α|+|β|∂γξ ∂

ρ
xa‖∞,

and consequently,

|(hDx)
α(hDy)

βKa(x, y)| ≤

CN,α,β

(
h

|x− y|

)N
sup

|ρ|≤|α|,|γ|=N
‖〈ξ〉n+1+|α|+|β|∂ρx∂

γ
ξ a‖∞.

(9.76)

3. If a ∈ Sm,k we observe that seminorms appearing on the right
hand side of (9.76) are finite and bounded by h−k ifN > |α|+|β|+m+n.
Approximation by symbols in S concludes the proof of (??).

4. The second conclusion follows from applying the inverse Fourier
transform:

a(x, ξ) =

∫
Ka(x, x− z)ei〈z,ξ〉/hdz.

Since

|∂αx∂βzKa(x, x− z)| ≤ CN
hN

〈z〉N
,

we see that a ∈ S−∞,−∞. �

Before restating Theorem 9.12 in this more general setting we will
discuss usual quantization acting on functions. Suppose first that a ∈
S. Then

(9.77) (γ−1)∗Op1(a)γ∗ = Op1(aγ),

where

(9.78) aγ(γ(x), η) = e−
i
h
〈γ(x),η〉a(x, hD)e

i
h
〈γ(·),η〉.

In fact, Theorem ?? shows that

aγ(y, η) = e−
i
h
〈y,η〉Op1(aγ)e

i
h
〈y,η〉

= e−
i
h
〈y,η〉(γ−1)∗a(x, hD)γ∗(e−

i
h
〈·,η〉),

which is the same as (9.78).
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THEOREM 9.15 (Changing variables I). Suppose that a ∈ Sm,k
where Sm,k is defined by (9.68). Then (9.77) defines aγ ∈ Sm,k for
which (9.78) holds. Moreover,

aγ(γ(x), η) =
∑
|α|≤N

1

α!
∂αξ a(x, ∂γ(x)Tη)(hDy)

αe
i
h
〈ρx(y),η〉|y=x

+OSm−N−1,k(hN+1),

(9.79)

where
ρx(y) = γ(y)− γ(x)− ∂γ(x)(y − x).

In particular,

(9.80) aγ(γ(x), η) = a(x, ∂γ(x)Tη) +OSm−1,k(h).

Proof. 1. We need to show is that aγ defined by (9.78) is in Sm,k. Since
that will imply

(γ−1)∗Op1(a)γ∗u = Op1(aγ)u, u(x) = exp(i〈x, η〉/h),

the operator identity (9.77) will follow since exp(i〈x, η〉/h), η ∈ Rn, are
dense in S ′(Rn

x).
2. We now claim that aγ(γ(x), η) =

1

(2πh)n

∫∫
a(x, ξ)χx(y)χη(ξ)e

i(〈x−y,ξ〉+〈γ(y)−γ(x),η〉)/hdydξ

+ OS(〈η〉−∞h∞),

(9.81)

where

χx(y) := χ(x− y), χη(ξ) := χ((ξ − ∂γ(x)Tη)/〈η〉),
χ ∈ C∞c (R, [0, 1]), χ|[−1,1] = 1, χ|{[−2,2] = 0.

In fact, on the support of 1− χx(y)χη(ξ) the phase is not stationary:

dy,ξ(〈x− y, ξ〉+ 〈κ(y)− κ(x), η〉) = 0⇐⇒

 x = y
and
ξ = ∂κ(x)Tη.

Consequently the now standard integration-by-parts argument, which
we leave to the reader, gives (9.81).

3. We rewrite the main part in (9.81) as follows:

1

(2πh̃)n

∫∫
aη(x, ξ̃)χx(y)χ̃η(ξ̃)e

i(〈x−y,ξ̃〉+〈γ(y)−γ(x),η/〈η〉〉)/h̃dydξ̃

aη(x, ξ̃) := a(x, 〈η〉ξ̃), χ̃η(ξ̃) := χη(ξ̃〈η〉), h̃ := h/〈η〉.
The support of the integrand is contained in a fixed compact set, and

hk〈η〉−maηχη ∈ S(1),



156

uniformly in h and η. Hence we can apply the method of stationary
phase (Theorem 3.15) to obtain an expansion in powers of h̃ = h/〈η〉.
By computing the leading term we easily check that (9.80) holds.

4. To obtain a formula for terms in the full expansion (9.79) we use
the method which already appeared in the second proof of Theorem
3.10.

Since we will not use (9.79) the argument is only sketched with full
details given in [H2, Theorem 18.1.17]: the integrand in (9.81) can be
rewritten as follows

1

(2πh)n
[
a(x, ξ)ei〈ρx(y),η〉/hχx(y)χη(ξ)

]
ei〈x−y,ξ−∂γ(x)T η〉/h,

where ρx(y) is given by (9.79). If we consider the term in square brack-
ets as the amplitude, and change variables to

z := x− y, w := ξ − ∂γ(x)Tη,

this becomes the integral in the statement of Theorem ?? (with z and
w playing the roles of x and y there). Since ρx(y) vanishes to second
order,

ρx(x) = 0, dyρx(x) = 0,

at the critical point x = y, the differentiation of the oscillatory term in
the amplitude combined with the decay of ∂αξ a shows that the terms in

(9.79) are in Sm−|α|/2,k−|α|/2. Hence the formal expansion makes sense
but to control the error terms we need arguments similar to those in
second proof of Theorem 3.10. �

We can now give the generalization of Theorem 9.12. The proof given
in §9.6 can be adapted to the present setting using the integration by
parts arguments from the proof of Lemmas 9.14.

THEOREM 9.16 (Changing variables II). Let a ∈ Sm,k(R2n) and
let A be its quantization acting on half-densities.

(i) Consider A acting on half-densities. Then

(9.82) (γ−1)∗Aγ∗ = Op(ã)

for

(9.83) ã(x, ξ) := a(γ−1(x), ∂γ(x)T ξ) +OSm−2,k(h2).

That is,

(9.84) a(x, ξ) = ã(γ(x), (∂γ(x)T )−1ξ) +OSm−2,k(h2).

(ii) When we consider A acting on functions and define

A1 = (γ−1)∗Aγ∗,
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then
A1 = Op(a1),

for

(9.85) a1(x, ξ) := a(γ−1(x), ∂γ(x)T ξ) +OSm−1,k(h).

That is,

(9.86) a(x, ξ) = a1(γ(x), (∂γ(x)T )−1ξ) +OSm−1,k(h).

�
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10.Quantizing symplectic transformations

10.1 Deformation and quantization
10.2 Semiclassical analysis of propagators
10.3 Semiclassical Strichartz estimates, Lp bounds
10.4 More symplectic geometry
10.5 Normal forms for operators with real symbols
10.6 Normal forms for operators with complex symbols
10.7 Application: semiclassical pseudospectra

This final chapter presents some more advanced topics, mostly con-
cerning how (and why) to quantize symplectic transformations.

10.1 DEFORMATION AND QUANTIZATION

Throughout this chapter, we identify R2n = Rn×Rn. In this section
γ : R2n → R2n denotes a symplectomorphism:

γ∗σ = σ for σ =
n∑
j=1

dξj ∧ dxj,

normalized so that γ(0, 0) = (0, 0). Our goal is to quantize γ locally,
meaning to find a unitary operator F : L2(Rn)→ L2(Rn) such that

F−1AF = B near (0, 0)

for A = Op(a), where a ∈ S and B = Op(b) for

b = γ∗a+O(h).

This can be useful in practice, since sometimes we can design κ so
that κ∗a is more tractable than a.

The basic strategy will be (i) finding a family {κt}0≤t≤1 of symplec-
tomorphisms so that γ0 = I and γ1 = γ; (ii) quantizing the functions
qt generating this flow of mappings; and then (iii) solving an associated
operator ODE (10.7).

10.1.1 Deformations. We begin by deforming γ to the identity map-
ping. So assume U0 and U1 are simply connected neighborhoods of
(0, 0) and γ : U0 → U1 is a symplectomorphism such that κ(0, 0) =
(0, 0).

THEOREM 10.1 (Deforming symplectomorphisms). There ex-
ists a continuous, piecewise smooth family

{γt}0≤t≤1

of local symplectomorphisms γt : U0 → Ut =: γt(U0) such that
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(i) γt(0, 0) = 0 (0 ≤ t ≤ 1)
(ii) γ1 = γ, γ0 = I.
(iii) Also,

(10.1)
d

dt
γt = (γt)∗Hqt (0 ≤ t ≤ 1)

for a smooth family of functions {qt}0≤t≤1.

REMARK. The statement (10.1) means that for each function a ∈
C∞(U1), we have

(10.2)
d

dt
γ∗t a = Hqtγ

∗
t a.

In fact,

d

dt
γ∗t a = 〈da, dγt/dt〉 = 〈da, (γt)∗Hqt〉 = Hqtγ

∗
t a,

where 〈·, ·〉 is the pairing of differential 1-forms and vectorfields on
Ut. �

Proof. 1. We first consider the case that γ is given by a linear sym-
plectomorphism K : R2n → R2n:

(10.3) K∗JK = J

for

J :=

(
0 I
−I 0

)
.

Since K is an invertible matrix, we have the unique polar decompo-
sition

K = QP,

where Q is orthogonal and P is positive definite. From (10.3) we deduce
that

Q∗−1P ∗−1 = K∗−1 = JQJ−1JPJ−1;

whence the uniqueness of Q and P implies

Q∗−1 = JQJ−1, P ∗−1 = JPJ−1.

That is, both Q and P are symplectic. Furthermore, we can write

P = expA,

where A = A∗ and JA+ AJ = 0.

2. We identify R2n = Rn × Rn with Cn, under the relation (x, y)↔
x+ iy. Since

〈x+ iy, x′ + iy′〉Cn = 〈(x, y), (x′, y′)〉Rn + iσ((x, y), (x′, y′)),
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the fact that Q is orthogonal and symplectic implies it is unitary:

Q = Q∗−1 = −JQJ.

(Similarly, any unitary transformation on Cn gives an orthogonal sym-
plectic transformation in Rn × Rn.)

We can now write

Q = exp iB,

where B∗ = B is Hermitian on Cn. A smooth deformation to the
identity is now clear:

Kt := exp(itB) exp(tA) (0 ≤ t ≤ 1).

3. For the general case that γ is nonlinear, set K := ∂γ(0, 0). Then
for 1/2 ≤ t ≤ 1,

γt := K−1
2−2t ◦ γ

is a piecewise smooth family of symplectomorphisms satisfying

γ1 = γ, ∂γ1/2(0, 0) = I.

For 0 ≤ t ≤ 1/2, we set

γt(m) :=
1

2t
γ1/2+t(2tm).

4. Define Vt := d
dt
γt; we must show

Vt = (κt)∗Hqt

for some function qt. According to Cartan’s formula (Theorem B.3):

LVtσ = dσ Vt + d(σ Vt).

But LVtσ = d
dt
γ∗t σ = d

dt
σ = 0, since γ∗t σ = σ. Furthermore, dσ = 0,

and consequently d(σ Vt) = 0. Owing to Poincaré’s Lemma (Theorem
B.4), we have

γ∗t (σ Vt) = dqt

for a function qt; and this means that Vt = (κt)∗Hqt . �

To define our symbol classes, we hereafter consider the order function

m := (1 + |x|2 + |ξ|2)
k
2

for some positive integer k.
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THEOREM 10.2 (Quantizing one parameter families of sym-
plectomorphisms). Let {γt}0≤t≤1 be a smooth family of symplecto-
morphisms of R2n, such that

γ0 = I,
d

dt
γt = (γt)∗Hqt ,

where qt ∈ S(m) is a smooth family of real valued symbols.
Then there exists a family of unitary operators

F (t) : L2(Rn)→ L2(Rn)

such that

F (0) = I,

and for all A = Op(a) with a ∈ S, we have

(10.4) F (t)−1 ◦ A ◦ F (t) = B(t) (0 ≤ t ≤ 1)

for

(10.5) B(t) = Op(bt),

where

(10.6) bt = γ∗t a+ hct

for ct ∈ S ∩ S.

Proof. 1. We define

Q(t) := Op(qt) : S → S (0 ≤ t ≤ 1),

and recall that

Q(t)∗ = Q(t).

Since Q(t) depends smoothly on t as an operator on S, we can solve
the operator ODE

(10.7)

{
hDtF (t) + F (t)Q(t) = 0 (0 ≤ t ≤ 1)

F (0) = I

for F (t) : S → S. Then

(10.8)

{
hDtF (t)∗ −Q(t)F (t)∗ = 0 (0 ≤ t ≤ 1)

F (0)∗ = I.

2. We claim that

F (t) is unitary on L2(Rn).
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To confirm this, let us calculate using (10.7) and (10.8):

hDt(F (t)F (t)∗) = hDtF (t)F (t)∗ + F (t)hDtF (t)∗

= −F (t)Q(t)F (t)∗ + F (t)Q(t)F (t)∗ = 0.

Hence F (t)F (t)∗ ≡ I. On the other hand,

hDt(F (t)∗F (t)− I) = Q(t)F (t)∗F (t)− F (t)∗F (t)Q(t)

= [Q(t), F (t)∗F (t)− I].

with F (0)∗F (0) − I = 0. Since this equation for F (t)∗F (t) − I is
homogeneous, it follows that F (t)∗F (t) ≡ I.

3. Now define

(10.9) B(t) := F (t)−1AF (t),

and first show that

(10.10) B(t) : S ′ −→ S.
This from a stronger statement showing that for any N ,

(10.11) BN(t) := 〈x〉N〈hDx〉NB(t)〈x〉N〈hDx〉N = O(1) : L2 −→ L2,

that is the bound does not depend on h. To see this we note that

BN(t) = FN(t)−1BN(0)FN(t),

where FN(t) is defined in the same way as F (t) but with Q(t) replaced
by

QN(t) := 〈hDx〉−N〈x〉−NQ(t)〈x〉N〈hDx〉.
Theorem 4.13 shows that QN(t) = Op(qN(t)), qN(t) ∈ S(1), and hence
it is bounded on L2. The inverse, FN(t)−1 = GN(t) : S → S, is
obtained by solving

hDtGN(t)−QN(t)GN(t) = 0 (0 ≤ t ≤ 1), GN(0) = I.

Since QN(t) = QN(t)∗ +OL2→L2(h), we see that

d

dt
‖GN(t)u‖2 =

2

h
Im〈QN(t)GN(t)u,GN(t)〉 ≤ C‖GN(t)u‖2,

and hence, by Gronwall’s inequality, GN(t), and hence FN(t), are
bounded on L2, uniformly with respect to h.

This concludes the proof of (10.11) since

BN(0) = 〈x〉N〈hDx〉NA〈x〉N〈hDx〉N = O(1) : L2 −→ L2

by the assumption that A = Op(a), a ∈ S.
4. We assert that

(10.12) B(t) = Op(bt)
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for

(10.13) bt = γ∗t a+O(h), bt ∈ S ∩ S(1).

To prove this, define the family of pseudodifferential operators

B̃(t) := Op(γ∗t a).

We calculate

hDtB̃(t) =
h

i
Op

(
d

dt
γ∗t a

)
=
h

i
Op(Hqtγ

∗
t a)

=
h

i
Op({qt, γ∗t a}) = [Q(t), B̃(t)] + E(t),

and the pseudodifferential calculus implies that

‖E(t)‖L2→L2 = O(h2)

where E(t) = Op(e(t)) for a symbol e(t) ∈ S−2.

Therefore

hDt(F (t)B̃(t)F (t)−1) = (hDtF (t))B̃(t)F (t)−1 + F (t)(hDtB̃(t))F (t)−1

+ F (t)B̃(t)hDt(F (t)−1)

= −F (t)Q(t)B̃(t)F (t)−1 + F (t)([Q(t), B̃(t)]

+ E(t))F (t)−1 + F (t)B̃(t)Q(t)F (t)−1

= F (t)E(t)F (t)−1 = O(h2).

Integrating and dividing by h gives

(10.14) F (t)B̃(t)F (t)−1 = A+
i

h

∫ t

0

F (s)E(s)F (s)−1ds = A+O(h),

so that B̃(t)−B(t) = O(h).
5. We will now construct families of pseudodifferential operators

Bk(t) so that for each m

(10.15) B(t) = B̃(t)+B1(t)+· · ·+Bm(t)+OL2→L2(hm+1), Bj ∈ Ψ−j.

