We also have \(L_1(x) \leq L_2(x) \leq \cdots \leq f(x) \leq \cdots \leq U_2(x) \leq U_1(x) \)

\(\forall x \in [0,1] \), from the construction of \(\mathcal{C}_{K_1} \), \(L(x) = \lim_{k \to \infty} L_k(x) \)

\(U(x) = \lim_{k \to \infty} U_k(x) \), because monotonic and bounded.

Sequences of functions converge pointwise.

It is clear that \(L \) and \(U \) are bounded (\(L(x) \leq f(x) \leq \infty \)

\(\forall x \in [0,1] \) and \(U(x) \leq U_1(x) \leq \infty \) \(\forall x \in [0,1] \)) and that

\(L \) and \(U \) are measurable by monotone convergence

Theorem to show \(U \) is measurable we note that

\(-U_k^{2n} \) is an increasing seq. of measurable functions

so \(\lim_{k \to \infty} -U_k = U'(x) \) is measurable. It follows that

\(-L_k \) is measurable.

\(\lim_{k \to \infty} 1 = \lim_{k \to \infty} \frac{1}{k} U_k = U'(x) = U(x) \) is measurable.

Therefore, we have \(\lim_{k \to \infty} \int_{[0,1]} L_k(x) = \int_{[0,1]} (R) \int_{[0,1]} f \, dx \) and

\(\lim_{k \to \infty} \int_{[0,1]} U_k(x) = \int_{[0,1]} (R) \int_{[0,1]} f \, dx \) by (1) and monotone convergence thm.

Now note that since \(f \) is Riemann integrable,

\(\int_{[0,1]} f \, dx \) is the Riemann integral of \(f \) on \([0,1]\)

We have (2) if \(f \) is Riemann integrable.

(2) \(\int_{[0,1]} f \, dx = \int_{[0,1]} L(x) = \int_{[0,1]} U(x) = \int_{[0,1]} f \, dx \).

Because \(L(x) \leq U(x) \) \(\forall x \in [0,1] \)

Thus we have (2) if \(L(x) = U(x) \) a.e.