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Chapter 1

Several Complex Variables

Lecture 1

Lectures with Victor Guillemin, vwg@math.mit.edu. Office Hours 2-170, MWF 2-3, Texts:
Hormander: Complex Analysis in Several Variables
Griffiths: Principles in Algebraic Geometry
Notes on Elliptic Operators
No exams, 5 or 6 HW’s.
Syllabus (5 segments to course, 6-8 lectures each)

1. Complex variable theory on open subsets of C*. Hartog, simply pseudeconvex domains, inhomogeneous

2. Theory of complex manifolds, Kaehler manifolds
3. Basic theorems about elliptic operators, pseudo-differential operators

4. Hodge Theory on Kaehler manifolds
5. Geometry Invariant Theory.

1 Complex Variable and Holomorphic Functions

U an open set in R®, let C°°(U) denote the C*° function on U/. Another notation for continuous function:
Let A be any subset of R®, f € C*°(A) if and only f € C*(U) with U > A, U open. That is, f is C* on

A if it can be extended to an open set around it.
As usual, we will identify C with B? by 2z — (x,v) when z = z 4+ iy. On R2 the standard de Rham

differentials are dz, dy. On C we introduce the de Rham differentials
dz = dz +idy dz = dz — idy
Let U be open in C, f € C°°(U) then the differential is given as follows

_Of, . 8f,  8f (dz+dz\  Of (de—dz
4 =gode+ iy =5 (=5 )W,(T)
_1(8f of 1/8f  .oF\ .
_E(a_z““""ay)dﬁi(ézﬂ_ay)dz

If we make the following definitions, the differential has a succinct form

o (L) YL

82 2\8z Oy 8z 2\8x By
80 6f 6_f
df=§dz+£d2.

We take this to be the definition of the differential operator.
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Definition. f € O(U) (the holomorphic functions) iff 8f/8% = 0. So if f € O(U) then df = %z{fdz.

Examples

1. z e O(U)

2. f,g € C*=(U) then
OF oo 0f | ;09
8219 59 g

so if f,g4 € O(U) then fg € OT).
3. By the above two, we can say z, 2%,... and any polynomial in z is in o(U).

4. Consider a formal power series f(z) ~ 3772, a:2* where |a;] < (const)R~*. Then if D = {|z| < R}
the power series converges uniformly on any compact set in D, s0 f € C {D). And by term-by-term
differentiation we see that the differentiated power series converges, so f € C°°(D), and the differential
w/ respect to Z goes to 0, so f € O(D).

5. a€C, f(z) = L € C=(C —{a}).

Z=0

Cauchy Integral Formula
Let I/ be an open bounded set in €, 87/ is smooth, f € (7). Let » = fdz by Stokes

. _of af
andz—j;rdu du——a—zdzAdz+azdz/\dz

850
af .
dz=fdu=f—:dz/\dz.
av'f U v 02

Now, take a € U and remove D, = {|z — a| < €}, and let the resulting region be U, = U — D,. Replace
f in the above by —L_. Note that (z — a)~! is holomorphic. We get

z-a’
f La:l!z= ﬂ 1 dzAdz
.z v, 0Zz—a

Note: The boundary of U is oriented counter-clockwise, and the inner boundary D, is oriented clockwise.
When orientations are taken into account the above becomes

fa i &dpfmg ! iznds (1.1)

u2—0a ap, 2 —a Z—a

The second infegral, with the change of coordinates z = a + e, dz = iece’?, 22 — idf. This gives

2m
Mdz =i fla+e%)a8.

8D, 2 — G 0

Now we look at what happens when € — 0. Well, zia € LYU), so by Lebesgue dominated convergence if

we let U, — U, and the integral remians unchanged. On the left hand side we get —if (@)2m, and altogether
we have
2mif(a) = / L gy [O
UeZ—a

UBEz—a,

dz AdZ

In particular, if f € O(U) then

2nif(a) = faU ziadz

Applications:



Lemma. If f € O(U) and Ref =0, then f is constant.
Progf. Trivial consequence of the definition of holomorphie. (|

Proof of Mazimum Modulus Principle. Assume f(a) is positive (we can do this by a trivial normalization
operation). Let u{z} = Re f. Now from abave

1 297 )
fla) = o : fle+ ec®)dp

The LHS is real valued and trivially
1 2
f@ =5 [ fayo

we subtract the above 2 and we get
2w

0= f(e) —u(a + ee)ds.
0

When ¢ is sufficiently small, since a is a local maximum, the integral is greater than 0, f(a) = u{a+ ) so
Re f is constant in a neighborhood of ¢ and we can normalize and assume Re f = 0 near a, so by analytic
continuation f is constant on U, O

Inhomogeneous CR Equation

Consider U an open bounded subset of C, 8U a smooth boundary, g € C>*T). The Inhomogeneous CR,
equation is the following PDE: find f € C°°(U) such that

of
E_g

The question is, does there exists a solution for arbitrary g?
/First, consider another, simpler version of CR with g € C5°(C). Does there exists f € C°°(C) such that
af 0z = g?

Lemma. We claim the function f defined by the integral
-1 [ g _
f(z) = an“zdn/\ dif

is in C°°(C) and satisfies 8f/0z = g.

Proof. Perform the change of variables w = z — 7, dw = —dn, d@ = —dfj and 9 = z — w then the integral
above becomes

—/.!iz;—mdw/\dw=f(z)

Now it is clear that f € C®(C), because if we take 3/0z, we can just keep differentiating under the integral.

And now ( ) ( )
Gg Bg
af _ 1 flaz)z-w) 1 a7 ) (M) _
E“Ef‘T“d’”’\d‘”_ﬁf_an’Md"

Let A = supp g, so A is compact, then there exists I/ open and bounded such that 8/ is smooth and A c U/,
For g € C*(U} write down using the Cauchy integral formula

1 1 8g, . dnAdi
9’(3)*:'2—] g'(n—)d + o= —'g"?‘u
i Jay n— 2 2ni fy O n—z

On U, g is identically 0, s¢ the first integral is 0. For the second integral we replace A by the entire complex
plane, so

1 dg, .dnpAdp
9(z) 27 ). 57 (’7)—17‘_—2
which is the expression for %zé [}



FeC=T)NOU), take a ~ z, z ~+ 1 then just rewriting
@) 4

ey N— =2

2rif(z) =

if welet U = {D:|z| < R}. Then

1 1 1 2k
- =_zz_k

n-z ﬂ(l“ﬁ) L rar

and since on boundary |n| = R, |z| < R so the series converges uniformly on compact sets, we get
f(m) =k f(n)
=gy = gz ap = f ==l dn
-[9U -z ;} Inl=R ﬂkH

or ay = %a%’} f(0). This is the holomorphic Taylor expansion.
Now if we take 2~ z—a, D : |z —a| < R, f € ()N C=(U) then

& 1 9%
F(2) =Y ax(z—a) o = o5/ (0)

We can apply this a prove a few thecrems.

Theorem. U a connected open set in C. f,g € O(U), suppose there exists an open subset V of U on which
f=g. We can conclude f = g, this is unique analytic conlinuation.

Proof. W set of all points a € U where
oF o*
a—z}f(ﬂ.)zgzg k—U,l,...

holds. Then W is closed, and we see that W is also open, so W = U. O

Lecture 2
Cauchy integral formula again. I/ an open bounded set in C, 8U smooth, f € C* (U)_, zelU

LI, L a—{(n)ﬁdn/\dﬁ

f(z)_21r'£ oy T — % M o v Of

the second term becomes 0 when f is holomorphic, i.e. the area integral vanishes, and we get

_ 1 fm)
=) = 2ms [aU n— .zd:"7
Now take D : |z — a| < ¢, f € O(D) N C*®(D), then
21

Fla) = % A fla+ ee®)dp

More applications:

Theorem (Maximum Modulus Principle). U any open connecled set in C, f € O(U) ihen if |f] has a
local maximum value at some point a € U then f has to be constant.

First, a little lemma.



Now, we want to get rid of our compactly supported criterion. Let U be bounded, 8U smooth and
ge Cm(ﬁ)s Qé =g

8z

Make the following definition
1 [ g(m -
= f =24
fi(z} m/;n_z nAdf
Take a € U, D an open disk about @, D C U. Check that f € C* on D and that 0f/0z =g on D. Since a
is arbitrary, if we can prove this we are done. Take p € C§°(U) so that p = 1 on a neighborhood of D, then

_ 1 [pngn o1 / g(m) _
flz)= 5d f -2 dn A d7i+\2m; {1 p)ﬂ_qu A dri
7 11
The first term, I, is in C§°(C), so Tis C* on C and 81/8% = pg on C and 30 is equal to glp- We claim that
I1|p is in O(D). The Integrand is 0 on an open set containing D, so 817 /8Z=0on D.

We conclude that 8f(2)/0z = g(z) on D. (The same result could have just been obtained by taking a
partition of unity)

Transition to Several Complex Variables

We are now dealing with C", coordinatized by 2 = (21, ..., 2,), and 2 = zs + iyx and dzg = dzxy, + idyy.
Given U open in C*, f € C>(U) we define
of _L(of of\ of _1(or,.of
Bz 2 dri By 9z 2 \ Oz Ay
So the de Rham differential is defined by
S (B g L O of Of 4z 8715
df =) (6midm,+ ayidyl) = az]ﬂdzk+zazkdzk = 8f + 8f

so df = 8f + 6f.
Let Q'(U) be the space of C*° de Rham 1-forms, and u € 21(U) then

u=u'+u”=2aidzi+2b,-d2,- ai, by € C=(U)
we introduce the following notation

QLo — {Z axdzs, ay € C'°°(U)}
Qo1 = {Z budZy, by € G“(U)}
and therefore there is a decomposition O (U) = QL(U) @ 2% (U). We can rephrase a couple of the lines
above in the following way: df = 9f +af, 8f € QL°, §f ¢ 1.
Definition. f € OU) if 8f =0, i.e. if 8f/8%z; = 0, Vk.
Lemma. For f,g € C(U), 8fg = f0g+ gBf, thus fg € OU).

Obviously, 21, ...,2, € O(U).
Kfa=(a1,...,0n), & €N, then 2* = 2{" ... 22" and z® € O(C). Then

P(2)= D aq.2* € O(C™)
lel<N

Even more generally, suppose we have the formal power series
flz)= Z agz®
[+

and |aa) < CR{* ... Rgor. Then let Dy : |2k < Ry and D= Dy x --- x D,, then f(z) converges on D and
uniformly on compact sets in D, and by differentiation we see that f € O(D).

Definition. Let D; : |z — a;| < Ry, then open set Dq x -+ - x Dy, is called a polydisk.
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Lecture 3

Generalizations of the Cauchy Integral Formula

There are many, many ways to generalize this, but we will start with the most obvious

Theorem. Let D C C™ be the polydisk D == Dy x -+ x Dy, where D; : |z;| < R; and let f € O(D) nC>=(D)
then for any point a = (a1,...,a,)

_ _1_ " f(zl"“:zﬂ)
10=(35) Jpueonon B e

2mi zr—ar)...(2n —6p)

Proof. We will prove by induction, but only for the case n = 2, the rest follow easily. We do the Cauchy
Integral formula in each variable separately

_ flz1, 22) _ 1 flz1, 22)
f(z1,82) = 273 Jop, 71— 2 dz flar, z) = 571 Jon, (21— @) dzo
Then just plug the first into the second. O

Applications: First make the following changes a; ~+ z;, 2; ~ 7, then

f(z1,---,zn)=(L)n_[3 f(n) dp A Adng

2mi Dy x---x8D, (m—=1)... (1 — 2}

As before in the single variable case we make the following replacements

1 1 1 1 z
[{(mi ~ ) _m.--nnnl—ﬁf _m---nnzn“

for 7 € 8D; x --+ x 8Dy, we have uniform converge for z on compact subsets of D. So by the Lebesgue
dominated convergence theorem

= a : 1y" fn)
10 =0 ea=(55) [ el Dgrenimn

Theorem. U open in C*, f € O(U), e € U and D a polydisk centered ot a with D C U then on D we have

F(2)=) aalz1 — 81)™ ... (20 ~ )™

(we will call this (+) from now on)
Proof. Apply the previous little theorem to f(z — a). O
Note we can check by differentiation that the coefficients are a, = 20f/82%(a).

Theorem. U is a connected open set in C* with f,9 € O(U). If f = g on an open subset V C U then f = g
on all of U.

Proof. As in one dimension. O

Theorem (Maximum Modulus Principle). U is a connected open set in C*, f € O(U). If| J| achieves
a local mazimum at some point a € U then f is constant

Proof. Left as exercise. 0

As a reminder:



Theorem. Let g € C§°(C) then if f is the function
1 [ g(n) .
=— | L gnad
1) = 5~ fc n— A
then f € C=(C) and 8f/8z = g.
What about the n-dimensional case? That is, given A; € C§°(C"), i = 1,...,n does there exist fe
C°(C™) such that §f = h;, i=1,...,n?
There clearly can’t always be a solution because we have the integrability conditions
Bh;  Ohy
82,— - 0z;
Theorem (Multidimensional Inhomogeneous CR equation). If the h;’s satisfy these integrability
conditions then there exists an f € C“(C"? with 8f/0%; = hi. And in fact such a solution is given by

_ 1 hl(nl:z'-’:"'azn)
R R A e

Proof. This just says for get about everything except the first varizble.
Clearly f € C(C"} and 8f/8z) = hy. Now 8f/0%; we compute under the integral sign and we get

dﬂl M dﬁl

a 1
—h ves 4
35‘ 1(7?1,22, ?zn)ﬂi—zi GL(TII)
(so it is legitimate to differentiate under the integral sign). Now
of 1 8k dmy A dify
o7 2mi ] Bz B
_ 1 th dm A dm
~ ) o T
= hj(21,...,2n)
The second set is by integrability conditions, and the lat is by the previous lemma. QED. a

Let K € C™ be a compact st. Suppose C* — X is connected. Suppose h; € Cg°(C™) are supported in K.
Theorem. If f is the function (x) then supp f C K (unique to higher dimension). So not only do we have
a solution to the ICR egn, it is compactly supported.

Proof. By (%) f(#1,...,2n) i8 identically 0 when (2;) 3> 0, i > 1, because h; is compactly supported. Also,
since supp h; C K and 8f/8%; = h; we have that 8f/82, =0on C"—K,s0 f € O(C" — K). The uniqueness
of analytic continuation we have f =0 on C* — K (used that C"* — K is connected) O

Theorem (Hartog’s Theorem). Let K € U, U C C" is open and connected. Suppose that U — K
is connected. Let f € O(U — K) then f extends holomorphically to all of U. THIS IS A PROPERTY
SPECIFIC TO HIGHER DIMENSIONAL SPACES.

Proof. Let K3 € U so that K € Int Ky, U — K7 is connected. Choose ¢ € C®(C") such that p =1 on K
and supp C Int K. Let
v = (1—p)f onU-K
10 on K

thenw € C°(U). Andwv = fon IV - K. h; = a%ﬁv,i: L...,n. One U — Ky, v=f e OU - K;) s0
hi = a%,-f on U — K1 and f is holomorphic, so this is 0, thus h; € C5°(C™), supph; C K, and g%"- = %,
so Jw e C§°(C™) such that 3—;‘: = h; and suppw C K;. Take g=v—wsow=0onC"— K, v= fon
C" -~ K1,80 g= f on C* — K and by construction

8¢ Ov Hw o

LS = S S

5 0m 0% T amv =0
so g€ OU) and g = f on U — K, f € C®(U ~ K), since U — K connected, by uniqueness of analytic
continuation g = f on U — K, so g is holomorphic continuation of f onto all of U/. O
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Lecture 4

Applying Hartog’s Theorem
Let X C C" be an algebraic variety, codc X = 2. And suppose f € O{C" — X). Then f extends holomor-
phically to f € Q(C™).

Sketch of Proof: Cut X by a complex plane (P = C?) transversally. Then f [p€ O(P — {p}) so by
hartog, f |p€ O(P). Do this argument for all points, so f has to be holomorphic on f € @{C").

We have to be a little more careful to actually prove it, but this is just an example of how algebraic
geometers use this.

Dolbeault Complex and the ICR Equation
Let U be an open subset of C*, w € Q1!(U/), then we discussed how Q(U) = Q10 g Q01

There is a similar story for higher degree forms.
Take r > 1, p+q =r. Then w € WP9(U) if w is in the following form

W= Z: fj',_]'dz,r Adzy f],_] € COO(U)

and dzr = dz;, A--- Adzy,, dZy = dZ;, A--- Adz;, are standard multi-indices. Then
Q= @ o)
ptg=r

Now suppose we have w € QP9(U), w =3 f1,ydz; A dZ; then the de Rham differential is written as follows

dw = Z dfrg Adzg Adzy = Z ag;"'] dzy Adzy ANdzg + Z %dij MAdzpr AdzZy
i 3

The first term we define to be 8w and the second to be Aw,i.e.

Bw=Y" ag—;;"dz,- Adzr Adzg

5 Afrg . -
Ow = Z 02,' dz; Adz; ANdZs
Now we may write dw = 8w + 8w, and note that dw € QP+14(U) and 8w € QP11 (D).
Also
& =0=0% + 80w+ Fow + 8 w

and the terms in the above expression are of bidegree

(p+2,9}+(p+Lg+1)+(p+ 1,9+ 14:(p,g+2)

s08 = 8% =02nd 60 + 98 = 0, so 3,8 are anti-commutative.

We now have that the de Rham complex (*(U),d) is a bicomplex, i.e. d splits into two different
coboundary operators that anticommute.

The rows of the bicomplex are given by

Qo,q _a;... Ql,q _6>. Q2,q L). e

and the columns are given by

L Qp.l L Or2

For the moment, we focus on the columns, more specifically the extreme left column.

Oro
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Definition. The Dolbeault Complex is the following complex
Co(U) =2 = Q1) —Z» 001(7) —Z> 002(U) Zesm ...

A basic problem in several complex variables is to answer the question: For what open sets U in C* is

this complex exact?
Today we will show that the Dolbeault complex is locally exact (actually, we will prove something a little

stronger)

Theorem (1). Let U and V be polydisks with V CU. Then if w € Q% (U) and Bw = 0 then there exisls
p€ QYY) with Gu=w on V.

This just says that if we shrink the domain a little, the exactness holds.

To prove this theorem we will use a trick similar to showing that the real de Rham complex is locally

exact.
First, we define a new set

Definition. Q%4(U);, 0 < k < n is given by the following rule: w € Q%49(U); if and only if
w=Y"fidz;  dE=dE, A--NdE, 1< <-<ig<k

This is just a restriction on the Z;’s that may be present. For example Q%9(U)y = {0} and QO9(T7),, =
QMa(D).
An important property of this space follows. If w € Q%¢(1J),, then

[ZEDY 801 43y p oy + O U,
I~k Bz;

so if Bw =0 then 8f;/8% =0, for | > k i.e. f; is holomorphic.
Let V,U be polydisks, V ¢ U. Choose a polydisk W so that V ¢ W and W c U.

Theorem (2). If w € Q% (U), and Bw = 0 then there ezists § € Q-1(W),_; such that w — 38 €
Q%9 (W Hier-

We claim that Theorem 2 implies Theorem 1 (left as exercise)

Before we prove theorem 2, we need a lemma
Lemma. (ICR in 1D) If g € C*°(U) with §% =0, I > k then there ewists f € C®(W) such that =0
Jori>kaend gL =g
Proof. U =U4 x--- x U, where U,;ire disks and W = Wl-x -+« X Wn where W; are disks. Let p € C°(U)
so that p =1 on a neighborhood of W. Replacing g by p{2x)g we can assume that g is compactly supported

in 2.
Choose f to be

f=ifg('zlz°-':zk—lsnﬁzk+17---7zﬂ)dﬂ/\dﬁ
21 C n-—- 2z .