For that let

ẽ(t) = (κt)
∗
∫ t

0

(κ−1
s )∗e(s)ds,

and set Ẽ(t) = Op(ẽ(t)). We observe that

hDtẼ(t) = [Q(t), Ẽ] +
h

i
(E(t) + E1(t)) ,
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where E1(t) = Op(e1(t)), e1(t) ∈ S−3 by the pseudodifferential calcu-
lus. Then, as in Step 4 above,

hDt

(
F (t)Ẽ(t)F (t)−1

)
= −F (t)[Q(t), Ẽ(t)]F (t)−1

+ F (t)hDt

(
Ẽ(t)

)
F (t)−1

=
h

i

(
F (t)E(t)F (t)−1 + F (t)E1(t)F (t)−1

)
.

Integrating in t gives

F (t)Ẽ(t)F (t)−1 =

∫ t

0

F (s)E(s)F (s)−1ds+

∫ t

0

F (s)E1(s)F (s)−1ds.

This we now substitute in (10.14) obtaining

B̃(t)−B(t) =
i

h
Ẽ(t)− F (t)−1

(
i

h

∫ t

0

F (s)E1(s)F (s)−1ds

)
F (t)

=
i

h
Ẽ(t) +OL2→L2(h2).

Setting B1(t) = iẼ(t)/h ∈ Ψ−1, and continuing inductively gives Bk(t)
satisfying (10.15).

6. It remains to show that B(t) is a pseudodifferential operator. To
do so, we invoke Beals’s Theorem 9.8 by showing that for any linear
l1, · · · , lM , we have the estimate

(10.16) adlM · · · adl1B(t) = OL2→L2(hM).

But this statement is clear from Steps 3 and 5: for any P we can find
a pseudodifferential operator Op(bPt ), with bNt ∈ S−1, such that

B(t) = Op(bPt ) +RP (t),

〈x〉N〈hDx〉NRP (t)〈x〉N〈hDx〉N = O(hP ) : L2 → L2.

Since

adlM · · · adl1Op(bNt ) = O(hM),

and, by a trivial estimate,

adlM · · · adl1RP (t) = O(hP )

(10.16) follows by choosing M ≥ P . �

REMARK. The argument used in Step 2 of the proof shows that if
in Theorem 10.2 we have

a(x, ξ;h) ∼ a0(x, ξ) + ha1(x, ξ) + · · ·+ hNaN(x, ξ) + · · · ,
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for aj ∈ S, then

bt(x, ξ;h) ∼ γ∗t a0(x, ξ) + hb1
t (x, ξ) + · · ·hNbNt (x, ξ) + · · · .

However, the higher order terms are difficult to compute. �

10.1.2 Locally defined symplectomorphisms. The requirement
that the family of symplectomorphism be global on R2n is very strong
and often invalid in interesting situations. So we now discuss quantiza-
tion of locally defined symplectomorphisms, for which the quantization
formula (10.4) holds only locally.

THEOREM 10.3 (Local quantization). Let γ : U0 → U1 be a
symplectomorphism fixing (0, 0) and defined in a neighbourhood of U0.

Then there exists a unitary operator

F : L2(Rn)→ L2(Rn)

such that for all A = Op(a) with a ∈ S, we have

(10.17) F−1AF = B,

where B = Op(b) for a symbol b ∈ S satisfying

(10.18) b|U0 := γ∗(a|U1)|U0 +O(h).

Proof. 1. According to Theorem 10.1, there exists a piecewise smooth
family of symplectomorphisms γt : U0 → Ut, (0 ≤ t ≤ 1) such that
γ = γ1, γ0 = I, and

d

dt
γt = (γt)∗Hqt (0 ≤ t ≤ 1)

within U , for a smooth family {qt}0≤t≤1.
We extend qt smoothly to be equal to 0 in R2n−U0 and then define a

family of global symplectomorphisms γ̃t using the now globally defined
functions qt. Observe that

γ̃t|U0 = γt : U0 → Ut;

and hence

(10.19) γ̃∗t (a)|U0 = γ∗t (a|Ut)|U0 .

2. We now apply Theorem 10.2, to obtain the family of operators
{F (t)}0≤t≤1. We observe that since the supports of the functions qt lie
in a fixed compact set, the proof of Theorem 10.2 shows that (10.4)
holds for a ∈ S. That is,

F (t)−1AF (t) = Op(b(t)) = B(t)
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for
b(t) = γ̃∗t a+O(h).

We now put
F := F (1), B := B(1).

Then (10.19) shows that formula (10.17) is valid. �

10.1.3 Microlocality. It will prove useful to formulate the theorems
above without reference to the global properties of the operator F .

DEFINITIONS. (i) Let U, V be open, bounded subsets of R2n, and
assume

T : S(Rn)→ S(Rn)

is linear.
We say that T is tempered if for each seminorm ‖ ·‖1 on S(Rn), there

exists another seminorm ‖ · ‖2 and a constant N ∈ R such that

(10.20) ‖Tu‖1 = O(h−N)‖u‖2

for all u ∈ S.

(ii) Given two tempered operators T and S, we say that

(10.21) T ≡ S microlocally on U × V
if there exist open sets Ũ ⊇ U and Ṽ ⊇ V such that

A(T − S)B = O(h∞)

as a mapping S → S, for all A,B such that

WFh(A) ⊂ Ṽ , WFh(B) ⊂ Ũ .

(iii) In particular, we say

T ≡ I microlocally near U × U
if there exists an open set Ũ ⊇ U such that

A− TA = A− AT = O(h∞)

as mappings S → S, for all A with WFh(A) ⊂ Ũ .

(iv) We will say that T is microlocally invertible near U ×U if there
exists an operator S such that TS ≡ I and ST ≡ I microlocally near
U × U .

When no confusion is likely, we write

S = T−1

and call S a microlocal inverse of T .
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LEMMA 10.4 (Wavefront sets and composition). If

WFh(A) ∩ U = ∅
and B = Op(b) for b ∈ S, then

(10.22) WFh(BA) ∩ U = ∅.

Proof. The symbol of BA is b#a = O(h∞) in U . �

LEMMA 10.5 (Tempered unitary transformations). The uni-
tary transformations F (t) given by Theorem 10.2 are tempered.

Proof. Up to powers of h, each seminorm on S is bounded from above
and below by these specific seminorms:

u 7→ ‖ANu‖ for AN := (1 + |x|2 + |hD|2)N .

We observe that the operators AN are invertible and selfadjoint and
that, in the notation of the proof of Theorem 10.2

ANQ(t)A−1
N = QN(t) = Op(qNt ),

for qNt ∈ S(m) such that qNt − qt ∈ S−1(m).
We then have

hDtANF (t)A−1
N = ANF (t)A−1

N QN(t);

and hence the same arguments as in Step 3 of the proof of Theorem
10.4,

‖ANF (t)u‖2 ≤ C‖ANu‖2.

Consequently for any seminorm ‖ · ‖1 on S, there exists a seminorm
‖ · ‖2 and N such that

‖F (t)u‖1 ≤ O(h−N)‖u‖2.

�
The previous two lemmas and Theorem 10.3 give

THEOREM 10.6 (More on local quantization). Let γ : U0 → U1

be a symplectomorphism fixing (0, 0) and defined in a neighbourhood of
U0. Suppose U is open, U ⊂⊂ U0 ∩ U1.

Then there exists a tempered operator

F : L2(Rn)→ L2(Rn)

such that F is microlocally invertible near U×U and for all A = Op(a),
with a ∈ S,

(10.23) F−1AF = B microlocally near U × U ,
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where B = Op(b) for a symbol b ∈ S satisfying

(10.24) b := γ∗a+O(h).

In (10.24) we do not specify the neighbourhoods, as we did in (10.19),
since the statement needs to make sense only locally near U × U .

The last theorem has the following converse which we include for
completeness:

THEOREM 10.7 (Converse). Suppose that F : L2(Rn) → L2(Rn)
is a tempered operator such that for every A = Op(a) with a ∈ S, we
have

AF ≡ FB

microlocally near (0, 0), for

B = Op(b), b = γ∗a+O(h),

where κ : R2n → R2n is a symplectomorphism, defined locally near U ,
with κ(0, 0) = (0, 0).

Then there exists a pseudodifferential operator F0, elliptic near U ,
and a family of self-adjoint pseudodifferential operators Q(t), such that

F = F (1) microlocally near U × U ,

where {
hDtF (t) + F (t)Q(t) = 0 (0 ≤ t ≤ 1)

F (0) = F0.

Proof. 1. From Theorem 10.1 we know that there exists a family of
local symplectomorphisms, γt, satisfying γt(0, 0) = (0, 0), γ1 = γ and
γ0 = I. Since we are working locally, there exists a function qt so that
γt is generated by its Hamiltonian vectorfield Hqt .

As in the proof of Theorem 10.3 we extend this function to be zero
outside a compact set. Let us now consider the dynamics{

hDtF (t) = Q(t)F (t) (0 ≤ t ≤ 1)

F (1) = CFC,

where C is a pseudodifferential operator with WFh(I − C) ∩ U = ∅.

2. We claim that F (0) satisfies

(10.25) Op(a)F (0) = F (0)Op(a+ hã)
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for a, ã ∈ S ∩ S0(1). To establish this, let us introduce V (t) satisfying{
hDtV (t) + V (t)Q(t) = 0 (0 ≤ t ≤ 1)

V (0) = I.

Then using Theorem 10.3 and the assumption that b = γ∗a+ 0(h), we
deduce that

Op(a)F (t)V (t) = F (t)Op(b)V (t)

= F (t)V (t)(V (t)−1Op(b)V (t))

= F (t)V (t)Op(a+ hã).

Putting t = 0 gives (10.25).

3. We now use Beals’s Theorem to conclude that F (0) ∈ Ψ0. We
verify the hypothesis by induction: suppose we know that

adOp(b1) · · · adOp(bN )F (0) = O(hN),

for any bj ∈ S0(1). Then by (10.25)

Op(bN+1)F (0)− F (0)Op(bN+1) = hOp(b̃N+1)F (0);

and hence

‖adOp(b1) · · · adOp(bN )adOp(bN+1)F (0)‖L2→L2 =

‖hadOp(b1) · · · adOp(bN )(Op(b̃N+1)F (0))‖L2→L2 = O(hN+1),

according to the induction hypothesis and the derivation property

adA(BC) = B(adAC) + (adAB)C.

Hence Beals’s Theorem applies and shows that F (0) is a pseudodiffer-
ential operator. By construction, F (1) = CFC ≡ F near (0, 0). �

10.1.4. Quantization of linear symplectic maps.

CHECK DEFINITION OF J Consider first the simple linear sym-
plectic transformation γ = J ; that is,

(10.26) γ(x, ξ) = (−ξ, x)

on R2n = Rn × Rn.

Then we can take for 0 ≤ t ≤ 1,

γt(x, ξ) =

(
cos

(
tπ

2

)
x− sin

(
tπ

2

)
ξ, sin

(
tπ

2

)
x+ cos

(
tπ

2

)
ξ

)
;

so that
dγt
dt

= (γt)∗Hq,
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for
q :=

π

4
(|x|2 + |ξ|2).

THEOREM 10.8 (J quantized). The operator F associated with
the transformation (10.26) as in Theorem 10.3 is

(10.27) Fu(x) :=
e−

π
4
i

(2πh)
n
2

∫
Rn
e−

i〈x,y〉
h u(y) dy =

e−
π
4
i

(2πh)
n
2

Fhu.

Proof. 1. To verify this, we first show that for a ∈ S ′ we have

(10.28) aw(x, hD) ◦ F = F ◦ aw(−hD, x);

that is, the conclusion of Theorem 10.2 holds without any error terms.
As in the proof of that theorem, we see that

hDtAt =
π

4
[−h2∆ + |x|2, At]

for
At := F (t)−1aw(x, hD)F (t).

Let l(x, ξ) be a linear function on R2n and consider the exponential
symbol

at(x, ξ) := exp(γ∗t l(x, ξ)/h)

and its Weyl quantization

aw
t (x, hD) = exp(γ∗t l(x, hD)/h).

An explicit computation reveals that

hDtat(x, hD) =
π

4
[−h2∆ + |x|2, at(x, hD)].

Since any Weyl operator is a superposition of exponentials of l’s (recall
(??)), assertion (10.28) follows.

2. Suppose now that F̃ is another unitary operator for which (10.28)
holds. Then F̃ = cF for c ∈ C, |c| = 1, as follows from applying

Lemma 3.3 to L = F ∗F̃ . Since the Fourier transform satisfies (10.28)
and (2πh)−n/2Fh is unitary, we deduce that

F =
c

(2πh)
n
2

Fh.

3. Thus it remains to compute the constant c. For this, let us put
u0 = exp(−|x|2/2) and consider the ODE{

hDtu(t) = π
4
(−h2∆ + |x|2)u(t),

u(0) = u0.
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Recalling (10.7), we see that u(t) = F (t)∗u0. Since u0 is the ground
state of the harmonic oscillator with eigenvalue h, we learn that u(t) =
a(t)u0, where a(t) solves the ODE{

d
dt
a(t) = πi

4
a(t)

a(0) = 1;

that is, a(t) = exp(πit/4). Finally, we note that

eπi/4u0 = F (1)∗u0 = c̄(2πh)−n/2Fhu0 = c̄u0;

whence
c = exp(−πi/4).

�

REMARK. The family of canonical transformations γt (0 ≤ t ≤ 1),
used here can be extended to a periodic family of canonical transfor-
mations: γt+4 = γt (t ∈ R). Extending F (t) using (10.7), we see that
the argument above gives

F (4k) = (−1)kI, γ4k = I.

Consequently on the quantum level the deformation produces an ad-
ditional shift in the phase. This shift has an important geometric and
physical interpretation and is related to the Maslov index. For a brief
discussion and references see [?, Sect.7]. �

REMARK: Quantizing linear symplectic mappings. Using Step
1 in the proof of Theorem 10.1, we can in fact quantize any linear
symplectic transformation. So given

K : R2n → R2n, K =

(
A B
C D

)
,

where
C∗A = A∗C, D∗B = B∗D, D∗A−B∗C = I,

we can construct FK : L2(Rn)→ L2(Rn) satisfying

F ∗KFK = FKF
∗
K = I, aw(x, hD) ◦ FK = FK ◦ (K∗a)w(x, hD).

The operator FK is unique up to a multiplicative factor; and hence

FK1 ◦ FK2 = cFK1◦K2 , |c| = 1.

The associationK 7→ FK can in fact be chosen so that c = ±1; therefore
it is almost a representation of the group of symplectic transformations.
To make it a representation, one has to move to the double cover of
the symplectic group, the so-called the metaplectic group. Unitary op-
erators quantizing linear symplectic transformations are consequently



172

called metaplectic operators: see Dimassi–Sjöstrand [D-S, Appendix to
Chapter 7] for a self-contained presentation in the semiclassical spirit,
and Folland [?, Chapter 4] for more and for references. �

EXAMPLE: A invertible. For reasons already apparent in the dis-
cussion of the Fourier transform, there cannot be a general formula for
the kernel FK in terms of the entries A,B,C,D of K.

But if detA 6= 0, we have for u ∈ S the formula

(10.29) FKu(x) =
(detA)−

1
2

(2πh)n

∫
Rn

∫
Rn
e
i
h

(ϕ(x,η)−〈y,η〉)u(y) dydξ,

where

(10.30) ϕ(x, η) := −1

2
〈CA−1x, x〉+ 〈A−1x, η〉+

1

2
〈A−1Bη, η〉.

We will refer to this formula in our next example. �

10.2 SEMICLASSICAL ANALYSIS OF PROPAGATORS

In this section we consider the flow of symplectic transformations

(10.31) γt = exp(tHp),

generated by the real-valued symbol p ∈ S(m).
Let P = Op(p). Then in the notation of Theorem 10.2, F (t) =

e−itP/h solves {
(hDt + P )F (t)u = 0

F (0)u = u

for u ∈ S. In this case, Theorem 10.2 reproduces Egorov’s Theorem
8.2: if a ∈ S, then

eitP/hOp(a)e−itP/h = Op(bt),

for
bt = (exp tHp)

∗a+O(h).

A Fourier integral representation formula. Our goal now is to
find for small times t0 > 0 a microlocal representation of F (t) as an
oscillatory integral. In other words, we would like to find an operator
U(t) so that for each h dependent family, u ∈ S with WFh(u) ⊂⊂ R2n,
we have

(10.32)

{
hDtU(t)u+ PU(t)u = O(h∞) (−t0 ≤ t ≤ t0)

U(0)u = u.

