
18.101 Analysis II

Notes for part 2
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Lecture 1. ODE’s

Let U be an open subset of R
n and gi : U → R i = 1, . . . , n, C1 functions. The ODE’s

that we will be interested in in this section are n×n systems of first order differential
equations

(1.1)
dxi

dt
= gi(x1(t), . . . , xn(t)) , i = 1, . . . , n

where the xi(t)’s are C1 functions on an open interval, I, of the real line. We will call
x(t) = x1(t), . . . , xn(t) an integral curve of (1.1), and for the equation to make sense
we’ll require that this be a curve in U . We will also frequently rewrite (1.1) in the
more compact vector form

(1.2)
dx

dt
(t) = g(x(t))

where g = (g1, . . . , gn). The questions we’ll be investigating below are:

Existence. Let t0 be a point on the interval, I, and x0 to a point in U . Does
there exist an integral curve x(t) with prescribed initial data, x(t0) = x0?

Uniqueness. If x(t) and y(t) are integral curves and x(t0) = x0 = y0 = y(t0),
does x(t) = y(t) for all t ∈ I?

Today we’ll concentrate on the uniqueness issue and take up the more complicated
existence issue in the next lecture. We’ll begin by recalling a result which we proved
earlier in the semester.

Theorem 1.1. Suppose U is convex and the derivatives of g satisfy bounds

(1.3)

∣

∣

∣

∣

∂gi

∂xi

(x)

∣

∣

∣

∣

≤ C .

Then for all x and y in U

(1.4) |g(x) − g(y)| ≤ nC|x− y| .

Proof. To prove this it suffices to prove that for all i

|gi(x) − gi(y)| ≤ nC|x− y| .

By the mean value theorem there exists a point, c, on the line joining x to y such
that

gi(x) − gi(y) = Dgi(c)(x− y)

hence
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|gi(x) − gi(y)| ≤ n|Dgi(c)|(x− y)

and hence by (1.3)

|gi(x) − gi(y)| ≤ nC|x− y| .

Remark. It is easy to rewrite this inequality with sup norms replaced by
Euclidean norms. Namely

‖g(x) − g(y)‖ ≤ n|g(x) − g(y)|

and |x− y| ≤ ‖x− y‖. Hence by (1.4):

(1.5) ‖g(x) − g(y)‖ ≤ L‖y − x‖

where L = n2C. We will use this estimate to prove the following.

Theorem 1.2. Let x(t) and y(t) be two solutions of (1.2) and let t0 be a point on
the interval I. Then for all t ∈ I

(1.6) ‖x(t) − y(t)‖ ≤ eL|t−t0|‖x(t0) − g(t0)‖ .

Remarks.

1. This result says in particular that if x(t0) = y(t0) then x(t) = y(t) and hence
proves the uniqueness assertion that we stated above.

2. Let I1 be a bounded subinterval of I. Then from (1.6) one easily deduces

Theorem 1.3. For every ε > 0 there exists a δ > 0 such that if ‖x(t0) − y(t0)‖ is
less than δ, then ‖x(t) − y(t)‖ is less than ε on the interval, t ∈ I1.

In other words the solution, x(t), depends continuously on the initial data,
x0 = x(t0).

To prove Theorem 1.2 we need the following 1 −D calculus lemma.

Lemma 1.4. Let σ : I → R be a C1 function. Suppose

(1.7)

∣

∣

∣

∣

dσ

dt

∣

∣

∣

∣

≤ 2Lσ(t)

on the interval I. Let t0 be a fixed point on this interval. Then for all t ∈ I

(1.8) σ(t) ≤ e2L|t−t0|σ(t0) .
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Proof. First assume that t > t0. Differentiating σ(t)e−2Lt we get

d

dt
σ(t)e−2Lt =

dσ

dt
e−2Lt − 2Lσ(t)e−2Lt

=

(

dσ

dt
− 2Lσ(t)

)

e−2Lt .

But the estimate (1.6) implies that the right hand is less than or equal to zero so
σ(t)e−2Lt is decreasing, i.e.

σ(t0)e
−2Lt0 ≥ σ(t)e−2Lt .

Hence
σ(t0)e

2L(t−t0) ≥ σ(t) .

Suppose now that t < t0. Let I1 be the interval: s ∈ I1 ⇔ −s ∈ I and let σ1 : I1 → R

be the function σ(s) = σ(−s). Then

dσ1

ds
(s) = −

dσ

ds
(−s) ≤ 2Lσ(−s) = 2Lσ1(s) .

Thus with s0 = −t0
σ1(s) ≤ e2L(s−s0)σ1(s0)

for s > s0. Thus if we substitute −t for s this inequality becomes:

σ(t) ≤ e2L|t−t0|σ(t0)

for t < t0. Q.E.D.

We’ll now prove Theorem 1.2.
Let

σ(t) = ‖x(t) − y(t)‖2

= (x(t) − y(t)) · (x(t) − y(t)) .

Then

dσ

dt
= 2

(

dx

dt
−
dy

dt

)

· (x(t) − y(t))

= 2g(x(t)) − g(y(t)) · (x(t) − y(t))

so
∣

∣

∣

∣

dσ

dt

∣

∣

∣

∣

≤ 2‖g(x(t)) − g(y(t))‖ ‖x(t) − y(t)‖

≤ 2L‖x(t) − y(t)‖ ‖x(t) − y(t)‖

≤ 2Lσ(t)

by Schwarz’s inequality and the estimate, (1.5). Now apply Lemma 1.4.
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We’ll conclude this section by pointing out a couple obvious but useful facts about
solutions of (1.2).

Fact 1. If x(t) is a solution of (1.2) on the interval I and a is any point on the
real line then x(t− a) is a solution of (1.2) on the interval Ia = {t ∈ R , t+ a ∈ I}.

Proof. Substitute x(t−a) for x(t) in (1.2) and note that
d

dt
(x(t− a)) =

dx

dt
(t− a).

Fact 2. Let I and J be open intervals on the real line and x(t), t ∈ I, and y(t),
t ∈ J , integral curves of (1.2). Suppose that for some t0 ∈ I ∩ J , x(t0) = y(t0). Then

(1.9) x(t) = y(t) on I ∩ J ,

and the curve

(1.10) z(t) =

{

x(t), t ∈ I
y(t), t ∈ J

is an integral curve of (1.2) on the interval I ∪ J .

Proof. Our uniqueness result implies (1.7) and since x(t) and y(t) are C1 curves
which coincide on I ∩ J the curve (1.10) is C1. Moreover since it satisfies (1.2) on I
and J is satisfies (1.2) on I ∪ J .

Exercises.

1. a. Describe all solutions of the system of first order ODEs.

dx1

dt
(t) = x2(t)(I)

dx2

dt
(t) = −x1(t)

on the interval −∞ < t <∞.

Hint: Show that x1(t) and x2(t) have to satisfy the second order ODE

(II)
d2u

dt
(t) + u(t) = 0 .

b. Conversely show that if u(t) is a solution of this equation, then setting
x1(t) = u(t) and x2(t) = du

dt
we get a solution of (A).

2. Let F : R
n → R be a C1 function and let u(t) ∈ Ck(R) be a solution of the kth

order ODE

(1.11)
dku

dtk
= F

(

u,
du

dt
, · · · ,

dk−1u

dtk−1

)

.
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Show that if one sets

x1(t) = u(t)

x2(t) =
du

dt
(1.12)

· · ·

xk(t) =
dk−1u

dt
.

These functions satisfy the k × k systems of first order ODEs

dx1

dt
= x2(t)

dx2

dt
= x1(t)(1.13)

· · ·

dxk

dt
= F (x1(t), . . . , xk(t)) .

Conversely show that any solution of (1.13) can be converted into a solution of
(1.11) with the properties (1.12).

3. Let H(x, y) be a C2 function on R
2 and let (x(t), y(t)) be a solution of the

Hamilton-Jacobi equations

dx

dt
=

∂

∂y
H(x(t), y(t))(1.14)

dy

dt
= −

∂

∂x
H(x(t), y(t)) .

Show that the function, H, is constant along the integral curve (1.13).

4. Describe all solutions of (1.14) for the harmonic oscillatory Hamiltonian:

H(x, y) = x2 + y2 .

5. Let H(x, y) = y2

2m
+ V (x) where V is in C∞(R). Show that every solution of

(1.14) gives rise to a solution of Newton’s equation

m
d2x

dt2
= −

dV

dx
(x(t))

where m is mass, d2x
dt2

is acceleration and V is potential energy.
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6. Show that the functions

F (x, y, z) = x+ y + z

and

G(x, y, z) = x2 + y2 + z2

are integrals is the system of equations

dx

dt
= y − z

dy

dt
= z − x(III)

dz

dt
= x− y

i.e., on any solution curve (x(t), y(t), z(t)) these functions are constant. Inter-
pret this result geometrically

Lecture 2. The Picard theorem

Our goal in this lecture will be to prove a local existence theorem for the system
of OED’s (1.1). In the course of the proof we will need the following 1-D integral
calculus result. Let x(t) ∈ R

n, a ≤ t ≤ b, be a continuous curve. Then

(2.2)

∣

∣

∣

∣

∫ b

a

x(t) dt

∣

∣

∣

∣

≤

∫ b

a

|x(t)| dt .

Proof. Since |x(t)| = sup |xi(t)|, 1 ≤ i ≤ n, it suffices to prove
∣

∣

∣

∣

∫ b

a

xi(t) dt

∣

∣

∣

∣

≤

∫ b

a

|x1(t)| dt

and for the proof of this see §13 in Munkres.

Now let U be an open subset of R
n and g : U → R

n a C1 map. Given a point
x0 ∈ U we will let Bε(p0) be the closed rectangle: |x−x0| ≤ ε. For ε sufficiently small
this rectangle is contained in U . Let M = sup{|g(x)|, x ∈ Bε(x0)} and let

(2.3) 0 < T <
ε

M
.

We will prove
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Theorem 2.1. There exists an integral curve, x(t), −T ≤ t ≤ T of (1.2) with
x(t) ∈ Bε(x0) and x(0) = x0.

The proof will be by a procedure known as Picard iteration. Given a C1 curve
x(t), −T ≤ t ≤ T on the rectangle Bε(x0) we will define its Picard iterate to be the
curve

(2.4) x̃(t) = x0 +

∫ t

0

g(x(s)) ds .

The estimates (2.2) and (2.3) imply that

(2.5) |x̃(t) − x0| ≤

∫ t

0

|g(x(s))| ds ≤M |t| ≤ ε

for |t| ≤ T so this curve is well-defined on the interval −T ≤ t ≤ T and is also
contained in Bε(x0). Let’s now define by induction a sequence of curves xk(t), −T ≤
t ≤ T , by letting x0(t) be the constant curve x(t) = x0 and letting

(2.6) xk(t) = x0 +

∫ t

0

g(x(s)) ds,−T ≤ t ≤ T

(i.e., by letting xk(t) be the Picard iterate of xk−1(t)). We will prove below that these
curves converge to a solution curve of (1.2). To prove this we’ll need estimates for
|xk(t) − xk−1(t)|. Let

C = sup
i,j

∣

∣

∣

∣

∂gi

∂xj

∣

∣

∣

∣

, x ∈ Bε(x0)

then by (1.4) one has the estimate

(2.7) |g(x) − g(y)| ≤ L|x− y|

for x and y in Bε(x0) where L = nC. We will show by induction that

(2.6k) |xk(t) − xk−1(t)| ≤
MLk−1|t|k

k!
.

Proof. To get the induction started observe that

x1(t) = x0 +

∫ t

0

g(x0) ds = x0 + tg(x0)

so
|x1(t) − x0(t)| = |x1(t) − x0| ≤ |t|M .