We showed before that a%% = g. By a change of variable we see that

__L g(zlz-"7zk—lzk_n;zk+la"';zn) _
f= 271_:./(; 7 dn Adf
so f € C®(W) and clearly &L =0, 1 > k. QED. O

We may now prove Theorem 2
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Proof of Theorem 2. w € Q™(U)y, and 8w = 0. Write
w=pn+dz Av BE Qo’q(U)k_l,U € ﬂo’q_I(U)k_l

(just decormpose w) and say
v=> gidz;, g eC2W), I={(is,...,01), &s<k—1
Ow = 0 tells use that %g_f- =0, [ > k. By the lemma above, there exists fr € C§°(W) so that

ofr _ 8fr _
Zr =gr and £—0,1>k

Take 8 =3 fidz, then
- _ . a
88 = E dzp A -é%dz,- + QO'G(W);C_I =dz AV

80w — “gﬂ € Qﬂ,q(W)k_l_

Theorem (3). Let U be o polydisk then the Dolbeaull complex
o0 ) _5_,. QO.I(U) _3_,. Q0.2 ) ..5__,. s

18 exzact. That is, you don’t have to pass to sub-polydisks.
The above theorem is EXERCISE 1

Lecture 5

Notes about Exercise 1

Lemma. Let U and V be as in Theorem 1 above. f € Q09(U), 38 = 0 then there ezists a € Q%9-1(U)
such that Ba =F on V.

Proof. Choose & polydisk W so that V ¢ W, W < U. Choose p € C§°(W) with p = 1 on a neighborhood
of V. By theorem 1 there exists ap € Q%971 (W) so that By = 8 on W. If we take

o = e on W
0 onlV —W

then we have a solution. 0

We claim that the Dolbealt complex is exact on all degrees g > 2.

Lemma. Let V5, V1,V5,... be a sequence of polydisks so that _Vr C Voy1 and [ JV) = U. (ezhaustion on U
by compact polydisk). There exists oy € QO9YYU) such that Bo, = B on V, and such that ary1 = ay on

r—1-

Proof. By the previous lemma there exists o, € Q%9-1(U) with 8a, = S on V. And for ape1,0, on V,,
Oariy =0 = Bon V;, 80 8(art1 —ar) =0 on V. Now ¢ > 2 so we can find v € Q%9-1(U) such that
&Y = 041 — 0 on Vp_y. Then set af5§ := a2, + 8y. So 8a2$Y = B on Vyp1, a2 = 0 on Vg, 0

12



We get a globel solution when we set o = @, on Vi_; for all r.
(EXERCISE Prove exactness at g = 1, i.e. make this argument work for ¢ = 1)
What does exactness mean for degree 17 Well

BeNU)  B=) fdn  fie Co(U)
We need to show that there exists g € Q%°(U) = C®(U) so that 9g = 3, ie.

og
Fr fi
So the condition that 83 = 0 is just the integrability conditions.

So we have to show the following. That there exists a sequence of functions g, € coU). VooV, C

++ C U such that %%f =fi,i=1,...,non V, (easy consequence of lemma)

We can no longer say gr+1 — g- on Vo1, But we can pick g, such that |ge; - g.| < 7= on Vp_1.

Hint Choose g € C°(U) such that %FE—"_‘ = fi on ¥,. Look at gr1 —g» on V,. Note that '6%‘_(31-.{.1 —gr)=0
on V., 50 gry1 — gr € O(V;). On V,_; we can expand by power series }:;) get gr1—gr = 3., 002%, and

new

this series is actually uniformly convergent on V,_;. We try to modify grfy by setting gP$y + Py (2), where

Pn(z) = E!ndgN g 2™
(The exercise is due Feb 25th)

More on Dolbealt Complex

For polydisks the Dolbealt complex is acyclic {exact). But what about other kinds of open sets? The solution
was obtained by Kohn in 1963.
Let U be open in C, ¢ : U — R be such that ¢ € O°(U).

Definition. ¢ is strictly pluri-subharmonic if for all p € I/ the hermitian form
sl _
eeC"— IZJ: D207 (p)a:z;

is positive definite.
{This definition will be important later for Kaehler manifolds)
Definition. A C* function ¢ : U — R is an exhaustion function if it is bounded from below and if for all

ceC
K. ={peUlp(p) < c}
is compact.
Definition. U is pseudoconvex if it possesses a strictly pluri-subharmonic exhaustion function.
Examples
1. U=C. U we take ¢ = |2|? = 25, 28 =1.
2 U=DcC

1 dp 14|z
PTITRE @m0 (—1epp C

3. UcC,U=D- {0} = D?, ie. the punctured disk

1 1 B dp
= Log —— —— T ————
CTIRE TR 505 5z0:

because Log is harmonic. Note the extra term in ¢° is so the function will blow up at its point of
discontinuity.
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4. C" DU = D1 x -+ X Dy, where D; = |z|* < 1. Take
1
¢ L TTRP
5. C*DU, D% - x DY x Dpy1x--xDy
k 1
PR YT
i=1 B

6. UCCH, U=DB" |2]2= |22+ + |22

_ 1 Bzgp 6," + 22’,:2_-;
PETLE  3wdy (A +12P)  (@—|2P)

Theorem. IfU; C C*, i = 1,2 is pseudo-convex then Uy MUy 4s pseudo-conves

Proof. Take p; to be strictly pluri-subharmonic exhaustion functions for U;. Then set ¢ = @1 4+ @2 on
U NU,. O

Punchline:
Theorem. The Dolbeait complez is ezact on U if and only if U is pseudo-convez.

This takes 150 pages to prove, so we’ll just take it as fact.

The Dolbealt complex is the left side of the bi-graded de Rham complex.

There is another interesting complex. For example if we let A° = kerd : QP0 — OP1 95+ 58 = 0 and
w € A” then 8w € A™*! and we get a complex

3 a 8

AO Al Az

Lecture 6

Review
U open C". Make the convention that Q7(U) = §2". We showed that Q" = P, ,_,. "9, i.e. its bigraded.
And we also saw that d = 8 + 8, so the coboundary operatar breaks up into bigraded pieces.

8- npe  qrtle 3. e, peatl

w €N, uef Then
diwAp)=dvAp+(-1YwAdu

there are analogous formulas for 8,8
BlwAp)=0wAp+ (~1YwAdu
Because of bi-grading the de Rham complex breaks into subcomplexes

g [i]

2.4

(1)g : Q0% 2 0

(2)p: 070 2 gpt P o2 P

The Dolbeault complex is (2)¢ : O®? 3, qot,
Last week we showed that if I/ is a polydisk then the Dolbeault complex is acyclic.

14



Theorem. If U is a polydisk then complez (1), and (2); are ezact for all p,q.
Proof. Take I = (iy,...,1%p), define QP := %9 A dz;. And w € Q%7 if and only ifw = p A dzr, p € Q9.
And _ _ _

dw) =0(uAdz;) =0uAdz;

Therefore, if w € Q17, then 8w € QP9*!. We can get another complex, define (2)p; : 70 2, ot LA
Now the map u € Q99 — uAdzy. This maps (2), bijectively onto (2)1. So (2) is acyclic. And QP2 = @, %7
implies that (2), is acyclic.

What about complex with 87

Take w € (P9 then

w=) fradziAds;  frseC®U), |Il=p,|J|=¢

Take complex conjugates
@=) fridiAdz; €0 Fu=d

This map w — & maps (1), to (2), so (2), acyclic implies that (1), is acyclic. O

The Subcomplex (A, d)

Another complex to consider. We look at the map (0 9, gea. Dencte by AP the kernel of this map,
ker{QP0 2, arl}. Suppose 4 € AP, 9u € !0, and we know that 88y = —88p = 0, so O € APHL.
Moreover, du = 8 + Oy = By, so we have a subcomplex (A4, d) of (§2,d), the de Rham complex

AU_CE_)_AI—J;..A2—_¢_)....

This complex has a fairly simple description. Suppose i € QP = EI 1t=p f1821, and suppose further that
Bu =0, i.e. p € AP. Then

% ofr afr )
= —— 0 d = 0 = —_— .
Ou Z Bzidz'/\ Zr a7, 0 i=1,...,n
so the f; are holomorphic. Because of this we have the following definition
Definition. The complex (A*,d) is called the Holomorphic de Rham complex.

When is this complex acyclic? To answer this, we go back to the real de Rham complex.

Reminder of Real de Rham Complex
Consider the usual (real) de Rham complex. Let U be an open set in R®. Then we know

Theorem (Poincare Lemma). If U is conver then (Q*(U),d) is ezact.

Proof. U convex, and to make things simplér, let 0 e U. Let p: U — U, p = 0. Construct a homotopy
operator @ : Q(U7) — Q*¥-1(U), satislying

dQuw + Qdw = w ~ p*w
for all w € Q*(U). The exactness follows trivially if we have this operator. Now, what is the operator? We

define it the following way.
Ffw=3 fi(z)dz;, fi € C®(U). Then

1
Qw = Z(—l)"zir (f tk_l_f;(t;t:)dt) drg, A Adz A--- Adx,
0

LY

15



2nd Homework Problem The holomorphic version of this works. Let U € R?" C C", convex with
0eU. Take w= Z] 1=k f1921, f1 € O(U). Let Q be the same operator (but holomorphic version)

1
Qu= Z(—l)"zir (/ e Y (tz)dt) dzig Ao Adzg, A - Adz,
rJJ 0

Show @ : A* — A*~! and (dQ + Qd)w = w — p*w. Homework is to check that this all works. O

Theorem. U o polydisk. Then if w € QY1 (U} and is closed then there exists a C function f so that
w=88f. (f is called the potential function of wh

This is an important lemma in Kaehler geometry, which we will use later.
Proof. Just diagram chasing:

_j_).ﬂﬂ,l _ay.nl,l _.-_8_).92,1 — e

Pk, b

Q0.0 1o — 2. 20

]

C_‘_"AG‘L’Al_d""Az—"

-1

A

let w=wb! € QY dw = 0, 80 Hw = Bw = 0. w = 0 implies there is an a so that w = Ba,a € 010, We can
find'b € A' 50 that da = 8b. So B(a —b) =0, and a — b = B¢, where ¢ € 200 = G, Then 8(a — b) = Gée.
Put 8(a — b) = 8a = w. So w = Doe. O

Exercise (not to be handed in) w € QP4(U). And dw = 0 then w = 98, u € QP~1a-1,

Functoriality

U open in C*, V open in C*. Coordinatized by (zy,... 12n); (wi,...,we). Let f: U — V be a mapping,
f={f1,.---, J&), fi : U = C. f is holomorphic if each f; is holomorphic.

Theorem. f is holomorphic iff f*(QM%(V) C QM(U), i.e. for every w € QLO(V), f*w € QLO(U).

Proof. Necessity. w = dw;, then _
[rw=dfi = 8f; + 8f; € QXU

then B'f,: =0, so fi € O(U).
Sufficiency. Check this. O

Corollary. f holomorphic. Then f*QP9(V) C QP(U), also w € QP4(V), then f*dw = df*w, which implies
that f*8w = Bf*w, [*Bw = Bf*w.

16



Chapter 2

Complex Manifolds

Lecture 7

Complex manifolds

First, lets prove a holomorphic version of the inverse and implicit function theorem.
For real space the inverse function theorem is as follows: Let I/ be openin R® and f: U — R™ = O
map. For p € U and for = € B,.(p) we have that

@)= £0)+ L))+ Ol — o)

' Ir

I

1 is the linear approximation to f at p.

Theorem (Real Inverse Function Theorem). If I is a bijective map R — R™ then f maps a neigh-
borhood Uy of p in U diffeomorphically onto e neighborhood V of f(p) in R™.

Now suppose U is open in C*, and f : U — C" is holomorphic, i.e. if f={f1,-.., fn) then each of the
Jf; are holomorphic. For z close to p use the Taylor series to write

)= 1@ +%@)(z—pg +0()z —pl?)

I

I

I is the linear approximation of f at p.

Theorem {Holomorphic Inverse Function Theorem). If I is a bijective nap C* — C* then f maps
a neighborhood Uy of p in U biholomorphically onto a neighborhood V' of f(p) in C".

{biholomorphic: inverse mapping exists and is holomorphic)

Proof. By usual inverse function theorem f maps a neighborhood T/; of p is U diffeomorphically onto a
neighbrohood V' of f(p) in C*, i.e. g = f~7 exists and is C* on V. Then f* : Q!(V) — Q1 (U1) is bijective
and f is holomorphic, so f* : QY(V) — Q' (U1) preserves the splitting Q! = Q1.0 001, However, if g = f—1
then g* : Q1{Tn) — Q'(V) is just (f*)~! so it preserves the splitting. By a theorem we proved last lecture
¢ has to be holomorphie. O

Now, the implicit function theorem.
Let U be open in C* and f1,...,fr € OU), pe U.

Theorem. If dfy,...,df, are linearly independent af p, there erists a neighborhood Uy of p in U and a
neighborhood V' of 0 in C™ and a biholomorphism  : (V,0) — (Uy,p) so that

O fi=z i=1,...,k

17



Proof. We can assume p = 0 and assume f; = z + O(|z|*) i = 1,...,k near 0. Take ¢ : (U,0) — {C",0)
given by ¥(f1,..., fze+1,. - ., ). By definition 84/8z(0) = Id = [§;;]. 1 maps a neighborhaod U; of 0 in
U biholomorphically onto a neighborhood V of 0 in C™ and for 1 < i < k, ¥*z; = f;. Define =171, then
=z O

Manifolds

X a Hausdorff topological space and 2nd countable (there is a countable collection of open sets that defines
the topology).

Definition. A chart on X is a triple (¢, U, V), U openin X, V an openset in C* and ¢ : U — V
homeomorphic.

Suppose we are given a pair of charts (@;,U;, V;), i = 1,2. Then we have the overlap chart

Uhnt;
>
V1,2 ¥1,2 T Vm

where P1 (U]_ n Uz) = Vl,z and ‘PZ(U]. n Uz) = Vg,l.
Definition. Two charts are compatible if 1,2 is biholomorphic.

Definition. An atlas A on X is a collection of mutually compatible charis such that the domains of these
charts cover X.

Definition. An atlas is complete if every chart which is compatible with the members of A is in A.

The completion operation is as follows: Take Ay to be any atlas then we take Ag ~» A by adding all
charts compatible with 4y to this atlas.

Definition. A complex n-dimensional manifold is a pair (X, A), where X is a second countable Hausdorff
topological space, .A is a complete atlas.

From now on if we mention a chart, we assume it belongs to some atlas A.
Definition. (¢,U,V) a chart, p € U and ¢(p) =0 € C*, then “p is centered at p”.
Definition. (i, U, V) a chart and zq,..., 2, the standard coordinates on C*. Then

1=z
©1,...,¢n are coordinate functions on U. We call (U, p1,...,p,) is a coordinate patch

Suppose X is an n-dimensional complex manifold, Y an m-dimensional complex manifold and f: XY
continuous.

Definition. f is holomorphic at p € X if there exists a chart (o, U, V) centered at p and a chart (¢, U, V"
centered at f(p) such that f(U) C U’ and such that in the diagram below the bottom horizontal arrow is
holomorphic

v—Lsy

,,,lg |

v -1y

(Check that this is an intrinsic definition, i.e. doesn’t depend on choice of coordinates). From now on
f+ X — C is holomorphic iff f € O(X) (just by definition)

(¢,U,V) is a chart on X, V is by definition open in C* = R2". So (i, U, V) is & 2n-dimensional chart
in the real sense. If two charts (i, Ui, V1), i = 1,2 are 18.117 compatible then they are compatible in the
18.965 sense (because biholomorphisms are diffeornorphisms)

18



So every n-dimensional complex manifold is automatically a 2n-dimengional C* manifold. One applica-

tion of this observation:

Let X be an C-manifold, X is then a 2n-dimensional C* manifold. If P € X, then T, X the tangent
space to X (as a C> 2n-dimensional manifold). ThX is a 2n-dimensional vector space over R.

We claim: T,Z has the structure of a complex n-dimensional vector space. Take a chart (i, U, V) centered
at p,sow:U — V is & C diffeomorphism.

Take (dp), : T, — ToC™ = C*. Define a complex structure on TpX by requiring dip, to be C-linear.

(check that this in independent of the choice of ).
From the overlap diagram we get something like

L

P

(dtiy Wr)’ 9z
digr 2

e ——————— =T
P TR

X,Y, f: X =Y holomorphic, f(p) = q. By 18.965, df, : Tp — Ty check that df, is C-linear.

Lecture 8

We'll just list a bunch of definitions. X a topological Hausdorff space, second countable.
Definition. A chart is a trip (p,U,V), U open in X, V open in C and ¢ : U — V a homeomorphism.

If you consider two charts (;, Us, Vi), i = 1,2 we get an overlap diagram. Charts are compatible if and
only if the transition maps in the overlap diagram (see above) are biholomorphic.

Definition. A atlas is a collection A of charts such that
1. The domains are a cover of X
2. All members of A are compatible,
Definition. An atlas A is a maximal atlas then (X, A) is a complex n-dimensional manifold.

Remark: If every open subset of X is a complex n-dimensional manifold we say Ay is a member of A

with domain contained in U.
If X is a complex n-dimensional manifold it is automatically & real C'°° 2n-dimensional manifold.

Definition. X,Y are complex manifolds, f : X — Y is holomorphic if locally its holomorphic.

fEOX), f: X >C. Noteif f: X »Y, g: Y — Z holomorphic, then fog: X — Z is as well.

Take X to be an n-dimensional complex manifolds, if we think of X as a C® 2n-dimensional then T, X
is well defined. But we showed that T, X has a complex structure. f:X —Y holomorphic, p € X, g = f(p)
in the real case dfy, : T, - T}, but we check that this is also C-linear.

Notion of Charts Revisited A chart (from now on) is a triple (v, U, V), U open in X, V open in C*,
@ : U~ V a biholomorphic map.

Definition. A coordinate patch in X is an n-tuple (U, w,, ... »wn) where U is open in X and w; € O(U)
such that the map ¢ ; U — C*
p— (wl (P): s rw‘rl(p))

is a biholomorphic map onto an open set V of C".
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Charts and coordinate patches are equivalent.

Theorem (Implicit Function Theorem in Manifold Setting). X" a manifold. Uy C X is an open
set, fi,-.-,fx € O(Th), p € Up. Assume dfs,...,dfx are linearly independent at p. Then there exisis
coordinate patch (U,wy,...,wy), pe U, U C Uy such that w; = f; fori=1,...,k.

Proof. We can assume Uy is the domain of the chart (U, V @), V an open set in C*, w : Uy — V a
biholemorphism. Then just apply last lecture version of implicity function theorem to f; o (p~1). (]

Submanifolds
X a complex n-dimensicnal manfiolds. ¥ C X a subset.

Definition. ¥ is a k-dimensional submanifold of X if for every p € Y there exists a coordinate patch
(U,z1,..., 22} with p € U such that ¥ N U is defined by the equation 241 =+ =2z, =0.

Remarks: A k dimensional submanifold of X is a k-dimensional complex manifold in its own right.

Call a coordinate patch with the property above an adapted coordinated for X. The collection of
{n+ 1)-tuples (U’,2],...,2,), (U,21,...,2,), ' =UNY, 2l = z [y gives an atlas for X.

By the implicit function theorem this definition is equivs;Ient to the following weaker definition.

Definition. Y is a k-dimensional submanifold X if for every p € Y there exists an open set U of pin X
and f; € O§U) where i = 1,...,I, I = n — k such that df;,...,df; are linearly independent at p and Y N
1 =0, i.e. locally ¥ is cut-out by ! independent equation.

1

1= =

Examples
Affine non-singular algebraic varieties in C*. These are X-dimensional snbmanifolds, ¥ of " such
that for every p € Y the f;’s figuring inte the equation above (the ones that cut-out the manifold) are
polynomials.