Using Duhamel’s formula, we can then deduce that

F (t)− U(t) = O(h∞).
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THEOREM 10.9 (Oscillatory integral representation). We have
the representation
(10.33)

U(t)u(x) =
1

(2πh)n

∫
Rn

∫
Rn
e
i
h

(ϕ(t,x,η)−〈y,η〉)b(t, x, η;h)u(y) dydη,

for the phase ϕ and amplitude b as defined below.

The proof will appear after the following constructions of the phase
and amplitude.

Construction of the phase function. We start by finding the phase
function ϕ as a local generating function associated with the symplec-
tomorphisms (10.31). (Recall the discussion in §2.3 of generating func-
tions.)

Let U denote a bounded open set containing (0, 0).

LEMMA 10.10 (Hamilton–Jacobi equation). If t0 > 0 is small
enough, there exists a smooth function

ϕ = ϕ(t, x, η)

defined in (−t0, t0)× U × U , such that

γt(y, η) = (x, ξ)

locally if and only if

(10.34) ξ = ∂xϕ(t, x, η), y = ∂ηϕ(t, x, η).

Furthermore, ϕ solves the Hamilton–Jacobi equation

(10.35)

{
∂tϕ(t, x, η) + p(x, ∂xϕ(t, x, η)) = 0

ϕ(0, x, η) = 〈x, η〉.

Proof. 1. We know that for points (y, η) lying in a compact subset of
R2n, the flow

(10.36) (y, η) 7→ γt(y, η)

is surjective near (0, 0) for times 0 ≤ t ≤ t0, provided t0 is small enough.
This is so since γ0(y, η) = (y, η).

2. To show the existence of ϕ, consider

Λ := {(t, p(y, η); γt(y, η); y, η) : t ∈ R, (y, η) ∈ R2n},
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This is a surface in R2 × R2n × R2n, a typical point of which we will
write as (t, τ, x, ξ, y, η). Introduce the one-form

V := −τdt+
n∑
j=1

ξjdxj +
n∑
j=1

yjdηj.

That γt is a symplectic implies dV |Λ = 0. By Poincaré’s Lemma (The-
orem B.4), there exists a smooth function ϕ such that

dϕ = V.

In view of (10.36) we can use (t, x, η) as coordinates on Λ∩ ((−t0, t0)×
U × U); and hence

−τdt+
n∑
j=1

ξjdxj +
n∑
j=1

yjdηj = ∂tϕdt+
n∑
j=1

∂xjϕdxj +
n∑
j=1

∂ηjϕdηj.

Comparing the terms on the two sides gives (10.34) and (10.35). �

Construction of the amplitude. The amplitude b in (10.33) must
satisfy

(hDt + pw(x, hD))(eiϕ(t,x,η)/hb(t, x, η;h)) = O(h∞);

and so

(10.37) (∂tϕ+ hDt + e−iϕ/hpw(x, hD)eiϕ/h)b(t, x, η;h) = O(h∞),

for (x, η) in a neighbourhood of U × U , 0 ≤ t ≤ t0.

We will build b as an expansion in powers of h:

(10.38) b(t, x, η;h) ∼ b0(t, x, η) + hb1(t, x, η) + h2b2(t, x, η) + · · · .

Once all the terms bj are computed, Borel’s Theorem 4.11 produces
the amplitude b.

LEMMA 10.11 (Calculation of b0). We have

(10.39) b0(t, x, η) = (det ∂2
ηxϕ(t, x, η))

1
2 .

Note that det ∂2
ηxϕ > 0 for 0 ≤ t ≤ t0, if t0 is sufficiently small.

Proof. 1. We first observe that

e−iϕ/hpw(x, hD)eiϕ/h = qt(x, hD;h),

where

(10.40) qt(x, ξ;h) = p(x, ∂xϕ+ ξ) +O(h2).
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In fact, writing ϕ(x)− ϕ(y) = F (x, y)(x− y), we easily check that

e−iϕ/hpw(x, hD)eiϕ/hu =∫∫
a

(
x+ y

2
, ξ + F (x, y)

)
ei〈x−y,ξ〉/hu(y)dydξ,

where

F (x, y) = ∂xϕ

(
x+ y

2

)
+O((x− y)2).

Hence,

e−iϕ/hpw(x, hD)eiϕ/hu =

∫∫
(a((x+ y)/2, ξ + ∂xϕ((x+ y)/2))

+〈e(x, y, ξ)(x− y), (x− y)〉)ei〈x−y,ξ〉/hu(y)dydξ,

where the entries of the matrix valued function e are in S. Integration
by parts based on (9.65) gives (10.40).

2. Recalling from Lemma 10.10 that ∂tϕ = −p(x, ∂xϕ), we then
deduce from (10.37) that

(10.41) (hDt + fw
t (x, hD, η))b(t, x, η) = O(h2),

where

ft(x, ξ) := p(x, ∂xϕ(t, x, η) + ξ)− p(x, ∂xϕ(t, x, η)),

and where η considered as a parameter. So

ft(x, ξ, η) =
n∑
j=1

ξj∂ξjp(x, ∂xϕ(t, x, η)) +O(|ξ|2).

Hence for g = g(t, x, η) ∈ S,

fw
t (x, hD, η)g =

1

2

n∑
j=1

(
(∂ξjp)hDxjg + hDxj

(
∂ξjp g

))
+O(h2),

in which expression the derivatives of p are evaluated at (x, ∂xϕ(t, x, η)).
Consequently b0 satisfies:

hDtb0 +
1

2

n∑
j=1

(∂ξjp)hDxjb0 + hDxj(∂ξjp b0) = 0.

This we rewrite as

(10.42) (∂t + Vt +
1

2
div Vt)b0 = 0

with
Vt :=

∑
(∂ξjp)∂xj .
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3. To understand this equation geometrically, we consider b0(t, ·, η)
as a function on

Λt,η := {(x, ∂xϕ(t, x, η))}.
Then

γs,t : Λt−s,η → Λt,η,

d

ds
γ∗s,tu|s=0 = Hp|Λt,ηu = Vtu,

for u ∈ C∞. But equation (10.42) can be further rewritten as

(10.43)
d

dt
γ∗t b0(t, ·, η) = −1

2
γ∗t (div Vt b0(t, ·, η)).

We claim next that

(10.44) γ∗t b0(t, x, η) = |∂γt|−
1
2 ,

is the solution of (10.43) satisfying b0(0, x, η) = 1. Here γt is considered
as a function Λ0,η → Λt,η. In fact,

d

dt
|∂γt|−

1
2 =

d

ds
|∂γt ◦ κs,t|

− 1
2

s=0

=
d

ds
|∂γt|−

1
2γ∗t |∂γs,t|

− 1
2

s=0

= −1

2
γ∗t div Vt |∂γt|−

1
2 .

4. To obtain an explicit formula for b0, we recall that

γ−1
t : (x, ∂xϕ(t, x, η))→ (∂ηϕ(t, x, η), η).

Hence
∂(γ−1

t |Λt,η) = ∂2
ηxϕ(t, x, η),

and consequently, from (10.44), we see that (10.39) holds. �

Proof of Theorem 10.9 Using the same argument for the higher order
terms in b, we can find its full expansion with all the equations valid in
(−t0, t0)× U . That shows that U(t) given by (10.33) satisfies (10.32),
and thereby completes the proof of Theorem 10.9. �

EXAMPLE. Revisiting example (10.29), we see that for the phase
(10.30) the corresponding amplitude is

b0 = (det ∂2
xηϕ(x, η))1/2 = (detA)−1/2.

�

REMARK: Amplitudes as half-densities. The somewhat cumber-
some derivation of the formula for b0, the leading term of the amplitude
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b in (10.33), becomes much more natural when we use half-densities,
introduced earlier in Section 9.1.

We first make a general observation. If a := u|dx| 12 is a half-density,
and γt is a family of diffeomorphisms generated by a family of vector-
fields:

d

dt
γt = (γt)∗Vt,

then

(10.45) LVta :=
d

dt
γ∗t a = (Vtu+ (div Vt/2)u)|dx|

1
2 .

Indeed,

γ∗t a = γ∗t u|∂γt|
1
2 |dx|

1
2 ;

and if we define

γs,t(x) := γt+s(γ
−1
t (x)),

d

ds
γs,t(x)|s=0 = Vt(x),

then
d

dt
|∂γt|

1
2 =

d

ds
|∂γt ◦ κs,t|

1
2 =

1

2
|∂γt|

1
2κ∗tdiv Vt.

This means that if we consider b0(t, x, η)|dx| 12 as a half-density on Λt,η

then (10.42) becomes

(d/dt)γ∗t (b0|dx|
1
2 ) = (∂t + LVt)(b0(t, x, η)|dx|

1
2 ) = 0.

This is the same as

γ∗t (b0(t, x, η)|dx|
1
2 |Λϕt,η ) = |dx|

1
2 |Λϕ0,η

.

It follows that γ∗t b0 = |∂γt|−1/2, the same conclusion as before.

It is appealing that the amplitude, interpreted as a half-density, is
invariant under the flow. When coordinates change, and in particular
when we move to larger times at which (10.34) and (10.35) are no longer
valid, the statement about the amplitude as a half-density remains
simple. �

REMARK: A more general version of oscillatory integral rep-
resentation.

If we examine the proof of Theorem 10.9 we notice that we did not
use the fact that P = pw(x, hD) is t independent. That means that we
can consider the solution of a more general problem,

(10.46)

{
(hDt + P (t))F (t)u = 0

F (0)u = u
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where

P (t) = pw(t, x, hD), p(t, x, ξ) ∈ C∞(Rt, S(R2n
x,ξ,m)).

For the approximate solution of this problem we still have the same
oscillatory integral representation as the one give in Theorem 10.9. In
particular that means that we have an oscillatory integral representa-
tion of the family of operators defined in Theorem 10.3 for small values
of t there.

For the yet more general problem of p depending on h we refer to [?,
Section 7] and references given there. Here we note that the proof works
for P (t) = pw(t, x, hD) + h2pw

2 (t, x, hD) and that form of operators
acting on half-densities is invariant (see Theorem 9.12).

10.3 SEMICLASSICAL STRICHARTZ ESTIMATES, Lp

BOUNDS

In this section we will use Theorem 10.9 to obtain Lp bounds on
approximate solutions to

Let a = a(t, x, ξ) ∈ C∞(R, S(T ∗Rk,m)). We introduce the following
nondegeneracy condition at (t, x, ξ):

(10.47) ∂2
ξa(t, x, ξ) is non-degenerate .

REMARK. The Hessian, ∂2
ξf(ξ0), of a smooth function f(ξ) is not

invariantly defined unless ∂ξf(ξ0) = 0. However the statement (10.47)
is invariant if only linear transformations in ξ are allowed. That is the
case for symbol transformation induced by changes of variables in x,
see Theorem 9.12.

We consider the problem which essentially the same as (10.46):

(10.48)

{
(hDt + A(t))F (t, r)u = 0

F (r, r)u = u

where r ∈ R. As discussed in the remark at the end of Section 10.2,
Theorem 10.9 gives a description of F (t, r) for small values of t.

THEOREM 10.12 (Semiclassical Strichartz estimates). Sup-
pose that a(t) ∈ C∞(Rt, S(T ∗Rk,m)), is real valued, χ ∈ C∞c (T ∗Rk),
and that (10.47) holds in spt(χ), t ∈ R. With A(t) := aw(t, x, hD), let
F (t, r) be the solution of (10.48). Then for ψ ∈ C∞c (R) with support
sufficiently close to 0, any I ⊂⊂ R, and

U(t, r) := ψ(t)F (t, r)χw(x, hD) or U(t, r) := ψ(t)χw(x, hD)F (t, r)
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we have

sup
r∈I

(∫
R
‖U(t, r)f‖p

Lq(Rk)
dt

) 1
p

≤ Bh−
1
p‖f‖L2(Rk),

2

p
+
k

q
=
k

2
, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, (p, q) 6= (2,∞).

(10.49)

Proof: 1. In view of Theorem C.10 we need to show that

(10.50) ‖U(t, r)U(s, r)∗f‖L∞(X,µ) ≤ Ah−k/2|t− s|−k/2, t, s ∈ R,
with constants independent of r ∈ I. We can put r = 0 in the argument
and drop the dependence on r in U and F .

2. We use Theorem 10.9. The construction there and the assumption
that χ ∈ C∞c show that

U(t) = Ũ(t) + E(t),

where
E(t) = O(h∞) : S ′ → S,

and the Schwartz kernel of Ũ(t) is

Ũ(t, x, y) =
1

(2πh)k

∫
Rk
e
i
h

(ϕ(t,x,η)−〈y,η〉)b̃(t, y, x, η;h)dη,

b̃ ∈ S ∩ C∞c (R1+3k), ϕ(0, x, η) = 〈x, η〉,
∂tϕ(t, x, η) + a(t, x, ∂xϕ(t, x, η)) = 0.

(10.51)

3. Hence we only need to prove (10.50) with U replaced by Ũ
and that means that we need an L∞ bound on the Schwartz kernel
of W (t, s) := Ũ(t)Ũ(s)∗:

W (t, s, x, y) =
1

(2πh)2k

∫
R3k

e
i
h

(ϕ(t,x,η)−ϕ(s,y,ζ)−〈z,η−ζ〉) B dzdζdη,

where
B = B(t, s, x, y, z, η, ζ;h) ∈ S ∩ C∞c (R2+6k).

4. The phase is nondegenerate in (z, ζ) variables and stationary for
ζ = η, z = ∂ζϕ(s, y, ζ). Hence we can apply Theorem 3.15 to obtain

W (t, s, x, y) =
1

(2πh)k

∫
Rk
e
i
h

(ϕ(t,x,η)−ϕ(s,y,η)) B1(t, s, x, y, η;h) dη,

where B1 ∈ S ∩ C∞c (R2+3k). We now rewrite the phase as follows:

ϕ̃ := ϕ(t, x, η)− ϕ(s, y, η) = (t− s) (a (0, x, η) +O(|t|+ |s|))
+〈x− y, η + sF (s, x, y, η)〉, F ∈ C∞(R1+3k),
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where using (10.51) we wrote

ϕ(s, x, η)− ϕ(s, y, η) = 〈x− y, η〉+ 〈x− y, sF (s, x, y, η)〉.

5. The phase is stationary when

∂ηϕ̃ = (I + s∂ηF )(x− y) + (t− s)(∂ηa+O(|t|+ |s|)) = 0,

and in particular, for s small, having a stationary point implies

x− y = O(t− s),
as then (I + s∂ηF ) is invertible. The Hessian is given by

∂2
ηϕ̃ = s

(
∂2
ηF
)

(x− y) + (t− s)
(
∂2
ηa+O(|t|+ |s|)

)
= (t− s)

(
∂2
ηa+O(|t|+ |s|)

)
,

where ∂2
ηa = ∂2

ηa(0, x, η).

6. Hence, for t and s sufficiently small, that is for a suitable choice of
the support of ψ in the definition of U(·), the nondegeneracy assump-
tion (10.47) implies that at the critical point

∂2
ηϕ̃ = (t− s)ψ(x, y).

If |t− s| > Mh where M is a large constant we can use the stationary
phase estimate in Theorem 3.15 to see that

|W (t, s, x, y)| ≤ Ch−k/2|t− s|−k/2.
When |t− s| < Mh we see that the crude upper bound on the integral
gives

|W (t, s, x, y)| ≤ 1

(2πh)2k

∫
R3k

|B(t, s, x, y, z, η, ζ;h)|dzdζdη

≤ Ch−k ≤ C ′h−k/2|t− s|−k/2,
which is what we need to apply Theorem C.10. �

We formulate the following nondegeneracy assumptions at (x0, ξ0) ∈
T ∗Rn:

(10.52) p(x0, ξ0) = 0 =⇒ ∂ξp(x0, ξ0) 6= 0.

Consequently, the set

{ξ : p(x0, ξ) = 0}
is a smooth hypersurface in Rn near ξ0. We then assume that the
second fundamental form of this hypersuface is nondegenerate at ξ0.