Let’s now prove that (2.6)k−1 implies (2.6)k. By (2.5)

(2.6k) xk(t) − xk−1(t) =

∫ t

0

(g(xk−1(s)) − g(xk−2(s))) ds .
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Thus by (2.7) and (2.2) one has, for t > 0,

|xk(t) − xk−1(t)| ≤

∫ t

0

|g(xk−1(s)) − g(xk−2(s))| ds

≤ L

∫ t

0

|xk−1(s) − xk−2(s)| ds

and hence by (2.6)k

|xk(t) − xk−1(t)| ≤ Lk−1

∫ t

0

sk−1

(k − 1)!
ds

≤
Lk−1tk

k!

and with a change of sign the same argument works for t < 0.

We’ll next show that as k tends to infinity xk(t) converges uniformly on the inter-
val, −T ≤ t ≤ T . To see this, note that the series

∞
∑

0

|xi(t) − xi−1(t)|

is majorized by the series
1

L

∑ Lk|t|k

k!
=

1

L
eL|t| .

Hence the partial sums

xk(t) =
k
∑

i=0

xi(t) − xi−1(t)

of the series,
∑∞

i=0(xi+1(t) − xi(t)), converge uniformly to a continuous limit

x(t) = Lim k→∞ xk(t)

as claimed. Now note that since g is a continuous function of x we can let k tend to
infinity on both sides of (2.6), and this gives is in the limit the integral identity

(2.8) x(t) = x0 +

∫ t

0

g(x(s)) ds .

Moreover since x(t) is continuous the second term on the right is the anti-derivation
of a continuous function and hence is C1. Thus x(t) is C1, and we can differentiate
both sides of (2.8) to get

(2.9)
dx

dt
= g(x(t)) .
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Also, by (2.8), x(0) = x0, so this proves the assertion above: that x(t) = Lim xk(t)
satisfies (1.2) with initial data x(0) = x0. Q.E.D.

We’ll next show that we can, with very little effort, make a number of cosmetic
improvements on this result.

Remark 1. For any a ∈ R there exists a solution xa(t), −T + a ≤ t ≤ T + a of
(1.2) with x(a) = x0.

Proof. Replace the solution, x(t), that we’ve just constructed by xa(t) = x(t−a). As
was pointed out in Lecture 1, this is also a solution of (1.2).

Remark 2. If g is Ck the solution of (1.2) constructed above is Ck+1,

Proof. (by induction on k)
We’ve already observed that x(t) is C1 hence if g is C1 the second term on the right

hand side of (2.8) is the anti-derivative of a C1 function and hence is C2. Continue.

Remark 3. We have proved that if 0 < T < ε
M

there exists a solution, x(t),
−T ≤ t ≤ T of (1.2) with x(0) = x0 and x(t) ∈ Bε(x0).

We claim

Theorem 2.2. For every p ∈ Bε/2 (x0) there exists a solution

xp(t) , −I2 ≤ t ≤ T/2

of (1.2) with xp(0) = p and x(t) ∈ Bε(x0).

Proof. In Theorem 2.1 replace x0 by p and ε by ε/2 to conclude that there exists a
solution xp(t), −T/2 ≤ t ≤ T/2 of (1.2) with xp(0) = p and xp(t) ∈ Bε/2(p). Now
note that if p is in Bε/2(x0) then Bε/2(p) is contained in Bε(x0).

Remark 4. We can convert Remark 3 into a slightly more global result. We
claim

Theorem 2.3. Let W be a compact subset of U . Then there exists a T > 0 such that
for every q ∈ W a solution xq(t), −T ≤ t ≤ T of (1.2) exists with xq(0) = q.

Proof. For each p ∈ W we can, by Theorem 2.2, find a neighborhood, Up, of p in U
and a Tp > 0 such that for every q ∈ Up, a solution, xq(t), −Tp ≤ t ≤ Tp, of (1.2)
exists with xq(0) = q. By compactness we can cover W by a finite number, Upi

,
i = 1, . . . , N of these Up’s. Now check that if we let T = minTpi

there exists for every
q ∈ W a solution xq(t), −T ≤ t ≤ T of (1.2) with xq(0) = q.
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We will conclude this section by making a global application of this result which
will play an important role later in this course when we study vector fields on mani-
folds and the flows they generate.

Definition 2.4. We will say that a sequence p1, p2, p3, . . . of points in U tends to
infinity in U if for every compact subset, W , of U there exists an i0 such that pi ∈
U −W for i > i0.

Now let x(t) ∈ U , 0 ≤ t < q be an integral curve of (1.2). We will say that x(t) is
a maximal integral curve if it can’t be extended to an integral curve, x(t), 0 ≤ t < b,
on a larger interval, b > a. We’ll prove

Theorem 2.5. If x(t), 0 ≤ t < a is a maximal integral curve of (1.2) then either

(a) a = +∞,

or

(b) There exists a sequence, ti ∈ [0, a), i = 1, 2, 3, . . . such that ti tends to a
and x(ti) tends to infinity in U as i tends to infinity.

Proof. We’ll prove: “if not (b) then (a)”. Suppose there exists a compact set W such
that x(t) is in W for all t < a. Let T be a positive number for which the hypotheses
of Theorem 2.3 hold (i.e., with the property that for every q ∈ W there exists an
integral curve, xq(t), −T ≤ t ≤ T for which xq(0) = q). Let q = x(a − T/2). Then
the curve,

y(t) = xq(t− (a− T/2)) , a− T ≤ t ≤ a +
T

2

is an integral curve with the property,

y(a− T/2) = x(a− T/2) = q ,

hence as we showed in Lecture 1

z(t) =

{

x(t), t < a
y(t), a− T < t < a+ T/2

is an integral curve extending x(t) to the interval 0 ≤ t < a+ T/2, contradicting the
maximality of x(t).

Remark 5. We will see later on that there are a lot of geometric criteria which
prevent scenario (b) from occurring and in these situations we’ll be able to conclude:
For every point, x0 ∈ U , there exists a solution, x(t), of (1.2) for 0 ≤ t < ∞ with
x(0) = x0.
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Exercises.

1. Consider the ODE

(I)
dx

dt
(t) = x(t) , x(t) ∈ R .

Construct a solution of (I) with x(0) = x0 by Picard iteration. Show that
the solution you get coincides with the solution of (I) obtained by elementary
calculus techniques, i.e., by differentiating e−tx(t).

2. Solve the 2 × 2 system of ODE’s

dx1

dt
= x2(t)(II)

dx2

dt
= −x1(t)

with (x1(0), x2(0)) = (a1, a2) by Picard iteration and show that the answer
coincides with the answer you obtained by more elementary means in Lecture 1,
Exercise 4.

3∗. Let A and X(t) be n× n matrices. Solve the matricial ODE

dX

dt
(t) = AX(t) ,

with X(0) = Identity, by Picard iteration.

4. Let x(t) ∈ U , a < t < b be an integral curve of (1.2). We’ll call x(t) a
maximal integral curve if it can’t be extended to a larger interval.

(a) Show that if x(t) is a maximal integral curve and a > −∞ then there
exists a sequence of points, si, i = 1, 2, 3, . . ., on the interval (a, b) such
that Lim si = a and x(si) tends to infinity in U as i tends to infinity.

(b) Show that if x(t) is a maximal integral curve and b < +∞ then there
exists a sequence of points, ti, i = 1, 2, 3, . . ., on the interval (a, b) such
that Lim ti = b and x(ti) tends to infinity in U as i tends to infinity.

5. Show that every integral curve, x(t), t ∈ I, of (1.2) can be extended to a
maximal integral curve of (1.2). Hint: Let J be the union of the set of open
intervals, I ′ ⊃ I to which x(t) can be extended. Show that x(t) can be extended
to J .
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6. Let g : U → R
n be the function on the right hand side of (1.2). Show that if

g(x0) = 0 at some point x0 ∈ U the constant curve

x(t) = x0 , −∞ < t <∞

is the (unique) solution of (1.2) with x(0) = x0.

7. Suppose g : X → R
n is compactly supported, i.e., supppose there exists a

compact set, W , such that for x0 /∈ W , g(x0) = 0. Prove that for every x0 ∈ U
there exists an integral curve, x(t), −∞ < t < +∞, with x(0) = x0. Hint:
Exercises 5 and 6.

Lecture 3. Flows

Let U be an open subset of R
n and g : U → R

n a C1 function. We showed in lecture 2
that given a point, p0 ∈ U , there exists an ε > 0 and a neighborhood, V of p0 in U
such that for every p ∈ V one has an integral curve, x(p, t), −ε < t < ε of the system
of equation (1.2) with x(p, 0) = p. We also showed that the map, (p, t) → x(p, t) is a
continuous map of V × (−ε, ε) into U . What we will show in this lecture is that if g is
Ck, k > 1, then this map is a Ck+1 map of V × (−ε, ε) into U . The idea of the proof
is to assume for the moment that this assertion is true and see what its implications
are.

The details: Fix 1 ≤ j ≤ n and let

y(p, t) =
∂x

∂pj
(p, t) =

(

∂x1

∂pj
, · · · ,

∂xn

∂pj

)

.

Then

d

dt
y(p, t) =

d

dt

∂

∂pj
x(p, t)

=
∂

∂pj

d

dt
x(p, t)

=
∂

∂pj

g(x(p, t))

=
∑

k

∂g

∂xk

(x(p, t))
∂xk

∂pj

= h(x(t), y(t))

where

(3.1) h(x, y, t) =
∑ ∂g

∂xk

(x, t)yk .
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This gives us, for each j, the (2n× 2n) first order system of ODE’s

dx

dt
(p, t) = g(x(p, t))(3.2)

dy

dt
(p, t) = h(x(t), y(t))

with initial data

(3.3) x(p, 0) = p , y(p, 0) =
∂x

∂pj

(p, 0) = ej

the ej’s being the standard basis vectors of R
n. Moreover, since g is Ck, h is, by (3.1),

Ck−1. Shrinking V and ε if necessary, we can, as in lecture 2, solve these equations by
Picard iteration. Starting with x0(p, t) = p and y0(p, t) = ej this generates a sequence

(xr(p, t), yr(p, t)) , r = 1, 2, 3, . . . ,

and we will prove

Lemma 3.1. If at stage r − 1

yr−1(p, t) =
∂

∂pj

xr−1(p, t)

then at stage r,

yr(p, t) =
∂

∂pj
xr(p, t) .

Proof. By Picard iteration

xr(p, t) = p+

∫ t

0

g(xr−1(s)) ds(3.4)

yr(p, t) = ej +

∫ t

0

h(xr−1(p, s), yr−1(p, s)) ds .

Thus

∂

∂pj
xr(p, t) = ej +

∫ t

0

Dg(xr−1(p, s)
∂

∂pj
xr−1(p, s)) ds

= ej +

∫ t

0

Dg(xr−1(p, s) , yr−1(p, s)) ds

= ej +

∫ t

0

h(xr−1(p, s) , yr−1(p, s)) ds

= yr(p, s) .

14



We showed in lecture 2 that the sequence (xr(p, t), yr(p, t)), r = 0, 1, . . ., converges
uniformly in V × (−ε, ε) to a solution (x, (p, t), y(p, t)) of (3.2). Moreover, we showed
in lecture 1 that this solution is continuous in (p, t). Let’s prove that x(p, t) is C1 in
(p, t) by proving

(3.5)
∂x

∂pj
(p, t) = y(p, t) .

Since ∂
∂pj
xr(p, t) = yr(p, t) this follows from our next result:

Lemma 3.2. Let U be an open subset of R
n and fr : U → R, r = 0, 1, . . . a sequence

of C1 functions. Suppose that fr(p) converges uniformly to a function f(p), and that
it’s jth derivative, ∂fr

∂pj
, converges uniformly to a function, hj(p). Then f is C1 and

(3.6)
∂f

∂pj

= hj(p) .