Projective counterparts We start by constructing the projective space CP™. Start with C**! — {0}.
Given 2 (n + 1)-tuples we say

(20;21?--- 7zn) ~ (zf)lzi) e :z:z)

in C® — {0} if there exists A € C — {0} with 2{ = Az;, i = 0,...,n. [20,21,...,2,]) are equivalence classes.
We define CP™ to be these equivalence classes C**} — {0}/ ~.

We make this into a topological space by = : C™! — {0} — CP™, which is given by

(zo,zll .. -szn) ~ [2{),21,. .s 1211.]

We topologize CP™ by giving it the weakest topology that makes = continuous, i.e. U € CP™ is open if
x~L(U) is open.

Lemma. With this topology CP™ is compact.

Proof. Take
sl = {(=0,-.. ,zn)”zﬂF +ot P = 1}
and we note
m(§* Yy =Cpn
so its the image of a compact set under a continuous map, so its compact. O

Lemma. CP" is a complez n-manifold.

Proof. Define the standard atlas for CP®. For i = 0,...,n take
Ui b {[ZD:---:zn] € CP"!ZI' # 0}
Take V; = C™ and define a map y; : U; — V; by

20 % Zn
[207"'Jzﬂ]H Z""?z_’:"' iz_‘.
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@it C® = U; is given by
(wi, .. wn) = (w1, ., 1,00 ]

where w; is in the Oth place, and 1 is in the ith place. The overlap diagrams for Uy and U, are given by

Ugnih

‘V x
¥o,1
Vor

— W10

We can check that Vo1 = Vio = {(21,..,2n), 2t # 0}. Also check that

1 29 Zn
wo,1: Vo1 Vo (21,...,2.)— (Z'Z’Z)

This standard atlas gives a complex structure for CP™. O

Lecture 9

We have a manifold CP™. Take ‘
P(z0,-.,Pzn) = Y cq2®

|a|=m
a homogenous polynomial. Then
1. P(A2) = X™P(z)}, so if P(z) = 0 then P(Az) =0
2. Euler’s identity holds
n
apP
Z Zzgz-: =mP

i=0
Lemma. The following are equivalent
1. Forall ze C**1 — {0}, dP, #0

2. For all z € C™+1 — {0}, P(z) =0, dP, #0.
we call P non-singular if one of these holds.
If X = {[z0,...,2n], P(#) = 0}. Note that this is a well-defined property of homogeneous polyncmials.
Theorem. If P is non-singular, X s an n— 1 dimensional submanifold of CP™

Progf. Let U, ..., Uy, be the standard atlas for CP". It is enough to check that X N U; is a submanifold of
U;. WE'll check this for i = 0.

Consider the map yC» =, Up given by
7(217 . ":z'n.) b [1521} fe- 1z‘n]

It is enough to show that Xy = 4~!(X) is a complex n—1 dimensional submanifold of C*. Let p(z,..., zﬂ% =
P(1,21,...,2,). Xp is the set of all points such that p = 0. It is enough to show that p(z) = 0 implies
dp, # 0 (showed last time that this would then define a submanifold)

Suppose dp(z) = p(z) = 0. Then

apP
p(].,z‘]_,...,zn)=0=—(1,21,...,.3”)=0 i=1,...,n
Bz,-

By the Euler Identity
n
opP apP
0=P(1,21,...,2,) —Zz,-g—(l,zl,...,zn)+ N (1,21, ., 20)
im0 Zi Bz,;

So %’?(l,zl, ---y#n) = 0, which is a contradiction because we assumed p # 0. O

v
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Theorem (Uniqueness of Analytic Continuation). X e connected compler manifold, V C X is an
open set , g e O(X). If f=g onV then f=g on all of X.

Sketeh. Local version of UAC plus the following connectedness lemnma O
Lemma. For p,q € X there evisis open sels Uy, i=1,...,n such that

1. U; 15 biholomorphic to a connected open subset of C*

2. pelh

s gel,

4 UNUip £0.

Theorem. If X is a connected complez manifold and f € O(X) then if for somep € X, |f|: X — R takes
@ local mazimum then f is constant.

Corollary. If X is compact and connected O{X) = C.

This implies that the Whitney embedding theorem does not hold for holomorphic manifolds.

Let X be a complex n-dimensional manifold, X a real 2n dimensional manifold. Then if p € X then T X
is a real 2n-dimensional vector space and T, X is a complex n-dimensional vector space.

Think for the moment of T, X as being a 2n-dimensional R-linear vector space. Define

Jp X 2T, X Jpr=+—1v

Jp is R-linear map with the property that J':,2 = —I. We want to find the eigenvectors. First take T,  C

and extend J, to this by
Svec)=Jvee

Now, Jp is C-linear, J, : T, ® C — T, ® C. Also, we can introduce a complex conjugation operator

HLeC—-T,8C v@c—uv@E

‘We can split the tangent space by
LeC=T,"oT)!

where v € T30 if Jyu = ++/—1v and v € T3 if Jyv = —y/—Tv. i.e. we break T, ® C into eigenspaces.
If v € T):% iff § € T2 and so the dimension of the two parts of the tangent spaces are equal.
We can also take T ® C = (17)"* @ (T;)™" and [ € (T;)™° if and only if J3l = =TI, I € (T#)"! if

Jol=—/-1.
Check that { € (T;)l’o if and only if [ : T, — C is actually C-livear. To do this J*I = /~1[ implies
Jol(v) = I(Jpyv) = v/=1I{v) which implies that [ is C-linear.

Corollary. U is open in X and p € U. Then if f € O(U then df, € (Tp)!°.

Corollary. (U, z1,. .., 2,) a coordinate pateh then (d21)p, . . ., (dzn)p is a basis of (TT;‘)L0 and (d2)p, - .., (dZ.)p
is o basis of (Ty)™!.

From the splitting above we get a splitting of the exterior product
ATy eC) = (O A™TyeC)

t+m=k

for 21, ...,1y, a basis of T ® C then
wE A"m(T; 9C)ew= Zcz,.;rw Ay
We also get a splitting in the tangent bundle

T eC) = ) AT oC)
i+m=k
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since QF(X) is sections of A¥(T* ® C). Then
X)) = P A™(x)

+m=k
Locally when (U, z1, ..., 2,) is a coordinate patch, w € O™ (U) iff
w= Za_r'szJv Adzy

50 we've extended the Dolbeault complex to arbitrary manifolds.

Lecture 10

IF (U, 21,...,2n) is a coordinate patch, then this splitting agrees with our old splitting. Son on a complex
manifold we have the bicomplex (2**,8,8). Again, we have lots of interesting subcomplexes.

AP(X) = AP =kerd : QP° —— i1
the complex of holomorphic p-forms on X, i.e. on a coordinate patch w € AP(U)

w= Zf;dz; fj’ S O(U)

Now, for the complex AP(X} we can compute its cohomology. There are two approaches to this
1. Hodge Theory
2. Sheaf Theory

We’ll talk about sheaves fora bit.
Let X be a topological space. Top(X) is the category whose objects are open subsets of X and morphisms
are the inclusion maps.

Definition. A pre-sheaf of abelian groups is a contravariant functor F from Top(X) to the category of
abelian groups.

In english: 7 attached to every open set I ¢ X an sbelian group F (U) and to every pair of open sets
U 2V a restriction map ryy : }'(YU) — F(V).

The functorality of this is that if U >V O W then ryw = ryw - rUv.

Examples

1. The pre-sheaf C, U — C(U) = the continuous function on U/. Then the restrictions are given by
ryv: C(U) — C(V) C(U) 3 f— f |VE C(V)

2. X a C* manifold. The pre-sheaf of C* functions, U — C°°(U). Ty,v are as in 1.
3. Q¥ is a pre-sheaf, I/ — (" (V). Restriction is the usual restriction.

4. X a complex manifold, then P4, U — QP¢(U) is a pre-sheave.

5. X a complex manifold, then you have the sheaf U/ — o,

Consider the pre-sheaf of C*-functions. Let {U;} be a collection of open set n X and U/ = IJU;. We claim

that C? has the following “gluing property”:
Given f; € C°°(U;) suppose
TUi,U.'ﬂUj fi b TUJ,U{ntfj

ie. fi = fj on U; N Uj;. Then there is a unique f € C°(U) such that
rouf = fi
Definition. A pre-sheaf F is a sheaf if it has the gluing property.
(Note that all of all pre-sheaves in the examples are sheaves)
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Sheaf Cohomology
Let U = {U;,i € I}, I an index set, U; an open cover of X. Let J = (jy,...,jx} € I, then define

Ur=U,n..-nUj,
Take N* C I**1 and let us say that J C N* if and only if Iy £ 0 and take
N=| |n*
then this is a graded set called the nerve of the cover U;. N* is called the k-skeleton of N.

Let F be the sheaf of abelian groups in X

Definition. A Cech cochain, ¢ of degree &, with values in F is a map that assigns to every J € N* an
element c¢(J) € F(Uy).

Notation. J € N*, J = (jo,...,j¢) and j; € I for all 0 < i < k. Then define
Ji = (o131 1 J8)
then J; € N*~1 and let r; = Uy Ui
We can define an coboundary operator
§:CF YU, F) = C*(U, F)
For J € N¥ and ¢ € C*~1 define
be(J) = 3 (~1)ric( )

i

(note that this makes sense, because c(J;) € F(Uy,).
Lemma. §% =0, i.e. § is in fact a coboundary operator.

Proof. J € N&+1 then
(B6c)(T) = _(—1)'rebe( ;)

= Z(—l)if‘i‘f‘j Z(—I)JC(JI,J)+

j<i
E(—l)irirj Z(—l)j_lc(J,-,j)
i g
this is symmetric in ¢ and j, so its 0. (]

Because J is a coboundary operator we can consider H*({l, F), the cohomology groups of this complex.

What is H*(U, F)7 Consider ¢ € C°(U, F) then every i € I, c(i) = f; € F(U;). If §e =0 then r; f; = 7, f;
for all i, ;. Then the gluing property of F tells us that there exists an f € F(X) with r;f = f;, so we have
proved that (X, F) = F(X), the global sections of the sheaf.

For today, we’ll just compute H*(U,C) = 0 for all k > 1. The proof is a bit sketchy.

Let {pr}rer be a partition of unity subordinate to {U;,i € I}. Then p, € C°(U,} and 3. p, = 1 by
definition. Given J € N*~ let (r,J) = (r,Jo,---,jk—1) and define a coboundary operator

Q:CHU,F) - C* YU, F)

Take ¢ € C%, J € N*~1 then
Qe(0) =D pelr,J) € C®(Uy)
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Explanation: First notice that (r,J) may not be in N*. But in this case U, and U, are disjoint, so g, =0
on Uy, so we just make these terms 0. What if (r, J) € N* then ¢(r, J) € C*(U, N U;) (but we want Qe(J)
to be C’°°(UJ;

But

_ fpeelr, J) onU.NUy
pre(r, J) = {0 onU; — (U, NUs)

and p, € C(U,).
Proposition. @} + Q4§ = id.
Corollary. IH*(U,C>) = (.

The same argument works for the sheaves *, QP4 but NOT however for ©.

Lecture 11
U open in C*, p € C=(U), p: U — R ten p is strictly plurisubharmenic if for all p € U the matrix

[ 323;3‘ (p)}

is positive definite.
If U,V open in C™ then ¢ : U — V is biholomorphic then for p € C* (V) strictly plurisubharmonic ¢*p
is also strictly plurisubharmonic. If ¢ = ¢(p)

o2 * 9%p S OF
Bz,-zj ¥ P(Q) - ; 0z0% _5;8_2,

the RHS being s.p.s.h implies the right hand side is also.

Definition. U open in C" is pseudo-convex if it admits a s.p.s.h exhaustion function. We discussed the
examples before (in particular if I7;, U2 psendo-convex, U; N Uz is pseudo-convex)

The observation above gives that pseudoconvexity is invariant under biholomorphism.

Theorem (Hormander). U pseudo-convez then the Dolbeault complex on U is exact.

Back to Cech Cohomology

X a complex n-dimensional manifold and U = {U;,i € I} and F a sheaf of abelian groups. We get the Cech
complex

U, F) -, F) L ...

and HP(U,F)} is the cohomology group of the Cech complex. We proved earlier that H' U, F) = F(X).
Also, we showed that if 7 is one of the sheaves that we discussed HP{U,F)=0,p>0ie F=C>, Or, Qe
But what we’re really interested in is F = .

Definition. U = {U;,i € I} is a pseudoconvex cover if for each 3, U; is biholomorphic to a pseudoconvex
open set of C*,

Theorem. IfU is a pseudoconvez cover then the Cech cohomology groups HP(U,O) are identified with the
cohomology groups of the Dolbeault complex

Qo0 x) _.‘9-,_ Q01(x) _‘_9'_,., Q92(X) 5__,. -

25



This is pretty nice, because its a comparison of very different objects. We do a proof by diagram chasing.
The rows of this diagram are

0 —3% Q02(X) — 2> O, 00y L o1y, Q00) s ...

To figure out the columns we have to create another way looking at the Cech complex.
Let N be the nerve of i, J € NP, ¢ € CP(U,2™9) iff ¢ assigns to J an element c(J) € QU4(U;).

Define dc € C?(U, Q%9H1) by
Be(J) = Bc(N)

now 8 : CP(U, 099} — CP(U,2%9+1) and we can show that & = 0.
Its not hard to show that the diagram below commutes.

CPU, 04} — 2 CPHi Y, 09)

| |

CP(U, Q0T+1) — S, o1 U, Qa+ly

Consider the map CP(U,2"0) 2 CP(,Q01), what is the kernel of 3. ¢ € GP(U,099), J € N?, ¢(J) €
C°(U;) and dc{J) = 0 then ¢(J) € @(Uy). So we can extend the arrow that we are considering as follows

Cr U, 0) —> P (U, 000 —2 > cr, 001y —> -
Theorem. The following sequence is ezact
P, 000 — 2> oy, 0y 2 s ..

Observation: J € NP. The set U; is biholomorphic to a pseudoconvex open set in C*. Why? U; is
non-empty and it is the intersection of pseudoconvex sets, and so it is also psendoconvex.

Suppose we have ¢ € CP(I,Q%¢) and dc = 0. For J € N?, ¢(J) € C°(U;) and Bc(J) = 0. So there is
an fy € 2% such that 8f; = ¢{J). Now define ¢’ € CP(U,2%¢) by ¢'(J) = f;. Then 8¢’ =e.

Now, for the diagram. Set CP9 = CP(l{, 297}, and 47 = Q%9(X), B? = CP(U,0). We get the following

diagram
_A _i
[Z] g [}

A3 i 00,3 s 01,3 g 02.3 i 03,3 g
k) E] a g

A2 L 00,2 g 01,2 4 02,2 g 03,2 $
F E) E) E)

1 i & 1) L)

A 00,1 01,1 02,1 [, 03,1 —
F) 8 a3 ET

Al—ts 00 b Mo o mo . e ¢
i iT i IT
B B! B? B
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All rows except the bottom row are exact, all columns except the the left are exact. The bottom row computes
HP(U, O) and the left hand column computes H?(X, Dolbeault). We need to prove that the cohomology of
the bottom row is the cohomology of the left.

Hint: Take [e] € H*(X,Dolbeault), a € A* = Q%%(X). The we just diagram chase down and to the
right, eventually we get down to a [b] € H*(l,0). We have to prove that this case [a] ~ [b] is in fact a
mapping (we do this by showing that the chasing does not change cohomology class) and we have to show
that the map created is bijective, which is not too hard.
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Chapter 3

Symplectic and Kaehler Geometry

Lecture 12
Today: Symplectic geometry and Kaehler geometry, the linear aspects anyway.

Symplectic Geometry
Let V be an n dimensional vector space over R, B : ¥V x ¥V — R a bilineare form on V.

DeﬁnitioIr;. B is alternating if B(v,w) = —B(w, v). Denote by Alt?>(V) the space of all alternating bilinear
forms on V.

Definition. Take any B € Alt(V), U a subspace of V. Then we can define the orthogonal complement by
Ut = {v €V, B(u,v) =0,vu € U}

Definition. B is non-degenerate if ¥+ = {0}.

Theorem. If B is non-degenerate then dimV is even. Moeover, there exists a basis e1,...,en, f1,..., fn of
V' such that B(e.—,e,,) = B(f",fj) =0 and B(Bg‘,fj) = 5;'_-,'

Definition. B is non-degenerate if and only if the pair (V, B) is a symplectic vector space. Then e;’s and
fy's are called a Darboux basis of V.

Let B be non-degenerate and U a vector subspace of V'
Remark:
dim U+ = 2n — dim V and we have the following 3 scenarios.
1. U isotropic <& U+ D U. This implies that dimU < n
2. U Lagrangian < UL = U. This implies dim ¥/ = n.
3. U symplectic & U+NU = . This implies that UL is symplectic and B|y and B[y . are non-degenerate.
Let V = V™ be a vector space over R we have
Al?2(V) = A2(V™)
is a canonical identification. Let v1,..., %, be a basis of v, then
Alt3(V) 3 B s % 3" Blos, 070! A
and the inverse A2(V*) 3 w — B,, € Alt}(V) is given by
B, w) = iw(ivw)

Suppose m = 2n.
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Theorem. B € Alt*(V'} is non-degenercte if wp € A2(V) satisfies wh #0
1/2 of Proof. B non-degenerate, let e1,. .., fn be a Darboux basis of V then

wB=Ze;-'/\f;

and we can show
wE=nle]AffTA- Al AFE#D

Notation, w € A?(V*), symplectic geometers just say “B,, (v, w) = w(v, w)"

Kaehler spaces

V = V2",V a vector space over R, B € Alt?(V) is non-generate. Assume we have another piece of structure
amap J:V — V that is R-linear and J? = —J.

Definition. B and J are compatible if B(v,w) = B(Jv, Jw).

Exercise(not to be handed in) Let Q{v,w) = B(v, Jw) show that B and J are compatible if and only if
() is symmetric.

From J we can make V a vector space over C by setting +~1v = Jv. So this gives V .a structure of
complex r-dimensional vector space.

Definition. Take the bilinear form H : V x V — C by
Hio,w) = —=(B(v,u) + v=1Q(0,))

B and J are compatible if and only if H is hermitian on the complex vector space V. Note that
Hv,v} = Q(v,v).
Definition. V,J, B is Kahler if either H is positive definite or Q is positive definite (these two are equivalent),

Consider V* ® C = Homg(V,C),s0if € V*@C then[: V — C.
Definition. I € (V*)'0 if it is C-linear, ie. I(Jv) = =1l(v). And I € (V*)®! if it is C-antilinear, i.c.
I(Jv) = —/-1i(v).
Definition. v = I(v). J*I(v) = lJ(v).

Then if 1 € (V*)10 then I € (V*)%1. If | € (V*)10 then J*I = /=11, 1 € (V*)O1, J*I = —/—1L.
So we can decompose V* @ C = (V*)10 @ (V*)%! ie. decomposing into ++/—1 eigenspace of J* and

(V40 = (7.
"This decomposition gives a decomposition of the exterior algebra, A™(V* ® C) = A"(V*) @ C. Now, this
decomposes into bigraded pieces
A"(V*eC)= @) ARV
k+i=r
AFRH(V*) is the linear span of k,! forms of the form
PIA AR ABLA AT g € (VOO
Note that J* : V* @ C — V* ® C can be extended to a map J* : A"(V* & C) — A™(V* @ C) by setting
T A ALY =T A AT,

on decomposable elements Iy A --- AL € AT.
We can define complex conjugation on A"(V* @ C) on decomposable elements w = {; A --- Al by

@=L A--Al.
A"(V*@C) = A"(V)&C, then @ = w if and only if w € A™(V*) . And if w € A% (V*) then @ € AM*(V*)
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Proposition. On A¥(V*)} we have J* = (+/=1)F'1d.
Proof. Take w = A+~ Apg ADL A -+ Ay, s, v € (V)10 then

Jw=Tu A AP pe AT A A5 = (1)¥(—v—1)w

Notice that for the following decomposition of A?(V @ C) the eigenvalues of J* are given below

2 - A2,0 1,1 0,2
AV ®C) —éreév:ea{\.f
J* - -

So if w € A*(V* @ C) then if Jw = w.

