If \(L^r \) norm exists, then the \(L^s \) norm also exists. For, if \(\sum a_i^r \) converges, then there exists some natural number \(N \) such that \(a_i^r < 1 \) for every \(j \geq N \). But then, \(a_j^s < a_j^r \) for every \(j \geq N \), so by the comparison test on sequences, \(\sum a_j^s \) also exists. Thus, \(L^r \subset L^s \), as required. Finding conditions for either inclusion was already established in previous problems - in 2(a), the argument given establishes that if \(\mu(X) < \infty \), then \(r < s \) implies \(L^r \subset L^s \). In 2(b), we proved that the “minimum measure” condition enforces inclusion in the other direction. \(\blacksquare \)