Proof. Since the convergence is uniform the functions, f and hj, are continuous.
Moreover for t small

fr(p+ tej) =

∫ t

0

d

ds
fr(p+ sej) ds

=

∫ t

0

∂fr

∂pj

(p+ sej) ds

and since the integrand on the right converges uniformly to hj and fr converges to f

f(p+ tej) =

∫ t

0

hj(p+ sej) ds

and differentiating with respect to t:

∂f

∂pj

(p) = hj(p) .

We’ll now prove that if g is Ck the solution, x(p, t), above of the systems of ODE:

(3.7)
dx

dt
(p, t) = g(x(p, t)) , x(p, 0) = p

depends Ck on p and t. The argument is bootstrapping argument: We’ve shown that
if g is C1, x(p, t) is a C1 function of p and t. This remark applies as well to the system
(3.2), with initial data (3.3). If g is Ck the function h, on the second line of (3.2)
is Ck−1 by (3.1), and hence for k > 1 the result we’ve just proved shows that the
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solution, (x(p, t), y(p, t)) of this equation is C1. However, since y(p, t) = ∂
∂pj
x(p, t).

This implies that, for k > 1, the solution, x(p, t), of (1.2) is a C2 function of (p, t).
However, this result is true as well for the system (3.2). Hence for k > 2 the solution
of this system is C2 in p, t and hence the corresponding solution of (1.2) is C3. One
can continue this line of argument and, by bootstrapping between (1.2) and (3.2),
conclude that if g is Ck, the solution, x(p, t), of (1.2) is Ck+1. Thus to summarize
we’ve proved

Theorem 3.3. Assume g : U → R
n is Ck. Then, given a point, p0 ∈ U , there exists

a neighborhood, V , of p0 in U and an ε > 0 such that

(a) for every p ∈ V , there is an integral curve, x(p, t), −ε < t < ε, of (1.2)
with x(p, 0) = p and

(b) the map

(p, t) ∈ V × (−ε, ε) → U , (p, t) → x(p, t)

is a Ck+1 map.

Let’s denote this map by F , i.e., set F (p, t) = x(p, t) and for each t ∈ (−ε, ε) let

(3.8) ft : V → U

be the map: ft(p) = F (p, t). We will call the family of maps, ft, −ε < t < ε the flow
generated by the system of equation (1.2) and leave for you to prove the following
two propositions.

Proposition 3.4. Let t be a point on the interval (−ε, ε) and let W be a neighborhood
of p0 in V with the property ft(W ) ⊂ V . Then for all |s| < ε− (t)

(3.9) fs ◦ ft = fs+t .

Proposition 3.5. In Proposition (3.4) let |t| be less than ε
2

and let Wt = ft(W ).
Then

(a) Wt is an open subset of V .

(b) ft : W → Wt is a Ck diffeomorphism.

(c) The map f−1
t : Wt → W is the restriction of f−t to Wt.

Exercises.

1. In the proof of Lemma 3.2 we quoted without proof the well-known theo-
rem:
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Theorem. Let U be an open subset of R
n and fr : U → R, r = 1, 2, . . ., a

sequence of continuous functions. If fr converges uniformly on U the function

f = Lim fr

is continuous.

Prove this.

2. Prove Proposition 3.4. Hint: For p ∈ W and q = ft(p) show that the
curve,

γ1(s) = fs(q) , −(ε− |t|) < s < ε− |t|

is an integral curve of the system (1.2) and that it coincides with the integral
curve

γ2(s) = fs+t(p) , −(ε− |t|) < s < e− |t| .

3. Prove Proposition 3.5.

Lecture 4. Vector fields

In this lecture we’ll reformulate the theorems about ODEs that we’ve been discussing
in the last few lectures in the language of vector fields.

First a few definitions. Given p ∈ R
n we define the tangent space to R

n at p to
be the set of pairs

(4.1) TpR
n = {(p, v)} ; v ∈ R

n .

The identification

(4.2) TpR
n → R

n , (p, v) → v

makes TpR
n into a vector space. More explicitly, for v, v1 and v2 ∈ R

n and λ ∈ R we
define the addition and scalar multiplication operations on TpR

n by the recipes

(p, v1) + (p, v2) = (p, v1 + v2)

and

λ(p, v) = (p, λv) .

Let U be an open subset of R
n and f : U → R

m a C1 map. We recall that the
derivative

Df(p) : R
n → R

m

17



of f at p is the linear map associated with the m× n matrix

[

∂fi

∂xj

(p)

]

.

It will be useful to have a “base-pointed” version of this definition as well. Namely,
if q = f(p) we will define

dfp : TpR
n → TqR

m

to be the map

(4.3) dfp(p, v) = (q,Df(p)v) .

It’s clear from the way we’ve defined vector space structures on TpR
n and TqR

m that
this map is linear.

Suppose that the image of f is contained in an open set, V , and suppose g : V →
R

k is a C1 map. Then the “base-pointed”” version of the chain rule asserts that

(4.4) dgq ◦ dfp = d(f ◦ g)p .

(This is just an alternative way of writing Dg(q)Df(p) = D(g ◦ f)(p).)
The basic objects of 3-dimensional vector calculus are vector fields, a vector field

being a function which attaches to each point, p, of R
3 a base-pointed arrow, (p,~v).

The n-dimensional generalization of this definition is straight-forward.

Definition 4.1. Let U be an open subset of R
n. A vector field on U is a function, v,

which assigns to each point, p, of U a vector v(p) in TpR
n.

Thus a vector field is a vector-valued function, but its value at p is an element of
a vector space, TpR

n that itself depends on p.
Some examples.

1. Given a fixed vector, v ∈ R
n, the function

(4.5) p ∈ R
n → (p, v)

is a vector field. Vector fields of this type are constant vector fields.

2. In particular let ei, i = 1, . . . , n, be the standard basis vectors of R
n. If v = ei

we will denote the vector field (4.5) by ∂/∂xi. (The reason for this “derivation
notation” will be explained below.)

3. Given a vector field on U and a function, f : U → R we’ll denote by fv the
vector field

p ∈ U → f(p)v(p) .
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4. Given vector fields v1 and v2 on U , we’ll denote by v1 + v2 the vector field

p ∈ U → v1(p) + v2(p) .

5. The vectors, (p, ei), i = 1, . . . , n, are a basis of TpR
n, so if v is a vector field

on U , v(p) can be written uniquely as a linear combination of these vectors
with real numbers, gi(p), i = 1, . . . , n, as coefficients. In other words, using the
notation in example 2 above, v can be written uniquely as a sum

(4.6) v =
n
∑

i=1

gi
∂

∂xi

where gi : U → R is the function, p→ gi(p).

We’ll say that v is a Ck vector field if the gi’s are in Ck(U).
A basic vector field operation is Lie differentiation. If f ∈ C1(U) we define Lvf

to be the function on U whose value at p is given by

(4.7) Df(p)v = Lvf(p)

where v(p) = (p, v) , v ∈ R
n. If v is the vector field (4.6) then

(4.8) Lvf =
∑

gi
∂

∂xi
f

(motivating our “derivation notation” for v).

Exercise.

Check that if fi ∈ C1(U), i = 1, 2, then

(4.9) Lv(f1f2) = f1Lvf2 + f1Lvf2 .

We now turn to the main object of this lecture: formulating the ODE results of
Lectures 1–3 in the language of vector fields.

Definition 4.2. A C1 curve γ : (a, b) → U is an integral curve of v if for all a < t < b
and p = γ(t)

(

p,
dγ

dt
(t)

)

= v(p)

i.e.., if v is the vector field (4.6) and g : U → R
n is the function (g1, . . . , gn) the

condition n for γ(t) to be an integral curve of v is that it satisfy the system of ODEs

(4.10)
dγ

dt
(t) = g(γ(t)) .
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Hence the ODE results of the previous three lectures, give us the following theo-
rems about integral curves.

Theorem 4.3 (Existence). Given a point p0 ∈ U and a ∈ R, there exists an interval
I = (a − T, a + T ), a neighborhood, U0, of p0 in U and for every p ∈ U0 an integral
curve, γp : I → U with γp(a) = p.

Theorem 4.4 (Uniqueness). Let γi : Ii → U , i = 1, 2, be integral curves. If a ∈ I1∩I2
and γ1(a) = γ2(a) then γ1 ≡ γ2 on I1 ∩ I2 and the curve γ : I1 ∪ I2 → U defined by

γ(t) =

{

γ1(t) , t ∈ I1

γ2(t) , t ∈ I2

is an integral curve.

Theorem 4.5 (Smooth dependence on initial data). Let v be a Ck+1-vector field, on
an open subset, V , of U , I ⊆ R an open interval, a ∈ I a point on this interval and
h : V × I → U a mapping with the properties:

(i) h(p, a) = p.

(ii) For all p ∈ V the curve

γp : I → U γp(t) = h(p, t)

is an integral curve of v. Then the mapping, h, is Ck.

Theorem 4.6. Let I = (a, b) and for c ∈ R let Ic = (a− c, b− c). Then if γ : I → U
is an integral curve, the reparameterized curve

(4.11) γc : Ic → U , γc(t) = γ(t+ c)

is an integral curve.

Finally we recall that a C1-function ϕ : U → R is an integral of the system (4.10)
if for every integral curve γ(t), the function t → ϕ(γ(t)) is constant. This is true if
and only if for all t and p = γ(t)

0 =
d

dt
ϕ(γ(t)) = (Dϕ)p

(

dγ

dt

)

= (Dϕ)p(v)

where (p, v) = v(p). But by (4.6) the term on the right is Lvϕ(p).
Hence we conclude

Theorem 4.7. ϕ ∈ C1(U) is an integral of the system (4.10) if and only if Lvϕ = 0.
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We’ll conclude this section by discussing a class of objects which are in some sense
“dual objects” to vector fields. For each p ∈ R

n let T ∗
p R

n be the dual vector space to
TpR

n, i.e., the space of all linear mappings, ` : TpR
n → R.

Definition 4.8. Let U be an open subset of R
n. A one-form on U is a function, ω,

which assigns to each point, p, of U a vector, ωp, in (TpR
n)∗.

Some examples:

1. Let f : U → R be a C1 function. Then for p ∈ U and c = f(p) one has a
linear map

(4.12) dfp : TpR
n → TcR

and by making the identification,

TcR = {c,R} = R

dfp can be regarded as a linear map from TpR
n to R, i.e., as an element of

(TpR
n)∗. Hence the assignment

(4.13) p ∈ U → dfp ∈ (TpR
n)∗

defines a one-form on U which we’ll denote by df .

2. Given a one-form ω and a function, ϕ : U → R we define ϕω to be the
one-form, p ∈ U → ϕ(p)ωp.

3. Give two one-forms ω1 and ω2 we define ω1 +ω2 to be the one-form, p ∈ U →
ω1(p) + ω2(p).

4. The one-forms dx1, . . . , dxn play a particularly important role. By (4.12)

(dxi)

(

∂

∂ij

)

p

= δij

i.e., equals 1 if i = j and zero if i 6= j. Thus (dx1)p, . . . , (dxn)p are the basis of
(T ∗

p R
n)∗ dual to the basis (∂/∂xi)p. Therefore, if ω is any one-form on U , ωp

can be written uniquely as a sum

ωp =
∑

fi(p)(dxi)p , fi(p) ∈ R

and ω can be written uniquely as a sum

ω =
∑

fi dxi

where fiU → R is the function, p→ fi(p).

21



Exercise.

Check that if f : U → R is a C1 function

df =
∑ ∂f

∂xi
dxi .

Problem set.