Now, back to serious Kahler stuff.

Let V, B, J be Kahler. B+ wg € A2(V*) C A2(V*)@C.

B is J invariant, 8o wg is J-invariant, which happens if and only if wg € AY'(V*) and wg is real if and
only if wg = wp.

So El1ihere is a -1 correspondence between J invariant elements of A*(V) and elemenis w € Ab*(V*) which
are real.

Observe: (V*)10 @ V)01 £ ALY (V*Y by u @ v+ wAv. Let w,...,utn be a basis of (V*)10. Take

a= a;u®p € (V)0 @ (V)
Take
ple) = Zﬂijm A iy

is it true that p(a) = p(ar). No, not always. This happens if a;; = &g, equivalently Tl_T[a,-j] is Hermitian.

We have
A3 (V)3 B w=uwp € AVL(V*)

Tuke v = p~}w), H= 71:-1-0:. Then H is Hermitian.
Check that H = 7l_-f(B ++/—1Q), B Kabhler iff and only if H is positive definite.

Lecture 13

X2 a real C* manifold. Have w € 02(X), with w closed.
For p € X we saw last time that A2(T}) 2 Alt*(T},), so w, = B,

Definition. w is symplectic if for every point p, B, is non-degenerate.

Remark: Alternatively w is symplectic if and only if w™ is a volume form. i.e. wy # 0 for all p.

Theorem (Darboux Theorem). If w is symplectic then for every p € X there erists o coordinate patch
(U1, s Toy Y1 - - 1 Un) centered at p such thet on U

w=2dmi/\dyi

{in Anna Cannas notes)

Suppose X?* is a complex n-dimensional manifold. Then for p € X, TpX is a complex n-dimensional
vector space. So there exists an R-linear map Jp : Tp — Tp, Jpv = v—1v with J2 = —].

Definition. w symplectic is Kahler if for every p € X, B, and J, are compatible and the quadratic form
Qp(v,w) = By(v, Jyw)

is positive definite.
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This @y is a positive definite symmetric bilinear form on T}, for all p, so X is a Riemannian manifold as

well.
We saw earlier that J, and By, are compatible is equivalent to the assumption that w € AMY(T).

Last time we say there was a mapping
pi (@@ S AN Hy o wp

The condition wp = wy tells us that Hy is a hermitian bilinear form on 7. The condition that Q,, is positive
definite implies that ﬁp is positive definite.
Let (U, 2,...,2,) be a coordinate patch on X

w=vV-1Y hjdzAdz;  hyy; e CP(U)

S0

Hy, = Z his(p)(dzi)p ® (d25)p

the condition that H, > 0 (> means positive definite) implies that fi:;(p) > 0.
What about the Riemannian structure? The Riemannian arc—lengtil on U is given by

ds® =) hydudz;

Darboux Theorem for Kahler Manifolds

Let (I, z;,...,2,) be 2 coordinate patch on X, ket U be biholomorphic to a polydisk Jzi < e1,..., 2] < €n.
Let w € Q% (U), dw = 0 be a Kaehler form. diw = 0 implies that 8w = Hw = 0, which implies (by a theorem
we proved earlier) that for some F

w=+-188F FeC>=({U)
(it followed from the exactness of the Dolbeault complex). Also, since @ = w we get that
w=T = —v—180F = V_189F
So replacing F by 3(F + F) we can assume that F is real-valued. Moreover
= »PF
= /=1 = /= ——dz; 5.
w=+-190F = +/ lz az‘192:’.tllz A dz;
so we conclude that
&*F
62;62,-
for all p e U, i.e. F € C*®(U)is a strictly plurisubharmonic function.
Sc we've proved

Theorem (Darboux). If w is a Kahler form then for every poiont p € X there evists a coordinate patch
(U,21,...,2.) cenetered at p and a strictly plurisubharmonic function F on U such that on U, w = /—158F.

All of the local structure is locally encoded in F, the symplectic form, the Kahler form etec.
Definition. F is called the potential function

This function is not unique, but how not-unique is it?

Let U be a simply connected open subset of X and let Fi,Fo € C(U) be potential functions for the
Kahler metric. Let G = Fy — Fy. If 88F; = 80F; then 856G = 0. Now, 859G = 0 implies that ddG = 0, so
BG is a closed 1-form. U simply connected implies that there exists an H € C=(U) so that G = dH, so
8G = 8H, and 8H = 0.

Let K1 = G—H, K; = H, K1,K2 € ©. Ten G = K; + K3. But G is real-valued, so G = G so
K1+ K3 = Ky + K; which implies K; — K3 = K| — K4 so K} — K3 is a real-valued holomorphic function
on U. But real valued and holomorphic implies that the function is constant. Thus X; — K> is a constant.
Adjusting this constant we get that K; = Kj.

Let K=K, =K, then G=K+ K.

() >0
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Theorem. If I and F are potential functions for the Kahler metric w on U thenm h=FKR+(K+ _I-{-)
where K € O(U).

Definition. Let X be a complex manifold, U any open subset of X. F € C°(U), F is strictly plurisubhar-
monic if +/—1900F = w is a Kahler form on U. This is the coordinate free definition of s.p.s.h

Definition. An open set I7 of X is pseudoconvex if it admits a s.p.s.h. exhaustion function.
Remarks: U is pseudoconvex if the Dolbeault complex is exact.

Definition. X is a stein manifold if it is psendoconvex

Examples of Kaehler Manifolds
1. €™ Let F =|2? = {z;]2 + - -- 4 |2,|? and then
V=188f = V=1) dzuAdzj=w
and if we say 2z; = z; + +/—1y then
w=2 de, Ady;
then standard Darboux form.

2. Btein manifolds.

3. Complex submanifolds of Kaehler manifolds. We claim that if X™ is a complex manifold, ¥* a complex
submanifold in X if +.: Y — X is an inclusion. Then

(a) If w is a Kaehler form on X, ¢*w is a Kaehler form.

{b) If U is an open subset of X and F & C°°}£U) is a potential function for w on U the (*F is a
potential function for the form *won U NY.

b) implies a), so it suffices to prove b). Let (U,2y,...,2,) be a coordinate chart adapted for Y, ie
Y NU is defined by zp41 = --- = 2, = 0. w = +/=183F on U, so since ¢ is holomorphic it commutes
with 8, 8. Then '

t'w=+/"189*F ' F =F(2,...,%,0,...,0)

To see this is Kaehler we need only check that *F is s.p.s.h. Take p € UNY. We consider the matrix
o°F
o — <i i<
[az,-az,- (”)] 1=hisk
But this is the principle k x & minor of
aF
_— <i,7<
[62-,62: (p)] ! =Lisn

and the last matrix is positive definite, by definition (and since its a hermitian matrix its principle
k % k minors are positive definite)

4. All non-singular affine algebraic varieties.

Lecture 14

We discussed the Kaehler metric corresponding to the potential function F(z) = |2[2 = |z1|2 + -+ - + |z, )?
Another interesting case is to take the potential function F = Log|z|? on C**! — {0}. This is not s.p.s.h.
But recall we have a mapping

C* - {0} HCP™  w(20,-..,20) = [20, .- ., 2n)
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Theorem. There erists a unique Kaehler form w on CP? such that m*w = /<188 Log (22|, This is called
the Fubini-Study symplectic form. :

We'll prove this over the next few paragraphs. Let U; = {[z0,...,2a],2: # 0} and let O; = #~1(U;) =
{(20,-.-,2),2zi # 0}. Define v : Uy — O; by mapping %{]20,---,2:]) = (20,...,2,)/2;. Notice that
woy =idy, and v 0 m(ze,...,20) = (20,.-.,20)/ 2.

Lemma. Let p=+/—188Log|z|> on C**1 — {0}. Then on O; we have T* = p.
Proof.

- * z 2
7*v; Log |z|* = (v7)* Logjz|* = Log (_—llz-lF) =Log|z|* — Log |z/?
11

Ty p = V—1n*4} 88 Log |z|* = v—185(Log |z|* — Log |z|?)
= v/—180(Log |2|* — Log z; — Log %;) = V=188 Log|z[> = p
O

Corollary., We have local eristence and uniqueness of w on each U;, which implies global existence and
unigueness.

So we know there exists w on CP" such that 7*w = +/—189 Log |z|2. We want to show that Kaehlerity
of w. Define 7
Pi:cn_’oi Pi(zlj---:zn)=(z11"':13---,zﬂ)

Then 7w ¢ p; : C* — U; is a biholomorphism. It suffices to check that

(70 pi)*w = pin*w = p*u = g} (V—188 Log | 2?)
= v/—188Log(1 + |% [ + -+ + |za)?) = V=188 Log(1 + |2|*)

We must check that Log(1 + |2)?) is s.p.s.h.

0 2y _ %
7% Logfl + |2]*) = TT P

8 _ 2y 85 _ Zzy _ 1
B_Ziaaz, Log(1 + |2|*) = T+|z2 (14222 1+ |z|2(

(1 + 2265 — ;%)

We have to check that the term in parentheses is positive, but thats not too hard.
Corollary. All complex submanifolds of CP™ are Kaehler.

Suppose we have (X,w) a Kachler manifold. We can associate to w € QV(X) another closed 2-form

o € Q1 X) called the Rieci form
Let (U,21,...,2,) be a coordinate patch. Let F € C°(U) be a potential function for w on U, ie.

w=+/—100F. Let
G =det ( O )

6zi32j
This is real and positive, so the log is well defined. Define
p=+v-180Log G

Lemma. u is intrinsically defined, i.e. it is independent of F and the coordinate system
Proof. Independent of F Take F1, F; to be potential functions of w on U. Then 86F, = 88F,, which, in
coordinates means that
R | [ 6F
le-azj a 62,‘32_,-
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Independent of Coordinates On U MU’ the formula’s look like
8F Z &?F 0z, 07

or in matrix notation
ar B [% _ aF 9z
Bz,;BEj - 325.,' Bz}'ﬁf{ 82‘_,—

det[ oF }:[BZF]HH

taking determinants we get

82:0%; 02,8z
where
zf
H =det [—"]
zl
50
or 8F _
Logdet [m] = Logdet [B_z,’-b?;:l + Logdet H + Log det H
Log H € O(U) (at least on a branch). Apply 83 to both sides of the above. That finishes it. ]

Definition. X,w a Kaehler manifold and g is the Rieci form. Then X is called Kaehler-Einstein if there
exists a constant such that u = Aw.

Take = dw, A # 0. Let (U, z,...,2,) be a coordinate patch. For F € C(U) a potential function for

won U/
) = M = A\V/—195F

— 8°F
2= v—108Log det (3.3,-82_,—

By a theorem we proved last time

&F -

Take F and replace it by )
FwPF4 X(G"'E)

o2F F
Logdet = — ] =M
og de ( 7 32_,—) AF det ( o 32,-) e

then

The boxed formula is the Monge-Ampere equation. This is essential an equation for constructing Einstein-

Kahler metrics.
Exercise Check that the Fubini-Study potential is Kaehler-Einstein with A = —(n+1). F = Log(1+|2|?)

locally on each U;. So we need to check that F' = Log(1 + |2|2) satisfies the Monge-Ainpere equations.

Lecture 15

Homework problem number 2. X a complex manifold. We know we have the splitting

OX)=PrUx) d=0+98

Pta

We get the Dolbeault complex 02%9(X) LA Q0l{X) 3, ... and for every p we get a generalized Dolbeault
compiex

Q‘P'U(X) ..L Qp,l(X) _E_,. Qp,Z(X) -5_,, N
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this is the p-Dolbeault complex. Take kerd : Q%°(X) — Q%1(X) this is @(X) and in general kerd :
270(X) — 971(X). Call this AP(X). For u € AP(X) pick a coordinate patch (U, z1,. .., 2,) then

p=> fil2)dz, A---Adz,

and Jp = 0 implies that 8f; = 0, so fr € O(U). These AP are called the holomorphic de Rham complex.
More general, take U/ open in X. Then AP(X) defines a sheaf 4?7 on X.
Exercise Let U = {U;, ¢ € I'} be a cover of X by pseudoconvex open sets. Show that the Cech cohomology
group H(U, AP} coincide with the cohomology groups of

QP,U(X) _5,_ QPJ(X) _3_,. Qp,2(X) _3__,, .

We did the special case p = 0, i.e. we showed H?(U,?) = the Dolbeault complex.

The idea is to reduce this to the following exercise in diagram chasing. Let C = €D C*7 be a bigraded
vector space with commuting coboundary operators § : Ch7 ~s C+1d gnd d : 08 — C0d+1,

Let Vi = kerd; : C%® — C%1. Note that since dd = éd that 6V C Vj,y. Also let W = kerd; ; % — CL%
and dW; C m.[.]_.

Theorem. Suppose that the sequence

P R R R ozi =4
and the sequence
o0 b5 it 2y g @
are exact for all i. Prove that the cohomology groups of
0—=Vp ] v § Vol ]
and
0 Wy —2> Wy — 2 W, -2

are isomorphic.
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Chapter 4

Elliptic Operators

This chapter by Victor Guillemin

4.1 Differential operators on R”?
Let U be an open subset of R® and let Dy, be the differential operator,
19
Vv—1 Oz
For every multi-index, & = o, . . . , ¢, we define
D =Df ... D%,

A differential operator of order r:
P C%(U) - (),

is an operator of the form
Pu= Z oD%, a, € C®(U).

le)<r
Here |a| = a1 + - - ap.
The symbol of P is roughly speaking its “r*" order part”. More explicitly it is the function on U/ x R*
defined by
(m,&) - Z aa(m)ga = p(-’l’:, 6) .
la|=r

The following property of symbols will be used to define the notion of “symbol” for differential operators on
manifolds. Let f : U — R be a > function.

Theorem. The operator _ .
u € C(U) — ™/ peitfy,

i8 @ sum

,.
> iR (4.1.1)
i=0

P; being a differentiol operator of order i which doesn’t depend on t. Moreover, Py is multiplication by the

Junction
po((ﬂ) =: P(ZL‘,&)
withé = 2L, i=1,...n.
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Proof. 1t suffices to check this for the operators D®. Consider first Dy:
a
e ¥ Dty = Dru+ t-éi
Ty
Next consider D*
e Dreitly = gm#f(pm .. pan)gitly
- (e—ithleitf)a1 o (e—ithneitf)anu

which is by the above

af o

(D1+t (D +t )an

and is clearly of the form (4.1.1). Moreover the 7 term of this operator is just multiplication by

2 o,

(G =) (G (4.1.2)

O

C(oro;la(ry )If P and Q@ are differential operators and p(x, £) and q(z,£) their symbols, the symbol of PQ is
oz, §)q(z, s

Proof. Suppose P is of the order r and Q of the order s. Then

e—t PQeitty = (e—itfpe-itf) (e—it_eritf)u
(p(a':, afr +--- ) (q(m, dfyt’ +--- )u
(p(a:’ df)‘l('r: df)tr-hg +-- )‘U. '

a
Given a differential operator
P= Z aoD®
lel<r
we define its transpose to be the operator
u e C®U) — Z DG u=: Pty.
laj<r
Theorem. For u,v € C§°(U)
{Pu,v) = fPuﬁda: = {u, P%)
Proof. By integration by parts
{(Dru,v) = /Dkuﬁdx = \/L_l f %uﬁdﬂc
= —7dr= [ ulpvdx
= f Oxx f ®
— (u, dk'u) .
Thus
{(D%,v) = (u, D%)
and
(6aD%u,v) = (D%,8,v) = (u, D*Guv),.
a
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Exercises.
If p(z, £) is the symbol of P, B(z, &) is the symbol of pt.

Ellipticity.
P is elliptic if p(z,£) ¢ 0 forall z € U and £ € R™ — 0.

4.2 Differential operators on manifolds.

Let UV and V be open subsets of R” and ¢ : U — V a diffeomorphism.
Claim. If P is a differential operator of order m on U the operator

4 € C®(V) = (¢ ') Pop*u
is a differential operator of order m on V.,
Proof. (¢~1)*D%p* = ((p~1)* D1p*)™ - ((@™1)*Dpy*)™ so it suffices to check this for Dy and for Dy

this follows from the chain rule 8
"1

Dyt f = —o"Dif .
ke 7 awk‘P if
|
This invariance under coordinate changes means we can define differential operators on manifolds.

Definition. Let X = X" be a real > manifold. An operator, P : C=(X) — C*=(X), is an m'? order
differential operator if, for every coordinate patch, (U, 21,...,z,) the restriction map

u € C°(X) — Pull
is given by an m™ order differential operator, i.e., restricted to U,

Pu= Y aaD%, aq€C®U).
le|<m
Remark. Note that this is a non-vacuous definition. More explicitly let (U, 2, ...,2z,) and (U, 2},..., )
be coordinate patches. Then the map
u— PulUNU’

is a differential operator of order m in the z-coordinates if and only if it’s a differential operator in the
zf-coordinates.

The symbol of a differential operator
Theorem. Let f: X — R be C™ function. Then the operator
u € C®(X) — e~ peitly

can be writlen as a sum m

Z tmhi.Ri

=0
F; being a differential operator of order i which doesn’t depend on t.

Proof. We have to check that for every coordinate patch (U, Z1,...,Zpn) the operator
u € C®(X) — e~ peitiU

has this property. This, however, follows from Theorem 4.1.
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In particular, the operator, Py, is a zero'™ order operator, i.e., multiplication by a C™ function, py.
7

Theorem. There exists C° function

oP):T"X - C
not depending on f such that
' po(z) = o(P)(x,&) (4.2.1)
with £ = df,;,.
Proof. It's clear that the function, #(P), is uniquely determined at the points, £ € T by the property (4.2.1),
so it suffices to prove the local existence of such a function on a neighborhood of z. Let (U,z1,...,z5) be a

coordinate patch centered at x and let &,...,&, be the cotangent coordinates on T*U defined by
E—-Gidry +---+ &, dky .

P= Ea,,,D“

on U the function, ¢ (P), is given in these coordinates by p(z,£) = 3" aq(z)¢2. (See (4.1.2}.)

Then if

Composition and transposes

If P and @ are differential operators of degree r and s, PQ is a differential operator of degree r + g,
and o(PQ) = o(P)o(Q).

Let Fx be the sigma field of Borel subsets of X. A measure, dz, on X is a measure on this sigma
field. A measure, dz, is smooth if for every coordinate patch

(U,!L‘h - ,.'Bn) .
The restriction of dz to U is of the form
wdz ... dz, {4.2.2)

i being & non-negative C* function and dx; . . . dz,, being Lebesgue measure on U. dz is non-vanishing
if the ¢ in (4.2.2) is strictly positive.

Assume dz is such a measure. Given u and v € C{°(X) one defines the L2 inner product
(u,v)
of u and v to be the integral

{u,v) -—fuiﬂ'd.'r.

Theorem. If P : C*°(X) — C®(X) is an m™ order differential operator there is a unigue m™* order
differentiol operator, Pt, having the property

{(Pu,v} = (u, Ptv)
for all u,v € C(X).

Proof. Let’s assume that the support of u is contained in a coordinate patch, (U,z1,...,2s). Suppose that

on U
P = ZaaD“

and

dr = dz,...dz,.
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Then

{Pu,v) = Z f o D*ulpds, .. . doy
[+3

= Z f oD% widz; ... dz,
[#]

= 3 [ uDTagpudor ..o

- qu%D“gpvgadxl ...dzy
= (u,P'v)

where
13 1 =
Py = a E D QnPU .

This proves the local existence and local uniqueness of P* (and hence the global existence of P*l).
O

Exercise.
o(P)(x, &) = o(P)(z,£).

