We first prove the hint. Let $g = \sum a_i \cdot 1_{E_i}$ be a simple function, with $1E_i$ disjoint. Then

$$\int g \, d\nu = \sum_{i=1}^{n} a_i \int 1_{E_i} \, d\nu = \sum_{i=1}^{n} a_i \int 1_{E_i} \, d\nu = \sum_{i=1}^{n} a_i \nu(E_i)$$

Now let g be a nonnegative measurable function. Then $\int f \, d\mu$ is a sequence of nonnegative functions ϕ_n, $\phi_n \leq g$ (by pg. 44 of Stroock). As f is nonnegative and measurable, $\phi_n \uparrow f$, and thus by the MCT,

$$\int g \, d\nu = \lim_{n \to \infty} \int \phi_n \, d\nu \leq \lim_{n \to \infty} \int \phi_n \, d\nu$$

$$= \lim_{n \to \infty} \int \phi_n f \, d\mu$$

$$= \int \lim_{n \to \infty} \phi_n f \, d\mu$$

$$= \int f \, d\mu.$$