18.156 LECTURE 3

Partitions of unity.
Proposition 1. If $O_{a}, a \in A$, is any open cover of a manifold M then there exists $\chi_{i} \in \mathcal{C}_{c}^{\infty}(M)$, with the properties
(1) For any compact set $K \subset M$ there are at most a finite number of i such that $\operatorname{supp}\left(\chi_{i}\right) \cap K \neq \emptyset$.
(2) For each i, there exists $a=a(i)$ such that $\operatorname{supp}\left(\chi_{i}\right) \subset O_{a}$.
(3) $\sum_{i} \chi_{i}=1$.

The first condition implies that the sum in the last, partition of unity, condition only involves a finite sum. The second condition is that the partition of unity be 'subordinate to the open cover O_{a}.' The first condition is that the supports are locally finite.

Linear differential operators of order m (with smooth coefficient). We may think of these as operators

$$
\begin{equation*}
P: \mathcal{C}^{\infty}\left(M ; \mathbb{C}^{N}\right) \longrightarrow \mathcal{C}^{\infty}\left(M ; \mathbb{C}^{N^{\prime}}\right) \tag{1}
\end{equation*}
$$

with two properties. First, locality, that $u=0$ on any open subset of M implies $P u=0$. Secondly we demand that for each coordinate set $F: U \longrightarrow V \subset \mathbb{R}^{n}$, the local representative, defined by
(2) $\quad P_{F} v=\left(F^{-1}\right)^{*} P F^{*} v, v \in \mathcal{C}_{\mathrm{c}}^{\infty}(V)$ is a differential operator of order m.

We denote the space of these operators by $\operatorname{Diff}^{m}\left(M ; \mathbb{C}^{N}, \mathbb{C}^{N^{\prime}}\right)$.
Proposition 2. The symbol of a differential operator of order m is a well-defined 'function' on $T^{*} M$ with values in $N^{\prime} \times N$ matrices which is a homogeneous polynomial of degree m on each fibre $T_{p}^{*} M$. If $P_{m}\left(T^{*} M ; \mathbb{C}^{N^{\prime}}, \mathbb{C}^{N}\right)$ denotes the space of such maps then there is a short exact sequence

$$
\begin{equation*}
\operatorname{Diff}^{m-1}\left(M ; \mathbb{C}^{N}, \mathbb{C}^{N^{\prime}}\right) \longleftrightarrow \operatorname{Diff}^{m}\left(M ; \mathbb{C}^{N}, \mathbb{C}^{N^{\prime}}\right) \longrightarrow P_{m}\left(T^{*} M ; \mathbb{C}^{N^{\prime}}, \mathbb{C}^{N}\right) \tag{3}
\end{equation*}
$$

Proof.
Densities, distributions, Sobolev spaces.
Next, recall the proof of local elliptic regularity. We have an elliptic system of variable coefficient operators on an open set $\Omega \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
P\left(x, D_{x}\right)=\sum_{|\alpha| \leq m} P_{\alpha}(x) D_{x}^{\alpha} \tag{4}
\end{equation*}
$$

where $P_{\alpha} \in \mathcal{C}^{\infty}(\Omega ; M(N)$ is a smooth family of $N \times N$ matrices and ellipticity means that

$$
\begin{equation*}
p(x, \xi)=\sum_{|\alpha|=m} P_{\alpha}(x) \xi^{\alpha} \neq 0 \text { for } \xi \in \mathbb{R}^{n} \backslash\{0\}, x \in \Omega \tag{5}
\end{equation*}
$$

Then we want to show that if $u \in H_{\mathrm{loc}}^{s}\left(\Omega ; \mathbb{C}^{N}\right)$ and $f \in H_{\mathrm{loc}}^{t}\left(\Omega ; \mathbb{C}^{N}\right)$ then

$$
\begin{equation*}
P\left(x, D_{x}\right) u=f \Longrightarrow u \in H_{\mathrm{loc}}^{r}\left(\Omega ; \mathbb{C}^{N}\right), r=\max (s, t+m) \tag{6}
\end{equation*}
$$

Of course, if $s>t+m$ then it follows in fact that $f \in H_{\text {loc }}^{s-m}\left(\Omega ; \mathbb{C}^{N}\right)$ so we might as well assume that $t<s-m$.