Ellipticity.
P is elliptic if o(P)(x,§) #0forallz € X and £€ T —0.
The main goal of these notes will be to prove:
Theorem (Fredholm theorem for elliptic operators.). If X is compact and
P:C®(X) — C®(X)

is an elliptic differential operator, the kernel of P is finite dimensional and u € C*(X) is in the range of P
if and only if

(u,v) =0
Jor all v in the kernel of Pt.

Remark. Since P! is also elliptic its kernel is finite dimensional.

4.3 Smoothing operators

Let X be an n-dimensional manifold equipped with a smooth non-vanishing measure, dz. Given K €
C®(X x X), one can define an operator

Ty : C®(X) = C®(X)

by setting
Ticf(@) = [ Klz,0)f()dy. (43.)

Operators of this type are called smoothing operators. The definition {4.3.1) involves the cho ice of the

measure, dz, however, it's easy to see that the notion of “smoothing operator” doesn't depend on this choice.

Any other smooth measure will be of the form, () dz, where ¢ is an everywhere-positive € function, and

if we replace dy by ¢(y) dy in (4.3.1) we get the smoothing operator, Tk, , where K;(z,y) = K{(z,y) ¢(y).
A couple of elementary remarks about smoothing operators:
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1. Let L(z,y}) = K(y, ). Then T}, is the transpose of Tx. For f and ¢ in CE° (X)),

f glz) ( ] K(z,9)f(y) d:u) dz

f F T @) g = (F, Trg)

Il

2. If X is compact, the composition of two smoothing operators is a smoothing operator. Explicitly:
TK1 TK, = TKS

where
mmw=fm@@m@wm.

We will now give a rough outline of how our proof of Theorem 4.2 will go. Let I : C®(X) — C®(X} be
the identity operator. We will prove in the next few sections the following two results.

Theorem. The elliptic operator, P is right-invertible modulo smoothing operators, i.e., there erists an
eperator, () : C*(X) — C*(X) and a smoothing operator, Tk, such that

PQ=1-Tg (4.3.2)

and
Theorem. The Fredholm theorem is true for the operator, I — Tk, i.e., the kernel of this operator is finite
dimensional, and f € C*(X) is in the image of this operator if and only if it is orthogonal to kernel of the
operator, I — T, where L{z,y} = K(y,x).
Remark. In particular since Tk is the transpose of Ty, the kernel of I — T, is finite dimensional.

The proof of Theorem 4.3 is very easy, and in fact we’ll leave it as a series of exercises. (See §77.) The
proof of Theorem 4.3, however, is a lot harder and will involve the theory of pseudodifferential operators on

the n-torus, T™.
We will conclude this section by showing how to deduce Theorem 4.2 from Theorems 4.3 and 4.3. Let
V be the kernel of I — T}y, By Theorem 4.3, V is a finite dimensional space, so every element, f, of (X)

can be written uniquely as a sum

f=9+h (4.3.3)
where g is in V and k is orthogonal to V. Indeed, if f1,. .., f, is an orthonormal basis of V with respect to
the £? norm

9=>_{f.ff:

and h = f — g. Now let U be the orthocomplement of ¥V N Image P in V.
Proposition. Every f € C*°(M) can be written uniquely as a sum

f=hH+fa (4.3.4)
where f1 € U, f3 € Image P and f, is orthogonal to f.

Proof. By Theorem 4.3
Image P C Image (I — T¥). {4.3.5)
Let g and & be the “g” and “A” in (4.3.3). Then since h is orthogonal to V, it is in Image (I —Tk) by
Theorem 4.3 and hence in Image P by (4.3.5). Now let g = f; + go where f; is in U and g2 is in the
orthocomplement of ¥ in V (i.e., in V NImage P). Then '

f=h+h
where fz = g2 + h is in Image P. Since f; is orthogonal to g, and h it is orthogonal to fo.
O

Next we'll show that
U =Ker P*. {4.3.6)

Indeed f € U <> f L Image P <> (f, Pu) = 0 for all u & (P!f,u) = 0 for all u « Pf =0,
This proves that all the assertions of Theorem 4.3 are true except for the finite dimensionality of Ker P.
However, (4.3.6) tells us that Ker P* is finite dimensional and so, with P and P! interchanged, Ker P is

finite dimensional.
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4.4 Fourier analysis on the n-torus

In these notes the “n-torus” will be, by definition, the manifold: 7™ = R*/2zZ". A € function, f, on T™
can be viewed as a C* function on R™ which is periodic of period 2n: For all k£ € Z®

fle+2nk) = fz). {4.4.1)
Basic examples of such functions are the functions
e*® kel kr=kaz+ - knzy,.
Let P = C*(T™) = C* functions on R™ satisfying (4.4.1), and let Q C R™ be the open cube

O<z; <27, i=1,...,n.

1\ [
[ rie=(5) [re
and given f,g € P we’ll define their L2 inner product by

(o= [ race.

Given f € P we'll define

I'll leave you to check that
(eikz eilm)

is zero if k # £ and 1 if k = £. Given f € P we'll define the k™ Fourier coefficient of f to be the L? inner
product

o =cx(f) = (f,e*%) = f fe et de.
T
The Fourier series of f is the formal sum

Y ot kezn. (4.4.2)

In this section I'll review (very quickly) standard facts about Fourier series.
It’s clear that f € P = D°f € P for all multi-indices, a.

Proposition. If g = 5o/
e(g) = k%ex(f).

Proof.
D¥fe*edyp = | fDaeikz gy
Tn T
Now check i .
Daezkm - kaezkm .
O
Corollary. For every integer r > 0 there ezists a constant C, such that
lex () < Cr(1 + k)72, (4.43)
Proof. Clearly
1
< — = .
s < G [ 1= Co
Moreover, by the result above, with g == D®f
E|Ck (F)l = [Cx(9)] £ Ca
and from this it's easy to deduce an estimate of the form (4.4.3).
O
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Proposition. The Fourier series (4.4.2) converges and this sum is 0 C® function.
To prove this we’ll need

Lemma. If m > n the sum

1 mf2
Z(W) . keZ®, (4.4.4)

CONVETYHES.

Proof. By the “integral test” it suffices to show that the integral

1 mf2
—_— dz
fmn (1 + lez)

converges. However in polar coordinates this integral is equal to

o0 1 m/2 .
-
Tr—1 /; (——1 T ’le) = dr

(7n-1 being the volume of the unit n — 1 sphere) and this converges if m > n.

Combining this lemma with the estimate (4.4.3) one sees that (4.4.2) converges absolutely, i.e.,

> lex(£)l
converges, and hence (4.4.2) converges uniformly to a continuous limit. Moreover if we differentiate (4.4.2)
term by term we get
D° Z: ckeikm — Z: kackeika:

and by the estimate (4.4.3) this converges absolutely and uniformly. Thus the sum (4.4.2) exists, and so do
its derivatives of all orders.
Let’s now prove the fundamental theorem in this subject, the identity

S ekl = fz). (145)
Proof. Let A C P be the algebra of trigonometric polynomials:

FeAs f= )" arelt®

|kism

for some m. 0

Claim. This is an algebra of continuous functions on 7™ having the Stone-Weierstrass properties

1} Reality: If f € A, f € A.
2) 1e A
3} If z and y are points on 7™ with z # y, there exists an f € A with f(z) # f(y).

Proof. Item 2 is obvious and item 1 follows from the fact that ™= = ¢~%*%_ Fipnally to verify item 3 we note
that the finite set, {e’"*,... e*®r}, already separates points. Indeed, the map

™ _, (Sl)n
mapping x to e¥*1,. .., &M= is bijective.
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Therefore by the Stone-Weierstrass theorem A is dense in C%T*). Now let f € P and let g be the
Fourier series {4.4.2). Is f equal to g? Let A = f — g. Then
(h, eilém) — (f, eikm) _ (Q’, eika:)
= a(f)~a{f)=0

80 (h, ") = 0 for all %, hence (h,) = 0 for all ¢ € A. Therefore since A is dense in P, {h, ) =0 for
all p € P. In particular, (h,h) =0,50h=0.
|

I'll conclude this review of the Fourier analysis on the n-torus by making a few comments about the L2
theory.
The space, A, is dense in the space of continuous functions on 7™ and this space is dense in the space of

L? functions on T™. Hence if & € L2(T™) and {h, **%) = 0 for all & the same argument as that I sketched
above shows that h = 0. Thus .
{ eikm , ke z‘n}

is an orthonormal basis of L?(T™). In particular, for every f € L2 (T™) let

ck(.f) = (f: eik::) -
Then the Fourier series of f

> cx(f)eik=

converges in the L2 senge to f and one has the Plancherel formula

Hh=YlalHP, kezr.

4.5 Pseudodifferential operators on T"

In this section we will prove Theorem 4.2 for elliptic operators on 7™. Here’s a road map to help you
navigate this section. §4.5.1 is a succinct summary of the material in §4. Sections 4.5.2, 4.5.3 and 4.54
are & brief account of the theory of pseudodifferential operators on 7 and the symbolic caleulus that's
involved in this theory. In §4.5.5 and 4.5.6 we prove that an elliptic operator on T™ is right invertible
modulo smoothing operators (and that its inverse is a pseudodifferential operator). Finally, in §4.5.7, we
prove that pseudedifferential operators have a property called “pseudolocality” which makes them behave
in some ways like differential operators (and which will enable us to extend the results of this section from
T™ to arbitrary compact manifolds).
Some notation which will be useful below: for a € R" let

(@) = (Jaf* +1)%.

Thus
o] < (a}

and for |a| > 1
{a} < 2|a).

4.5.1 The Fourier inversion formula
Given f € C™(I™), let cp(F) = {f, ¢'*). Then:

1) ex(D2F) = k=ex ().
2) |ex(f)| < Cp{k)~ for all r
3) Ye(flet= =f.
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Let S be the space of functions,
g:Z" = C

T
satisfying lg(k}| < Crik)™"

for all r. Then the map
FiC®(T") -8, Ff(k)=cu(f)

is bijective and its inverse is the map,
gES = glk)e™*=.

4.5.2 Symbols
A function a : T® x R® — C is an 8™ if, for all multi-indices, a and 3,

IDZDE| < Cap()™ 1. (5-2.1)
Examples
1) o(2,8) = 3 )5 <m 8a(z)€%, aa € C®(T™).
2) O™

3) a€S*and b€ 8™ = ab e §H™,

4) a€ 8™ = D2D{ac s

The asymptotic summation theorem
Given b; € S™ 1, i=0,1,..., there exists a & € 8™ such that
b—3 b es™ (5.2.2)

j<i

Proof. Step 1. Let £=m + ¢, € > 0. Then

) feym—t ci(é-)t_i
[b: (r, )] < Ci(&) o

Thus, for some A;, .
b2, €) < 5:(6)""

for |€] > ;. We can assume that A; — +o0 a3 i — +00. Let p € C*°(R) be bounded between 0 and 1 and
satisfy p(t) =0 fort < 1 and p(t) =1 for ¢ > 2. Let

b= p (L\ﬂ) bi(z, £) (5.2.3)

'

Then b is in C°(T™ x R™) since, on any compact subset, only a finite number of summands are non-zero.
Moreover, b— 3., b; is equal to:
£l
= ] b;.
(Aj !

Z(p([\ﬂ) —1)bj+b,-+2p
<t 7 i
The first summand is compactly supported, the second summand is in S™! and the third summand is
bounded from above by

1 -
Z 2—,5(5)'g k

k>t
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which is less than (£)2~¢+1) and hence, for € < 1, less than (€)™,

Step 2. For |a|+ |8] < N choose A; so that
D2 DEbi(z,6)] < 5 (6)+
for A; < |£|. Then the szme argument as above implies that
DEDZ (b~ b;) < Oy (5:24)
it
for o+ || < N.

Step 3. The sequence of A;’s in step 2 depends on N. To indicate this dependence let’s denote this sequence

by Ain, 2 =0,1,.... We can, by induction, assume that for all 4, AN < A N+y1- Now apply the Cantor

diagonal process to this collection of sequences, i.e., let A; = A;; . Then b has the property {(5.2.4) for all V.
We will denote the fact that b has the property (5.2.2) by writing

b S b (5.2.5)

The symbol, b, is not unique, however, if b ~ > b; and & ~ 3"b;, b— ¥ is in the intersection, &,
—oo < £ < 0o,
O

4.5.3 Pseudodifferential operators

Given a € 8™ let
T : 5 — co(Tm)

be the operator

189=Y oz, Kg(k)e™=

Since )
|D%a(z, k)| < O, (k)™

and
9(R)] S Gy ~tmrttat )

this operator is well-defined, i.e., the right hand side is in °°(T™). Composing 72 with F we get an operator
T, : C™(T™) — C™(T™).
We call T, the pseudodifferential operator with symbol a.

Note that . .
Tae*® = a(z, k)e's® .

Also note that if

P = Y au(z)D® (5.3.1)
|o|€m
and
pz,8) = > aalz)® (5.3.2)
lalzm
Then
P=T,.
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4.5.4 The composition formula

Let P be the differential operator (5.3.1). If a is in §” we will show that PT, isa pseudodifferential operator
of order m + r. In fact we will show that

PT, = Tpoa (541)
where
1
poa(nt) = > 58p(z¢)Dla(z,¢) (5.4.2)
lajgm ™
and p(x,£) is the function (5.3.2).
Proof. By definition
PT,e*® =  Pu(z, k)et

= efke(g=ikapeikayg(z £y
Thus PT, is the pseudodifferential operator with symbol

e~ petla(x, £). (5.4.3)
However, by (5.3.1):

e M Peitty(z) = Zaa(m)e_ime“eimﬁu(m)

= Y au@)(D+9°u(a)
= P{x,D+&u(z).
Moreover,
P +6) = 3 5 5op(e O
50

P&, D+ Eu(z) = 5i 5epP(® D u(z)
and if we plug in a(z,{) for u(x) we get, by (5.4.3), the formula (5.4.2) for the symbol of PT,,.

(]
4.5.5 The inversion formula
Suppose now that the operator (5.3.1) is elliptic. We will prove below the following inversion theorem.
Theorem. There exists an a € §~™ and an r € (5%, ~00 < £ < 00, such that
Pl,=1-17T,.

Proof. Let

Pm(z,§) = Z (T} .

|ej=m

By ellipticity pm(z,£) # 0 for £ € 0. Let p € C*°(R) be a function satisfying p(f} = 0 for t < 1 and plt)=1
for ¢ > 2. Then the function 1

ay(z,§) = P(|§|)m {5.5.1)

is well-defined and belongs to §~™. To prove the theorem we must prove that there exist symbols a € §—™

and r € (8%, ~o0 < £ < o0, such that
pog=1-r.

We will deduce this from the following two lemmas.
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Lemma. Ifbc &' then
b~poaph

is in &1,
Proof. Let ¢ = p— pm. Then g € §™~1 50 goapb is in $*~! and by (5.4.2)

poagh = phoagh+qoagh
— pma0b+---=b+..

where the dots are terms of order 1 — 1.
O

Lemma. There ezists a sequence of symbols a; € S~™ %, i =10,1,..., and o sequence of symbols r; € S—1,
1=0,..., such that ag is the symbol (5.5.1), ro =1 and

Dot =T — Ty
Jor all i.

Proof. Given ag,...,a4~1 and ro,...7y, let a; = r;00 and riyy = r; — pog;. By Lemma 4.5.5, rjy; € S™2.
O

Now let a € ™™ be the “asymptotic sum” of the a;’s

G~ E .

(=]
poamz'poai =ZT.'—T|‘.=1 =rp=1,

i=1

Then

s0ol—poa~0,ie,r=1—pogisin 8% —oo << 0.

4.5.6 Smoothing properties of YV D(O’s
Let a € 8%, £ < —m — n. We will prove in this section that the sum

Ka(z,y) =) a(z, k)et=—s (5.6.1)
is in C™(T? x T™) and that T}, is the integral operator associated with K, ie.,
T.u(o) = [ Kofa,v)uty) dy.

Proof. For [a| + [B] < m
Dg‘Dfa(w, k)eik@—1)

is bounded by (k}¢+leH+18t and hence by (k}¢*™. But £+ m < —n, so the sum
Z D2 DBa(z, k)etkle—v)
converges absolutely. Now notice that
fKa(a:, y)et dy = a(z, k)et® = Toet=,
Hence T, is the integral operators defined by K. Let
§™°=[)8" -oo<fco. (5.6.2)

If a is in §~°°, then by (5.6.1), T; is a smoothing operator.
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4.5.7 Pseudolocality
We will prove in this section that if f and g are C* functions on T™ with non-overlapping supports and a

is in 8™, then the operator
u € C%(T™) — fTagqu (6.7.1)

is a smoothing operator. (This property of pseudodifferential operators is called pseudolocality.) We will
first prove:

Lemma. If a(z,£) is in 8™ and w € R, the function,

ay(z,€) = a(z, £ + w) - a(x, £) (5.7.2)
is in S™ L.
Proof. Recall that ¢ € §™ if and only if

D2 D¢a(,€)] < Cap(&)™ 1.

From this estimate is is clear that if ¢ is in 8™, a(z,£ + w) is in &™ and g—;(m, €) is in 8™~1, and hence
that the integral

1
a@d)= [ ¥ e+ w)d

in §™-L,
Now let £ be a large positive integer and let @ be in 8™, m < —~n — £. Then

Ko(z,y) = Y _ alz, k)eitl=v)
is in C4(T™ x T™), and T, is the integral operator defined by K. Now notice that for w € Z*
(€™M _ ) Ko(m,y) = Y au(z, k)™=, {5.7.3)
g0 by the lemma the left hand side of (5.7.3) is in C*+1(T™ x T™). More generally,
(e7H==vw _ 1 WK, (z,9) (5.7.4)
is in C#*N(T™ x T™). In particular, if z # y, then for some 1 <i < n, z; —y; # 0 mod 22, so if
w=(0,0,...,1,0,...,0),

(¢ “1” in the i®-slot), €=~ £ 1 and, by (5.7.4), Ku{z,y) is C**V is 2 neighborhood of {z,y). Since N
can be arbitrarily large we conclude
Lemma. K,(z,y) is a C* function on the complement of the diagonal in T™ x T™.

Thus if f and g are C* functions with non-overlapping support, fT,g is the smoothing operator, Tk,

where
K(z,y) = f(z)Ka(z,y)9(y) - (5.7.5)
O

We have proved that T, is pseudolocal if @ € 5™, m < ~n — £, £ a large positive integer. To get rid of
this assumption let (D)V be the operator with symbol (£}, If IV is an even positive integer

DYV =3 Df+ ¥
is a differential operator and hence is a local operator: if f and g have non-overlapping supports, f(DYWgis
identically zero. Now let an(x,£) = a{z,£){¢)™". Since ay € 8™V, T,,, is pseudolocal for N large. But

T =Ty §D)N , 80 T, is the composition of an operator which is pseudolocal with an operator which is local,
and therefore T, itself is pseudolocal.
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4.6 Elliptic operators on open subsets of 7"

Let U be an open subset of 7. We will denote by ¢y : U — T™ the inclusion map and by ¢ty 1 C{T™) —
€°(U) the restriction map: let V be an open subset of 7™ containing U and

P= 3} aa(@)D”, aa(w)€C®(V)

el <m
an elliptic m'® order differential operator. Let
Ft3 Z DGy (z)
la|gm

be the transpose operator and

Pn(z,8) = Z aq(z)€"

feel=m
the symbol at P. We will prove below the following localized version of the inversion formula of § 4.5.5.
Theorem. There exist symbols, a € 8™ and r € 5~ such that
Pl =up(I-T). {(4.6.1)
Proof. Let v € C§°(V) be a function which is bounded between 0 and 1 and is identically 1 in a neighborhood

of 7. Let
Q=PPy+(1-7)(Q D).
This is a globally defined 2m™ order differential operator in 7™ with symbol,

V@) P (2, )P + (1 = () 1™ (46.2)

and since (4.6.2) is non-vanishing on 7™ x (R™ — 0), this operator is elliptic. Hence, by Theorem 4.5.5, there
exist symbols b € §~2" and r € §~* such that

QT =1-T,.
Let T, = P*yT;. Then since v = 1 on a neighborhood of T,
(I -T7) = QT
w(PPYTy+(1-7) > DITy)

ey PPT,
Pu; Py = PuT, .

|

4.7 Elliptic operators on compact manifolds
Let X be a compact n dimensional manifold and
P:C*(X) - C™(X)
an elliptic m*® order differential operator, We will show in this section how to construct a parametriz for P:
an operator
Q: C*(X) - C=(X)

such that 7 — PQ is smoothing. _
Let V;,i=1,...,N be a covering of X by coordinate patches and let U;, i = ,...,N,U; C V; bean
open covering which refines this covering. We can, without loss of generality, assume that V; is an open

subset of the hypercube
{zeR” O0<z;<2r i=1,...,n}
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and hence an open subset of T™. Let
{plecgo(U‘l)l ?:=1,...,N}

be a partition of unity and let v; € C§°(U;) be a function which is identically one on a neighborhood of the
support of p;. By Theorem 4.6, there exist symbols a; € §~™ and r; € §~° such that on T™:

P T, =1, (I —T3,) . {4.7.1)
Moreover, by pseudolocality (1 — ;)T p; is smoothing, so
YiTa,pi — 15, Tas i

and
PryTopi — Pugy T, s

are smoothing. But by (4.7.1)
Py To,0i — pid

is smoothing. Hence
P'yiTaip.- - p-,'I ) (4.7.2)

is smoothing as an operator on T". However, PyT,, p; and p;I are globally defined as operators on X and
hence (4.7.2) is a globally defined smoothing operatot. Now let @ = 34T, p; and note that by (4.7.2)

PQ-1I

is & smoothing operator.
O

This concludes the proof of Theorem 4.3, and hence, modulo proving Theorem 4.3. This concludes the

proof of our main result: Theorem 4.2. The proof of Theorem 4.3 will be outlined, as a series of exercises,
in the next section.

