18.156 LECTURE 3

Partitions of unity.

Proposition 1. If O_a , $a \in A$, is any open cover of a manifold M then there exists $\chi_i \in \mathcal{C}^{\infty}_c(M)$, with the properties

- (1) For any compact set $K \subset M$ there are at most a finite number of i such that $\operatorname{supp}(\chi_i) \cap K \neq \emptyset$.
- (2) For each *i*, there exists a = a(i) such that $\operatorname{supp}(\chi_i) \subset O_a$.
- (3) $\sum_{i} \chi_i = 1.$

The first condition implies that the sum in the last, partition of unity, condition only involves a finite sum. The second condition is that the partition of unity be 'subordinate to the open cover O_a .' The first condition is that the supports are locally finite.

Linear differential operators of order m (with smooth coefficient). We may think of these as operators

(1)
$$P: \mathcal{C}^{\infty}(M; \mathbb{C}^N) \longrightarrow \mathcal{C}^{\infty}(M; \mathbb{C}^{N'})$$

with two properties. First, locality, that u = 0 on any open subset of M implies Pu = 0. Secondly we demand that for each coordinate set $F: U \longrightarrow V \subset \mathbb{R}^n$, the local representative, defined by

 $P_F v = (F^{-1})^* P F^* v, \ v \in \mathcal{C}^{\infty}_{c}(V)$ is a differential operator of order m. (2)

We denote the space of these operators by $\operatorname{Diff}^m(M; \mathbb{C}^N, \mathbb{C}^{N'})$.

Proposition 2. The symbol of a differential operator of order m is a well-defined 'function' on T^*M with values in $N' \times N$ matrices which is a homogeneous polynomial of degree m on each fibre T_p^*M . If $P_m(T^*M; \mathbb{C}^{N'}, \mathbb{C}^N)$ denotes the space of such maps then there is a short exact sequence

(3)
$$\operatorname{Diff}^{m-1}(M; \mathbb{C}^N, \mathbb{C}^{N'}) \longleftrightarrow \operatorname{Diff}^m(M; \mathbb{C}^N, \mathbb{C}^{N'}) \longrightarrow P_m(T^*M; \mathbb{C}^{N'}, \mathbb{C}^N).$$

Proof.

Densities, distributions, Sobolev spaces.

Next, recall the proof of local elliptic regularity. We have an elliptic system of variable coefficient operators on an open set $\Omega \subset \mathbb{R}^n$,

(4)
$$P(x, D_x) = \sum_{|\alpha| \le m} P_{\alpha}(x) D_x^{\alpha}$$

where $P_{\alpha} \in \mathcal{C}^{\infty}(\Omega; M(N))$ is a smooth family of $N \times N$ matrices and ellipticity means that

(5)
$$p(x,\xi) = \sum_{|\alpha|=m} P_{\alpha}(x)\xi^{\alpha} \neq 0 \text{ for } \xi \in \mathbb{R}^n \setminus \{0\}, \ x \in \Omega.$$

Then we want to show that if $u \in H^s_{loc}(\Omega; \mathbb{C}^N)$ and $f \in H^t_{loc}(\Omega; \mathbb{C}^N)$ then

(6)
$$P(x, D_x)u = f \Longrightarrow u \in H^r_{\text{loc}}(\Omega; \mathbb{C}^N), \ r = max(s, t+m).$$

Of course, if s > t + m then it follows in fact that $f \in H^{s-m}_{\text{loc}}(\Omega; \mathbb{C}^N)$ so we might as well assume that t < s - m.

In fact it suffices to assume that t = s - m + 1, i.e. that $u \in H^s_{loc}(\Omega; \mathbb{C}^N)$, that $f \in H^{s-m+1}_{loc}(\Omega; \mathbb{C}^N)$ and to conclude that $u \in H^{s+1}_{loc}(\Omega; \mathbb{C}^N)$. Indeed, we can recover (6) by repeated application of this.

So now we suppose

(7)
$$u \in H^s_{\text{loc}}(\Omega; \mathbb{C}^N), \ P(x, D_x)u = f \in H^{s-m+1}_{\text{loc}}(\Omega; \mathbb{C}^N).$$

Now, consider $\chi \in \mathcal{C}^{\infty}_{c}(\Omega)$, that $\chi(p) \neq 0$ and eventually that the support of χ is in a small ball around p. We can commute χ through the operator and write

(8)
$$P(x, D_x)\chi u = \chi f + [P(x, D_x), \chi]u = f' \in H^{s-m+1}_{c}(\Omega; \mathbb{C}^N),$$

since the commutator is a differential operators of order at most m-1.