1. Let U be an open subset of R
n and let γ : [a, b] → U , t → (γ1(t), . . . , γn(t))

be a C1 curve. Given ω =
∑

fi dxi, define the line integral of ω over γ to be
the integral

∫

γ

ω =
n
∑

i=1

∫ b

a

fi(γ(t))
dγi

dt
dt .

Show that if ω = df for some f ∈ C∞(U)

∫

γ

ω = f(γ(b)) − f(γ(a)) .

In particular conclude that if γ is a closed curve, i.e., γ(a) = γ(b), this integral
is zero.

2. Let

ω =
x1 dx2 − x2 dx1

x2
1 + x2

2

and let γ : [0, 2π] → R
2 − {0} be the closed curve, t → (cos t, sin t). Compute

the line integral,
∫

γ
ω, and show that it’s not zero. Conclude that ω can’t be

“d” of a function, f ∈ C∞(R2 − {0}).

3. Let f be the function

f(x1, x2) =











arctan x2

x1
, x1 > 0

π
2
, x1 = 0 , x2 > 0

arctan x2

x1
+ π , x1 < 0

where, we recall: −π
2
< arctan t < π

2
. Show that this function is C∞ and that

df is the 1-form, ω, in the previous exercise. Why doesn’t this contradict what
you proved in this exercise?
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Lecture 5. Global properties of vector fields

Let U be an open subset of R
n and v a vector field on U . We’ll say that v is complete

if, for every p ∈ U , there exists an integral curve, γ : R → U with γ(0) = p, i.e., for
every p there exists an integral curve that starts at p and exists for all time. To see
what “completeness” involves, we recall that an integral curve

γ : [0, b) → U ,

with γ(0) = p, is called maximal if it can’t be extended to an interval [0, b′), b′ > b.
For such curves we showed that either

i. b = +∞
or

ii. |γ(t)| → +∞ as t→ b
or

iii. the limit set of
{γ(t) , 0 ≤ t, b}

contains points on BdU .

Hence if we can exclude ii. and iii. we’ll have shown that an integral curve with
γ(0) = p exists for all positive time. A simple criterion for excluding ii. and iii. is
the following.

Lemma 5.1. The scenarios ii. and iii. can’t happen if there exists a proper C1-
function, ϕ : U → R with Lvϕ = 0.

Proof. Lvϕ = 0 implies that ϕ is constant on γ(t), but if ϕ(p) = c this implies that
the curve, γ(t), lies on the compact subset, ϕ−1(c), of U ; hence it can’t “run off to
infinity” as in scenario ii. or “run off the boundary” as in scenario iii.

Applying a similar argument to the interval (−b, 0] we conclude:

Theorem 5.2. Suppose there exists a proper C1-function, ϕ : U → R with the
property Lvϕ = 0. Then v is complete.

Example.

Let U = R
2 and let v be the vector field

v = x3 ∂

∂y
− y

∂

∂x
.
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Then ϕ(x, y) = 2y2 + x4 is a proper function with the property above.
If v is complete then for every p, one has an integral curve, γp : R → U with

γp(0) = p, so one can, as in Lecture 3, define a map

ft : U → U

by setting ft(p) = γp(t). If v is Ck+1, this mapping is Ck by the smooth dependence on
initial data theorem, and by definition f0 is the identity map, i.e., f0(p) = γp(0) = p.
We claim that the ft’s also have the property

(5.1) ft ◦ fa = ft+a .

Indeed if fa(p) = q, then by the reparameterization theorem, γq(t) and γp(t + a) are
both integral curves of v, and since q = γq(0) = γp(a) = fa(p), they have the same
initial point, so

γq(t) = ft(q) = (ft ◦ fa)(p)

= γp(t+ a) = ft+a(p)

for all t. Since f0 is the identity it follows from (5.1) that ft ◦ f−t is the identity, i.e.,

f−t = f−1
t ,

so ft is a Ck diffeomorphism. Hence if v is complete it generates a “one-parameter
group”, ft, −∞ < t <∞, of Ck-diffeomorphisms.

For v not complete there is an analogous result, but it’s trickier to formulate
precisely. Roughly speaking v generates a one-parameter group of diffeomorphisms,
ft, but these diffeomorphisms are not defined on all of U nor for all values of t.
Moreover, the identity (5.1) only holds on the open subset of U where both sides are
well-defined. (See Lecture 3.)

I’ll devote the second half of this lecture to discussing some properties of vector
fields which we will need to extend the notion of “vector field” to manifolds. Let U
and W be open subsets of R

n and R
m, respectively, and let f : U → W be a Ck+1

map. If v is a Ck-vector field on U and w a Ck-vector field on W we will say that v
and w are “f -related” if, for all p ∈ U and q = f(p)

(5.2) dfp(vp) = wq .

Writing

v =

n
∑

i=1

vi
∂

∂xi
, vi ∈ Ck(U)

and
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w =

m
∑

j=1

wj
∂

∂yj
, wj ∈ Ck(V )

this equation reduces, in coordinates, to the equation

(5.3) wi(q) =
∑ ∂fi

∂xj
(p)vj(p) .

In particular, if m = n and f is a Ck+1 diffeomorphism, the formula (5.3) defines a
Ck-vector field on V , i.e.,

w =

n
∑

j=1

wi
∂

∂yj

is the vector field defined by the equation

(5.4) wi(y) =

n
∑

j=1

(

∂fi

∂xj
vj

)

◦ f−1 .

Hence we’ve proved

Theorem 5.3. If f : U → V is a Ck+1 diffeomorphism and v a Ck-vector field on
U , there exists a unique Ck vector field, w, on W having the property that v and w
are f -related.

We’ll denote this vector field by f∗v and call it the push-forward of v by f .
I’ll leave the following assertions as easy exercises.

Theorem 5.4. Let Ui, i = 1, 2, be open subsets of R
ni , vi a vector field on Ui and

f : U1 → U2 a C1-map. If v1 and v2 are f -related, every integral curve

γ : I → U1

of v1 gets mapped by f onto an integral curve, f ◦ γ : I → U2, of v2.

Corollary 5.5. Suppose v1 and v2 are complete. Let (fi)t : Ui → Ui, −∞ < t <∞, be
the one-parameter group of diffeomorphisms generated by vi. Then f ◦(f1)t = (f2)t◦f .

Theorem 5.6. Let Ui, i = 1, 2, 3, be open subsets of R
ni , vi a vector field on Ui

and fi : Ui → Ui+1, i = 1, 2 a C1-map. Suppose that, for i = 1, 2, vi and vi+1 are
fi-related. Then v1 and v3 are f2 ◦ f1-related.

In particular, if f1 and f2 are diffeomorphisms and v = v1

(f2)∗(f1)∗v = (f2 ◦ f1)∗v .
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The results we described above have “dual” analogues for one-forms. Namely,
let U and X be open subsets of R

n and R
m, respectively, and let f : U → V be a

Ck+1-map. Given a one-form, µ, on V onc can define a one-form, f ∗µ, on U by the
following method. For p ∈ U let q = f(p). By definition µ(q) is a linear map

(5.5) µ(q) : TqR
m → R

and by composing this map with the linear map

dfp : TpR
n → TqR

n

we get a linear map
µq ◦ dfp : TpR

n → R ,

i.e., an element µq ◦ dfp of T ∗
p R

n.

Definition 5.7. The one-form f ∗µ is the one-form defined by the map

p ∈ U → (µq ◦ dfp) ∈ T ∗
p R

n

where q = f(p).

Note that if ϕ : V → R is a C1-function and µ = dϕ then by (5.5)

µq ◦ dfp = dϕq ◦ dfp = d(ϕ ◦ f)p

i.e.,

(5.6) f ∗µ = dϕ ◦ f .

Problem set

1. Let U be an open subset of R
n, V an open subset of R

n and f : U → V a
Ck map. Given a function ϕ : V → R we’ll denote the composite function
ϕ ◦ f : U → R by f ∗ϕ.

(a) With this notation show that (5.6) can be rewritten

f ∗ dϕ = df ∗ϕ .(6’)
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(b) Let µ be the one-form

µ =

m
∑

i=1

ϕi dxi ϕi ∈ C∞(V )

on V . Show that if f = (f1, . . . , fm) then

f ∗µ =

m
∑

i=1

f ∗ϕi dfi .

(c) Show that if µ is Ck and f is Ck+1, f ∗µ is Ck.

2. Let v be a complete vector field on U and ft : U → U , the one parameter group
of diffeomorphisms generated by v. Show that if ϕ ∈ C1(U)

Lvϕ =

(

d

dt
f ∗

t ϕ

)

t=0

.

3. (a) Let U = R
2 and let v be the vector field, x1∂/∂x2 − x2∂/∂x1. Show that

the curve
t ∈ R → (r cos(t+ θ) , r sin(t+ θ))

is the unique integral curve of v passing through the point, (r cos θ, r sin θ),
at t = 0.

(b) Let U = R
n and let v be the constant vector field:

∑

ci∂/∂xi. Show that
the curve

t ∈ R → a+ t(c1, . . . , cn)

is the unique integral curve of v passing through a ∈ R
n at t = 0.

(c) Let U = R
n and let v be the vector field,

∑

xi∂/∂xi. Show that the curve

t ∈ R → et(a1, . . . , an)

is the unique integral curve of v passing through a at t = 0.

4. Let U be an open subset of R
n and F : U ×R → U a C∞ mapping. The family

of mappings
ft : U → U , ft(x) = F (x, t)

is said to be a one-parameter group of diffeomorphisms of U if f0 is the identity
map and fs ◦ ft = fs+t for all s and t. (Note that f−t = f−1

t , so each of the
ft’s is a diffeomorphism.) Show that the following are one-parameter groups of
diffeomorphisms:

(a) ft : R → R , ft(x) = x+ t
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(b) ft : R → R , ft(x) = etx

(c) ft : R
2 → R

2 , ft(x, y) = (cos t x− sin t y , sin t x + cos t y)

5. Let A : R
n → R

n be a linear mapping. Show that the series

exp tA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

converges and defines a one-parameter group of diffeomorphisms of R
n.

6. (a) What are the generators of the one-parameter groups in exercise 4?

(b) Show that the generator of the one-parameter group in exercise 5 is the
vector field

∑

ai,jxj
∂

∂xi

where [ai,j] is the defining matrix of A.

Lecture 6. Generalizations of the inverse function

theorem

In this lecture we will discuss two generalizations of the inverse function theorem.
We’ll begin by reviewing some linear algebra. Let

A : R
m → R

n

be a linear mapping and [ai,j] the n×m matrix associated with A. Then

At : R
n → R

m

is the linear mapping associated with the transpose matrix [aj,i]. For k < n we define
the canonical submersions

π : R
n → R

k

to be the map π(x1, . . . , xn) = (x1, . . . , xk) and the canonical immersion

ι : R
k → R

n

to be the map, ι(x1, . . . , xk) = (x1, . . . xk, 0, . . . 0). We leave for you to check that
πt = ι.

Proposition 6.1. If A : R
n → R

k is onto, there exists a bijective linear map B :
R

n → R
n such that AB = π.
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We’ll leave the proof of this as an exercise.
Hint: Show that one can choose a basis, v1, . . . , vn of R

n such that

Avi = ei , i = 1, . . . , k

is the standard basis of R
k and

Avi = 0 , i > k .

Let e1, . . . , en be the standard basis of R
n and set Bei = vi.

Proposition 6.2. If A : R
k → R

n is one–one, there exists a bijective linear map
C : R

n → R
n such that CA = ι.

Proof. The rank of [ai,j] is equal to the rank of [aj,i], so if if A is one–one, there exists
a bijective linear map B : R

n → R
n such that AtB = π.