We can reformulate this as follows. By a linear change of variables
assume that ∂ξp(x0, ξ0) = (ρ, 0, · · · , 0), ρ 6= 0. Then near (x0, ξ0),

p(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)),
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and our assumption on the curvature becomes

∂2
ξ′a(x0, ξ

′
0) is nondegenerate.(10.53)

THEOREM 10.13 (Lp bounds on approximate solutions). Sup-
pose that u(h), ‖u(h)‖L2 = 1, satisfies the frequency localization condi-
tion (9.8). Suppose also that (10.53) is satisfied in
WFh(u), and that

(10.54) pw(x, hD)u(h) = OL2(h).

Then for p = 2(n+ 1)/(n− 1), and any K ⊂⊂ Rn,

(10.55) ‖u(h)‖Lp(K) = O(h−1/p).

REMARK. The first example in the remark after Theorem 9.5 shows
that the curvature condition (10.53) is in general necessary. In fact,
if P (h) = hDx1 and u(h) = h−(n−1)/2χ(x1)χ(x′/h) then for p = 2(n +
1)/(n− 1),

‖u‖Lp ' h(n−1)(1/p−1/2) = h−(n−1)/(n+1) 6= O(h−1/p).

However for the simplest case in which (10.53) holds,

p(x, ξ) = ξ1 − ξ2
2 − · · · − ξ2

n,

the estimate (10.55) is optimal. To see that put

u(h) := h−(n−1)/4χ0(x1) exp(−|x′|2/2h),

where x = (x1, x
′), χ0 ∈ C∞c (R). Then

(−h2∆x′ + |x′|2)u(h) = (n− 1)h u(h),

‖u(h)‖L2 ' 1, |x′|2ku(h) = OL2(hk). Hence,

pw(x, hD)u(h) = OL2(h),

and

‖u(h)‖Lp(Rn) ' h(n−1)(2/p−1)/4 = h−1/p, p = 2(n+ 1)/(n− 1).

Before proving Theorem 10.13 we prove a lemma which is a conse-
quence of Theorem 10.12

LEMMA 10.14. In the notation of Theorem 10.13 we have
(10.56)

‖
∫ t

0

U(t, s)1I(s)f(s, x)ds‖Lp(Rt×Rkx) ≤ Ch−1/p

∫
R
‖f(s, x)‖L2(Rkx)ds.
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Proof: 1. We apply the integral version of Minkowski’s inequality:

‖
∫ t

0

U(t, s)1I(s)f(s, x)ds‖Lp(Rt×Rkx)

≤ C

∫
I∩R+

‖1[s,∞)(t)U(t, s)f(s, x)‖Lp(Rt×Rkx)ds

≤ C

∫
I∩R+

‖U(t, s)f(s, x)‖Lp(Rt×Rkx)ds.

2. Now we use the estimate (10.49) with p = q = 2(n+ 1)/(n− 1):

‖U(t, s)f(s, x)‖Lp(Rt×Rkx) ≤ Ch−1/p‖f(s, x)‖L2(Rkx),

from which (I is compact) (10.56) follows. �

Proof of Theorem 10.13: 1. We follow the same procedure as in the
proof of Theorem 9.5. As in that case the condition (10.54) is local in
phase space, that is, it implies that for any χ ∈ C∞c (T ∗Rn),

pw(x, hD)χw(x, hD)u(h) = O(h),

in L2.

2. We factorize p(x, ξ) as in (9.14) and we conclude that for χ with
sufficiently small support,

(hDx1 − a(x, hDx′))χ
w(x, hD)u(h) = OL2(h).

Let

f(x1, x
′, h) = (hDx1 − a(x, hDx′))(χ

wu(h)).

Since ‖f‖L2 = O(h), we see

(10.57)

∫
R
‖f(x1, ·)‖L2(Rn−1)dx1 ≤ C‖f‖L2(Rn) = O(h).

3. We now apply Theorem 10.12 with t = x1 and x replaced by
x′ ∈ Rn−1, that is k = n− 1. The assumption (10.53) shows that ∂2

ξ′a
is nondegenerate in the support of χ. We can choose ψ and χ in the
definition of U(t) in the statement of Theorem 10.12 so that

χw(x, hD)u(x1, x
′, h) =

i

h

∫ x1

0

U(t, s)f(s, x′)ds+OS(h∞).

Let us choose p = q, k = n− 1 in (10.49), that is,

p = q =
2(n+ 1)

n− 1
.
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Then, using (10.49), (10.57), and (10.56),

‖χw(x, hD)u‖Lp ≤
1

h
h−1/p

∫
R
‖f(s, ·, h)‖L2(Rn−1)ds+O(h∞)

= O(h−1/p).

A partition of unity argument used in the proof of Theorem 9.5 con-
cludes the proof. �

As a corollary we obtain Sogge’s bounds on spectral clusters on Rie-
mannian manifolds:

THEOREM 10.15 (Lp bounds on eigenfuctions). Suppose that
M is an n-dimensional compact Riemannian manifold and let ∆g be
its Laplace-Beltrami operator. If

0 = λ0 < λ1 ≤ · · ·λj →∞
is the complete set of eigenvalues of −∆g, and

−∆gϕj = λjϕj

are the corresponding eigenfunctions, then for any cj ∈ C, j = 0, 1, · · · ,

‖
∑

µ≤
√
λj≤µ+1

cjϕj‖Lp ≤ Cµσ(p)‖
∑

µ≤
√
λj≤µ+1

cjϕj‖L2 ,

σ(p) =


n−1

2

(
1
2
− 1

p

)
for 2 ≤ p ≤ 2(n+1)

n−1
,

n−1
2
− n

p
for 2(n+1)

n−1
≤ p ≤ ∞.

(10.58)

In particular

(10.59) ‖ϕj‖Lp ≤ Cλ
σ(p)/2
j ‖ϕj‖L2 .

Proof: 1. We argue as in the proof of Theorem 9.6 but now we need
to check is the curvature assumption (10.53): at any point (x0, ξ0) and
for suitable coordinates

p(x0, ξ) = |ξ|2 − 1, ξ0 = (1, 0, · · · , 0).

The hypersurface p(x0, ξ) = 0 is the unit sphere in Rn
ξ and it has a

nondegenerate second fundamental form.
2. Complex interpolation [H1, Theorem 7.1.12] between the estimate

in Theorem 9.6, the trivial L2 estimate, and the estimate in Theorem
10.13 gives the full result. �

10.4 MORE SYMPLECTIC GEOMETRY
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To further apply the local theory of quantized symplectic transfor-
mations to the study of semiclassical operators we will need two results
from symplectic geometry. The first is a stronger form of Darboux’s
Theorem 2.11, which we state without proof.

THEOREM 10.16 (Variant of Darboux’s Theorem). Let A and
B be two subsets of {1, · · · , n}, and suppose that

pj(x, ξ) (j ∈ A), qk(x, ξ) (k ∈ B)

are smooth, real-valued functions defined in a neighbourhood of (0, 0) ∈
R2n, with linearly independent gradients at (0, 0).

If

{qi, qj} = 0 (i, j ∈ A), {pk, pl} = 0 (k, l ∈ B),

{pk, qj} = δkj (j ∈ A, k ∈ B),
(10.60)

then there exists a symplectomorphism κ, locally defined near (0, 0),
such that κ(0, 0) = (0, 0) and

(10.61) κ∗qj = xj (j ∈ A), κ∗pk = ξj (k ∈ B).

See Hörmander [H2, Theorem 21.1.6] for an elegant exposition.

The next result is less standard and comes from the work of Duis-
termaat and Sjöstrand: consult Hörmander [H2, Lemma 21.3.4] for the
proof.

THEOREM 10.17 (Symplectic integrating factor). Let p and q
be smooth, real-valued functions defined near (0, 0) ∈ R2n, satisfying

(10.62) p(0, 0) = q(0, 0) = 0, {p, q}(0, 0) > 0.

Then there exists a smooth, positive function u for which

(10.63) {up, uq} ≡ 1

in a neighborhood of (0, 0).

10.5 NORMAL FORMS FOR OPERATORS WITH REAL
SYMBOLS

Operators of real principal type. Recall that we are taking our
order function to be

m := (1 + |x|2 + |ξ|2)
k
2 .
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Set P = pw(x, hD;h), where

p(x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + · · ·+ hNpN(x, ξ) + · · · ,
for pj ∈ S(m). We assume that the real-valued principal symbol p0

satisfies

(10.64) p0(0, 0) = 0, ∂p0(0, 0) 6= 0;

and then say that P is an operator of real principal type at (0, 0).

THEOREM 10.18 (Normal form for real principal type oper-
ators). Suppose that P = pw(x, hD;h) is a semiclassical real principal
type operator at (0, 0).

Then there exist
(i) a local canonical transformation κ defined near (0, 0), such that
κ(0, 0) = (0, 0) and

(10.65) κ∗ξ1 = p0;

and
(ii) an operator T , quantizing κ in the sense of Theorem 10.6, such
that

(10.66) T−1 exists microlocally near ((0, 0), (0, 0))

and

(10.67) TPT−1 = hDx1 microlocally near ((0, 0), (0, 0)).

INTERPRETATION. The point is that using this theorem, we can
transplant various mathematical objects related to P to others related
to hDx1 , which are much easier to study. A simple example is given by
the following estimate:

‖u‖ ≤ C

h
‖Pu‖,

when u = u(h) ∈ S has WFh(u) in a small neighbourhood of (0, 0). �

Proof. 1. Theorem 10.16 applied with A = ∅ and B = {1}, provides κ
satisfying (10.65) near (0, 0). Then Theorem 10.1 gives us a family of
symplectic transfomations γt for 0 ≤ t ≤ 1.

Let F (t) be defined using the family γt in Theorem 10.6, and put
T0 = F (1). Then

T0P − hDx1 = E microlocally near (0, 0). ,

for E = Op(e), e ∈ S−1.
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2. We now look for a symbol a ∈ S so that a is elliptic at (0, 0) and

hDx1 + E = AhDx1A
−1 microlocally near (0, 0)

for A := Op(a). This is the same as solving

[hDx1 , A] + EA = 0.

Since P = pw
0 +hpw

1 +h2pw
2 +· · · , the Remark after the proof of Theorem

10.2 shows that

e(x, ξ;h) = he0(x, ξ) + h2e1(x, ξ) + · · · .
Hence we can find a0 ∈ S such that a0(0, 0) 6= 0 and

1

i
{ξ1, a0}+ e0a0 = 0

near (0, 0).
Define A0 := Op(a0); then

[hDx1 , A0] + EA0 = Op(r0)

for a symbol r0 ∈ S−2.

3. We now inductively find Aj = Op(aj), for aj ∈ S−j, satisfying

[hDx1 , A0 + A1 + · · ·+ AN ] + E(A0 + A1 + · · ·AN) = Op(rN),

for rN ∈ S−N−2(1). We then put

A ∼ A1 + A2 + · · ·+ AN + · · · ,
which is elliptic near (0, 0). Finally, define

T := A−1T0.

This operator quantizes κ in the sense of Theorem 10.6. �

10.6 NORMAL FORMS FOR OPERATORS WITH COM-
PLEX SYMBOLS

Operators of complex principal type. Assume as before that P =
pw(x, hD;h) has the symbol

p(x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + · · ·+ hNpN(x, ξ) + · · ·
with pj ∈ S(m). We now allow p(x, ξ) to be complex-valued, and still
say that P is principal type at (0, 0) if

p0(0, 0) = 0, ∂p0(0, 0) 6= 0.

Discussion. If ∂(Re p0) and ∂(Im p0) are linearly independent, then
the submanifold of R2n where P is not elliptic has codimension two –
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as opposed to codimension one in the real-valued case. The symplectic
form restricted to that submanifold is non-degenerate if

{Re p0, Im p0} 6= 0.

Under this assumption a combination of Theorems 10.16 and 10.17
shows that there exists a canonical transformation κ, defined near
(0, 0), and a smooth positive function u such that

κ∗(ξ1 ± ix1) = up0.

That is, after a multiplication by a function we obtain the symbol of
the creation or annihilation operator for the harmonic oscillator in the
(x1, ξ1) variables. (Recall the discussion of the harmonic oscillator in
Section 6.1.)

THEOREM 10.19 (Normal form for the complex symplectic
case). Suppose that P = pw(x, hD;h) is a semiclassical principal type
operator at (0, 0), with principal symbol p0 satisfying

(10.68) p0(0, 0) = 0, ±{Re p0, Im p0}(0, 0) > 0.

Then there exist
(i) a local canonical transformation κ defined near (0, 0) and a smooth
function u such that κ(0, 0) = (0, 0), u(0, 0) > 0, and

κ∗(ξ1 ± ix1) = up0;

and (ii) an operator T , quantizing κ in the sense of Theorem 10.6, and
a pseudodifferential operator A, elliptic at (0, 0), such that

(10.69) T−1 exists microlocally near ((0, 0), (0, 0))

and

(10.70) TPT−1 = A(hDx1 ± ix1) microlocally near ((0, 0), (0, 0)).

INTERPRETATION. We can transplant mathematical objects re-
lated to P to others related to A(hDx1 ± ix1), which are clearly much
easier to study. �

Proof. 1. We start as in the proof of Theorem 10.18. To simplify the
notation, let us assume

{Re p0, Im p0} > 0.

As noted above, using Theorems 10.16 and 10.17 we can find a smooth
function u, with u(0, 0) > 0, and a local canonical transformation κ
such that κ(0, 0) = (0, 0) and κ∗(ξ1 + ix1) = up0.
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Quantizing as before, we obtain an operator T0 satisfying

(10.71) T0P = Q(hDx1 + ix1 + E)T0,

where Q = Op(q) for a function q satisfying

γ∗q = 1/u

and E = Op(e) for some e ∈ S−1.

2. We now need to find pseudodifferential operators B and C, elliptic
at (0, 0), and such that

(10.72) (hDx1 + ix1 + E)B ≡ C(hDx1 + ix1),

microlocally near (0, 0). As in the proof of Theorem 10.18, we have

E = Op(e), e = he0(x, ξ) + h2e1(x, ξ) + · · · .
We will find the symbols of B and C by computing successive terms in
their expansions:

b ∼ b0 + hb1 + · · ·+ hNbN + · · · ,
c ∼ c0 + hc1 + · · ·+ hNcN + · · · .

3. Let us rewrite (10.72) as

(hDx1 + ix1 + E)B − C(hDx1 + ix1) = Op(r),

for
r(x, ξ) = r0(x, ξ) + hr1(x, ξ) + · · ·+ hNrN(x, ξ) + · · · ,

with

r0 = (ξ1 + ix1)(b0 − c0),

r1 = (ξ1 + ix1)(b1 − c1) + e0b0 + {ξ1 + ix1, b0}/2i− {c0, ξ1 + ix1}/2i.
Here we used composition formula in Weyl calculus (see Theorem 4.6).

We want to choose b and c so that rj ≡ 0 for all j. For r0 = 0 we
simply need b0 = c0. Then to obtain r1 = 0 we have to solve

−i(∂x1 − i∂ξ1)b0 + e0b0 + (ξ1 + ix1)(b1 − c1) = 0.

4. We first find b0 such that{
−i(∂x1 − i∂ξ1)b0 + e0b0 = O(x∞1 )

b0|x1=0 = 1;

that is, the left hand side vanishes to infinite order at x1 = 0, and b0 = 1
there. The derivatives ∂kx1

e0|x1=0 determine ∂kx1
b0|x1=0. Then Borel’s

Theorem 4.11 produces a smooth function b0 with these prescribed
derivatives.
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5. With b0 = c0 chosen that way we see that

t1 := (−i(∂x1 − i∂ξ1)b0 + e0b0)/(ξ1 + ix1)

is a smooth function: the numerator vanishes to infinite order on the
zero set of the denominator. If we put

(10.73) c1 = b1 + t1

then r1 = 0.

6. Now, using (10.73) the same calculation as before, we see that

r3 = (ξ1 + ix1)(b2 − c2) + e0b1 − i{ξ1 + ix1, b1}+ r̃3,

where r̃3 depends only on b0 = c0, t1, and e. Hence r̃3 is already
determined. We proceed as in Step 4 and first solve{

−i(∂x1 − i∂ξ1)b1 + e0b1 + r̃3 = O(x∞1 )

b1|x=1 = 0.

This determines b1 (and hence c1). We continue in the same way to
determine b2 (and hence c2). An iteration of the argument completes
the construction of b and c, for which (10.72) holds microlocally near
(0, 0).