In fact it suffices to assume that $t=s-m+1$, i.e. that $u \in H_{\mathrm{loc}}^{s}\left(\Omega ; \mathbb{C}^{N}\right)$, that $f \in H_{\mathrm{loc}}^{s-m+1}\left(\Omega ; \mathbb{C}^{N}\right)$ and to conclude that $u \in H_{\mathrm{loc}}^{s+1}\left(\Omega ; \mathbb{C}^{N}\right)$. Indeed, we can recover (6) by repeated application of this.

So now we suppose

$$
\begin{equation*}
u \in H_{\mathrm{loc}}^{s}\left(\Omega ; \mathbb{C}^{N}\right), P\left(x, D_{x}\right) u=f \in H_{\mathrm{loc}}^{s-m+1}\left(\Omega ; \mathbb{C}^{N}\right) \tag{7}
\end{equation*}
$$

Now, consider $\chi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\Omega)$, that $\chi(p) \neq 0$ and eventually that the support of χ is in a small ball around p. We can commute χ through the operator and write

$$
\begin{equation*}
P\left(x, D_{x}\right) \chi u=\chi f+\left[P\left(x, D_{x}\right), \chi\right] u=f^{\prime} \in H_{\mathrm{c}}^{s-m+1}\left(\Omega ; \mathbb{C}^{N}\right), \tag{8}
\end{equation*}
$$

since the commutator is a differential operators of order at most $m-1$.
Next we consider the differential operator $P_{m}\left(p ; D_{x}\right)=\sum_{|\alpha|=m} P_{\alpha}(p) D_{x}^{\alpha}$ obtained by 'freezing' the leading part at $x=p$. Then (8) can be written

$$
\begin{equation*}
P_{m}\left(p, D_{x}\right) \chi u+\sum_{|\alpha|=m}\left(P_{\alpha}(x)-P_{\alpha}(p)\right) \chi^{\prime} D_{x}^{\alpha} \chi u=f^{\prime \prime}=f^{\prime}-\sum_{\mid \alpha<m} P_{\alpha}(x) \chi u \in H_{\mathrm{c}}^{s-m+1}\left(\Omega ; \mathbb{C}^{N}\right) \tag{9}
\end{equation*}
$$

Here, $\chi^{\prime} \in \mathcal{C}_{\mathrm{c}}^{\infty}(\Omega)$ is equal to one on the support of χ so inserting it makes no difference.

As discussed earlier, this almost looks like the end, except for a small problem to do with a prioir regularity. Namely from (9) we can use the existence and boundedness properties of a parametrix for $P_{m}(p, D)$ - which is a constant coefficient elliptic operator - to see that

$$
\begin{equation*}
\|\chi u\|_{H^{s}} \leq \delta\|\chi u\|_{H^{s+1}}+C^{\prime} \tag{10}
\end{equation*}
$$

where C^{\prime} incorporates the norms of $f^{\prime \prime}$ etc in H^{s-m+1} and $\delta>0$ is small. The little problem with this is that (10) does not tell us that $\chi u \in H^{s+1}\left(\mathbb{R}^{n}\right)$ so both sides may be infinite! That is why we need to do some regularization.

So, back to the drawing-board, we choose $0 \leq \phi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ with compact support and integral one and consider the 'approximate identity' $\phi_{\epsilon} *$ where $\phi_{\epsilon}(x)=$ $\epsilon^{-n} \phi(x / \epsilon)$. We know that if $v \in H^{s}$ then $\phi_{\epsilon} * v \rightarrow v$ in $H^{s}\left(\mathbb{R}^{n}\right)$ as $\epsilon \rightarrow 0$. Now, apply $\phi_{\epsilon} *$ to (9). It commutes with constant coefficient differential operators so we can write out the resulting identity as