Letting C = Bt and taking transposes we get ι = πt = CB

Immersions and submersions

Let U be an open subset of R
n and f : U → R

k a C∞ map. f is a submersion at
p ∈ U if

Df(p) : R
n → R

k

is onto. Our first main result in this lecture is a non-linear version of Proposition 1.

Theorem 6.3 (Canonical submersion theorem). If f is a submersion at p and f(p) =
0, there exists a neighborhood, U0 of p in U , a neighborhood, V , of 0 in R

n and a C∞

diffeomorphism, g : (V,−0) → (U0, p) such that f ◦ g = π.

Proof. Let τp : R
n → R

n be the map, x→ x+p. Replacing f by f ◦τp we can assume
p = 0. Let A be the linear map

Df(0) : R
n → R

k .

By assumption this map is onto, so there exists a bijective linear map

B : R
n → R

n

such that AB = π. Replacing f by f ◦B we can assume that

Df(0) = π .

Let h : U → R
n be the map

h(x1, . . . , xn) = (f1(x), . . . , fk(x) , xk+1, . . . , xn)
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where the fi’s are the coordinate functions of f . I’ll leave for you to check that

Dh(0) = I(6.1)

and

π ◦ h = f .(6.2)

By (6.1) Dh(0) is bijective, so by the inverse function theorem h maps a neigh-
borhood, U0 of 0 in U diffeomorphically onto a neighborhood, V , of 0 in R

n. Letting
g = f−1 we get from (6.2) π = f ◦ g.

Our second main result is a non-linear version of Proposition 2. Let U be an open
neighborhood of 0 in R

k and f : U → R
n a C∞-map.

Theorem 6.4 (Canonical immersion theorem). If f is an immersion at 0, there
exists a neighborhood, V , of f(0) in R

n, a neighborhood, W , of 0 in R
n and a C∞-

diffeomorphism g : V →W such that ι−1(W ) ⊆ U and g ◦ f = ι.

Proof. Let p = f(0). Replacing f by τ−p ◦ f we can assume that f(0) = 0. Since
Df(0) : R

k → R
n is injective there exists a bijective linear map, B : R

n → R
n such

that BDf(0) = ι, so if we replace f by B ◦ f we can assume that Df(0) = ι. Let
` = n− k and let

h : U × R
` → R

n

be the map

h(x1, . . . , xn) = f(x1, . . . , xk) + (0, . . . , 0 xk+1, . . . , xn) .

I’ll leave for you to check that

Dh(0) = I(6.3)

and

h ◦ ι = f .(6.4)

By (6.3) Dh(0) is bijective, so by the inverse function theorem, h maps a neighbor-
hood, W , of 0 in U × R

` diffeomorphically onto a neighborhood, V , of 0 in R
n. Let

g : V →W be the inverse map. Then by (6.4), ι = g ◦ f .

Problem set

1. Prove Proposition 1.
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2. Prove Proposition 2.

3. Let f : R
3 → R

2 be the map

(x1, x2, x3) → (x2
1 − x2

2 , x
2
2 − x2

3) .

At what points p ∈ R
3 is f a submersion?

4. Let f : R
2 → R

3 be the map

(x1, x2) → (x1, x2 , x
2
1, x

2
2) .

At what points, p ∈ R
2, is f an immersion?

5. Let U and V be open subsets of R
m and R

n, respectively, and let f : U → V
and g : V → R

k be C1-maps. Prove that if f is a submersion at p ∈ U and g a
submersion at q = f(p) then g ◦ f is a submersion at p.

6. Let f and g be as in exercise 5. Suppose that g is a submersion at q. Show that
g ◦ f is a submersion at p if and only if

TqR
n = Image dfp + Kernel dgq ,

i.e., if and only if every vector, v ∈ TqR
n can be written as a sum, v = v1 + v2,

where v1 is in the image of dfp and dgq(v2) = 0.

Lecture 7. Manifolds

Let X be a subset of R
N , Y a subset of R

n and f : X → Y a continuous map. We
recall

Definition 7.1. f is a C∞ map if for every p ∈ X, there exists a neighborhood, Up,
of p in R

N and a C∞ map, gp : Up → R
n, which coincides with f on Up ∩X.

We also recall:

Theorem 7.2 (Munkres, §16,#3). If f : X → Y is a C∞ map, there exists a neigh-
borhood, U , of X in R

N and a C∞ map, g : U → R
n such that g coincides with f on

X.

We will say that f is a diffeomorphism if it is one–one and onto and f and f−1

are both diffeomorphisms. In particular if Y is an open subset of R
n, X is a simple

example of what we will call a manifold. More generally,

Definition 7.3. A subset, X, of R
N is an n-dimensional manifold if, for every p ∈

X, there exists a neighborhood, V , of p in R
m, an open subset, U , in R

n, and a
diffeomorphism ϕ : U → X ∩ V .
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Thus X is an n-dimensional manifold if, locally near every point p, X “looks like”
an open subset of R

n.
We’ll now describe how manifolds come up in concrete applications. Let U be an

open subset of R
N and f : U → R

k a C∞ map.

Definition 7.4. A point, a ∈ R
k, is a regular value of f if for every point, p ∈ f−1(a),

f is a submersion at p.

Note that for f to be a submersion at p, Df(p) : R
N → R

k has to be onto, and
hence k has to be less than or equal to N . Therefore this notion of “regular value” is
interesting only if N ≥ k.

Theorem 7.5. Let N − k = n. If a is a regular value of f , the set, X = f−1(a), is
an n-dimensional manifold.

Proof. Replacing f by τ−a ◦ f we can assume without loss of generality that a = 0.
Let p ∈ f−1(0). Since f is a submersion at p, the canonical submersion theorem tells
us that there exists a neighborhood, O, of 0 in R

N , a neighborhood, U0, of p in U
and a diffeomorphism, g : O → U0 such that

(7.1) f ◦ g = π

where π is the projection map

R
N = R

k × R
n → R

k , (x, y) → x .

Hence π−1(0) = {0}×R
n = R

n and by (7.1), g maps O∩π−1(0) diffeomorphically onto
U0∩f

−1(0). However, O∩π−1(0) is a neighborhood, V , of 0 in R
n and U0∩f

−1(0) is a
neighborhood of p inX, and, as remarked, these two neighborhoods are diffeomorphic.

Some examples:

1. The n-sphere. Let
f : R

n+1 → R

be the map,
(x1, . . . , xn+1) → x2

1 + · · · + x2
n+1 − 1 .

Then
Df(x) = 2(x1, . . . , xn+1)

so, if x 6= 0 f is a submersion at x. In particular f is a submersion at all points,
x, on the n-sphere

Sn = f−1(0)

so the n-sphere is an n-dimensional submanifold of R
n+1.
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2. Graphs. Let g : R
n → R

k be a C∞ map and let

X = graph g = {(x, y) ∈ R
n × R

k , y = g(x)} .

We claim that X is an n-dimensional submanifold of R
n+k = R

n × R
k.

Proof. Let
f : R

n × R
k → R

k

be the map, f(x, y) = y − g(x). Then

Df(x, y) = [−Dg(x) , Ik]

where Ik is the identity map of R
k onto itself. This map is always of rank k.

Hence graph g = f−1(0) is an n-dimensional submanifold of Rn+k.

3. Munkres, §24, #6. Let Mn be the set of all n × n matrices and let Sn be
the set of all symmetric n× n matrices, i.e., the set

Sn = {A ∈ Mn , A = At} .

The map
[ai,j] → (a11, a12, . . . , a1n, a2,1, . . . , a2n, . . .)

gives us an identification
Mn

∼= R
n2

and the map

[ai,j] → (a11, . . . a1n, a22, . . . a2n, a33, . . . a3n, . . .)

gives us an identification

Sn
∼= R

n(n+1)
2 .

(Note that if A is a symmetric matrix,

a12 = a21 , a13 = a13 = a31 , a32 = a23, etc.

so this map avoids redundancies.) Let

O(n) = {A ∈ Mn , A
tA = I} .

This is the set of orthogonal n×n matrices, and the exercise in Munkres requires
you to show that it’s an n(n− 1)/2-dimensional manifold.
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Hint: Let f : Mn → Sn be the map f(A) = AtA− I. Then

O(n) = f−1(0) .

These examples show that lots of interesting manifolds arise as zero sets of sub-
mersions, f : U → R

k. We’ll conclude this lecture by showing that locally every
manifold arises this way. More explicitly let X ⊆ R

N be an n-dimensional manifold,
p a point of X, U a neighborhood of 0 in R

n, V a neighborhood of p in R
N and

ϕ : (U, 0) → (V ∩ X, p) a diffeomorphism. We will for the moment think of ϕ as a
C∞ map ϕ : U → R

N whose image happens to lie in X.

Lemma 7.6. The linear map

Dϕ(0) : R
n → R

N

is injective.

Proof. ϕ−1 : V ∩ X → U is a diffeomorphism, so, shrinking V if necessary, we can
assume that there exists a C∞ map ψ : V → U which coincides with ϕ−1on V ∩ X
Since ϕ maps U onto V ∩X, ψ ◦ ϕ = ϕ−1 ◦ ϕ is the identity map on U . Therefore,

D(ψ ◦ ϕ)(0) = (Dψ)(p)Dϕ(0) = I

by the change rule, and hence if Dϕ(0)v = 0, it follows from this identity that v = 0.

Lemma 6 says that ϕ is an immersion at 0, so by the canonical immersion the-
orem there exists a neighborhood, U0, of 0 in U a neighborhood, Vp, of p in V , a
neighborhood, O, of 0 in R

N and a diffeomorphism

g : (Vp, p) → (O, 0)

such that

ι−1(O) = U0(7.2)

and

g ◦ ϕ = ι ,(7.3)

ι being, as in lecture 1, the canonical immersion

(7.4) ι(x1, . . . , xk) = (x1, . . . , xk, 0, . . . 0) .

By (7.3) g maps ϕ(U0) diffeomorphically onto ϕ(U0). However, by (7.2) and (7.3)
ι(U0) is the subset of O defined by the equations, xi = 0, i = n + 1, . . . , N . Hence if
g = (g1, . . . , gN) the set, ϕ(U0) = Vp ∩X is defined by the equations

(7.5) gi = 0 , i = n+ 1, . . . , N .
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Let ` = N − n, let
π : R

N = R
n × R

` → R
`

be the canonical submersion,

π(x1, . . . , xN) = (xn+1, . . . xN )

and let f = π ◦ g. Since g is a diffeomorphism, f is a submersion and (7.5) can be
interpreted as saying that

(7.6) Vp ∩X = f−1(0) .

A nice way of thinking about Theorem 2 is in terms of the coordinates of the
mapping, f . More specifically if f = (f1, . . . , fk) we can think of f−1(a) as being the
set of solutions of the system of equations

(7.7) fi(x) = ai , i = 1, . . . , k

and the condition that a be a regular value of f can be interpreted as saying that for
every solution, p, of this system of equations the vectors

(7.8) (dfi)p =
∑ ∂fi

∂xj
(0) dxj

in T ∗
p R

n are linearaly independent, i.e., the system (7.7) is an “independent system
of defining equations” for X.

Problem set

1. Show that the set of solutions of the system of equations

x2
1 + · · ·+ x2

n = 1

and

x1 + · · ·+ xn = 0

is an n− 2-dimensional submanifold of R
n.

2. Let Sn−1 be the n-sphere in R
n and let

Xq = {x ∈ Sn−1 , x1 + · · · + xn = 0} .

For what values of a is Xq an (n− 2)-dimensional submanifold of Sn−1?
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3. Show that if Xi, i = 1, 2, is an ni-dimensional submanifold of R
Ni then

X1 ×X2 ⊆ R
N1 × R

N2

is an (n1 + n2)-dimensional submanifold of R
N1 × R

N2.