7. Finally, we put T = B−1T0, where B−1 is the microlocal inverse
of B near (0, 0), and A = B−1QC, to obtain the statement of the
theorem. �

10.7 SEMICLASSICAL PSEUDOSPECTRA

We present in this last section an application to the so-called semi-
classical pseudospectrum. Recall from Chapter 6 that if P = P (h) =
−h2∆ + V (x) and V is real-valued, satisfying

(10.74) V ∈ S(〈x〉m), |ξ2 + V (x)| ≥ (1 + |ξ|2 + |x|m)/C for |x| ≥ C,

then the spectrum of P is discrete. (We deduced this from the mero-
morphy of the resolvent of P , R(z) = (P − z)−1.)

Quasimodes. Because of the Spectral Theorem, which is applicable
as V is real, we also know that approximate location of eigenvalues is
implied by the existence of approximate eigenfunctions, called quasi-
modes. Indeed suppose that

(10.75) ‖(P − z(h))u(h)‖ = O(h∞), ‖u(h)‖ = 1.

Then there exist E(h) and v(h) such that

(10.76) (P − E(h))v(h) = 0, ‖v(h)‖ = 1, |E(h)− z(h)| = O(h∞).
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In other words, if we can solve (10.75), then the approximate eigenvalue
z(h) is in fact close to a true eigenvalue E(h) (although u(h) need not
be close to a true eigenfunction v(h).)

Nonnormal operators. But it is well known that this is not the case
for nonnormal operators P , for which the commutator [P ∗, P ] does not
vanish. Now if If p = |ξ|2 + V (x), then the symbol of this commutator
is

(10.77)
1

i
{p̄, p} = 2{Re p, Im p};

and when this is nonzero we are in the situation discussed in Theorem
10.19. This discussion leads us to

THEOREM 10.20 (Quasimodes). Suppose that P = −h2∆ +V (x)
and that

(10.78) z0 = ξ2
0 + V (x0), Im〈ξ0, ∂V (x0)〉 6= 0.

Then there exists a family of functions u(h) ∈ C∞c (Rn) such that

(10.79) ‖(P − z0)u(h)‖L2 = O(h∞), ‖u(h)‖L2 = 1.

Moreover, we can choose u(h) so that

(10.80) WFh(u(h)) = {(x0, ξ0)}, Im〈ξ0, ∂V (x0)〉 < 0.

Proof. We first replace V by a compactly supported potential agreeing
with V near x0. Our function u(h) will be constructed with support
near x0.

By changing the sign of ξ0 if necessary, but without changing z0, we
can assume that

{Re p, Im p}(x0, ξ0) = 2Im〈ξ0, ∂V (x0)〉 < 0.

According Theorem 10.19, P − z0 is microlocally conjugate to

A(hDx1 − ix1) near ((x0, ξ0), (0, 0)).

Let
u0(x, h) := exp(−|x|2/2h);

so that

(hDx1 − ix1)u0(h) = 0, WFh(u0(h)) = {(0, 0)}.
Following the notation of Theorem 10.19, we define u(h) := T−1u0(h).
Then WFh(u(h)) = {(x0, ξ0)} and

(P − z0)u(h) ≡ T−1A(hDx1 − ix1)T (T−1u0) ≡ 0.

�



191

REMARK. If p(x, ξ) = |ξ|2 + V (x), the potential V satisfies (10.74),
and

{p(x, ξ) : (x, ξ) ∈ R2n} 6= C,
then the operator P still has a discrete spectrum. This follows from the
proof of Theorem 6.7, once we have a point at which P − z is elliptic.
Such a point is produced if there exists z not in the set of values of
p(x, ξ). However, the hypothesis of Theorem 10.20 holds in a dense
open subset of the interior of the closure of the range of p. �

EXAMPLE. It is also clear that more general operators can be con-
sidered. As a simple one-dimensional example, take

P = (hDx)
2 + ihDx + x2

with
p(x, ξ) = ξ2 + iξ + x2, {Re p, Im p} = −2x.

Hence there is a quasimode corresponding to any point in the interior
of the range of p, namely {z : Re z ≥ (Im z)2}. On the other hand,
since

ex/2hPe−x/2h = (hD)2 + x2 +
1

4
,

P has the discrete spectrum {1/4 + nh : n ∈ N}. Since the spectrum
lies inside an open set of quasimodes, it is unlikely to have any true
physical meaning. �
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Appendix A. Notation

A.1 BASIC NOTATION.

R+ = (0,∞)

Rn = n-dimensional Euclidean space

x, y denote typical points in Rn : x = (x1, . . . , xn), y = (y1, . . . , yn)

R2n = Rn × Rn

z = (x, ξ), w = (y, η) denote typical points in Rn × Rn :
z = (x1, . . . , xn, ξ1, . . . , ξn), w = (y1, . . . , yn, η1, . . . , ηn)

Tn = n-dimensional flat torus = Rn/Zn

C = complex plane

Cn = n-dimensional complex space

〈x, y〉 =
∑n

i=1 xiȳi = inner product on Cn

|x| = 〈x, x〉1/2

〈x〉 = (1 + |x|2)1/2

Mm×n = m× n-matrices

Sn = n× n real symmetric matrices

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

J =

(
O I
−I O

)
σ(z, w) = 〈Jz, w〉 = symplectic inner product

#S = cardinality of the set S

|E| = Lebesgue measure of the set E ⊆ Rn

A.2 FUNCTIONS, DIFFERENTIATION.

The support of a function is denoted “spt”, and a subscript “c” on
a space of functions means those with compact support.

• Partial derivatives:

∂xj :=
∂

∂xj
, Dxj :=

1

i

∂

∂xj
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• Multiindex notation: A multiindex is a vector α = (α1, . . . , αn),
the entries of which are nonnegative integers. The size of α is

|α| := α1 + · · ·+ αn.

We then write for x ∈ Rn:

xα := x1
α1 . . . xn

αn ,

where x = (x1, . . . , xn).
Also

∂α := ∂α1
x1
. . . ∂αnxn

and

Dα :=
1

i|α|
∂α1
x1
. . . ∂αnxn .

(WARNING: Our use of the symbols “D” and “Dα” differs from that
in the PDE textbook [E].)

If ϕ : Rn → R, then we write

∂ϕ := (ϕx1 , . . . , ϕxn) = gradient,

and

∂2ϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn

 = Hessian matrix

Also

Dϕ :=
1

i
∂ϕ.

If ϕ depends on both the variables x, y ∈ Rn, we put

∂2
xϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn


and

∂2
x,yϕ :=

ϕx1y1 . . . ϕx1yn
. . .

ϕxny1 . . . ϕxnyn

 .

• Jacobians: Let
x 7→ y = y(x)

be a diffeomorphism, y = (y1, . . . , yn). The Jacobian matrix is

∂y = ∂xy :=


∂y1

∂x1
. . . ∂y1

∂xn
. . .

∂yn

∂x1
. . . ∂yn

∂xn


n×n

.
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• Poisson bracket: If f, g : Rn → R are C1 functions,

{f, g} := 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

• The Schwartz space is

S = S(Rn) :=

{ϕ ∈ C∞(Rn) | sup
Rn
|xα∂βϕ| <∞ for all multiindices α, β}.

We say
ϕj → ϕ in S

provided
sup
Rn
|xαDβ(ϕj − ϕ)| → 0

for all multiindices α, β

We write S ′ = S ′(Rn) for the space of tempered distributions, which
is the dual of S = S(Rn). That is, u ∈ S ′ provided u : S → C is linear
and ϕj → ϕ in S implies u(ϕj)→ u(ϕ).

We say
uj → u in S ′

provided
uj(ϕ)→ u(ϕ) for all ϕ ∈ S.

A.3 ELEMENTARY OPERATORS.

Multiplication operator: Mλf(x) = λf(x)

Translation operator: Tξf(x) = f(x− ξ)
Reflection operator: Rf(x) := f(−x)

A.4 OPERATORS.

A∗ = adjoint of the operator A

[A,B] = AB −BA = commutator of A and B

σ(A) = symbol of the pseudodifferential operator A

spec(A) = spectrum of A.

tr(A) = trace of A.

We say that the operator B is of trace class if

tr(B) :=
∑√

λj <∞,

where the λj ≥ 0 are the eigenvalues of the symmetric matrix B∗B.
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• If A : X → Y is a bounded linear operator, we define the operator
norm

‖A‖ := sup{‖Au‖Y | ‖u‖X ≤ 1}.
We will often write this norm as

‖A‖X→Y
when we want to emphasize the spaces between which A maps.

The space of bounded linear operators from X to Y is denoted by
L(X, Y ); and the space of bounded linear operators from X to itself is
denoted L(X).

A.5 ESTIMATES.

• We write

f = O(h∞) as h→ 0

if for each positive integer N there exists a constant CN such that

|f | ≤ CNh
N for all 0 < h ≤ 1.

• If we want to specify boundedness in the space X, we write

f = OX(hN)

to mean

‖f‖X = O(hN).

• If A is a bounded linear operator between the spaces X, Y , we will
often write

A = OX→Y (hN)

to mean

‖A‖X→Y = O(hN).

A.6. SYMBOL CLASSES.

We record from Chapter 4 the various definitions of classes for sym-
bols a = a(x, ξ, h).

• Given an order function m on R2n, we define the corresponding
class of symbols:

S(m) := {a ∈ C∞ | for each multiindex α

there exists a constant Cα so that |∂αa| ≤ Cαm}.
• We as well define

Sk(m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−km for all multiindices α}
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and

Skδ (m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−δ|α|−km for all multiindices α}.

The index k indicates how singular is the symbol a as h→ 0; the index
δ allows for increasing singularity of the derivatives of a.

• Write also

S−∞(m) := {a ∈ C∞ | for each α and N , |∂αa| ≤ Cα,Nh
Nm}.

So if a is a symbol in S−∞(m), then a and all of its derivatives are
O(h∞) as h→ 0.

• If the order function is the constant function m ≡ 1, we will usually
not write it:

Sk := Sk(1), Skδ = Skδ (1).

• We will also omit zero superscripts:

S := S0 = S0(1)

= {a ∈ C∞(R2n) | |∂αa| ≤ Cα for all multiindices α}.
• We will sometimes write

a = OS(hN),

to mean that for all α
|∂αa| ≤ Cαh

N .

We use similar notation for other spaces with seminorms.

A.7 PSEUDODIFFERENTIAL OPERATORS.

We cross reference the following terminology from Appendix E. Let
M denote a manifold.

• A linear operator A : C∞(M) → C∞(M) is called a pseudodiffer-
ential operator if there exist integers m, k such that for each coordi-
nate patch Uγ, and there exists a symbol aγ ∈ Sm,k such that for any
ϕ, ψ ∈ C∞c (Uγ)

ϕA(ψu) = ϕγ∗aw
γ (x, hD)(γ−1)∗(ψu)

for each u ∈ C∞(M).
• We write

A ∈ Ψm,k(M)

and also put

Ψk(M) := Ψ0,k(M), Ψ(M) := Ψ0,0(M).
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Appendix B. Differential forms

In this section we provide a minimalist review of differential forms
on RN . For more a detailed and fully rigorou)description of differential
forms on manifolds we refer to [W, Chapter 2].

NOTATION.
(i) If x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), then dxj, dξj ∈ (R2n)∗ satisfy

dxj(u) = dxj(x, ξ) = xj

dξj(u) = dξj(x, ξ) = ξj.

(ii) If α, β ∈ (R2n)∗, then

(α ∧ β)(u, v) := α(u)β(v)− α(v)β(u)

for u, v ∈ R2n. More generally, for αj ∈ (R2n)∗, j = 1, · · · ,m ≤ 2n,
and u = (u1, · · · , um), an m-tuple of uk ∈ R2n,

(B.1) (α1 ∧ · · · ∧ αm)(u) = det([αj(uk)]1≤j,k≤2n).

(iii) If f : Rn → R, the differential of f , is the 1-form

df =
n∑
j=1

∂f

∂xi
dxi.

(iv) An m-form on Rn is given by

w =
∑

i1<i2<···<im

fi1···im(x)dxi1 ∧ · · · dxim , fi1···im ∈ C∞(Rn).

Its action at x on m-tuples of vectors is given using (ii).

(v) The differential of m-form is defined by induction using (iii) and
d(fg) = df ∧ g + fdg, where f is a function and g is an (m− 1)-form.
It satisfies d2 = 0.

THEOREM B.1 (Alternative definition of d ). Suppose w is a
differential 2-form, and u ∈ C∞(Rn,R3), u = (u1, u3, u3) is a 3-tuple
of vectorfields. Then

dw(u) =u1 (w(u2, u3)) + u2 (w(u3, u1)) + u3 (w(u1, u2))

− w([u1, u2], u3)− w([u2, u3], u1)− w([u3, u1], u2).
(B.2)
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1. Both sides of (B.2) are linear in w and trilinear in u.
2. When, say, u1 is multiplied by f ∈ C∞(Rn), then

dw(fu1, u2, u3) = fdw(u),

and the right hand side of (B.2) is equal to

fu1 (w(u2, u3)) + u2 (fw(u3, u1)) + u3 (fw(u1, u2))

− w([fu1, u2], u3)− w([u2, u3], fu1)− w([u3, fu1], u2),

and this is equal to the right hand side of (B.2) multiplied by f . In
fact,

[fu1, u2] = f [u1, u2]− (u2f)u1, [u3, fu1] = f [u3, u1] + (u3f)u1,

and

u2 (fw(u3, u1)) = fu2 (w(u3, u1)) + (u2f)w(u3, u1),

u3 (fw(u1, u2)) = fu3 (w(u1, u2)) + (u3f)w(u1, u2).

3. Hence we only need to check this identity for u constant and for
w = w1dw2∧dw3, where w1 ∈ C∞, and w2, w3 are coordinate functions
(that is are among x1, · · ·xn). Then

dw(u) = det ([ujwi]1≤i,j≤n) ,

and the right hand side of (B.2) is given by (remember that now ujwi,
i = 2, 3 are constants) by the expansion of this determinant with re-
spect to the first row, (u1w1, u2w1, u3w1). �

DEFINITION. If η is a differential m-form and V a vector field, then
the contraction of η by V , denoted

V η,

is the (m− 1)-form defined by

(V η)(u) = η(V, u),

where u is an (m − 1)-tuple of vectorfields. We use the consistent
convention that for 0-forms, that is for functions, V f = 0.

We note the following property of contraction which can be deduced
from (B.1): if v is a k-form and w is an m-form, then

(B.3) V (v ∧ w) = (V v) ∧ w + (−1)kv ∧ (V w).

DEFINITIONS. Let κ : Rn → Rn be a smooth mapping.
(i) If V is a vector field on Rn, the push-forward is

κ∗V = ∂κ(V ).
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(ii) If η is a 1-form on Rn, the pull-back is

(κ∗η)(u) = η(κ∗u).

THEOREM B.2 (Differentials and pull-backs). Let w be a dif-
ferential m-form. We have

(B.4) d(κ∗w) = κ∗(dw).

Proof. 1. We first prove this for functions: d(κ∗f) = d(κ(f)) =∑n
j=1

∂yi
∂xj

∂f
∂yi
dxj. Furthermore,

κ∗(df) = κ∗

(
n∑
i=1

∂f

∂yi
dyi

)
=

n∑
i=1

∂f

∂yi
κ∗(dyi).

2. The proof now follows by induction on the order of the differential
form: any m-form can be written as a linear combination of forms fdg
where f is a function, and g is (m− 1)-form. �

DEFINITION. If V is a vector field generating the flow ϕt, then the
Lie derivative of w is

LVw :=
d

dt
((ϕt)

∗w)|t=0.

Here w denotes a function, a vector field or a form. We recall that ϕt is
generated by a time independent vectorfield, V , ϕt = exp(tV ), means
that

(d/dt)ϕt(m) = V (ϕt(m)), ϕ0(m) = m.

EXAMPLE S. (i) If f is a function,

LV f = V (f).

(ii) If W is a vector field

LVW = [V,W ].

Since for differential forms, w, d(φt)
∗w = φ∗t (dw), we see that LV

commutes with d:

(B.5) d(LVw) = LV (dw).

We also note that LV is a derivation: for a function f ∈ C∞ and a
differential form w,

(B.6) LV (fw) = (LV f)w + fLVw.
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THEOREM B.3 (Cartan’s formula). If w is a differential form,

(B.7) LVw = d(V w) + (V dw).

Proof. 1. We proceed by induction on the order of differential forms.
For 0-forms, that is for functions, we have

LV f = V f = V df = d(V f) + (V df),

since by our convention V f = 0.