$$
\begin{align*}
P_{m}\left(p, D_{x}\right)\left(\phi_{\epsilon} * \chi u\right)+\sum_{|\alpha|=m}\left(P_{\alpha}(x)\right. & \left.-P_{\alpha}(p)\right) \chi^{\prime} D_{x}^{\alpha}\left(\phi_{\epsilon} * \chi u\right) \tag{11}\\
& =\phi_{\epsilon} * f^{\prime \prime}+\sum_{|\alpha|=m}\left[\chi^{\prime} P_{\alpha}(x), \phi_{\epsilon} *\right] D_{x}^{\alpha}(\chi u) .
\end{align*}
$$

Now apply the convolution parametrix, Q, for $P_{m}(p, D)$, which satisfies

$$
\begin{equation*}
Q * P_{m}(p, D)=\operatorname{Id}+R *, R \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{12}
\end{equation*}
$$

and we find that
(13) $\phi_{\epsilon} * \chi u+B \phi_{\epsilon} * \chi u=Q g_{\epsilon}+R * \phi_{\epsilon} * \chi u, B=Q * \sum_{|\alpha|=m}\left(P_{\alpha}(x)-P_{\alpha}(p)\right) \chi^{\prime} D_{x}^{\alpha}$.

Now, if we choose χ, and hence χ^{\prime} to have support sufficiently near p then the Schwartz (compactly supported) functions $\left(P_{\alpha}(x)-P_{\alpha}(p)\right) \chi^{\prime}$ in (13) have small supremum norm. It follows from Lemma ?? above, that

$$
\begin{equation*}
B: H^{s+1}\left(\mathbb{R}^{n}\right) \longrightarrow H^{s+1}\left(\mathbb{R}^{n}\right),\|B v\|_{H^{s+1}} \leq \delta\|v\|_{H^{s+1}}+C\|v\|_{H^{s}} \tag{14}
\end{equation*}
$$

where we can arrange that $\delta<1 / 2$. Applying this to (13) we find that

$$
\begin{equation*}
(1-\delta)\left\|\phi_{\epsilon} * \chi u\right\|_{H^{s+1}} \leq C\left\|\phi_{\epsilon} * \chi u\right\|+C^{\prime}\left\|\chi^{\prime} u\right\|_{H^{s}}+\left\|f^{\prime \prime}\right\|_{H^{s-m+1}} \tag{15}
\end{equation*}
$$

where C^{\prime} represents all the bounded norms on the right, including the term which from $\left[\chi^{\prime} P_{\alpha}(x), \phi_{\epsilon} *\right]$ which is uniformly bounded (as $\epsilon \downarrow 0$) by Lemma ??. So it follows that we do indeed get a uniform bound on the (finite) norm $\left\|\phi_{\epsilon} * \chi u\right\|_{H^{s+1}}$. This in turn means that along a sequence $\epsilon_{n} \rightarrow 0, \phi_{\epsilon} * \chi u$ is weakly convergent in $H^{s+1}\left(\mathbb{R}^{n}\right)$, but since $\phi_{\epsilon} * \chi u \rightarrow u \in H^{s}\left(\mathbb{R}^{n}\right)$ it follows that the weak limit is $u \in H^{s+1}\left(\mathbb{R}^{n}\right)$ which proves the desired regularity result.

In fact using a partition of unity result it is straightforward to check that for any $\chi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\Omega)$ any $\chi^{\prime} \in \mathcal{C}_{\mathrm{c}}^{\infty}(\Omega)$ with $\chi^{\prime}=1$ in a neighbourhood of $\operatorname{supp}(\chi)$ and any t, $s \in \mathbb{R}$ there exist constants such that

$$
\begin{equation*}
\|\chi u\|_{H^{t+m}} \leq C\left\|\chi^{\prime} u\right\|_{H^{s}}+C^{\prime}\left\|\chi^{\prime} P(x, D) u\right\|_{H^{t}} \tag{16}
\end{equation*}
$$

The first term on the right cannot be dispensed with in general, because the operator might have null space - on an open set it may well be infinite dimensional but consists of smooth functions.