4. Show that the set

X = {(x, v) ∈ Sn−1 × R
n , x · v = 0}

is a 2n−2-dimensional submanifold of R
n×R

n. (Here “x ·v” is the dot product,
∑

xivi.)

5. Let g : R
n → R

k be a C∞ map and let X = graph g. Prove directly that X is
an n-dimensional manifold by proving that the map

γ : R
n → X , x→ (x, g(x))

is a diffeomorphism.

8. Tangent spaces

We recall that a subset, X, of R
N is an n-dimensional manifold, if, for every p ∈

X, there exists an open set, U ⊆ R
n, a neighborhood, V , of p in R

N and a C∞-
diffeomorphism, ϕ : U → X ∩X.

Definition 8.1. We will call ϕ a parameterization of X at p.

Our goal in this lecture is to define the notion of the tangent space, TpX, to X at
p and describe some of its properties. Before giving our official definition we’ll discuss
some simple examples.

Example 1.

Let f : R → R be a C∞ function and let X = graphf .
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p0

X = graph f

x

l

Then in this figure above the tangent line, `, to X at p0 = (x0, y0) is defined by
the equation

y − y0 = a(x− x0)

where a = f ′(x0) In other words if p is a point on ` then p = p0+λv0 where v0 = (1, a)
and λ ∈ R

n. We would, however, like the tangent space to X at p0 to be a subspace of
the tangent space to R

2 at p0, i.e., to be the subspace of the space: Tp0R
2 = {p0}×R

2,
and this we’ll achieve by defining

Tp0X = {(p0, λv0) , λ ∈ R} .

Example 2.

Let S2 be the unit 2-sphere in R
3. The tangent plane to S2 at p0 is usually defined

to be the plane
{p0 + v ; v ∈ R

3 , v ⊥ p0} .

However, this tangent plane is easily converted into a subspace of TpR
3 via the map,

p0 + v → (p0, v) and the image of this map

{(p0, v) ; v ∈ R
3 , v ⊥ p0}

will be our definition of Tp0S
2.

Let’s now turn to the general definition. As above let X be an n-dimensional
submanifold of R

N , p a point of X, V a neighborhood of p in R
N , U an open set in

R
n and

ϕ : (U, q) → (X ∩ V, p)

a parameterization of X. We can think of ϕ as a C∞ map

ϕ : (U, q) → (V, p)
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whose image happens to lie in X ∩ V and we proved last time that its derivative at q

(8.1) (dϕ)q : TqR
n → TpR

N

is injective.

Definition 8.2. The tangent space, TpX, to X at p is the image of the linear
map (8.1). In other words, w ∈ TpR

N is in TpX if and only if w = dϕq(v) for
some v ∈ TqR

n. More succinctly,

(8.2) TpX = (dϕq)(TqR
n) .

(Since dϕq is injective this space is an n-dimensional vector subspace of TpR
N .)

One problem with this definition is that it appears to depend on the choice of ϕ.
To get around this problem, we’ll give an alternative definition of TpX. Last time we
showed that there exists a neighborhood, V , of p in R

N (which we can without loss
of generality take to be the same as V above) and a C∞ map

(8.3) f : (V, p) → (Rk, 0) , k = N − n ,

such that X ∩ V = f−1(0) and such that f is a submersion at all points of X ∩ V ,
and in particular at p. Thus

dfp : TpR
N → T0R

k

is surjective, and hence the kernel of dfp has dimension n. Our alternative definition
of TpX is

(8.4) TpX = kernel dfp .

The spaces (8.2) and (8.4) are both n-dimensional subspaces of TpR
N , and we

claim that these spaces are the same. (Notice that the definition (8.4) of TpX doesn’t
depend on ϕ, so if we can show that these spaces are the same, the definitions (8.2)
and (8.4) will depend neither on ϕ nor on f .)

Proof. Since ϕ(U) is contained in X ∩V and X ∩V is contained in f−1(0), f ◦ϕ = 0,
so by the chain rule

(8.5) dfp ◦ dfq = f(f ◦ ϕ)q = 0 .

Hence if v ∈ TpR
n and w = dϕq(v), dfp(w) = 0. This shows that the space (8.2)

is contained in the space (8.4). However, these two spaces are n-dimensional so the
coincide.

From the proof above one can extract a slightly stronger result:
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Theorem 8.3. Let W be an open subset of R
` and h : (W, q) → (RN , p) a C∞ map.

Suppose h(W ) is contained in X. Then the image of the map

dhq : TqR
` → TpR

N

is contained in TpX.

Proof. Let f be the map (8.3). We can assume without loss of generality that h(W )
is contained in V , and so, by assumption, h(W ) ⊆ X ∩ V . Therefore, as above,
f ◦ h = 0, and hence dhq(TqR

`) is contained in the kernel of dfp.

This result will enable us to define the derivative of a mapping between manifolds.
Explicitly: Let X be a submanifold of R

N , Y a submanifold of R
m and g : (X, p) →

(Y, y0) a C∞ map. By Theorem 1 there exists a neighborhood, O, of X in R
N and a

C∞ map, g̃ : O → R
m extending to g. We will define

(8.6) (dgp) : TpX → Ty0Y

to be the restriction of the map

(8.7) (dg̃)p : TpR
N → Ty0R

m

to TpX. There are two obvious problems with this definition:

1. Is the space
(dg̃p)(TpX)

contained in Ty0Y ?

2. Does the definition depend on g̃?

To show that the answer to 1. is yes and the answer to 2. is no, let

ϕ : (U, x0) → (X ∩ V, p)

be a parameterization of X, and let h = g̃ ◦ϕ. Since ϕ(U) ⊆ X, h(U) ⊆ Y and hence
by Theorem 2

dhx0(Tx0R
n) ⊆ Ty0Y .

But by the chain rule

(8.8) dhx0 = dg̃p ◦ dϕx0 ,

so by (8.2)

(dg̃p)(TpX) ⊆ TpY(8.9)

and
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(dg̃p)(TpX) = (dh)x0(Tx0R
n)(8.10)

Thus the answer to 1. is yes, and since h = g̃ ◦ ϕ = g ◦ ϕ, the answer to 2. is no.
From (8.5) and (8.6) one easily deduces

Theorem 8.4 (Chain rule for mappings between manifolds). Let Z be a submanifold
of R

` and ψ : (Y, y0) → (Z, z0) a C∞ map. Then dψq ◦ dgp = d(ψ ◦ g)p.

Problem set

1. What is the tangent space to the quadric, x2
n = x2

1 + · · · + x2
n−1, at the point,

(1, 0, . . . , 0, 1)?

2. Show that the tangent space to the (n − 1)-sphere, Sn−1, at p, is the space of
vectors, (p, v) ∈ TpR

n satisfying p · v = 0.

3. Let f : R
n → R

k be a C∞ map and let X = graphf . What is the tangent space
to X at (a, f(a))?

4. Let σ : Sn−1 → Sn−1 be the anti-podal map, σ(x) = −x. What is the derivative
of σ at p ∈ Sn−1?

5. Let Xi ⊆ R
Ni , i = 1, 2, be an ni-dimensional manifold and let pi ∈ Xi. Define

X to be the Cartesian product

X1 ×X2 ⊆ R
N1 × R

N2

and let p = (p1, p2). Describe TpX in terms of Tp1X1 and Tp2X2.

6. Let X ⊆ R
N be an n-dimensional manifold and ϕi : Ui → X∩Vi, i = 1, 2. From

these two parameterizations one gets an overlap diagram

(8.11) W1 W2

X ∩ V





�d1

J
JJ] d2

ψ -

where V = V1 ∩ V2, Wi = ϕ−1
i (X ∩ V ) and ψ = ϕ−1

2 ◦ ϕ1.
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(a) Let p ∈ X∩V and let qi = ϕ−1
i (p). Derive from the overlap diagram (8.10)

an overlap diagram of linear maps

(8.12) Tq1R
n Tq2R

n

TpR
N





�(dϕ1)q1 J

JĴ
(dϕ2)q2

(dψ)q1
-

(b) Use overlap diagrams to give another proof that TpX is intrinsically de-
fined.

9. Vector fields on manifolds

A vector field on an open subset, U , of R
n is a function, v, which assigns to each

point, p ∈ U , a vector, v(p)
∫

TpR
n. This definition makes perfectly good sense for

manifolds as well.

Definition 9.1. Let X ⊆ R
N be an n-dimensional manifold. A vector field on X is

a function, v, which assigns to each point, p ∈ X, a vector, v(p) ∈ TpX.

By definition, TpX is a vector subspace of TpR
N and since

TpR
n = {(p, v) , v ∈ R

N}

v(p) is an (n+ 1)-tuple
v(p) = (p, v1(p), . . . , vN(p)) .

Let
vi : X → R

be the function, p ∈ X → vi(p).

Definition 9.2. We will say that v is a C∞ vector field if the vi’s are C∞ functions.

Hence by Munkres, §16, exercise 3 we can find a neighborhood, U , of X in R
N

and functions, wi ∈ C∞(U) such that wi = vi on X. Let w be the vector field,

(9.1) w =
N
∑

i=1

wi
∂

∂xi

,

on U . This vector field has the property that for every p ∈ X, w(p) = v(p) and in
particular,

(9.2) w(p) ∈ TpX .

A vector field, w, on U with the property (9.2) for every p ∈ X is said to be
tangent to X, and we can summarize what we’ve shown above as the assertion:
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Theorem 9.3. If v is a C∞ vector field on X, then there exists a neighborhood, U ,
of X in R

N and a C∞ vector field, w, on U with the properties

i. w is tangent to X.

ii. w|X = v.

Given a vector field, v, on X there are often some particularly nice choices for
this extended vector field, w. For instance if X is compact then by choosing a bump
function, ρ ∈ C∞

0 (U) with ρ = 1 on a neighborhood of X, and replacing wi by ρwi

one can arrange that w be compactly supported. More generally we will say that the
vector field, v, is compactly supported if the set

supp v = {p ∈ X , v(p) 6= 0}

is compact. Suppose this is the case. Then by choosing the bump function ρ above
to be 1 on a neighborhood of supp v we can again arrange that the extension, w, of
v to U be compactly supported.

Another interesting choice of an extension is the following. Fix p ∈ X and let V
be a neighborhood of p in R

N and

(9.3) fi(x) = 0 , i + 1, . . . , k

an independent set of defining equations for X. (See lecture 2. Here k has to be
N − n and the fi’s have to be in C∞(V ).)

Proposition 9.4. There exists a vector field, w, on V such that v(q) = w(q) at
points, q ∈ X ∩ V and

(9.4) Lwfi = 0 i = 1, . . . , k .

Since the fi’s are independent the k ×N matrix
[

∂fi

∂xj
(p)

]

, i ≤ j ≤ k , 1 ≤ j ≤ N

is of rank k and hence some k × k minor of this matrix is of rank k. By permuting
the xi’s if necessary we can assume that the k × k matrix

(9.5)

[

∂fi

∂xj

(q)

]

, 1 ≤ i ≤ k , i ≤ j ≤ k

is of rank k at p = q, and hence (shrinking V if necessary) is of rank k for all
q ∈ V . Now let u be any vector field on V extending v and let gi = Lufi. Since the
matrix (9.5) is non-singular, the system of equations

(9.6)

k
∑

j=1

∂fi

∂xj
(q)aj(q) = gi(q)
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is solvable for the aj’s in terms of the gi’s, and the solutions depend on C∞ on q.
Moreover, if q ∈ X

gi(q) = (Lufi)(q) = (dfi)q(u(q)) = (dfi)q(v(q))

and since fi = 0 on X and vi(q) ∈ TqX, the right hand side of this equation is zero.
Thus the gi’s are zero on X and so, by (9.6), the ai’s are zero on X. Now let

w = u−
k
∑

j=1

aj
∂

∂xj

.