Next we consider the differential operator $P_m(p; D_x) = \sum_{|\alpha|=m} P_{\alpha}(p) D_x^{\alpha}$ obtained

by 'freezing' the leading part at x = p. Then (8) can be written (9)

$$P_m(p, D_x)\chi u + \sum_{|\alpha|=m} (P_\alpha(x) - P_\alpha(p))\chi' D_x^\alpha \chi u = f'' = f' - \sum_{|\alpha|< m} P_\alpha(x)\chi u \in H^{s-m+1}_c(\Omega; \mathbb{C}^N)$$

Here, $\chi' \in \mathcal{C}^{\infty}_{c}(\Omega)$ is equal to one on the support of χ so inserting it makes no difference.

As discussed earlier, this almost looks like the end, except for a small problem to do with *a prioir* regularity. Namely from (9) we can use the existence and boundedness properties of a parametrix for $P_m(p, D)$ – which is a constant coefficient elliptic operator – to see that

(10)
$$\|\chi u\|_{H^s} \le \delta \|\chi u\|_{H^{s+1}} + C'$$

where C' incorporates the norms of f'' etc in H^{s-m+1} and $\delta > 0$ is small. The little problem with this is that (10) *does not* tell us that $\chi u \in H^{s+1}(\mathbb{R}^n)$ so both sides may be infinite! That is why we need to do some regularization.

So, back to the drawing-board, we choose $0 \leq \phi \in C_{c}^{\infty}(\mathbb{R}^{n})$ with compact support and integral one and consider the 'approximate identity' ϕ_{ϵ} * where $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$. We know that if $v \in H^{s}$ then $\phi_{\epsilon} * v \to v$ in $H^{s}(\mathbb{R}^{n})$ as $\epsilon \to 0$. Now, apply ϕ_{ϵ} * to (9). It commutes with constant coefficient differential operators so we can write out the resulting identity as

(11)
$$P_m(p, D_x)(\phi_{\epsilon} * \chi u) + \sum_{|\alpha|=m} (P_{\alpha}(x) - P_{\alpha}(p))\chi' D_x^{\alpha}(\phi_{\epsilon} * \chi u)$$
$$= \phi_{\epsilon} * f'' + \sum_{|\alpha|=m} [\chi' P_{\alpha}(x), \phi_{\epsilon} *] D_x^{\alpha}(\chi u).$$

Now apply the convolution parametrix, Q, for $P_m(p, D)$, which satisfies

(12) $Q * P_m(p, D) = \mathrm{Id} + R *, \ R \in \mathcal{S}(\mathbb{R}^n)$

and we find that

(13)
$$\phi_{\epsilon} * \chi u + B\phi_{\epsilon} * \chi u = Qg_{\epsilon} + R * \phi_{\epsilon} * \chi u, \ B = Q * \sum_{|\alpha|=m} (P_{\alpha}(x) - P_{\alpha}(p))\chi' D_{x}^{\alpha}.$$

 $\mathbf{2}$

18.156 LECTURE 3

Now, if we choose χ , and hence χ' to have support sufficiently near p then the Schwartz (compactly supported) functions $(P_{\alpha}(x) - P_{\alpha}(p))\chi'$ in (13) have small supremum norm. It follows from Lemma ?? above, that

(14)
$$B: H^{s+1}(\mathbb{R}^n) \longrightarrow H^{s+1}(\mathbb{R}^n), \ \|Bv\|_{H^{s+1}} \le \delta \|v\|_{H^{s+1}} + C \|v\|_{H^s}$$

where we can arrange that $\delta < 1/2$. Applying this to (13) we find that

(15)
$$(1-\delta)\|\phi_{\epsilon} * \chi u\|_{H^{s+1}} \le C\|\phi_{\epsilon} * \chi u\| + C'\|\chi' u\|_{H^s} + \|f''\|_{H^{s-m+1}}$$

where C' represents all the bounded norms on the right, including the term which from $[\chi' P_{\alpha}(x), \phi_{\epsilon}*]$ which is uniformly bounded (as $\epsilon \downarrow 0$) by Lemma ??. So it follows that we do indeed get a uniform bound on the (finite) norm $\|\phi_{\epsilon}*\chi u\|_{H^{s+1}}$. This in turn means that along a sequence $\epsilon_n \to 0$, $\phi_{\epsilon}*\chi u$ is weakly convergent in $H^{s+1}(\mathbb{R}^n)$, but since $\phi_{\epsilon}*\chi u \to u \in H^s(\mathbb{R}^n)$ it follows that the weak limit is $u \in H^{s+1}(\mathbb{R}^n)$ which proves the desired regularity result.

... . ..

..

In fact using a partition of unity result it is straightforward to check that for any $\chi \in C_c^{\infty}(\Omega)$ any $\chi' \in C_c^{\infty}(\Omega)$ with $\chi' = 1$ in a neighbourhood of $\operatorname{supp}(\chi)$ and any $t, s \in \mathbb{R}$ there exist constants such that

(16)
$$\|\chi u\|_{H^{t+m}} \le C \|\chi' u\|_{H^s} + C' \|\chi' P(x, D) u\|_{H^t}.$$

The first term on the right cannot be dispensed with in general, because the operator might have null space – on an open set it may well be infinite dimensional but consists of smooth functions.