4.8 The Fredholm theorem for smoothing operators

Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing measure, dz. Given

Kel®(X xX)let
Tg : C°(X) — C®(X)
be the smoothing operator 3.1.
Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1, over X). Show that if
max [K(z,y)| < i, 0<e<1

then I — Tk is invertible and its inverse is of the form, I — T, L € C=(X x X).
Hint 1. Let K; = K o---0 K (i products). Show that sup |K;(z,7)| < Ce and conclude that the series

> Ki(z,y) (4.8.1)

converges uniformly.
Hint 2. Let U and V' be coordinate patches on X. Show that on I/ x V'

DD K;(z,y) = K® 0 Ki..3 0 K®(z,y)

where K(z,2) = D3K(z,2) and KP(z,y) = DEK(z,). Conclude that not only does (8.1) converge on
U x V but so do its partial derivatives of all orders with respect to x and y.

Exercise 2. (finite rank operators.) Tk is a finite rank smoothing operator if X is of the form:

N
K(z,y) =) fil2)ay). (4.8.2)
i=1
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(a) Show that if Tk is a finite rank smoothing operator and Ty, is any smoothing operator, T T, and
T3 Ty are finite rank smoothing operators.

(b) Show that if Tk is a finite rank smoothing operator, the operator, I — T, has finite dimensional kernel
and co-kernel.

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the fi’s and that f is in the
image of this operator if

ff(y)ga(y)dy=0, i=1,...,,N.

Exercise 3. Show that for every K € C*°(X x X) and every € > 0 there exists a function, K1 € C=(X x X)

of the form (4.8.2) such that
sup |K ~ K1(z,y) <e.

Hint. Let A be the set of all functions of the form (4.8.2). Show that A is a subalgebra of C (X x X} and that
this subalgebra separates points. Now apply the Stone—Weijerstrass thecrem to conclude that A is dense in

C(X x X). .
Exercise 4. Prove that if T is a smoothing operator the operator
I —Tg : C(X) - C®(X)

has finite dimensional kernel and co-kernel.
Hint. Show that K = K| + K, where K is of the form {4.8.2) and K satisfies the hypotheses of exercise 1.
Let I — Ty be the inverse of I — T, . Show that the operators

(I-Tx)o(I—Ty)
(I—TL)O(I-—TK)

are both of the form: identity minus a finite rank smoothing operator. Conclude that 7 — Tx has finite
dimensional kernel and co-kernel.

Exercise 5. Prove Theorem 4.3.
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Chapter 5

Hodge Theory

Lecture 19

(First see notes on Elliptic operators)
Let X be a compact manifold. We will show that Section 7 of the notes on Elliptic operators works for

elliptic operators on vector bundles.

We'll be working with the basic vector bundles 7X @ C, T*X @ C, AY{T*X) ® C etc.

Let review the basic facts about vector bundle theory. E — X is a rank & (complex) vector bundle then
given U open in X we define Ey = E |y. Given p € U there exists an open set U 3 p and a vector bundle

isomorphism such that

o

E——= >pyxck
g

Notation. C*°(E) denotes the C™ sections of E.

Suppose we have E* — X, i = 1,2 vector bundles of rank k; and suppose we have an operator P :
C®(EY) — C=(E?).
Definition. P is an rnth order differential operator if

{a) P islocal. That is for every open set U C X there exists a linear operator Py : C%(E}) — C>(EZ)
such that ;P = Pyi;.

(b) If v, i = 1,2 are local trivializations of the vector bundle E* over U then the operator P! in the
diagram below is an mth order differential operator

C=(B}) — 2 C*=(E})
'h‘;lz Elvé
Pt
C=(U,Ck) —» Co(U, CH2)
Check: This is independent. of choices of trivializations.
Let p € U. From 7}, i = 1,2 we get a diagram (with £ € T}})

o
Ey—=E}  ol=0o(P})®¢)

|,

Ck —ts Ckz2
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Definition. o¢ = o(P)(p,£)

Check that this is independent of trivializatior.
f e C®U), s€ C=(Ey). Then

(e™/ Pl )(p) = t™a(P)(p, §)s(p) + O™ 1)
where £ = df,.
Definition. P is elliptic if &, = k, and for every p and § # 0in T, X, then o(P)(p,£) : E, = E2 is
bijective.
5.0.1 Smoothing Operators on Vector Bundles

We have bundles £* —+ X. Form a bundle Hom(E?, E2) — X x X by defining that at {z,y) the fiber of this
bundle is Hom(E}, EZ). In addition lets let dz be the volume form on X.
Let K € 0°(Hom(E", E?)) and define Ti : C*°(E") — C*(E2), with f € C=(E") by

TefO) = [ Kw,)f(@)ds
What does this mean? By definition f(z) € E} and K(z,y) : E! — EZ, so (K(z,y)f(z)) € E2. Thus it

makes perfect sense to do the integration in the definition.

Theorem. P: C®(E') — C®(E?)is an mth order elliptic differential operator, then there erists an “mih
order Y DO”, Q : C=(E?) — C®(E') such that

PQ-1I
is smoothing.
Proof. Just as proof outlined in notes with U;, py, v;. But make sure that B!, E? are locally trivial over U,
ie.onl;, Py, = Pg.i, 50 Pg‘_ is an elliptic system. O

5.0.2 Fredholm Theory in the Vector Bundie Setting

Let E — X be a complex vector bundle. Then a hermitian inner product on E is a smooth function
X 3 p—{,}p where (,)p is a Hermitian inner product on E,.

If X is compact with 1,82 € C°(E) then we can make this into a compact pre-Hilbert space by defining
an L? inner product

(s1,00) = [(o1(0), sa(e))e
Lemma. Given p € X, there erists a neighborhood U of p and a Hermitian trivialization of Eyy

EU__‘Y.U_,.chk
U

forpe U, B, 2 C* and vy hermitian if B, = C¥ is an isomorphism of hermitian vector spaces.
Proof. This is just Graham-Schmidt O

Theorem. E* — X, i = 1,2 Hermitian vector bundles and P C®(E') — C=(E?) an mth order DO, then
there exists o unique mth order DO, Pt : C®(E?) — C®(E") such that for f € C=(E"), g € C=(E?)

(Pf,g)pe = {f, P'g) e
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Proof. (Using the usual mantra: local existence, local uniqueness implies global existence global uniqueness).
So we'll first prove local existence. Let U be open and +f;, ¥ hermitian trivialization of B}, EZ. P e PF,
P} : C®(U,C*) — C=(U,C*). Then P} = [Py], Py : C®(U) » C®(U), 1 <i < kg, 1 < 5 < ky.

Set (PL)} = [Pf], (PEW ~ PL. Then PY : C®(EZ) C=(EL).

4

We leave the read to check that if f € C§°(E}), g € C§°(E#) then
(PUfsg) . (f:PL‘fg)
This is local existence. Local uniqueness is trivial. This all implies global existence. O

Theorem (Mair Theorem). X compact, B' — X, i = 1,2 hermitian bundles of rank k. And P :
C=({E') - C*®(E?) an m order elliptic DO then

{a) ker Pis finite dimensional

(b) f € Im P if and only if (f,g) = 0 for ell g € ker P*.

Proof. The proof is implied by existence of right inverses for P modulo smoothing and the Fredholm Theorem
for I — T when T : C®(E') — C>(E?). m|

Lecture 20

X a compact manifold, E* — X, k = 1,...,N complex vector bundles, D : C°(E¥) — C°°(E*+!) first
order differential operator. Consider the following complex, hereafter referred to as (*).

..._,_(;uo(Ek)_D>Coo(Ek+1) 2 .

() is a differential complex if D? = DD = 0.
For z € X, £ € T;, we have o¢ : Ef — EX¥*! then we have the symbol o¢(D)(x, £). And

0= o(D?)(%,£) = o(D)(z,£)o(D)(x, &)

so we conclude that trg = 0. So at every point we get a finite dimensional complex

the symbol complex
Definition. (x) is elliptic if the symbol complex is exact for all @ and ¢ € T — {0}.

Examples

(a) The De Rham complex. For this complex the bundle is
EF A @C=AMT"X)®C

then C°°(E*) = Q*(X). The first order operation is the usual exterior derivative d : C%°(E¥) —
C®(E*+). a¢ = o(d)(z,£), where o¢ : AX(T2) @C — AF(T?) . C

Theorem. For p € A¥(T)@C, g = /=16 A p.
Proof. w € Q¥(X), we =, f € C®(X), df; = £ then
(e de*fMw), = (idf Aw)y + (dw)e = (iz A p)t + (dw)s
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(c)

Theorem. The de Rham complex is elliptic

Proof. To do this we have to prove the exactness of the symbol complex:
e Ak(T;) _AE,. Ak+1(T;)"&> v

To do this let €),...,e, be a basis of 77 with e; = £ Then for p € A¥(T?), p = e; A+ 8 where o
and J are products just involving eg, ..., e, (this is not hard to prove). O

Let X be complex and let us define a vector bundle
EF =A% (T*)  C®(E*)=Q%(X)

Take 1??= 8. This is a first order DO, 8 : C®(Ek) — C®(E*+1), 0,0 = o(D)(z,£), now what is this
symbol?

Take £ € T3, then £ = €10 + €51 where £1° € (T%st,)"0, %! € (T2)%! and €19 = £, £ # 0 then
‘50,1 # 0.

Theorem. For u € A%¥(T}), oc(u) = V=151 A .

Proof. w € Q™ (X), wy = p, f € C*°(X), dfy = £ then

(e™*Beitf )y = (itDf Aw)st + (Bw)s = it A p+ Bu,

Check: For £ # 0 the sequence
wp p0,1 wpe0ln
ces —>-A°"‘(T;) LE..,.AD.kH (T;ff_,.. .

is exact. This is basically the same as the earlier proof, when we note that A%*(T*) = A¥((T*)%1). we
conclude that the Dolbeault complex is elliptic.

The above argument forks for higher dimensional Dolbeault complexes. If we set
E¥ = APX(T*X), D=3, C®(E*)=07X)

it is easy to show that o(J)(z,£) = “ A £0:1”

The Hodge Theorem

Given a general elliptic complex

82 C°°(Ek) o, C’°°(Ek+1) L ...

with dz a volume form on X, equip each vector bundle E* with a Hermitian structure. We then get an L2
inner product {,)z2 on C*(E*). And for each D : C*°(E*) — C°°(E**!) we get a transpose operator

Dt C°(B*1) w ¢ (EF)

Ifforx € X, £ € T}, 0p = o(D)(z, &) then

o(D*)(z,8) = o}
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So we can get a complex in the other direction, call it (x)?
LD C™(EF) _E,coo(Ek—l)ll__, iy
and since 0 = (D")* = (DD)* = D*D* = (D*)? we have that (+)¢ is a differential complex.
Also, o(D*)(,£) = a¢ = a(D)(z,£)t. For z and £ € T7 — {0} the symbol complex of D' is

£ £
¢

0—*Ei\'—af->E£‘"1 — .
The transpose of the symbol complex for D. So (%) elliptic implies that {*)t is elliptic.
Definition. The harmonic space for (x) is
HF = {s € C*(E*),Ds = D's = 0}
Theorem (Hodge Decomposition Theorem). We have two propositions
(a) For all k, H* is finite dimensional.

(b) Buvery element u of C(E¥) can be written uniquely as @ sum uy + ug + uz where uy € Im(D),
ug € Im(D?*), us € HE

Before we prove this we’ll do a little preliminary work. Let

N
E=pE*
k=1
Then consider the operator
D+ D?: C®(E) = C°(E)
Check: This is elliptic.
Proof. Consider Q = (D + D*). It suffices to show that @ is elliptic.
Q=D?+DD! +D'D + (D*)?

but the two end terms are 0. So
@=DD'+ DD

Note that (! sends C>°(E*) to C*°(E*}, so Q behaves nicer than D + Dt. So now we want to show that Q
is elliptic.
Let z, £ € T — {0}. Then
o(Q)(2,£) = o(DD*)(x,€) + 0(D*D)(x,€) = oL&; + oea}

{where o¢ = a(D)(z, &).
Suppose v € B} and o(Q)(z,&)v =0 (L.e. it fails to be bijective). Then

((o¢0¢ + 0caf)v,v) = 0 = (0pv,000), + (ofv,06v) =0

which implies that o¢v = 0 and ofv = 0. Now o¢ = 0 implies that v € Imo; : E¥~! — E* by exactness. We
know that Imo L ker of, but v € ker of, 50 v.Lv implies that v = 0.
So @ is elliptic and thus (D + D?) is elliptic. |

Lemma. H* = ker Q.
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Proof. We want to show H¥ C ker @. The other direction is easy. Let u € ker Q. Then
(DD*u+ D*Du,u) = 0 = (Dtu, Du) + {Du, Du) =0
This implies that D*u = Du=0, so u € H*. a

Proof of Hodge Decomposition. By the Fredholm theorem every element u € C®(E*) is of the form u =
v1 + ¥2 where v; € Im(Q) and vz € kerQ. vz € ker@ implies that v2 € H*, v; € ImQ implies that
vy = Quw = D(D'w) + D*(Dw). Choose u; = DD%w,u; = D!Dw and vy = us. O

Left as an exercise: Check that w = u; + s + u3 is unique. Hint: ker D1 Im D* and ker Dt Im D. Then
the space Im(D), Im{D*) and H are all mutually perpendicular.

Lecture

The Hodge *-operator

Let V = V™ be an n-dimensional R-vector space. Let B : V x V — R be a non-degenerate bilinear form on
V' (Note that for the momentum we are not assuming anything about this form).

From B one gets a non-degenerate bilinear form B : A*(V) x A¥(V) > R. Ifa = vy A~ A8 =
wy A« Awyg then
B(a, §) = det(B(v;,v;))

Alternate definition:
Define a pairing (non-degenerate and bilinear) A*(V)x A¥(V*) - Rwith a = vy A---Avg, § = fiA---A Jrs
€V, fi € V*. Then
{a, B) = d(wi, f)

This gives rise to the identification A¥(V*) 22 Ak(V)*.
SoB:VxVsRgivestoLg:V = V* by B(u,v) = (u, Lgv). This can be extended to a map of k-th
exterior powers, Lg : A¥(V) — A*(V*), defined by
Lp{v A "'I\'Uk) =Lgn A---ALpvg

and if we have a, 8 € A*¥(V') then B(a, 8) = (o, Laf).
Let us now look at the top dimensional piece of the exterior algebra. dim A™(V) = 1, orient V so that

we are dealing with A*(V),. Then there is a unique © € A®(V) such that B(Q,Q) = 1.
Theorem. There ezists a bijective map * : A¥(V) — A"~¥(V) such that for o, 8 € A*(V) we have

a A *8 = B{a, I
Proof. From  we get a map A™V) = R, M2 — X. So we get a non-degenerate pairing
AF(VY x A¥(V) - A®(V) > R

Now we have a mapping A*(V*) £ A»~#(V). Define the -operator to be ko Lg. m|

There is a clear dependence of * on the orientation of V. If we exchange  for — then * turns to —+.
Lets say something about the dependence on B.

Suppose we have B, another non-degenerate bilinear form on V. Then there exists a unique J : V 222, v
so that Bi(u,v) = B(u,Jv). In fact we define J by requiring that Lp, : V — V* is given by setting
LBl = LB oJ.

Extend J to a map J : A¥(V) — AF(V) by setting J(vy A --- A v;;) = Jvy A--- A Jug. Then on A*(V),
Lp, =LgoJ,»1 =keLp, =koLgoJ=woJ. Sothestar operator for By and B are relation b #; = *o.J.
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Multiplicative Properties of

There are actually almost no multiplicative properties of the x- -operator, but there are a few things to be

said.
Suppose we have a vector space V™ = V" @ V2 and suppose we have the bilinear form B = By @ B,.
From this decomposition we can split the exterlor powers

AMV)= @D A" (V) ® A% (1)
r+a=k
If 1,01 € A"(W) and g, B2 € A7(Va) then
Bl Az, f1 A B2) = Bi{en, 81)Ba(ag, 32)
Theorem. With 1 € A™(V1) and B2 € A*(Va) we have

(B ABg) = (~1)™M="5 4, g1 A *2(05

Proof. e € A"éVl) z € A7 (Vz) wﬂ:h §41, 2z the volume forms on the vector spaces. Then let Q = A,
be the volume form for A®(V). Th

(@1 Aaz) # (B1 A B2) = Bla A az, B1 A o)) = By(a, B1)0 A Blog, B2)Sha
= (a1 A #181) A (a2 A *2a)
= (~1)™="eg A as A (#1801 A x9%)

Lecture

Again, V= V" and B: V x V — R a non-degenerate bilinear form. A few properties of * we have not
mentioned yet:
*1 = *N=1

Computing the *-operator
We now present a couple of applications to computation

(a) B symmetric and posmve definite. Let wy,...,v, be an oriented orthonormal basis of V. If [ =
{41,...,4) where 4; < --- < iy then v; = vy, A -/\v,—,,. Let J = I, Then

Wy = duy
where this is postive if v; Av; = Q and negative if vy Avy = —(,
(b) Let B be symplectic and V = V2", Then there is a Darboux basis e, fiy.. . 80, fn- Give V the
symplectic orientation
Q_elAflA Aen.fn

What doesfthe *-operator look like? For n =1, i.e. V = V2 we have #1 = e A frleAfl=1%e=e¢e
and *f = f.

What about n arbitrary? Suppose we have
V=We oV, Vi=span{e,f;}
then A(V) is spanned by 8; A -+ A B, where 8; € AP((V;), 0 < p; < 2. Then
(BN ABp) = wnfn A+ Axifr

and we already know that * operator on 2 dimensionsl space.
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Other Operations
For u € V we can define an operation L, : A* — A¥*1 by & — u A . We can also define this operations
dual: for v* € V*, iy» : A¥ — AF-? the usual interior product.