Since the ai’s are zero on X, w = u = v on X and by definition

Lwfi = Lufi −
∑ ∂fi

∂xj

aj = gi − gi = 0 .

Q.E.D.
We will now show how to generalize to manifolds a number of vector field re-

sults that we discussed in the Vector Field segment of these notes. To simplify the
statement of these results we will from now on assume that X is a closed subset of
R

N .

9.1 Integral curves

Let I be an open interval. A C∞ map, γ : I → X is an integral curve of v if, for all
t ∈ I and p = γ(t),

(9.7)

(

p ,
dγ

dt

)

= v(p) .

We will show in a moment that the basic existence and uniqueness theorems for
integral curves that we proved in Vector Fields, Lecture 1, are true as well for vector
fields on manifolds. First, however, an important observation.

Theorem 9.5. Let U be a neighborhood of X in R
N and u a vector field on U

extending v. Then if γ : I → U is an integral curve of u and γ(t0) = p0 ∈ X for some
t0 ∈ I, γ is an integral curve of v.

Proof. We will first of all show that γ(I) ⊆ X. To verify this we note that the set
{t ∈ I , γ(t) ∈ X} is a closed subset of X, so to show that it’s equal to I, it suffices
to show that it’s open. Suppose as above that t0 is in this set and γ(t0) = p0. Let V
be a neighborhood of p0 in R

N and (9.3) a system of defining equations for X ∩ V .
By Proposition 9.4 there exists a vertex field, w, on V extending v and satisfying the
equations

Lwfi = 0 , i = 1, . . . , k .
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However these equations say that the fi’s are integrals of the vector field w, so if

γ̃(t) , t0 − ε < t < t0 ,

is an integral curve of w with γ̃(t0) = p0 ∈ X then equations (9.3) are defining
equations for X ∩ V , so this tells us that γ̃(t) ∈ X for t0 − ε < t < t0 + ε, and, in
particular, if γ̃(t) = p,

(

p,
dγ̃(t)

dt

)

w(p) = v(p) = u(p) ,

so γ̃ is an integral curve of u and hence since γ̃(t0) = p0 = γ(t0), it has to coincide
with γ on the integral −ε + t0 < t < ε+ t0. This shows that the set of points

{t ∈ I , γ(t) ∈ X}

is open and hence is equal to I.
Finally, to conclude the proof of Theorem 3 we note that since γ(I) ⊆ X, it follows

that for any point t ∈ I and p = γ(t)

(

p,
dγ

dt

)

= w(p) = v(p)

since v = w on X and p ∈ X. Hence γ is an integral curve of v as claimed.

From the existence and uniqueness theorems for integral curves of w we obtain
similar theorems for v.

Theorem 9.6 (Existence). Given a point, p0 ∈ X and a ∈ R there exists an interval,
I = (a− T, a + T ), a neighborhood, U0, of p0 in X and, for every p ∈ U , an integral
curve, γp : I → X with γp(q) = p.

Theorem 9.7 (Uniqueness). Let γi : Ii → X i = 1, 2 be integral curves of v. Suppose
that for some a ∈ I, γ1(a) = γ2(a). Then γ1 = γ2 on I1 ∩ I2 and the curve, γ :
I1 ∪ I2 → X defined by

γ(t) =

{

γ1(t), t ∈ I1

γ2(t), t ∈ I2

is an integral curve of v.
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9.2 One parameter groups of diffeomorphisms

Suppose that v is compactly supported. Then, as we pointed out above, we can find a
neighborhood, U , of X and a vector field, w, on U which is also compactly supported
and extends v. Since w is compactly supported, it is complete, so for every p ∈ U
there exists an integral curve

(9.8) γp(t) , −∞ < t <∞

with γp(0) = 0, and the maps

gt : U → U , gt(p) = γp(t)

are a one-parameter group of diffeomorphisms. In particular if p ∈ X the curve (9.8)
is, as we’ve just shown, an integral curve of v and hence gt(p) = γp(t) ∈ X i.e.,

ft
def
= gt|X

is a C∞ map of X into X. Moreover, g−1
t = g−t, so f−1

t = f−t, so the ft’s are a one-
parameter group of diffeomorphisms of X with the defining property: For all p ∈ X
the curve

γp(t) = ft(p) , −∞ < t <∞

is the unique integral curve of v with γp(σ) = p. If X itself is compact then v is
automatically compactly supported so we’ve proved

Theorem 9.8. If X is compact, every vector field, v, is complete and generates a
one-parameter group of diffeomorphisms, ft.

9.3 Lie differentiation

Let ϕ : X → R be a C∞ function. As in Vector Fields, Lecture 1, we will define the
Lie derivative

(9.9) Lvϕ ∈ C∞(X)

by the recipe

(9.10) Lvϕ = dϕp(v(p))

at p ∈ X. (If U is an open neighborhood of X in R
N and w and ψ extensions of v and

ϕ to U then Lvϕ is the restriction of Lwψ to Xj, so this shows that (9.9) is indeed in
C∞(X).) If Lvϕ = 0 then ϕ is an integral of v and is constant along integral curves,
γ(t), of v as is clear from the identity

(9.11)
d

dt
ϕ(γ(t)) = Lvϕ(γ(t)) = 0 .
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The following we’ll leave as an exercise. Suppose v is complete and generates a
one-parameter group of diffeomorphisms

ft : X → X , −∞ < t <∞

then

(9.12) Lvϕ =
d

dt
f ∗

t ϕ|t=0

where f ∗
t ϕ = ϕ ◦ ft.

9.4 f-relatedness

Let X and Y be manifolds and f : X → Y a C∞ map. Given vector fields, v and w,
on X and Y , we’ll say they are f -related if, for every p ∈ X and q = f(p)

(9.13) dfp(v(p)) = w(q) .

For “f -relatedness” on manifolds one has analogues of the theorems we proved earlier
for open subsets of Euclidean space. In particular one has

Theorem 9.9. If γ : I → X is an integral curve of v, f ◦ γ : I → Y is an integral
curve of w.

Theorem 9.10. If v and w are generators of one-parameter groups of diffeomor-
phisms

ft : X → Y

and

gt : Y → Y

then gt ◦ f = f ◦ ft.

Theorem 9.11. If ϕ ∈ C∞(Y ) and f ∗ϕ ∈ C∞(X) is the function ϕ ◦ f ,

Dvf
∗ϕ = f ∗Dwϕ .

The proofs of these three results are, more or less verbatim, the same as before,
and we’ll leave them as exercises.

If X and Y are manifolds of the same dimension and f : X → Y is a diffeomor-
phism then, given a vector field, v, on X one can define, as we did before, a unique
f -related vector field, w, on Y by the formula

(9.14) w(q) = dfp(v(p))
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where p = f−1(q). We’ll denote this vector field by f∗v and, as before, call it the
push-forward of v by f . We’ll leave for you to show that if v is a C∞ vector field the
vector field defined by (9.14) is as well.

Our final exercise: Let Xi, i = 1, 2, 3 be manifolds, vi a vector field on Xi and
f : X1 → X2 and g : X2 → X3 C∞ maps. Prove

Theorem 9.12. If v1 and v2 are f -related and v2 and v3 are g-related, then v1 and
v3 are g ◦ f -related.

Hint: Chain rule.

Problem Set

1. Let X ⊆ R
3 be the paraboloid, x3 = x2

1 + x2
2 and let w be the vector field

w = x1
∂

∂x1

+ x2
∂

∂x2

+ ∂x3
∂

∂x3

.

(a) Show that w is tangent to X and hence defines by restriction a vector field,
v, on X.

(b) What are the integral curves of v?

2. Let S2 be the unit 2-sphere, x2
1 + x2

2 + x2
3 = 1, in R

3 and let w be the vector
field

w = x1
∂

∂x2

− x2
∂

∂x1

.

(a) Show that w is tangent to S2, and hence by restriction defines a vector
field, v, on S2.

(b) What are the integral curves of v?

3. As in problem 2 let S2 be the unit 2-sphere in R
3 and let w be the vector field

w =
∂

∂x3
− x3

(

x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)

(a) Show that w is tangent to S2 and hence by restriction defines a vector
field, v, on S2.

(b) What do its integral curves look like?

4. Let S1 be the unit sphere, x2
1 + x2

2 = 1, in R
2 and let X = S1 × S1 in R

4 with
defining equations

f1 = x2
1 + x2

2 − 1 = 0

f2 = x2
3 + x2

4 − 1 = 0 .
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(a) Show that the vector field

w = x1
∂

∂x2
− x2

∂

∂x1
+ λ

(

x4
∂

∂x3
− x3

∂

∂x4

)

,

λ ∈ R, is tangent to X and hence defines by restriction a vector field, v,
on X.

(b) What are the integral curves of v?

(c) Show that Lwfi = 0.

5. For the vector field, v, in problem 4, describe the one-parameter group of dif-
feomorphisms it generates.

6. Let X and v be as in problem 1 and let f : R
2 → X be the map, f(x1, x2) =

(x1, x2, x
2
1 + x2

2). Show that if u is the vector field,

u = x1
∂

∂x1
+ x2

∂

∂x2
,

then f∗u = v.

7. Verify (9.11).

8. Let X be a submanifold of X in R
N and let v and w be the vector fields on X

and U . Denoting by ι the inclusion map of X into U , show that v and w are
ι-related if and only if w is tangent to X and its restriction to X is v.

9. Verify that the vector field (9.14) is C∞.

10.* An elementary result in number theory asserts

Theorem. A number, λ ∈ R, is irrational if and only if the set

{m+ λn , m and n intgers}

is a dense subset of R.

Let v be the vector field in problem 4. Using the theorem above prove that if
λ/2π is irrational then for every integral curve, γ(t), −∞ < t <∞, of v the set
of points on this curve is a dense subset of X.
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Lecture 10. Integration on manifolds: algebraic

tools

To extend the theory of the Riemann integral from open subsets of R
n to manifolds

one needs some algebraic tools, and these will be the topic of this section. We’ll begin
by reformulating a few standard facts about determinants of n × n matrices in the
language of linear mappings.1

Let V be an n-dimensional vector space and u1, . . . , un a basis of V . Given a
linear mapping, A : V → V one gets a matrix description of A by setting

(10.1) Aui =
∑

aj,iuj i = 1, . . . , n .

Since A is linear, it is defined by these equalities and hence by the the n× n matrix,
A = [ai,j]. Moreover if A and B are linear mappings and A and B the matrices
defining them, the linear mapping, AB, is defined by the product matrix, C = AB,
where the entries of C are

(10.2) ci,j =

n
∑

k=1

aikbkj .

We will define the determinant of the linear mapping, A, to be the determinant of
its matrix, A. (This definition would appear, at first glance, to depend on our choice
of u1, . . . , un, but we’ll show in a minute that it doesn’t.) First, however, let’s note
that from the product law for determinants of matrices: detAB = detA detB, one
gets an analogous product law for determinants of linear mappings

(10.3) detAB = detA detB .

Let’s now choose another basis, v1, . . . , vn, of V and show that the definition of detA
for linear maps is the same regardless of whether the ui’s or vi’s are used as a basis
for V . Let L : V → V be the unique linear map with the property

(10.4) Lui = vi , i = 1, . . . , n

and L−1 the inverse map

(10.5) Lvi = ui , i = 1, . . . , n .

Setting B = LAL−1 we get from (10.1), (10.5) and (10.4):

Bvi = LAui = L
(

∑

aj,iuj

)

=
∑

aj,iLui =
∑

aj,ivj .

1A good reference for these standard facts is Munkres, §2.
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Thus detA is the determinant of B computed using the vi’s as a basis for V . However,
using the vi’s as a basis for V we get from the multiplicative law

detB = det(LAL−1)

= detL detA detL−1

= detL(detL)−1 detA

= detA .