2. Any m-form is a linear combinations of forms fdg where f is a
function and g in an (m − 1)-form. Then, using (B.5), (B.6), d2 = 0,
and the induction hypothesis,

LV (fdg) = (LV f)dg + fLV dg
= (V f)dg + fd(LV g)

= (V f)dg + fd(d(V g) + V dg)

= (V f)dg + fd(V dg).

(B.8)

3. The right hand side of (B.7) for w = fdg is equal to

d(V (fdg)) + V (d(fdg)) =

f(V dg) + df ∧ (V dg) + V (df ∧ dg).
(B.9)

Now we can use (B.3) with w = df , v = dg, k = 1, to obtain

V (df ∧ dg) = (V f)dg − df ∧ (V dg).

Inserting this in (B.9) and the comparison with (B.8) gives (B.7) for
w = fdg and hence for all differential m-forms. �

THEOREM B.4 (Poincaré’s Lemma). If α is a k-form defined in
the open ball U = B0(0, R) and if

dα = 0,

then there exists a (k − 1) form ω in U such that

dω = α.

Proof. 1. Let Ωk(U) denote the space of k-forms on U . We will build
a linear mapping

H : Ωk(U)→ Ωk−1(U)

such that

(B.10) d ◦H +H ◦ d = I.
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Then
d(Hα) +Hdα = α

and so dω = α for ω := Hα.

2. Define A : Ωk(U)→ Ωk(U) by

A(fdxi1 ∧ · · · ∧ dxik) =

(∫ 1

0

tk−1f(tp) dt

)
dxi1 ∧ · · · ∧ dxik .

Set

X := 〈x, ∂x〉 =
n∑
j=1

xj
∂

∂xj
.

We claim

(B.11) ALX = I on Ωk(U).

and

(B.12) d ◦ A = A ◦ d.
Assuming these assertions, define

H := A ◦X .

By Cartan’s formula, Theorem B.3,

LX = d ◦ (X ) +X ◦d.
Thus

I = ALX = A ◦ d ◦ (X ) + A ◦X ◦d
= d(A ◦X ) + (A ◦X ) ◦ d
= d ◦H +H ◦ d;

and this proves (B.10).

3. To prove (B.11), we compute

ALX(fdxi1 ∧ · · · ∧ dxi2)

= A

[(
kf +

n∑
j=1

xj
∂f

∂xj

)
(dxi1 ∧ · · · ∧ dxik)

]

=

∫ 1

0

ktk−1f(tp) +
n∑
j=1

tk−1xj
∂f

∂xj
(tp)

dtdxi1 ∧ · · · ∧ dxik

=

∫ 1

0

d

dt
(tkf(tp)) dtdxi1 ∧ · · · ∧ dxik

= fdxi1 ∧ · · · ∧ dxik .
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4. To verify (B.12), note

A ◦ d(fdxi1 ∧ · · · ∧ dxik)

= A

(
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

)

=

(∫ 1

0

tk−1

n∑
j=1

∂f

∂xj
(tp)dxjdt

)
dxi1 ∧ · · · ∧ dxik

= d

((∫ 1

0

tk−1f(tp)dt

)
dxi1 ∧ · · · ∧ dxik

)
= d ◦ A(fdxi1 ∧ · · · ∧ dxik).

�
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Appendix C. Functional analysis

THEOREM C.1 (Schwartz Kernel Theorem). Let A : S → S ′
be a continuous linear operator.

Then there exists a distribution KA ∈ S ′(Rn × Rn) such that

(C.1) Au(x) =

∫
Rn
KA(x, y)u(y) dy

for all u ∈ S.

We call KA the kernel of A.

THEOREM C.2 (Inverse Function Theorem). Let X, Y denote
Banach spaces and assume

f : X → Y

is C1. Select a point x0 ∈ X and write y0 := f(x0).
(i) (Right inverse) If there exists A ∈ L(Y,X) such that

∂f(x0)A = I,

then there exists g ∈ C1(Y,X) such that

f ◦ g = I near y0.

(ii) (Left inverse) If there exists B ∈ L(Y,X) such that

B∂f(x0) = I,

then there exists g ∈ C1(Y,X) such that

g ◦ f = I near x0.

THEOREM C.3 (Approximate inverses). Let X, Y be Banach
spaces and suppose A : X → Y is a bounded linear operator. Suppose
there exist bounded linear operators B1, B2 : Y → X such that

(C.2)

{
AB1 = I +R1 on Y

B2A = I +R2 on X,

where

‖R1‖ < 1, ‖R2‖ < 1.

Then A is invertible.
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Proof. The operator I +R1 is invertible, with

(I +R1)−1 =
∞∑
k=0

(−1)kRk
1 ,

this series converging since ‖R1‖ < 1. Hence

AC1 = I for C1 := B1(I +R1)−1.

Likewise,

(I +R2)−1 =
∞∑
k=0

(−1)kRk
2 ;

and
C2A = I for C2 := (I +R2)−1B2.

So A has a left and a right inverse, and is consequently invertible, with
A−1 = C1 = C2. �

THEOREM C.4 (Norms of powers of operators). Let A ∈ L(H1, H2),
where H1, H2 are Hilbert spaces.
(i) Then

‖A‖ = sup
‖u‖,‖v‖=1

| 〈Au, v〉 |, ‖A‖ = ‖A∗‖, ‖A‖2 = ‖A∗A‖.

(ii) If A is self-adjoint, ‖A‖m = ‖Am‖ for all m ∈ N.

Proof. 1. We may assume ‖A‖ > 0. Note that

| 〈Au, v〉 | ≤ ‖Au‖‖v‖ ≤ ‖A‖‖u‖‖v‖ = ‖A‖
for any two unit vectors u, v. Thus sup‖u‖,‖v‖=1 | 〈Au, v〉 | ≤ ‖A‖.

Now if u 6∈ ker(A), we can put v = Au/‖Au‖. Consequently,

sup
‖u‖,‖v‖=1

|〈Au, v〉| ≥ sup
u6∈ker(A)

‖u‖=1

1

‖Au‖
|〈Au,Au〉| = sup

u6∈ker(A)

‖u‖=1

‖Au‖ = ‖A‖;

and therefore

‖A‖2 = sup
‖u‖=1

‖Au‖2 = sup
‖u‖=1

|〈A∗Au, u〉|

≤ sup
‖u‖,‖v‖=1

|〈A∗Au, v〉| = ‖A∗A‖.

Also, for any u, v with norm one we have

|〈A∗Au, v〉| = |〈Au,Av〉| ≤ ‖Au‖‖Av‖ ≤ ‖A‖2.

Taking the supremum over u, v gives us the inequality ‖A∗A‖ ≤ ‖A‖2.
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2. A simple induction now yields ‖A‖2k = ‖A2k‖ for all natural
numbers k. For a general m, find an n such that m + n is a power of
2. Then ‖An+m‖ = ‖A‖n+m, and so

‖A‖m‖A‖n = ‖A‖m+n = ‖Am+n‖ = ‖AmAn‖ ≤ ‖A‖m‖A‖n.
Therefore the inequality signs above must be equalities, and this implies
‖Am‖ = ‖A‖m. �

THEOREM C.5 (Cotlar–Stein Theorem). Let H1, H2 be Hilbert
spaces and Aj ∈ L(H1, H2) for j = 1, . . . . Assume

sup
j

∞∑
k=1

‖A∗jAk‖1/2 ≤ C, sup
j

∞∑
k=1

‖AjA∗k‖1/2 ≤ C.

Then the series A :=
∑∞

j=1Aj converges in strong operator topology
and

‖A‖ ≤ C.

Proof. 1. Let us first assume that Aj = 0 for j > J so that A is well
defined. Since A∗A is self-adjoint, the previous theorem implies

‖A‖2m = ‖(A∗A)m‖.
In addition,

(A∗A)m =
∞∑

j1,...,j2m=1

A∗j1Aj2 . . . A
∗
j2m−1

Aj2m =:
∑

j1,...,j2m

aj1,...,j2m .

Now

‖aj1,...,j2m‖ ≤ ‖A∗j1Aj2‖‖A
∗
j3
Aj4‖ . . . ‖A∗j2m−1

Aj2m‖,
and also

‖aj1,...,j2m‖ ≤ ‖Aj1‖‖Aj2A∗j3‖ . . . ‖Aj2m−2A
∗
j2m−1

‖‖Aj2m‖.
Multiply these estimates and take square roots:

‖aj1,...,j2m‖ ≤ C‖A∗j1Aj2‖
1/2‖Aj2A∗jm‖

1/2 . . . ‖A∗j2m−1
Aj2m‖1/2.

Consequently,

‖A‖2m = ‖(A∗A)m‖ ≤
∞∑

j1,...,j2m=1

‖aj1,...,j2m‖

≤ C
∞∑

j1,...,j2m=1

‖Aj1A∗j2‖
1/2 . . . ‖A∗j2m−1

Aj2m‖1/2

≤ JCC2m,
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where the J factor came from having 2m sums and only 2m−1 factors
in the summands.

Hence
‖A‖ ≤ J

1
2mC

2m+1
2m → C as m→∞.

2. To consider the general case, take u ∈ E, and suppose u = A∗kv
for some k. Then∥∥∥∥∥

∞∑
j=1

Aju

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
j=1

AjA
∗
kv

∥∥∥∥∥
≤

∞∑
j=1

‖AjA∗k‖1/2‖AjA∗k‖1/2‖v‖

≤ C2‖v‖.
Thus

∑∞
j=1 Aju converges for u ∈ Σ := span{A∗k(E) | k = 1, . . . , n}

and so also for u ∈ Σ̄. If u is orthogonal to Σ̄, then u ∈ ker(Ak) for all
k; in which case

∑∞
j=1Aju = 0. �

Henceforth H denotes a complex Hilbert space, with inner product
〈·, ·〉.
THEOREM C.6 (Spectrum of self-adjoint operators). Suppose
A : H → H is a bounded self-adjoint operator.

(i) Then (A− λ)−1 exists and is a bounded linear operator on H for
λ ∈ C− spec(A), where spec(A) ⊂ R is the spectrum of A.

(ii) If spec(A) ⊆ [a,∞), then

(C.3) 〈Au, u〉 ≥ a‖u‖2 (u ∈ A).

THEOREM C.7 (Maximin and minimax principles). Suppose
that A : H → H is self-adjoint and semibounded, meaning A ≥ −c0.
Assume also that (A+ 2c0)−1 : H → H is a compact operator.

Then the spectrum of A is discrete: λ1 ≤ λ2 ≤ λ3 · · · ; and further-
more
(i)

(C.4) λj = max
V⊆H

codimV <j

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

,

(ii)

(C.5) λj = min
V⊆H

dimV≤j

max
v∈V
v 6=0

〈Av, v〉
‖v‖2

.



207

In these formulas, V denotes a linear subspace of H.

DEFINITIONS. (i) Let Q : H → H be a bounded linear operator.
We define the rank of Q to be the dimension of the range Q(H).

(ii)If A is an operator with real and discrete spectrum, we set

N(λ) := #{λj | λj ≤ λ}

to count the number of eigenvalues less than or equal to λ.

THEOREM C.8 (Estimating N(λ)). Let A satisfy the assump-
tions of Theorem C.7.

(i) If

(C.6)


for each δ > 0, there exists an operator Q,

with rank Q ≤ k, such that

〈Au, u〉 ≥ (λ− δ)‖u‖2 − 〈Qu, u〉 for u ∈ H,

then

N(λ) ≤ k.

(ii) If

(C.7)


for each δ > 0, there exists a subspace V

with dimV ≥ k, such that

〈Au, u〉 ≤ (λ+ δ)‖u‖2 for u ∈ V,

then

N(λ) ≥ k.

Proof. 1. Set W := Q(H)T . Thus codim W = rank Q ≤ k. Therefore
the maximin formula (C.4) implies

λk = max
V⊆H

codimV <k

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

≥ min
v∈W
v 6=0

〈Av, v〉
‖v‖2

= min
v∈W
v 6=0

(
λ− δ − 〈Qv, v〉

‖v‖2

)
= λ− δ,

since 〈Qv, v〉 = 0 if v ∈ Q(H)T . Hence λ ≤ λk + δ. This is valid for all
δ > 0, and so

N(λ) = max{j | λj ≤ λ} ≤ k.

This proves assertion (i).
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2. The minimax formula (C.5) directly implies that

λk ≤ max
v∈V
v 6=0

〈Av, v〉
‖v‖2

≤ λ+ δ.

Hence λk ≤ λ+ δ. This is valid for all δ > 0, and so

N(λ) = max{j | λj ≤ λ} ≥ k.

This is assertion (ii).
�

THEOREM C.9 (Lidskii’s Theorem). Suppose that B is an oper-

ator of trace class on L2(M,Ω
1
2 (M)), given by the integral kernel

K ∈ C∞(M ×M ; Ω
1
2 (M ×M)).

Then K∆, the restriction to the diagonal ∆ := {(m,m) : m ∈ M},
has a well-defined density; and

(C.8) tr B =

∫
∆

K∆.

We will also use the following general result of Keel-Tao [?]:

THEOREM C.10 (Abstract Strichartz estimates). Let (X,M, µ)
be a σ-finite measure space, and let U ∈ L∞(R, L(L2(X)) satisfy

‖U(t)‖B(L2(X)) ≤ A, t ∈ R,
‖U(t)U(s)∗f‖L∞(X,µ) ≤ Ah−µ|t− s|−σ‖f‖L1(X,µ), t, s ∈ R,

(C.9)

where A, σ, µ > 0 are fixed.
The for every pair p, q satisfying

2

p
+

2σ

q
= σ, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, (p, q) 6= (2,∞),

we have

(C.10)

(∫
R
‖U(t)f‖pLq(X,µ)dt

) 1
p

≤ Bh−
µ
pσ ‖f‖L2(X,µ).

We should stress that in the application to bounds on approximate
solution (Section 10.3) we only use the “interior” exponent p = q which
does not require the full power of [?] – see [S]. For the reader’s conve-
nience we present the proof of that case.

Proof of the case p = q: 1. A rescaling in time easily reduces the
estimate to the case h = 1.
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2. The estimate we want reads

(C.11) ‖U(t)f‖Lp(Rt×X) ≤ B‖f‖L2(X),
1

p
=

σ

2(1 + σ)
.

Let p′ denote the exponent dual to p: 1/p + 1/p′ = 1. Then, since Lp
′

is dual to Lp, (C.11) is equivalent to∫
R×X

U(t)f(x) G(t, x) dµ(x)dt ≤ ‖f‖L2(X)‖G‖Lp′ (R×X),

for all G ∈ Lp′(R×X), and that in turn means that

‖
∫

R
U(t)∗G(t)dt‖L2(X) ≤ C‖G‖Lp′ (R×X).

In other words, ∣∣∣∣∫
R

∫
R
〈U(t)∗G(t), U(s)∗F (s)〉 dtds

∣∣∣∣
≤ C‖G‖Lp′ (R×X)‖F‖Lp′ (R×X).

(C.12)

3. We now apply the Riesz-Thorin interpolation theorem (see for
instance [H1, Theorem 7.1.12]) to U(t)U(s)∗ with fixed t, s ∈ R. The
two fixed time estimates provided by the hypothesis (C.9) give:

‖U(t)U(s)∗‖B(Lp′ ,Lp) ≤ A3−2/p′|t− s|−σ(2/p′−1), 1 ≤ p′ ≤ 2,

and in particular,

|〈U(t)∗G(t), U(s)∗F (s)〉|
≤ A3−2/p′ |t− s|−σ(2/p′−1)‖G(t)‖Lp′ (X)‖F (s)‖Lp′ (X).

(C.13)

4. Finally we invoke the Hardy-Littlewood-Sobolev inequality which
says that if Ka(t) = |t|−1/a and 1 < a <∞ then

‖Ka ∗ u‖Lr(R) ≤ C‖u‖Lp′ (R),

1

p
+

1

r
=

1

a
, 1 < p′ < r,

(C.14)

see [H1, Theorem 4.5.3]. To obtain (C.12) from (C.13) we apply (C.14)
with

1

a
= σ

(
2

p′
− 1

)
,

1

p
+

1

r
=

1

a
, p = r,

which has a unique solution

p =
2(1 + σ)

σ
.

This completes the proof. �
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Appendix D. Fredholm theory

In this appendix we will describe the role of the Schur complement
formula in spectral theory, in particular in analytic Fredholm theory.
Our presentation follows [S-Z2].