But because we have a bilinear form we can find LY, and 4, and since we have * we have other interesting
things to do, like conjugate with the %-operator:

*_lLu * *_l(iv")*
Theorem. Fora € AP, B € AP
B{Lya, ) = B(a, LL5)
where L, = (=1)P~1 s~ Lyx == L,.
Proof. Begin by noting L, A #3 = B{L,a, 5)§2. Now
uAaA*xf=(~1PlaAuA*f = (—1)Parx(="uA x5
=aAl *fuﬁ = B(a,iuﬂ)ﬂ

which implies that I, = Lt. O

What is this franspose really doing? We know we have a bilinear form B that gives rise to an map
Ly : V — V*. Since B is not symmetric, define B¥(u, v} = B(v,u), and we get a new map Lgs : V — V*.
Then:
Theorem. If v* = Lgu, then Lt = i,..
Proof. Let ua,...,uy, be a basis of V and let v1,...,v, be a complementary basis of V' determined by

Blui,5) = 3y
and let v7,..., v}, be a dual basis of V*. Check that v] = Lgeu;. Let I = (4y,...,ik—1) and J = (j1,..., k)
be multi-indices. We claim that
B(Ly,uz,v7) = Blug,iv;vs)

and that if f1,...,5xr =1 and 4;,...,4¢—1 = 1 then both sides are 1. Otherwise they are 0. O

Theorem. On APl (4,0}t = (—1)F 7! (iye )% and v* = Lpu.

Lecture

For the next few days we're assuming that B is symplectic and V = V?®, Choose a Darboux basis
€1, f1,-+.,en, fn- Check that Lg : V' — V* is the map

{es = —fi. fi o €f}

where ¢}, f} are the dual vectors. In the symplectic case B! = —B and Lpy = —L.
Say that w € A2V,
W= Z € A f-i

Then we have the operation L : A? — AP*2 given by o — w A o and also its transpose Lt : APT2 5 AP,
Lets look at the commutator [L, L] : AP — AP,

Theorem (Kaehler, Weil). [L, L} = (p—n)1d
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Proof. L=3%,L. Ly, s0

Lt = ZLtiL‘Z‘ = be;be;
i

Its easy to see that Kachler-Weil holds when n = 2.
For n-dimensions

L= ZLi Li=L,L; L'= ZLI’ Li=igrie
Vi = span{e;, fi}, then AP = spanfy A --- A B, where 5; € A% (V;).
Note that
LiﬂlA"'Aﬁn=ﬁ1A'“/\(Liﬂi)/\---/\ﬂn

and
LiBiA - AB) = A ALB) A Ay

K n# j, then L;L} = L:L;. So

(L LB A ABn =D BrA- ALy, LB A+ Ay

=D @=DfA - APa=(p=n)f1 A ABy

Lecture
Proposition. L* = +~1Lx
Proposition. » € V then [LE, L] = —L,,.
Proof. Proof omitted.
Let (X2",w) be a compact symplectic manifold. Let x € X and V = Ty. Notice
(a) From wy we get a symplectic bilinear form on Ty.
(b) From this form we get an identification T, — T.

(¢} Hence from 1,2 we get a symplectic bilinear from B, on V.

(d) From B, we get a *-operator
v2 1 AP(T3) — AZ=2(T3)

{e) This gives us a *-operator on forms
% P(X) - Q¥P(X)
We can define a symplectic version of the L? inner product on Q¥ as follows. Take o, 8 € 7 and define

(a,ﬂ)=fxa/\*ﬂ

(Note: This is not positive definite or anything, its just a pairing)
Take o € £1P~1, B € £7. Then look at
dlanxp) =daA:B+ (1P landxp
=daA+f+ (1) a A +(+"1dw)8

63



Since f, d{a A #8) = 0, we integrate both sides of the above and get
/ da Ax83 = (—1)”/0: Ax(x"1dx) 3
x

If we introduce the notation § = (—1)P *~1 dx on P then
(de, B) = {2, 6B)
Now, given the mapping L : " — QP*2, La = w A & we have the following theorem
Theorem. [§,L] =d.
This identity has no analogue in ordinary Hodge Theory. This is very important.
Proof. z € X, £ € T, then o(d}(2,£) = iL¢. On AP, § = (—1)Px~ds, so o(d)(z, £) = (—1)Pix~'Lgx = —iL}.

Then
o([8, L]) = 4[L¢, ) = iLg = o(d)(=z, £)

so [, L] and d have the same symbol.

Now, d |4, L] are first order DO’s mapping §2* — QP*1, so d — [, L] : ? — QP+ is a first order DO. We
want to show that this is 0.

Let (U,1,...,%n,%1,.-.,U,) be a Darboux coordinate patch. Consider u = 8 A--- A B, where 8, =
1,dx;, dy; or dx; A dy;.

These de Rham forms are a basis at each point of A(T?).

Lu=wAu is again a form of this type since w = 3> dz; A dy; is of this form. Also *u i s of this from.

Note that d = 0 on a form of this type, hence § = ~1d+ is 0 on a form of this type. Thus [§, L] —d is 9
on a form of this type. a

Lecture

Symplectic Hodge Theory

(X2, w) be a compact symplectic manifold. From z € X we get wy — B; a non-degenerate bilinear form
on T/, and so induces a non-degenerate bilinear from on AP(T¥).
Define (,)z2 on QP as follows. Take §2 = w" /nl, a symplectic volume form, o, 3 € §I?

(0, B) = fx B.(0, )0 = fx aAsp

Remarks:
{a) In symplectic geometry 2 = id, % = *~1,
{b) () is anti-symmetric on O, p odd and symmetric on §7, p even.
(¢) [L*,8%] =df = 4. And &' = (@)t = —d, so [d,L%] = 5.

Consider the Laplace otperator dé + éd = dd® + d*d. Now, in the symplectic world, A = 0. We'll prove
this: 6 = [d, L!] = dL* — L*d, s0 d§ = —dL*d and 6d = dL!d, so A = 0.

So for symplectic geometry we work with the bicomplex (©,d, ). We're going to use symplectic geometry
to prove the Hard Lefshetz theorem for Kaehler manifolds.

Let (X*™ w) be a compact Kaehler manifold. Then we have the following cperation in cohomology

7 HYX,C) - HPP3(X) e [w]—c
Theorem (Hard Lefshetz). +* is bijective.

Question: Is Hard Lefshetz true for compact symplectic manifolds. If not, when is it true.
Define [L*, L] = A, by Kaehler-Weil says that A = (n — p)a.

Lemma. [A4, L¥] = 2L¢,
Proof. Al'a— L'Aa = (n— (p— 2)}Lta— (n— p)Lta = 2Lta O
Lemma. [4, L] = -2L.

There is another place in the world where you encounter these: Lie Groups.
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Lie Groups

Take G = SL(2,R), then consider the lie algebra g = si(2, R).
This is the algebra {4 € Mz:(R),tr A = 0}. Generated by

_{0 1 _ {01 _f1 0
=@ ¥-() =-( )
Check that [X,Y] = H, [H,X] = 2X and [H,Y] = —2Y, and sl(2,R) = span{X,Y, 2}, and the abave
describes the Lie Algebra structure.
p:g— End({l) be given by X ~— L*, Y s L and H ~ A is a representation of the Lie algebra g on £2.
So  is a g-module.

Lemma. Qpoprm 8 o g-reodule of §).

Proof. First note that Ld = dL, i.e. dLa = d(w A a) = w A dar = Ldc. Taking transposes we get L5 = 6L,
Then take & € (Qjarm. We already know that [d, L] = §, so dL*a— L'do = 6, which implies that dLte = 0.
Similarly dLe,8Lee = 0, so Lor, Ll are in Spnpem. .

So since A = [L, L], Ax € Qpgrm, and £ is a g-module. ]

Note that Qpaym is not finite dimensional. So these representations are not necessarily easy to deal with.
Definition. Let V be a g-module. V is of finite H-type if

N
v=FPpv
i=1

and H = \;Id on V.
In other words, H is in diagonal form with respect to this decomposition.
Example. ) = @::0 P, H=(n—p)Id on QF and Qpgpr, = $§:0 Qprmy H=(n—p)ldon QF__ .
Theorem. IfV is a g-module of finite type, then every sub and quotient module is of finite type.
Proof. V = @f_ﬂ Vi, H=XAIdon V;. Let m; : V — V; be a projection onto V;. Check that
1

™= Mo =y L1 =)

i.e., mv = v on v;. So m; takes sub/quotient objects onto themselves. O
Lecture

Lemma. Take v € V, Hv = dv. We claim that H{Xv) = (A + 2)Xv.

Proof. (HX — XH)v = 2Xv, so HXv = AXvu+2Xv = (A + 2)Xv. O

Lemma. If Hv = Av, then
(X, Yo = k(A ~ (k- 1))Y* 1y

Proof. We proceed by induction. If & = 1 this is just [X,Y]v = Hv = Av. This is true.
Now we show that if this is true for k, its true for & + 1.

(X, Yk+1],u = XY*+l, _ yEtlx,
= (XY)Y*u — (Y X)Y*0 + Y (XV )0 — Y(V*Xv)
= HY* + Y([X,Y*))v
=(A-2kY*u+Y(R(A - (k—1))Y* 1
=((A-28)+ k(A -k —1))Y*u = (k+ 1)(A— k)Y
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Definition. V is a cyclic module with generator v if every submodule of V' containing v is equal to V itself,

Theorem. IfV is a cyclic module of finite H type then dim V < oo.

Proof. Let v generate V. Then v = E?;o v; where w; € V;. It is enough to prove the theorem for cyclic
modules generated by v;. We can assume without loss of generality that Hv = Av.

Now, note that only a finite number of expression Y*X% are non-zero (since X shifts into a different
eigenspace, and there are only a finite number of eigenspaces).

By the formula that we just proved, span{Y*X%} is a submodule of V containing v.
O

Fact: Every finite dimensional g-module is a direct sum of irreducibles.
In particular, every cyclic submodule of V is a direct sum of irreducibles.

Theorem. Every irreducible g-module of finite H type is of the form V = Vo @ - - © Vi where dim V; = 1.
Moreover, there exists v; € V; — {0} such thet

Hy; = (k ~ 20)w;

Yv; = v i<k-1

X'Ui = i(k - (1. - 1))’0;’_1 i>1
Xvg=0,Yu, =0

Proof. Let V=1,®- - @&V, and H = \;Jd on V; and assume that A\g > A; > --- > A,. Take ve Vo —{0}.
Note that Xv = 0, because HXv = (Ag + 2)Xv and Ay +2 > Ag.
Consider Yv,..., Y% # 0, Y*+ly = 0, s0 HY v = (A — 2)Y%v. and

XY =Y'Xv+iA-(i— 1))V o =i(A— (i—1))Y

When i =k + 1 we have
XY*tly =0 = (k+ 1)(A - k)Y

but ¥*» # 0, so it must be that A = k. Now just set v; = ¥Y'v. O

Lemma, Let V be a k + 1 dimensional vector space with basis vg,...,vi. Then the relations in the above
theorem define an irreducible representation of g on V

Definition. V a g-module, V = @), V; of finite H-type. Then v € V is primitive if
(a) v is homogenous,(i.e. v € ¥})
(b) Xv=0.

Theorem. Ifv is primitive then the cyclic submodule generated by v is irreducible and Hv = k where k is
the dimension of this module.

Proof. v,Yv,...,Y*u £ 0, Y**1 = 0. Take v; = Yiv. Check that v; satisfies the conditions. O

Theorem. Euvery vector v € V can be written as a finite sum

= ZYI‘UI

where v; 15 primitive.

Proof. This is clearly true if V' is irreducible (by the relations). Hence this is true for cyclic modules, because
they are direct sums of irreducibles, hence this is true in general.

Corollary. The eigenvalues of H are integers.
Proof. We need to check this for eigenvectors of the form Y'v where v is primitive. But for » primitive we
know the theorem is true, ie. Hv = kv, HY'v = (k — 21)Y*. So write V= V,, H=rIdon V, O
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Lecture
Theorem. We can repagenate the sum so that

N
v=P v
i=—N

where
H=ild on V;

(a) X:Vi o Vipg andY : Vi - V5.
(b) YV, 8, v, is bijective.

Now, recall that we are going to apply this stuff to Hodge Theory. In particular, let (X2",w) be a
symplectic, compact manifold. Then we define L : %(X) — Q*+2(X) given by a — wAa, * : QF — QIn—*
LE: k42, QO given by L = »Lx and we defined A : Q — w, A = iId on ™%, The Kaehler-Weil identities

said that
(LY L)=A [A, L] = 2L* [A L] =-2L
So 2 is a g-module of finite H-type with X = L*, Y = L and H = A.
Corollary. The map L* : Q*~% — Qnt* 45 an isomorphism.
We can apply this to symplectic hodge theory as follows. We know in this case that
[d,LY=6 [5L]=d
Let Qparm = {v € Qdu =35 =0}.
Theorem. Qpopm 15 ¢ g-module of 1.

Corollary. The map L¥ : Q2% — Q4E is bijective.

Hard Lefshetz Theorem

w € 1%, dw = 0. Then [w] defines a cohomology class [w] € H2 5(X) = H*(X). And in turn we can define a
mapping v : H¥(X) — H**3(X) by ¢ [w] ~ c.

Theorem. Let X be Kaehler then v* : H"*(X) — H*%(X) is bijective.

What about the symplectic case? Let u € Qf,,,, with du = 0. Define a mapping Py : OF __ — H*(X)
by u— [u]

Theorem. (Matthieu) Hard Lefshetz holds for X if and only if P, is onto for all k.

Proof. The “only if” part is covered in the supplementary notes. Now the for the “if” part, we use the
following diagram

k
n—k L N -tk
‘Qharm ‘Qharm

VoL

H™F(X) —> H™+E(X)

LF is bijective, the vertical arrows are surjective, soy* is surjective. Poincare duality tells us that dim H"—* =
dim H™** s0 v* is bijective. O

Remarks:

(a) “if" condition is automatic for Kaehler manifolds
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(b} A consequence of Hard Lefshetz. We know that H n(X) 5R given by [u] — [, u is (by stokes
theorem) bijective. Hence one can define a bilinear form on &' "—k(X) via

e1,63 — e, ~ ez € H>™(X) SR
By poincare and hard lefshetz this form is non-degenerate, i.e. Y¥e; ~ ¢z = 0 for all cz, then by

Poincare v%¢) = 0 which implies that ¢; = 0.
A consequence is that for ¥ odd H*(X) is even dimensional.

(c) Thurston showed that there exists lots of compact symplectic manifolds with dim F* (X) odd, ie. it
doesn’t satisfy strong lefshetz.

{d) For any symplectic manifold X, let H;‘vmp(X ) =1Im(Qf, .. — H*(X)). For symplectic cohemology
you do have Hard Lefshetz.

Riemannian Hodge Theory

Let ¥V = V™ be a vector space aver R. B is a positive definite inner product on V. Assume V is oriented, then
you get x : A¥(V) — AP*#(V). Take vy,...,v, to be an oriented orthonormal basis of V. I=(iy,..., i),
iy <+ <ig. I° the complementary multi-index. Then #v; = evzo where U AU =01 A+ - Ay, (where'e

is some sign).
Let X = X™ be a compact Riemannian manifold. From the Riemannian metric we get By a positive

definite inner product on T} so B, induces a positive definite inner product on A"(J’;‘;).

From these inner products we get the star operator *, : Af — AP satisfying o, 8 € Ak, ansf =
By (a, A}vp where v, is the Riemannian volume form.

Its clear that B, extends C-linearly to a C-blinear form on A: ® C and *, extends C-linearly to AkecC.

A hermitian inner product on A*(Z}) ® C by (o, ), = By{c, B) and a A 3 = (a, B)ptp.
Globally, 2%(X) = C°°(A*(T*X) ® C). Define an L? inner-product by a8 € Qk(X)

(a,ﬁ):/x(a,,@)pv=fxal\*ﬁ

From 2°(X) & (X)) % ... we get an elliptic complex
C®(X) —= AN (T*X)®C) —= - -+
We have a hermitian inner product on the vector bundles A¥(T* X ) ®C, 50 we can get a transpose
d* : C®(AMT*X) ® C) —» C®(A* 1 (T*X) ® C)
and write d* = § and think of § as § : QF — Q-1

Form the corresponding Laplacian operator A = d§ + dd.
Apply the general theory of Elliptic complexes to this case. We conclude that

(a) H* = {u € Q% Au = 0} is finite dimensional.
(b) H* = {u € Ok, du = du =0}

{c) Hodge Decomposition
Q* = {(Imd)  (Im 6) & H*}

(d) The map H* — HE . is bijective, i.e. every cohomology class has a ungive harmonic representation.

Lecture

The H, are finite-dimensional.
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Poincare Duality
Make a pairing P : % x Q*~% — C given by
Pla,B) = f aAf
X

If @ is exact and 8 closed then P(a, 8) = 0, since o = dw, d8 = 0 and a AB=dunf=dunpB). By stokes
JaA B is thus 0. P induces a pairing in cohomology, P : F K x HA K L C.
Theorem (Poincare). This is a non-degenerate poiring.

We give a Hodge Theoretic Proof. First,
Lemma. §: Q% — Q%1 is given by 6 = (—1)% +~1 dx
Proof. Let 81 = (—1)* ¥~ d«, we want to show that § = §;. Let o € *~! and 4 € 2™ * then

danf)=danB+ (1) land«F

=daA=f+ (-1)* 1o Ax(x"1d*3)
=daAxf—-ahAx(8:0)

fdaA*,@:/aA*El,B

50 (da, B) = {@,5:8) and 6; = d* = 5. 0

Now integrate and apply stokes

Corollary. sH* = Hn~*%

Proof. Take @ € H*. We'll show that d + @ = 0. This happens iff +~'d * @ = +5a.. Since o = 0, d+a=0.
It is similarly easy to check that & x =0, O

Proof of Poincare Duality. If suffices to check that the pairing P : H*¥ x H*—* — C givenby a, 8 [, aAf

is non-degenerate.
Suppose P{a, 8) =0 for all 8. Take 8 = #@. Then

P(a,ﬂ):f){a/\*&: (a,0) =0

so this would imply that o = 0. O

A Review of Kaehlerian Linear Algebra

Definition. V = V2" a vector space over R, B, a non-degenerate alternating bilinear formonV, J: V = V
a linear map such that J* = —I. B, and .J are compatible if B,(Jv, Jw) = B, (v, w).

Lemma. If B, and J are compatible if and only if the bilincar form By(v,w) = Bsf{v, Jw) is symmetric.
(Here By is a Riemannian metric)

J, B; Kaehler implies that B, is positive definite.

Notice that B.(Jv, Jw) = B,(Jv, J*w) = B,(v, Jw) = B,(v,w) so that B, and J are compatible. And
also notice that B,.(Juv,w) = By(Jv, Jw) = B,(v,w). Let J* be the transpose of J with respect to B, Then
By(Jv, Jw) = By (v, J*Jw) = By(v,w)

so JIJ =T and Jt = —J.
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B;, B,, J in Coordinates
Let e € V such that B,(e,e) = 1, and set f = Je, and e = —Jf. Then
B.(e,e)=1 Bale, f) =1
Take V1 = apan{e, f}. This is a J-invariant subspace. If we then take
Vi* = orthocomplement of V; w.r.t B,

then for v € Vi,w € Vi*, 0 = B.(Jv,w) = B,(v,w), so Vit is the symplectic orthocomplement of V; with
respect to B;.
Applying induction we get a decomposition

V=WeVe---aV,

where V; = span{e;, f;} such that e, f1,...,e,, fn is an oriented orthonormal basis of V with respect to B,
and a Darboux basis with respect to B,. Note that Je; = f; and Jf; = —¢;

5.0.3 B,, B, and J on A*¥(V)

w=73e; A fi is the symplectic element in A%(V) and @ =w"/nl=e; Afi A--- Aey A fy, is the symplectic
volume for and Riemannian volume form.
On decomposable elements, a = v A---Awvg and f=wy A--- Awy and

B,-(C!, ﬁ) = det(Br(Uis wj)) B,(a,,@) = det(Ba(vi’wj))
and we can define
Ja=Jun A A Jug
Notice that :
By (o, B) = det(B,(v;,w;)) = det B, (v;, Jw;) = By(a, JB)
and furthermore, it is easy to check that B,(Ja, JB) = By(e, 8), Bs(Ja, JB) = Bs(a, ), J? = (—1)*Id and
if J* : A¥ — AF is the B,-transpose of J, then Jt = (—1)k.J. _

The Star Operators

These are *, and *,, the Riemannian and symplectic star operators, respectively. Let £ be the symplectic
(and Riemannian) volume form. For o, 8 € A* we have

aAxff = B0, )t = By(a, JB) = a A%, J3
80
*p = kg

Also, notice that
JaA*J8 = B, (Ja, I3t = B, /)2 = A+

on the other hand J§2 = £}, so
ahxff=B(0,f)=JaA»J . 3

80 #,J = J*, and since %, = x3J we have J*, = #,J.

