4.1 cont.

Now suppose that \(Ef, \alpha \in B \), for each \(\alpha \in \mathcal{A} \). Given \(b \in \mathbb{R} \), choose a sequence \(\{a_n\} \subseteq \mathcal{A}(b, 0) \) such that \(a_n \to b \). It is clear that \(Ef > b^2 = Ef, \alpha \in B \), hence the current case reduces to the previous.

We may consider the cases "\(\ast \)" and "\(\ast \ast \)" by considering \(-f \) in place of \(f \).

Suppose that \(g \) is a second \(\mathbb{R} \)-valued function on \((E, B) \). First we show \(Ef, g \in B \).

Let \(\mathbb{Q} \) denote the set of rationals in \(\mathbb{R} \), then we have:

\[
Ef, g \in B = \bigcup_{p \in \mathbb{Q}} \{Ef, p^2 \land Ef, g \geq p^2\} \subseteq B
\]

The correctness of this assertion is clear. If \(x \in Ef, g \), then \(x \in \{Ef, p^2 \land Ef, g \geq p^2\} \) where \(f(x) \leq p \leq g(x) \), the existence of \(p \) follows from the Archimedean principle and the density of \(\mathbb{Q} \). Conversely, if \(x \in \{Ef, p^2 \land Ef, g \geq p^2\} \) we have \(f(x) \leq p \leq g(x) \), so \(x \in Ef, g \). It is clear that \(\bigcup_{p \in \mathbb{Q}} \{Ef, p^2 \land Ef, g \geq p^2\} \subseteq B \) from the preceding arguments. \(Ef, g \in B \) by symmetry.