D.1 Grushin problems

Linear algebra. The Schur complement formula states for two-by-
two systems of matrices that if(

P R−
R+ R0

)−1

=

(
E E+

E− E0

)
,

then P is invertible if and only if E0 is invertible, with

(D.1) P−1 = E − E+E
−1
0 E−, E−1

0 = R0 −R+P
−1R−.

Generalization. We can generalize to problems of the form

(D.2)

(
P R−
R+ O

)(
u
u−

)
=

(
v
v+

)
where

P : X1 → X2, R+ : X1 → X+, R− : X− → X2,

for appropriate Banach spacesX1, X2, X+, X−. We call (D.2) a Grushin
problem. (In practice, we start with an operator P and build a Grushin
problem by choosing R±, in which case it is normally sufficient to take
R0 = 0.)

If the Grushin problem (D.2) is invertible, we call it well-posed and
we write its inverse as follows:

(D.3)

(
u
u−

)
=

(
E E+

E− E0

)(
v
v+

)
for operators

E : X2 → X1, E0 : X+ → X−, E+ : X+ → X1, E− : X2 → X−.

LEMMA D.1 (The operators in a Grushin problem). If (D.2) is
well-posed, then the operators R+, E− are surjective, and the operators
E+, R− are injective.

D.2 Fredholm operators

DEFINITIONS. (i) A bounded linear operator P : X1 → X2 is called
a Fredholm operator if the kernel of P ,

kerP := {u ∈ X1 | Pu = 0},
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and the cokernel of P ,

cokerP := X2/PX1, where PX1 := {Pu | u ∈ X1},
are both finite dimensional.

(ii) The index of a Fredholm operator is

indP := dim kerP − dim cokerP.

EXAMPLE. Many important Fredholm operators have the form

(D.4) P = I +K,

where K a compact operator mapping a Banach space X to itself.
Theorem D.3 below shows that the index does not change under con-

tinuous deformations of Fredholm operators (with respect to operator
norm topology). Hence for operators of the form (D.4) the index is 0:

indP = ind(I + tK) = ind I = 0 (0 ≤ t ≤ 1).

�

The connection between Grushin problems and Fredholm operators
is this:

THEOREM D.2 (Grushin problem for Fredholm operators).
(i) Suppose that P : X1 → X2 is a Fredholm operator.

Then there exist finite dimensional spaces X± and operators R− :
X− → X2, R+ : X1 → X+, for which the Grushin problem (D.2) is
well posed. In particular, PX1 ⊂ X2 is closed.

(ii) Conversely, suppose that that for some choice of spaces X± and
operators R±, the Grushin problem (D.2) is well posed.

Then P : X1 → X2 is a Fredholm operator if and only if E0 : X+ →
X− is a Fredholm operator; in which case

(D.5) indP = indE0.

Assertion (ii) is particularly useful when the spaces X± are finite
dimensional.

Proof. 1. Assume P : X1 → X2 is Fredholm. Let n+ := dim kerP
and n− := dim cokerP , and write X+ := Cn+ , X− := Cn− . Select then
linear operators

R− : X− → X2, R+ : X1 → X+,

of maximal rank such that

R−X− ∩ PX1 = {0}, ker(R+|kerP ) = {0}.
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Then the operator (
P R−
R+ O

)
has a trivial kernel and is onto. Hence it is invertible, and by the Open
Mapping Theorem the inverse is continuous.

In particular, consider P acting on the quotient space X1/ kerP ,
which is a Banach space since kerP is closed. We have n+ = 0, and

PX1 = P (X1/ kerP ) =
(
P R−

)( X1/ kerP
{0}

)
is a closed subspace.

2. Conversely, suppose that Grushin problem (D.2) is well-posed.
According to Lemma D.1, the operators R+, E− are surjective, and
the operators E+, R− are injective. We take u− = 0. Then

(D.6)

{
the equation Pu = v is equivalent to

u = Ev + E+v+, 0 = E−v + E0v+.

This means that

E− : ImP → ImE0,

and so we can define the induced map

E# : X2/ ImP → X−/ ImE0.

Since E− is surjective, so is E#. Also, kerE# = {0}. This follows since
if E−v ∈ ImE0, we can use (D.6) to deduce that v ∈ ImP . Hence E#

is a bijection of the cokernels X2 ImP and X−/ ImE0.

3. Next, we claim that

E+ : kerE0 → kerP

is a bijection. Indeed, if u ∈ kerP , then u = E+v+ and E0v+ = 0.
Therefore E+ is onto; and this is all we need check, since E+ injective.

We conclude that

dim kerP = dim kerE0, dim cokerP = dim cokerE0.

In particular, the indices of P and E0 are equal. �

THEOREM D.3 (Invariance of the index under deformations).
The set of Fredholm operators is open in L(X1, X2), and the index is
constant in each component.
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Proof. When P is a Fredholm operator, we can use Theorem D.2 to
obtain E0 : Cn+ → Cn− , with

(D.7) indE0 = n+ − n−.
by the Rank-Nullity Theorem of linear algebra. The Grushin problem
remains well-posed (with the same operators R± ) if P is replaced by
P ′, provided ‖P −P ′‖ < ε for some sufficiently small ε > 0. Hence the
set of Fredholm operators is open.

Using (D.7) we see that the index of P ′ is the same as the index of
P . Consequently it remains constant in each connected component of
the set of Fredholm operators. �

We refer to Hörmander [H2, Sect.19.1] for a comprehensive introduc-
tion to Fredholm operators

D.3 Meromorphic continuation of operators.

The Grushin problem framework provides an elegant proof of the
following standard result:

THEOREM D.4 (Analytic Fredholm Theory). Suppose Ω ⊂ C
is a connected open set and {A(z)}z∈Ω is a family of Fredholm operators
depending holomorphically on z.

Then if A(z0)−1 exists at some point z0 ∈ Ω, the mapping z 7→ A(z)−1

is a meromorphic family of operators on Ω.

Proof. 1. Fix z1 ∈ Ω. We form a Grushin problem for P = A(z1),
as described in the proof of Theorem D.2. The same operators Rz1

±
also provide a well-posed Grushin problem for P = A(z) for z in some
sufficiently small neighborhood V (z1) of z1.

According to Theorem D.3

indA(z) = indA(z0) = 0.

Consequently
n+ = n− = n,

and Ez1
0 (z) is an n × n matrix with holomorphic coefficients. The

invertibility of Ez1
0 (z) is equivalent to the invertibility of A(z).

2. This shows that there exists a locally finite covering {Ωj} of Ω,
and a family of functions fj, holomorphic in Ωj, such that if z ∈ Ωj,
then A(z) is invertible precisely when

fj(z) 6= 0.

Indeed, we can define fj := detEz
0 , where Ez

0 exists for z ∈ Ωj by
the construction in Step 1. Since Ω is connected and since A(z0) is
invertible for at least one z0 ∈ Ω, none of fj’s is identically zero.
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So detE0(z) a non-trivial holomorphic function in V (z1); and conse-
quently E0(z)−1 is a meromorphic family of matrices. Applying (D.1),
we conclude that

A(z)−1 = E(z)− E+(z)E−+(z)−1E−(z)

is a meromorphic family of operators in the neighborhood V (z1). Since
z1 was arbitrary, A(z)−1 is in fact meromorphic in all of Ω. �
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Appendix E. Symbol calculus on manifolds

E.1 Definitions. For reader’s convenience we provide here some basic
definitions.

DEFINITION. An n-dimensional manifold M is a Hausdorff topo-
logical space with a countable basis, each point of which has a neigh-
bourhood homeomorphic to some open set in Rn.

We say that M is a smooth (or C∞) manifold if there exists a family
F of homeomorphisms between open sets:

γ : Uγ −→ Vγ, Uγ ⊂M, Vγ ⊂ Rn,

satisfying the following properties:

(i)(Smooth overlaps) If γ1, γ2 ∈ F then

γ2 ◦ γ−1
1 ∈ C∞(Vγ2 ∩ Vγ1 ;Vγ1 ∩ Vγ2).

(ii)(Covering) The open sets Uγ cover M :⋃
γ∈F

Uγ = M.

(iii) (Maximality) Let λ be a homeomorphism of an open set Uλ ⊂M
onto an open set Vλ ⊂ Rn. If for all γ ∈ F ,

γ ◦ λ−1 ∈ C∞(Vλ ∩ Vγ;Vλ ∩ Vγ),
then λ ∈ F .

We call {(γ, Uγ) | γ ∈ F} an atlas for M . The open set Uγ ⊂ M is
a coordinate patch.

DEFINITION. A C∞ complex vector bundle over M with fiber di-
mension N consists of

(i) a C∞ manifold V ,

(ii) a C∞ map π : V → M , defining the fibers Vx := π−1({x}) for
x ∈M , and

(iii) local isomorphisms

V ⊃ π−1(Y )
ψ−→ Y × CN ,

ψ(Vx) = {x} × CN , ψ|Vx ∈ GL(N,C),
(E.1)

where GL(N,C) is the group of invertible linear transformations on
CN .
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REMARKS. (i) We can choose a covering {Xi}i∈I of M such that for
each index i there exists

ψi : π−1(Xi)→ Xi × CN

with the properties listed in (iii) in the definition of a vector bundle.
Then

gij := ψi ◦ ψ−1
j ∈ C∞(Xi ∩Xj;GL(N,C)).

These maps are the transition matrices.

(ii) It is important to observe that we can recover the vector bundle
V from the transition matrices. To see this, suppose that we are given
functions gij satisfying the identities{

gij(x) ◦ gji(x) = I for x ∈ Xi ∩Xj,

gij(x) ◦ gjk(x) ◦ gkj(x) = I, for x ∈ Xi ∩Xj ∩Xk.

Now form the set V ′ ⊂ I × M × CN , with the equivalence relation
(i, x, t) ∼ (i′, x′, t′) if and only if x = x′ and t′ = gi′i(x)t. Then

V = V ′/ ∼ .

�

DEFINITION. A section of the vector bundle V is a smooth map

u : M → V

such that
π ◦ u(x) = x (x ∈M).

We write
u ∈ C∞(M,V ).

EXAMPLE 1: Tangent bundle. Let M be a C∞ manifold and let
N be the dimension of M . We define the tangent bundle of M , denoted

T (M),

by defining the transition functions

gγiγj(x) := ∂(γi ◦ γ−1
j )(x) ∈ GL(n,R).

for x ∈ Uγi∩Uγj . Its sections C∞(M,T (M)) are the smooth vectorfields
on M . �

EXAMPLE 2: Cotangent bundle. For any vector bundle we can
define its dual,

V ∗ :=
⋃
x∈X

(Vx)
∗,
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since we can take

gγiγj = (g∗γiγj)
−1.

If V = T (M), we obtain the cotangent bundle, denoted

T ∗(M).

Its sections C∞(M,T ∗(M)) are the differential one-forms on M . �

EXAMPLE 3: S-density bundles. Let M be an n-dimensional
manifold and let (Uγ, γα) form a set of coordinate patches of X.

We define the s-density bundle over X, denoted

Ωs(M),

by choosing the following transition functions:

gγiγj(x) := | det ∂(γi ◦ γ−1
j )|s ◦ γj(x),

for x ∈ Uγi ∩ Uγj .
This is a line bundle over M , that is, a bundle with with fibers of

complex dimension one. �

E.2 Pseudodifferential operators on manifolds.

Pseudodifferential operators. In this section M denotes a smooth,
n-dimensional compact Riemannian manifold without boundary. As
above, we have {(γ, Uγ) | γ ∈ F} for the atlas of M , where each γ is a
smooth diffeomorphism of the coordinate patch Uγ ⊂M onto an open
subset Vκ ⊂ Rn.

NOTATION. Recall from §9.3 that a class symbols for which we have
invariance under coordinate chages is given by

Sm,k = {a ∈ C∞(R2n) : |∂αx∂
β
ξ a| ≤ Cαβh

−k〈ξ〉m−|β|}.

The index k records how singular the symbol a is as h → 0, and m
controls the growth rate as |ξ| → ∞.

DEFINITION. A linear operator

A : C∞(M)→ C∞(M)

is called a pseudodifferential operator if there exist integers m, k such
that for each coordinate patch Uγ, there exists a symbol aγ ∈ Sm,k such
that for any ϕ, ψ ∈ C∞c (Uγ) and for each u ∈ C∞(M)

(E.2) ϕA(ψu) = ϕγ∗aw
γ (x, hD)(γ−1)∗(ψu).



218

NOTATION. (i) In this case, we write

A ∈ Ψm,k(M),

and sometimes call A a quantum observable.

(ii) To simplify notation, we also put

Ψk(M) := Ψ0,k(M), Ψ(M) := Ψ0,0(M).

The symbol of a pseudodifferential operator. Our goal is to
associate with a pseudodifferential operator A a symbol a defined on
T ∗M , the cotangent space of M .

The first lemma is a direct consequence of Lemmma 9.14:

LEMMA E.1 (More on disjoint support). Let b ∈ Sm,k and sup-
pose ϕ, ψ ∈ C∞c (Rn). If

(E.3) spt(ϕ) ∩ spt(ψ) = ∅,
then

(E.4) ‖ϕ bw(x, hD)ψ‖H−N→HN = O(h∞)

for all N .

THEOREM E.2 (Symbol of a pseudodifferential operator).
There exist linear maps

(E.5) σ : Ψm,k(M)→ Sm,k/Sm,k−1(T ∗M)

and

(E.6) Op : Sm,k(T ∗M)→ Ψm,k(M)

such that

(E.7) σ(A1A2) = σ(A1)σ(A2)

and

(E.8) σ(Op(a)) = [a] ∈ Sm,k/Sm,k−1(T ∗M).

We call a = σ(A) the symbol of the pseudodifferential operator A.

REMARK. In the identity (E.8) “[a]” denotes the equivalence class
of a in Sm,k/Sm,k−1(T ∗M). This means that

[a] = [â] if and only if a− â ∈ Sm,k−1(T ∗M).

The symbol is therefore uniquely defined in Sm,k, up to a lower order
term which is less singular as h→ 0. �
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Proof. 1. Let U be an open subset of R. Suppose that B : C∞c (U) →
C∞(U) and that for all ϕ, ψ ∈ C∞ the mapping u 7−→ ϕBψu belongs
to Ψm,k(Rn), for all u ∈ S.

We claim that there then exists a symbol a ∈ Skloc(U, 〈ξ〉m) such that

(E.9) B = a(x,D) +B0,

where for all m

(E.10) B0 : H−mc (U)→ Hm
loc(U) is O(h∞).

To see this, first choose a locally finite partition of unity {ψj}j∈J ⊂
C∞c (U): ∑

j∈J

ψj(x) ≡ 1 (x ∈ U).

Then
ψjBψk = aw

jk(x, hD),

where ajk ∈ Sk(〈ξ〉) and ajk(x, ξ) = 0 if x /∈ sptψj. Now put

a :=
∑
j,k

′
ajk(x, ξ) ∈ Skloc(〈ξ〉m),

where we are sum over those indices j, k’s for which sptψj ∩ sptψk 6= ∅.
This sum is consequently locally finite.

2. We must next verify (E.10) for

B0 := B − a(x, hD) =
∑
j,k

′′
ψjBψk,

the sum over j, k’s for which

sptψj ∩ sptψk = ∅.
Let KB(x, y) be the Schwartz kernel of B. Then the Schwartz kernel

of B0 is

(E.11) KB0(x, y) =
∑
j,k

′′
ψj(x)KB(x, y)ψk(y),

with the sum locally finite in U × U . The operators ψjBψk satisfy
the assumptions of Lemma 7.4, and hence have the desired mapping
property. Because of the local finiteness of (E.11) we get the global
mapping property from H−mloc to Hm

loc.

3. For each coordinate chart (γ, Uγ), where γ : Uγ → Vγ, we can now
use (E.9) with X = Vγ and B = (γ−1)∗Aγ∗, to define aγ ∈ T ∗(Uγ).

The second part of Theorem 9.12 shows that if Uγ1 ∩ Uγ2 6= ∅, then

(E.12) (aγ1 − aγ2)|Uκ1∩Uγ2 ∈ S
k−1(T ∗(Uγ1 ∩ Uγ2), 〈ξ〉m).
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Suppose now that we choose a covering of M by coordinate charts,
{Uα}α∈J , and a locally finite partition of unity {ϕα}α∈J :

sptϕα ⊂ Uγ,
∑
α∈J

ϕj(x) ≡ 1,

and define

a :=
∑
α∈J

ϕαaα.