Structure of A(V)

We have a symplectic element w = 3" e; A fi € Q2. From this, we can define a mapping L : A¥ — A*+2 given
by ¢ — w A ee. Note that
Lla=wAJa=Jwha)=JLa
so that [J, L] = 0.
Similarly for L*: AF*2 — A the symplectic transpose given by L* = #,L*,. Since +,, 1, commute with
the J map, so does Lt, 50 [J, It] = 0.
Notice that

B,(La, f) = Bs(Le, JB) = Bs(av, L*JB) = Bs(a, JL'B) = B, (o, L*B)

so L* is also the Riemannian transpose.
From L, L* we get a representation of SL(2,R) on A(V) and this representation is J-invariant.
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Lecture

We now extend #y, *3, J, L, Lt, C-linearly to A* ® C. And extend B,, B, to C-linear forms on A* @ C.
We can now take A’@C = A**HA™!, where as usual the two elements of the splitting are the eigenspaces

of the J operator.
If we now let eq, fi1,...,en, fn be a Kaehlerian Darboux basis of V' and set

—V=1f;)

U,

. = 1 3
I—ﬁ(el

then wu1,...,u, is an orthonormal basis of A" with respect to the Hermitian form (u,v) = B,(u,?) and

i1, ... ,fn is an orthonormal basis of A%,
We know from earlier that * gives rise to a splitting

AfeC= (P Are
rta=k

and if I and J are multi-indices of length p and g, then the u; A %  forms form an orthonormal basis of AP4
with respect to the Riemannian bilinear form (e, 8) = B (a, 8).
In particular A* ® C = @, , AP*? is an orthonormal decomposition of A* ® C with respect to the inner

product (@, §) = Br(a, §).
In terms of uy, ..., un € AY?, the symplectic form is

1
w=2—"\/.__-TZUiAﬁiEA1’1

Consequences:
() L:APT — APTLA+] o c APS
(b) J = (v=1)P~9Id on AP
(c) The star operators behave nicely, *; : AP? — A"—Pn—q,
() #r APT 5 APPIT 3 =y, .
(&) Lt : AP% — AP~ 1971 hecause L = #,L+,.

So all the operators behave well as far as bi-degrees are concerned.

5.0.4 Kaehlerian Hodge Theory

Let {X?",w) be a compact Kaehler manifold, with w € Q3! a Kaehler form.

From the complex structure we get a mapping J, : A (T)eC— A* (T;) ® C. This induces a mapping
J : QF(X) — QF(X) by defining (Ja), = Jya, and we have as before the *-OPErators, *,,+, : (X)) —
Q2n~k related by *, = *; ®.J.

We also have {,), {,) bilinear forms on Q¥ defined by

<a,ﬁ>r=fxa/\*,.5 (a,ﬂs=fxa/\*sﬁ

L a{%’“)—» 0%+2 js given by & — w A a and L* = x, L+, = * 1L, the transpose of L with respect to {)r
and {,),.

Fin(a.l)ly, we have d : 0¥ — 0**1 and its transpose § = §, the transpose w.r.t. (,), and 4, the transpose
wrl. ()s-

On QF, 6, = (—1)% + 1 d%, and &, = (—1)* , d*,. But from *, = *, o .J we get

6 = (1) w  dxg o = J16,T
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We proved a little while ago that d = [§,, L]. What happens upon conjugation by J?
JdJ ™t = [J716,0, L) = |6, L]

We make the following definition

Definition. d¢ = JdJ~!

So now we have
dec = [5, L]

Theorem. d and dg anti-commute
We'll prove this later. But for now, we’ll prove an important corollary
Corollary. Let A =d§+6d. Then L and L' commute with A

Proof. [([ig,lgl= |d, L6 + d[§, L, and we showed before that [d,L] = 0 and d[6, L] = dd¢. Similarly [5d, L=
dcd, S0 » ={.
L? is the Riemannian transpose of L, and in this setting A* = A, so [A,LY] = 0. O

We will now use the above to prove Hard Lefshetz
Takef
H=@H* H=kerA:qk_qF
k

By c;'.he results above # is invariant under L, Lt and A = [L,L*]. So ¥ is a finite-dimensional SL(2,R)
module.

We prove for SL(2, R) modules that L* : "% — Hn+¥ i bijective.

In the Kachler case we get the following diagram

Hr—k _L"'__,,._ etk

oL

HpH(X) — HpHk(X)

where vc = [w*] Ae.
Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So +y* is bijective,
which is strong Lefshetz.

Lecture
Lemma. d,dC anti-commute

Proof. Write d = 8 + 8, where & : (79 Qrtle g . e Opatl, Now, d€ = J-1dJ = J-187 + J-15].
Take & € 279 then

D
J S =# 1] 190 = —_—’—aa = —ido

iptl—g
15 e =
J o = "'z;_(q—_'_l)aﬂ = ifa
So d° = —i(d ~ 8), so d®, d anti-commute because &+ 3 and 8 = J anti-commute. O

Now, some more Hodge Theory. _
Take the identity d© = [6, L] and decompose into its homogeneous components, by using d° = —i(8— 3).
Then 8% : QP4 — P19, 3" : P9 s QP21 then § = gt = &t +3. S0 d€ = (8, L] because
~i(8 - ) = [¢*, L] + @', L]
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and by matching degrees we get
B=[0,0 -08=[31]
We'll play around with these identities for a little while.
We already know that 62 = 3" = 88+ 58 = 0. And so 04?2 = @)% = 59 + 38 = 0. Bracket these
with L and we get
0= [(8"?% L] = [8,L]&" + 64[0*, L} = iD&" + 8t(i8)

so _

B0 + 88 =0
Similarly, from 0 = [(3°)2, L] we get

88+08 =0
Lemma. The above identities smply the following

A=Az + Ay
Proof.

A =dd* + d'd

=@+ +3)+ (8 + TN+ D)
=As+ A+ (00 +60) + (85 +5'0)

Now since 83" + 8’6 = 0 and we get
0=+ 53", L
=[8'3", L) + @', L]
=@, L)+ 8%, LIF + 318", L) + 7, L)
= —i(8'0 — 39") — i( 98" — B'D)
And we get 89 + 88 — 30— 90 =0, ie.
Ap—Az=0

But since A = Ag 4 Ag, Ag = Ag = %A.
“This has some really neat applications”

Neat Applications

Ag is the Laplace operator for the & complex

QLo —2 s il 2. ...

so it maps Q% to Q%7 which implies A : 5 — Q1

So H* = ker A : QF — QF is a direct such

W= @ 1o
i-Hizk

where Hb9 = HEN Q5.

We get a similar decomposition in cohomology

HYX,C)= @ H™(X)=ImH"I
t+3=k

where H"J = ker Az : "9 — 04, so H7 is the jth harmonic space for the Dolbeault complex.

So H*(X,C) — @ H (X).
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Chapter 6

Geometric Invariant Theory

Lecture 30

Lie Groups

Goof references for this material: Abraham-Marsden, Foundations of Mechanics (2nd edition) and Ana

Canas p. 128
Let G be a lie group. Denote by g the Lie algebra of G which is T.G, with the lie bracket operation.

Definition. The exponential is 2 map exp : § — G with the following properties
(a) R — G, t — exptv is a lie group homomorphism.

(b) ;
Eexptvmc,:veTeG:g
Example. G = GL(n,R) = {A € Myxn(R) [ det(A) # 0}. Then g = gi(n,R) = Myyn(R) and [A, B] =
AB — BA and .
exp 4 = Z %
Example. G a compact connected abelian Lie group. Then the lie algebra is g with [,] = 0. g is & vector

space, i.e. an abelian lie group in its own right. Then the exponential map exp : g — G is a surjective lie

group homomorphism.
Let Zg = kerexp be called the Group lattice of G, then G = g/Zg, by the first isomorphism theorem.

For instance, take G = (S1)® = T" then g = R", exp : R® — T™ is given by (1,...,,) — (e, ..., ¢itn).
Then Zg = 27Z™ and G = R® /27 Z"

Group actions
Let M be a manifold.
Definition. An action of G on M is a group homomorphism
T:G — Dif f(M)

where 7 is smooth if ev : G x M — M, (g,m) — 75(m) is smooth.
Definition. Then infinitesimal action of g on M

dr: g — Vect{M) VE P Uy
is given by

T{exptv) = exp(—tvy)
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Theorem. dr is a morphism of lie algebros.
Given p € M denote
Gp = {9 € G,74(p} = p}
This is the isotropy group of p of the stabilizer of p. Then
LieGp = {v € g | v (p) = 0}
Definition. The orbit of G through p is
Gop={n(p) | g€ G}

This is an immersed submanifold of M, and its tangent space is given by T,{G o p) = a/g,.
The orbit space of T is M/G = the set of all orbits, or equivalently M/ ~ where p,g € M and p ~ g iff

P = 1y5(g) for some g € G.
We can topologize this space, by the projection

T M—-M/G p—Gop
and define the topology of M/G by U C M/G is open if and only if 7~ 1(U) is open (i.e. assign M/ the
weakest topology that makes 7 continuous). This, however, can be a nasty topological space.

Example. M =R, G = (R, x). And 7 maps ¢ to multiplication by . Then M /G is composed of 3 points,
w(0), (1) and 7(—1), but the set {m(1),7(—1)} is not closed.

Definition. The action 7 is free if G, = {e} for all p (e the identity).

Definition. The action 7 is locally free if y = {0} for all p (this happens if and only if G), is discrete).
Definition. 7 is a proper action if the map G x M — M x M given by (g,m) — (m,7,(m)) is a proper
map.

%‘heorem. If T is free and proper then M/Gis a differentiable manifold and 7 : M — M /G is a smooth
bration. ‘

Proof. (Sketchi S a slice of a G-orbit through pie, S is a submanifold of M of codim = dim G, with
S0 Gop={p}, TpS ®TpG op=T,M. Its not hard to construct such slices.

Then look at the map G x § — M, (g,8) — 7,(s). This is locally a diffeomorphism at f{e,p) and group
invariance implies that it is locally a diffeornorphism on & x {p}. So it maps a neighborhood W of G x {p}
diffeomorphically onto an open set O C M.

- Properness insures that W = G x U, where (Up, 2y, . .. 1Zn) 8 a coordinate patch on S centered at p.

Let U = O/G > Uy and (U, z1,...,2,) is a coordinate patch on M/G.

We claim that any two such coordinate patches are compatible (Maybe add a figure here?) O

Definition. G is a complex Lie group if @ is a complex manifold and the group operations (g, k) — gh
and g — g~ ! are holomorphic.

Example. (a) G = GL(n,C) = {A € M,(C) | det A # 0}. And the lie algebra is M,(C) = gl(n,T).

(b) C*=C—{0}.

(c) Complex Tori. For instance T2 = (C*)".
Definition. An action 7 of & on M is holomorphic if

ev:GxM—-M
is holomorphic.
In particular for g € G, 75 : M — M is a biholomorphism and the G-orbits
Gop

are complex submanifolds of G.

Theorem. Ifr is free and proper the orbit space M/G is a complez manifold and the fibrationm : M — M/G
15 a holomorphic fiber mapping.

Proof. Imitate the proof above with S being a holomorphic slice of G o pat p. ]

76



Symplectic Manifolds and Hamiltonian G-actions

Let G be a connected Lie group and M, w a symplectic manifold. An action, 7 of G on M is symplectic if
Taw = w for all g,i.e. the 7, are symplectomorphisms.

Thus ifv e g
T{expiv)"w = w = exp(—tvy)*w

Then

4 exp(—tvpr)*w =Lyyw=0.
dt =0

This implies that
t{var)dw + di(vag)w = de{vprhw =0

80 Ly, w is closed.

Definition. 7 is a Hamiltonian action if for all v € g, t(vas ) is exact.

The Moment Map

Choose a basis v',...,v™ of g and let v},..., v}, be a dual basis of g*.
If 7 is hamiltonian then +(vi,)w = d¢*, where ¢! € C(M).

Definition. The map @ : M — g* defined by

=7 ¢y
is called the moment map
Remarks

(a) Note that for every v € g,
tlop)w =dg?  where ¢* = (&, v)

(b) & is only well defined up to an additive constant ¢ € g*.
(e) If M is compact one can normalize this constant by requiring that

AL
‘—' =
L¢m °

(d) Another normalization: If p € M®, ie. if G, = G, then one can require that phit(p) = 0 for
i=1,...,n, then ®(p} = 0.

Lecture 31

Properties of the moment map.
For v,w € g, we have

Lyp 6" = Loy (s(war)w) = el[var, waalw + e(wp) Loy w = s, win]Jo = dgl]

50
Loy 8" = 6" + constant

Definition. $ is equivariant if and only if
Loy ¢ = ¢!
Remark: For ¢ abelian, i.e. [,] = 0 we have that equivarience implies & invariance, i.e.
O(re(p)) = 2(p) Vp

Also, there is a derivative of the moment map d®, : T,M — g*.

i



Theorem. (a) Im(d®,) = g
(8) kerd®, = (T,G op)*.
Two parts:

Notation. The “1” in a) is the the set of all v € g with (v,I) = 0 for ! € Imd®,,.
The “L1” in b) is the symplectic L: The set of all w € T,M with wy(w,u) = 0 for u € T,G o p.

Proof. Recall that T,G op = {upr(p),v € a}. For every v € g and w € T, M we have
(%) (dDp(w),v} = dP}(w) = wp(var,w)

Hence if (*) = 0 for all w, then ¢(vps)wp =0, 50 var(p) = 0.
Similarly if (%) = 0 for all v, then w1T,Gop. d

6.0.5 De Rham Theory on Quotient Spaces
Let G be a connected Lie group, and 7 an action of G on M. Suppose 7 is free and proper. Then M/G is a

manifold and
T M—-M/G=B

is a fibration, whose fibers are the G-orbits.
Definition. A k-form w € O*(M) is basic if

(a) It is G-invariant, i.e. T;w =w forall g € G.

(b} fovm)w=0forallveg
Theorem. w is basic if end only if there exists ¢ v € Q¥(B) with w = m*v.

The proof will be given in a series of lemmas:

Lemma. Forpe M and ¢ = w(p) then sequence

0—=TpGop—t T,z 22 T,B
i3 exact.
Proof. w is a fibration and G o p is the fiber through p. N.B. T, o p = {war(p},v € g}. O

Lemma. If t{vapr)p, = 0 for all v € g there exists a vy € AX(T*B) with (dnp)* vy = pp

6.0.6 Symplectic Reduction

Assume G is compact, connected and (M,w) is a symplectic manifold. Let 7 be a Hamiltonian action of
G with moment map ® : M — g*. Assume 0 € g* is a regular value of @, i.e. for all p € $~1(0), d®, is
surjective. Then Z = ®~1{0) is a submanifold of M.

Proposition. Two things
{a) Z is G-tnvariant.
{b) The action of G on Z is locally free.

Proof. Z is G-invariant if and only if exptvar : Z — Z for all v € g if and onl if v (p) € T,Z, forall p € Z.
But v (p) € 152 if and only if d®;(var(p)) = 0 if and only if d} (vas(p)) = 0 for all w if and only if
Lyy@™(p) = 0 on Z if and only if ¢[*®I(p) = 0 at p. But p € &~1(0).
To prove that the G action is locally free: At p € Z, d®, : T, — g* is onto. So (Imd®,)t =g, = 0 if
and only if the G action is locally free at p. 0
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Assume G acts free on Z. Since G is compact it acts properly. And Z/G = M,eq is a C°° manifold.

Proposition. Leti: Z — M be inclusion and w: Z — Z/G = Myeqa. There exists a unique symplectic form
Wreg 0N Mreq with the property that t*w = 7*wy.4. So the orbit space has a god-given symplectic form.

Proof. = i*w, v € g, then t{vg)y = e*{t(vpr)w) = tdg? = 0, since ¢* = (0 on Z. Moreover, w G-invariaat
implies that ¢ is G-invariant. So we conclude that u is basic, i.e. g = T*wyed, With wreg € 3(Myea).
Check that this form is symplectic at p € M, 4, ¢ = 7(p),p € Z. Then

TGop CTpZ = ker(d®p) : Tp — ¢* = (TG op)*

But TyMyeq = TpZ/TpGop = (TpGop)t /(TG op) and we conclude that this is a symplectic vector space. [J

Lecture
First, some general Lie theory things. & a compact, connected Lie group. Let G¢ O G a complex Lie group.
Definition. G is the complexification of G if

(a) gc=Lie Gc =9®C

(b) The complex structure on 7,Gg is the standard complex structure on g ® C.

(c) exp : gc — G maps g into G.

(d) The map +/—1g x G — G defined by (w,g) — (expw)g is a diffecmorphism.

Take G = U(n). What is g? Let Hy, be the Hermitian matrices. If A € H,, then exp v—1t4 C U(n), so
g=+-1H,.

Exercise Show Gg = GL(n,C)

Hints:

(a) My(C) = Lie GL(n,C) = H, & +/—1H,, given by the decomposition
At At
. A+ A n A-A
2 2

A

{b) Polar decomposition theorem: For A € GL(n,C) then A = BC where B is positive definite, B € H"
and C € U(n).

(¢} exp : Hf — HPo 9 jg an jsomorphism. This maps a matrix with eigenvalues A; to a matrix with
eigenvalues e,

Example. Take & a compact, connected abelian Lie group. Then G = g/Zg and G¢ = g¢/Zg-
Let M be a Kaehler manifold, w & Kaehler form, and T a holomorphic action of G on M.
Definition. 7 is a Kaehler action if 7 |g is hamiltonian.
So we have a moment map ® : M — g* and for v € g we have vy a vector field on M, and
ofvpg)w = dop? ¢" = (B, v)

For p € M note that because M is Kaehler we have the addition bits of structure (By)p, (Bs)p, Jp on
=M.
Now take v € g, v/~1v = w € gc. From these we get corresponding vector fields vay, was.

Lemma. At everype M
wa (p) = Jp”M(p)

Proof. Consider € : G¢ — M, g ~ T,-1(p). This is a holomorphic map and (de), - gc — TpM is C-linear
and maps v, w into v (p), was(p). O
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Proposition. Ifv € g, w = v/—1v, ten the vector field wyy is the Riemannion gradient of ¢

Proof. Take pe M, v € T,M. Then
(Br)p(w, wn (p)) = Bs(v, Jywa (9)) = —Bs(v, var(p)) = 1(vns (p))wp(v) = dp(w)
QED Lo
Assume @ : M — g* is proper. Let Z = ®~1(0). Assume that G acts freely on Z. Then Z is a compact
submanifold of M. Then we can form the reduction Meg=2

Consider G¢ x Z — M given by (g,z) — 7¢(2). Let M, be the image of this map. Note that G¢ is a
subset of M.

Theorem (Main Theorem). { (a} My is an open Ge-invariant subset of M.
(t) Gg acts freely and properly on M.
(c) Every Gc orbit in My, intersects Z in a unique G-orbit,
(d} Hence My/Ge = Z/G = Mypy.
(€) wyeq is Kaehler.
Proof. [
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