We see from (E.12) that a ∈ Sk(T ∗M, 〈ξ〉m) is invariantly defined up
to terms in Sk−1(T ∗M, 〈ξ〉m). We consequently can define

σ(A) := [a] ∈ Sk(T ∗M, 〈ξ〉m)/Sk−1(T ∗M, 〈ξ〉m).

4. It remains to show the existence of

Op : Sk(T ∗M, 〈ξ〉m) −→ Ψm,k(M), σ(Op(a)) = [a].

Suppose that for our covering of M by coordinate charts, {Uα}α∈J , we
choose {ψα}α∈J such that

sptψα ⊂ Uγ,
∑
α∈J

ψ2
j (x) ≡ 1,

a sum which is locally finite. Define

A :=
∑
α∈J

ψαγ
∗
αOp(ãα)(γ−1

α )∗ψα,

where ãα(x, ξ) := a(γ−1
α (x), (∂γ(x)T )−1ξ). Theorem 9.12 demonstrates

that σ(A) equals [a]. �

Pseudodifferential operators acting on half-densities. We now
apply the full strength of Theorem 9.12 by making the pseudodifferen-
tial operators act on half-densities.

DEFINITION. A linear operator

A : C∞(M,Ω
1
2 (M))→ C∞(M,Ω

1
2 (M))

is called a pseudodifferential operator on half-densities if there exist
integers m, k such that for each coordinate patch Uα, and there exists
a symbol aα ∈ Sk(〈ξ〉m) such that for any ϕ, ψ ∈ C∞c (Uγ)

(E.13) ϕA(ψu) = ϕγ∗αa
w
α(x, hD)(γ−1

α )∗(ψu)

for each u ∈ C∞(M,Ω
1
2 (M)).
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NOTATION. In this case, we write

A ∈ Ψm,k(M,Ω
1
2 (M)).

By adapting the proof of Theorem E.2 to the case of half-densities
using the first part of Theorem 9.12 we obtain

THEOREM E.3 (Symbol on half-densities). There exist linear
maps

(E.14) σ : Ψm,k(M,Ω1/2(M))→ Sm,k/Sm,k−2(T ∗M)

and

(E.15) Op : Sm,k(T ∗M)→ Ψm,k(M,Ω1/2(M)))

such that

(E.16) σ(A1A2) = σ(A1)σ(A2)

and

(E.17) σ(Op(a)) = [a] ∈ Sm,k/Sm,k−2(T ∗M).

E.3 PDE on manifolds.

We revisit in this last section some of our theory from Chapters 5–7,
replacing the flat spaces Rn and Tn by an arbitrary compact Riemann-
ian manifold (M, g), for the metric

g :=
n∑

i,j=1

gijdxidxj.

Write

((gij)) := ((gij))
−1, ḡ := det((gij)).

E.3.1 Notation.

Tangent, cotangent bundles. We can use the metric to build an
identification of the tangent and cotangent bundles of M . We identify

ξ ∈ T ∗xM with X ∈ TxM,

written ξ ∼ X, provided

ξ(Y ) = gx(Y,X)

for all Y ∈ TxM .
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Flows. Under the identification X ∼ ξ, the flow of Hp on T ∗M ,
generated by the symbol

(E.18) p := |ξ|2g =
n∑

i,j=1

gijξiξj =
n∑

i,j=1

gijXiXj = g(X,X),

is the geodesic flow on TM .

Laplace-Beltrami operator. The Laplace-Beltrami operator ∆g on
M is defined in local coordinates by

(E.19) ∆g :=
1√
ḡ

n∑
i,j=1

∂

∂xj

(
gij
√
ḡ
∂

∂xj

)
.

The function p defined by (E.18) is the symbol of the Laplace-
Beltrami operator −h2∆g.

PDE on manifolds. Given then a potential V ∈ C∞(M), we can
define the Schrödinger operator

(E.20) P (h) := −h2∆g + V (x).

The flat wave equation from Chapter 5 is replaced by an equation
involving the Laplace-Beltrami operator:

(E.21) (∂2
t + a(x)∂t −∆g)u = 0.

The unknown u is a function of x ∈M and t ∈ R.

Half-densities. Half-densities on M can be identified with functions
using the Riemannian density:

u = u(x)|dx|
1
2 = ũ(x)

(
ḡ

1
2dx
) 1

2
.

E.3.2 Damped wave equation on manifolds. We consider this
initial-value problem for the wave equation:

(E.22)

{
(∂2
t + a(x)∂t −∆)u = 0 on M × R
u = 0, ut = f on M × {t = 0},

where a ≥ 0; and, as in Chapter 6, define the energy of a solution at
time t to be

E(t) :=
1

2

∫
M

(∂tu)2 + |∂xu|2 dx.

It is then straightforward to adapt the proofs in §5.3 to establish
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THEOREM E.4 (Exponential decay on manifold). Suppose u
solves the wave equation with damping (E.21), with the initial condi-
tions

Assume also that there exists a time T > 0 such that each geodesic
of length greater than or equal to T intersects the set {a > 0}.

Then there exist constants C, β > 0 such that

(E.23) E(t) ≤ Ce−βt‖f‖L2

for all times t ≥ 0.

E.3.3 Weyl’s Law for compact manifolds. More work is needed
to generalize Weyl’s Law from Chapter 6 to manifolds. We will prove
it using a different approach, based on the Spectral Theorem.

First, we need to check that the spectrum is discrete and that follows
from the compactness of the resolvent:

LEMMA E.5 (Resolvent on manifold). If P is defined by (E.20),
then

(P + i)−1 = O(1) : L2(M)→ H2
h(M),

where the semiclassical Sobolev spaces are defined as in §7.1.

We prove this by the same method as that for Lemma 7.1.

Eigenvalues and eigenfunctions. According to Riesz’s Theorem on
the discreteness of the spectrum of a compact operator, we conclude
that the spectrum of (P + i)−1 is discrete, with an accumulation point
at 0.

Hence we can write

(E.24) P (h) =
∞∑
j=1

Ej(h)uj(h)⊗ uj(h),

where {uj(h)}∞j=1 is an orthonormal set of all eigenfunctions of P (h):

P (h)uj(h) = Ej(h)uj(h), 〈uk(h), ul(h)〉 = δlk,

and

Ej(h)→∞.
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THEOREM E.6 (Functional calculus). Suppose that f is a holo-
morphic function, such that for |Imz| ≤ 2 and any N :

f(z) = O(〈z〉−N).

Define

f(P ) :=

1

2πi

∫
R
(t− i− P )−1f(t− i)− (t+ i− P )−1f(t+ i) dt.

(E.25)

Then f(P ) ∈ Ψ−∞(M), with

σ(f(P )) = f(|ξ|2g + V (x)).

Furthermore,

(E.26) f(P ) =
∞∑
j=1

f(Ej(h))uj(h)⊗ uj(h)

in L2.

Proof. 1. The statement (E.26) follows from (E.24), which shows that

(P − z)−1 =
∞∑
j=1

uj ⊗ uj
Ej(h)− z

.

Since f decays rapidly as t → ∞, we can compute residues in (E.25)
to conclude that

f(Ej(h)) =

1

2πi

∫
R

(
(t− i− Ej(h))−1f(t− i)− (t+ i− Ej(h))−1f(t+ i)

)
dt.

2. We now use Beals’s Theorem 9.8, to deduce that f(P ) is a pseu-
dodifferential operator. As discussed in Appendix E all we need to
show is that for ϕ, ψ ∈ C∞c (M), with supports in arbitrary coordinate
patches, ϕf(P )ψ is a pseudodifferential operator. As described there it
can be considered as an operator on Rn and, by Theorem 9.8, it suffices
to check that for any linear lj(x, ξ) we have

‖adl1(x,hD) ◦ · ◦ adlN (x,hD)f(P )‖L2→L2 = O(hN).

To show this, note that according to Lemma E.5,

‖(P − t± i)−1(adL1 ◦ · · · ◦ adLkP (P − t± i)−1‖L2→L2 = O(hk),
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where Lj ∈ Ψ0,0(M). Now for a linear function l on R2n,

adl(x,hD)(ϕ(P − t± i)−1ψ) =

− (P − t± i)−1(adLP )(P − t± i)−1 +OL2→L2(h),

where L ∈ Ψ0,0(M). The rapid decay of f gives

‖adL

∫
R
f(t)(t± i− P )−1dt‖ ≤∫

R
|f(t)|‖(P − t± i)−1adLP (P − t± i)−1‖L2→L2dt = O(h),

and this argument can be easily iterated.

3. Since

Op(|ξ|2g + V (x)− t± i)−1)(P − t± i) = I +OL2→L2(h),

it follows that

Op(|ξ|2g + V (x)− t± i)−1) = (P − t± i)−1 +OL2→L2(h).

Hence the symbol of (P + t ± i)−1 (which we already know is a
pseudodifferential operator) is given by (|ξ|2g + V (x)− t± i)−1.

A residue calculation now shows us that

f(P ) = Op(f(|ξ|2g + V (x)− t± i)) +OL2→L2(h);

that is, the symbol of f(P ) is f(|ξ|2g + V (x)). �

THEOREM E.7 (Weyl’s asymptotics on compact manifolds).
For any a < b, we have

#{E(h) | a ≤ E(h) ≤ b} =

1

(2πh)n
(VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b}+ o(1))

(E.27)

as h→ 0.

Proof. 1. Let f1, f2 be two functions satisfying the assumptions of
Theorem E.6 such that for real x

(E.28) f1(x) ≤ 1[a,b](x) ≤ f2(x),

where 1[a,b](x) is the characteristic function of the interval [a, b].
It follows that

trf1(P ) ≤ #{E(h) | a ≤ E(h) ≤ b} ≤ trf2(P ).
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2. Theorem C.9 now shows that for j = 1, 2

trfj(P ) =
1

(2πh)n

(∫
T ∗M

fj(|ξ|2g + V (x))dxdξ +O(h)

)
.

We note that since fj(P ) ∈ Ψ−∞(M), the errors in the symbolic com-
putations are all O(h〈ξ〉−∞), and hence can be integrated.

3. The final step is to construct f ε1 and f ε2 satisfying the hypotheses of
Theorem E.6 and (E.28), and such that for j = 1, 2, we have∫

T ∗M

f εj (|ξ|2g + V (x))dxdξ → VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b},

as ε→ 0. This is done as follows. Define

χε1 := (1− ε)1[a+ε,b−ε] − ε(1[a−ε,a+ε] + 1[b−ε,b+ε]), χε2 := (1 + ε)1[a−ε,b+ε],

and then put

f εj (z) :=
1

2πε

∫
R
χεj(x) exp

(
−(x− z)2

2ε2

)
dx.

We easily check that all the assumptions are satisfied. �

REMARKS. (i) If V ≡ 0, we recover the leading term in the usual
Weyl asymptotics of the Laplacian on a compact manifold: let 0 =
λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ be the complete set of eigenvalues of
−∆g on M . Then

(E.29) #{j : λj ≤ r} ∼ Vol(BRn(0, 1))

(2π)n
Vol(M)rn/2, r →∞.

In fact, we can take a = 0, b = 1, and h = 1/
√
r, and apply Theorem

E.7: the eigenvalues −∆g are just rescaled eigenvalues of −h2∆g and
the Vol(BRn(0, 1)) term comes from integrating out the ξ variables.

We note also that (E.29) implies that

(E.30) j2/n/CM ≤ λj ≤ CMj
2/n.

(ii) Also, upon rescaling and applying Theorem C.8, we obtain esti-
mates for counting all the eigenvalues of P (h) = −h2∆g + V (x). Let
E0(h) < E1(h) ≤ · · · ≤ Ej(h) → ∞ be all the eigenvalues of the
self-adjoint operator P (h). Then for r > 1,

(E.31) #{j : Ej(h) ≤ r} ≤ CM,V h
−nrn/2.

This crude estimate will be useful in §9.3. �
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Sources and further reading

Chapter 1: The book of Griffiths [G] provides a nice elementary in-
troduction to quantum mechanics. For a modern physical perspective,
consult Heller–Tomsovic [H-T] or Stöckmann [St].

Chapter 2: The proof of Theorem 2.11 is from Moser [Mo]; see also
Cannas da Silva [CdS]. A PDE oriented introduction to symplectic
geometry may be found in Hörmander [H3, Chapter 21].

Chapter 3: Good references are Friedlander and M. Joshi [F-J] and
Hörmander [H1]. The PDE example in §3.1 is from [H1, Section 7.6].

Chapter 4: The presentation of semiclassical calculus is based uponM.
Dimassi–Sjöstrand [D-S, Chapter 7]. See also Martinez [M], in partic-
ular for the Fefferman-Cordoba proof of the sharp G̊arding inequality.
The argument presented here followed the proof of [D-S, Theorem 7.12].

Chapter 5: Semiclassical defect measures were introduced indepen-
dently in Gérard [Ge] and Lions–Paul [L-P]; see also Tartar [T]. The
basic results presented here come from [Ge]. Theorem 5.8 comes from
[R-T], but the proof here follows [L] and uses also some ideas of Morawetz.

Chapter 6: The proof of Weyl asymptotics is a semiclassical version
of the classical Dirichlet-Neumann bracketting proof for the bounded
domains.

Chapter 7: Estimates in the classically forbidden region in §7.1 are
known as Agmon or Lithner-Agmon estimates. They play a crucial role
in the analysis of spectra of multiple well potential and of the Witten
complex: see [D-S, Chapter 6] for an introduction and references. Here
we followed an argument of [N], but see also [?, Proposition 3.2]. The
presentation of Carleman estimates in §7.2 is based on discussions with
N. Burq and D. Tataru.

Chapter 8: The Quantum Ergodicity Theorem 8.4 is from a 1974
paper of Shnirelman, and it is sometimes referred to as Shnirelman’s
Theorem. The first complete proof, in a different setting, was provided
by Zelditch. We have followed his more recent proof, as presented in
[?]. The same proof applied with finer spectral asymptotics gives a
stronger semiclassical version, first presented in [?].

Chapter 9: For h = 1, Ψm,k form the class of Kohn-Nirenberg pseu-
dodifferential operators: see [H2, §18.1] or [G-S] for a thorough presen-
tation. Much can be said about the properties of semiclassical wave
front sets and we refer to Alexandrova [A] for a recent discussion.
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The proof of symbol invariance is from the appendix to [?]. The
semiclassical wavefront set is an analog of the usual wavefront set in
microlocal analysis – see [H2] and is closely related to the frequency
set introduced in [?]. [?] presented the semiclassical pointwise bounds
reproduced here.

Our presentation of Beals’s Theorem follows [D-S, Chapter 8], where
it was based on [?]. Theorem 9.9, in a much greater generality, was
proved in [?]. The self-contained proof in the simple case considered
here comes from the appendix to [?].

Section 9.4 a special of a general result in [?, Théoreme 6.4]. See
[?], [?] for examples of conjugation techniques, and [M] for a slightly
different perspective.

Chapter 10: The definition of quantization of symplectomorphisms
using deformation follows the Heisenberg picture of quantum mechan-
ics. The proof of Theorem 10.2 comes from [Ch, Section 3] where a
stronger version of the result is also given. The construction of U(t)
borrows from the essentially standard presentation in [?, Section 7].
For the discussion of the Maslov index see [?] and [?]. Fourier integral
operators which are closely related to our discussion of quantization
and of propagators are discussed in detail in [?] and [H2, Chapter 25].

Semiclassical Strichartz estimates for P = −h2∆g − 1 appeared ex-
plicitely in [?] who used them to prove existence results for non-linear
Schrödinger equations on two and three dimensional compact mani-
folds. We refer to that paper for pointers to the vast literature on
Strichartz estimates and their applications. The adaptation of Sogge’s
Lp estimates to the semiclassical setting comes from [?] and was in-
spired by discussions with N. Burq, H. Koch, C.D. Sogge, and D.
Tataru, see [?] and [S].

The proofs for the theorems cited in §10.4 are in [H2, Theorem 21.1.6]
and [H2, Theorem 21.1.6]. Theorem 10.18 is a semiclassical analog of
the standard C∞ result of Duistermaat-Hörmander [H2, Proposition
26.1.3′]. Theorem 10.19 is a semiclassical adaptation of a microlocal
result of Duistermaat-Sjöstrand [H2, Proposition 26.3.1].

Theorem 10.20 was proved in one dimension in [?]. See also [?] for
more on quasimodes and pseudospectra and for further references.

Appendices: Ilan Hirshberg provided us with Theorem C.4 and its
proof.
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