Thus detA is also the determinant of A computed using the vi’s as a basis for V .
The proof above not only shows that detA is intrinsically defined but that it is

an invariant of “isomorphisms” of vector spaces.

Proposition 10.1. Let W be an n-dimensional vector space and L : V → W a
bijective linear map. Then detA = det(LAL−1).

One important property of determinant which we’ll need below is the following.

Proposition 10.2. A linear map A : V → V is onto if and only if detA 6= 0.

Proof. A is onto if and only if the vectors Aui in (10.1) are linearly independent and
hence if and only if the columns of A are linearly independent. However, a standard
fact about determinants says that this is case if and only if detA 6= 0.

Now let
V n = V × · · · × V (n copies) .

Definition 10.3. A map σ : V n → R is a determinantal map if for all n-tuples of
vectors, v1, . . . , vn, and all linear mappings, A : V → V

(10.6) σ(Av1, . . . Avn) = | detA|σ(v1, . . . , vn) .

Check:

1. If σi : V n → R i = 1, 2 is a determinantal map, σ1 +σ2 is a determinantal map.

2. If σ : V n → R is a determinantal map and c ∈ R, cσ is a determinantal map.

Thus the set of determinantal maps form a vector space. We’ll denote this vector
space by |V |.

Claim:

|V | is a one-dimensional vector space.
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Proof. Let u = (u1, . . . , un) be a basis of V . Then for every (v1 . . . , vn) ∈ V n there
exists a unique linear mapping, A : V → V , with

(10.7) Aui = vi i = 1, . . . , n .

Hence if σ : V n → R is a determinantal map

σ(v1, . . . , vn) = σ(Au1, . . . , Aun)

and hence

(10.8) σ(v1, . . . , vn) = | detA|σ(u1, . . . , un)

i.e., σ is completely determined by its value at u.
Conversely, note that if we let σ(u1, . . . , un) be an arbitrary constant, c ∈ R, and

define σ by the formula (10.8), then for any liner mapping, B, one has, by definition:

σ(Bv1, . . . , Bvn) = σ(BAu1, . . . , BAun)

= | detBA|σ(u1, . . . , un)

and by (10.8) and (10.3), the term on the right is | detB|σ(v1, . . . , vn), so the map
defined by (10.8) is a determinantal map.

Exercise 1. Show that if v1, . . . , vn are linearly dependent, the mapping, A,
defined by (10.7) is not onto and conclude that σ(v1, . . . , vn) = 0. Hint: Proposi-
tion 10.2.

We’ll discuss now some examples.

1. In formula 2 set σ(u1, . . . , un) = 1. Then the determinantal map defined by this
formula will be denoted by σu.

2. In particular let V = R
n and let (e1, . . . , en) = e be the standard basis of R

n.
Then σe ∈ |Rn| is the unique determinantal map which is 1 on (e1, . . . , en).

3. More generally if p ∈ R
n and

V = TpR
n = {(p, v) , v ∈ R

n} ,

σp,e ∈ |TpR
n| is the unique determinantal map which is 1 on the basis of vectors:

(p, e1), . . . , (p, en).
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4. To describe the next example, we recall that an inner product on a vector space,
V , is a map, B : V × V → R with the properties

B(v, w) = B(w, v)(10.9a)

B(v1 + v2, w) = B(v1, w) +B(v2, w)(10.9b)

B(cv, w) = cB(v, w)(10.9c)

B(v, v) > 0 if v 6= 0 .(10.9d)

For example if V = R
n and v and w are the vectors, (a1, . . . , an) and (b1, . . . , bn)

the usual dot product:

B(v, w) = v · w =
n
∑

i=1

aibi

is an inner product on V . (For more about inner products see Munkres §1.)

Given an inner product let σB : V n → R be the map

(10.10) σB(v1, . . . , vn) = (det[bi,j])
1
2

where

(10.11) bi,j = B(vi, vj) .

We claim

Proposition 10.4. The map, σB, is a determinantal map.

Proof. Let A : V → V be a linear map and let

v′
i = Avi =

∑

ak,ivk .

Then by (10.8)

(10.12) b′i,j = B(v′
i, v

′
j) =

∑

k,`

ak,ia`,jB(vk, v`) .

Using matrix notation we can rewrite this identity in the more succinct form

(10.13) B′ = AtBA

where B′ = [b′i,j] and A′ is the transpose of A. Therefore, since the determinant
of an n× n matrix is equal to the determinant of its transpose:

detB′ = detAtBA

= detAt detB detA

= (detA)2 detB

and
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σB(Av1, . . . , Avn) = (detB′)
1
2

= | detA|(detB)
1
2

= | detA|σB(v1, . . . , vn)

verifying that σB is a determinantal map.

5. In example 4 take V to be R
n and B the dot product.

Exercise 2. Show that σB = σe.

Hint: for the standard basis, e1, . . . , en, of R
n, ei · ej = 1 if i = j and 0 if i 6= j.

More generally, let V = TpR
n and let B be the inner product defined by setting

B(v, w) = x · y

for vectors, v = (p, x) and w = (p, y) in TpR
n. Show that σB = σp,e.

6. Let V1 be an (n− 1)-dimensional subspace of V . Given v ∈ V , we define ι(v)σ
to be the determinantal map on V1 defined by

(10.14) ιvσ(v1, . . . , vn−1) = σ(v, v1, . . . , vn−1) .

Exercise 3. Check that this is a determinantal map.

Hint: If v ∈ W the vectors, v, v1, . . . , vn−1 are linearly dependent, so by
exercise 1 there is nothing to prove. Hence we can assume that v 6∈ W . Let
A : W → W be a linear map. Show that A can be extended to a linear map,
A] : V → V , by setting A]v = v. Check that

ι(v)σ(Av1, . . . , Avn−1) = σ(A]v, A]v1, . . . , A
]vn−1)

= | detA]|ι(v)σ(v1, . . . , vn−1)

and check that detA = detA].

7. Let V and W be n-dimensional vector spaces and A : V →W a bijective linear
mapping. Given σ ∈ |W |, one defines A∗σ ∈ |V | by the recipe

(10.15) A∗σ(v1, . . . , vn) = σ(Av1, . . . , Avn) .

We call A∗σ the pull-back of σ to V by A.
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Exercise 4. Check that A∗σ is a determinantal map.

Hint: If B : V → V is a linear map then

A∗σ(Bv1, . . . , Bvn) = σ(ABv1, . . . , ABvn)(10.16)

= σ(B′Av1, . . . , B
′Avn)

where B′ = ABA−1. Now use Proposition 10.1.

Exercise 5.

Let u = (u1, . . . , un) be a basis of V and w = (w1, . . . , wn) a basis of W . Show
that if

Aui =
∑

aj,iwj

and A = [ai,j]
A∗σw = | detA|σu .

Hint: Observe that A∗σw = cσµ for some constant c ∈ R. Now evaluate both
sides of this equation on the n-tuple of vectors (u1, . . . , un).

8. In particular let U and U ′ be open subsets of R
n and

f : (U, p) → (U ′, q)

a diffeomorphism. Then if ui = (p, ei) and wi = (q, ei),

dfp(ui) =
∑ ∂fi

∂xj
(p)wj

so

(10.17) (dfp)
∗σq,e = | det ∂fi/∂xj(p)|σp,e .

(This identity will play a major role in the theory of integration that we’ll
develop in lecture 3.)

Additional Exercises

Exercise 6.

Let B be an inner product on the vector space, V . Show that if v1, . . . , vn is an
orthogonal basis of V , i.e., B(vi, vj) = 0 for i 6= j, then σB(v1, . . . , vn) = |v1| · · · |vn|,
where |vi|

2 = B(vi, vi).
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Exercise 7.

Let V = R
2 and let B be the dot product. Show that σB(v1, v2) is the area of the

parallelogram having v1 and v2 as adjacent edges.

Exercise 8.

Let V = R
n and let B be the dot product. Show that σB(v1, . . . , v2) is the volume

of the parallelepiped P (v1, . . . , vn) having v1, . . . , vn as adjacent edges. (See Munkres
§20, page 170.)

Exercise 9.

Let Vi, i = 1, 2, be an n-dimensional vector space and Wi ⊂ Vi an (n − 1)-
dimensional subspace of V . Suppose that A : V1 → V2 is a bijective linear mapping
mapping W1 onto W2. Show that for v1 ∈ V , and σ ∈ |V2|

(10.18) ι(v1)A
∗σ = B∗ι(v2)σ

where v2 = Av1 and B is the restriction of A to W1.

Exercise 10.

Let V be an n-dimensional vector space and W an (n− 1)-dimensional subspace
of V . Let v1 and v2 be elements on V , w an element of W and σ and element of |V |.

(a) Show that if v1 = av2

ι(v1)σ = |a| ι(v2)σ .

(b) Show that ι(w)σ = 0.

(c) Show that if v1 = av2 + w

(10.19) ι(v1)σ = |a| ι(v2)σ .

Exercise 11.

Let V = R
n and let e1, . . . , en be the standard basis vectors of R

n. Let W =
span {e2, . . . , en} and let v =

∑

aivi. Show that for σ ∈ |Rn|

(10.20) ι(v)σ(e2, . . . , en) = |a1|σ(e1, . . . , en) .

Exercise 12.

Let Vi, i = 1, 2, 3, be n-dimensional vector spaces and Li : Vi → Vi+1, i = 1, 2,
bijective linear maps. Show that for σ ∈ |V3|

(10.21) L∗
1L

∗
2σ = (L2L1)

∗σ .

55



Lecture 11. Densities

Let U be an open subset of R
n. Given a function, ϕ ∈ C∞

0 (U) we denoted the Riemann
integral of ϕ over U by the expression

∫

U

ϕ

following the conventions in Munkres and Spivak. However, most traditional text
books in multivariable calculus denote this integral by

∫

U

ϕdx .

What is the meaning of the “dx” in this expression? The usual explanation is that
it’s a mnemonic device to remind one how the change of variables formula works for
integrals. Namely, if V is an open subset in R

n and f : V → U a diffeomorphism,
then for ψ ∈ C∞

0 (U)

(11.1)

∫

U

ψ(y) dy =

∫

V

ψ(f(x))

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

dx

where | dy
dx
| is shorthand for the expression | det(∂fi/∂yi)|. The topic of this last

segment of 18.101 is “integration over manifolds”, and to extend the theory of the
Riemann integral to manifolds we’ll have to take the expressions “dx” and “dy” more
seriously, that is, not just treat them as mnemonic devices. In fact the objects that
one integrates when one does integration over manifolds are manifold versions of dx
and dy, and to define these objects we’ll first have to show how expressions like dx
and ϕ(x) dx can be converted from mnemonic devices to well-defined mathematical
objects.

Definition 11.1. Let U be an open subset of R
n. A density on U is a function, σ,

which assigns to each point, p, of U an element, σ(p), of |TpR
n|.

Some examples:

1. The Lebesgue density, σLeb . This is the density which assigns to each p ∈ U
the element, σp,e of |TpR

n|. (We’ll show in the next section that the “dx” in the
paragraph above is essentially σLeb .)

2. Given any density, σ, on U and given a real-valued function, ϕ : U → R one
defined the density, ϕσ, by defining

(11.2) ϕσ(p) = ϕ(p)σ(p) .
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3. Since σp,e is a basis of the one-dimensional vector space, |TpR
n|, it is clear

by (11.2) that every density on U can be written as a product

σ = ϕσLeb .

We’ll say that σ is C∞ if ϕ is in C∞(U) and is compactly supported if ϕ is in
C∞

0 (U) and we’ll denote the spaces

{ϕσLeb , ϕ ∈ C∞(U)}

and

{ϕσLeb , ϕ ∈ C∞
0 (U)}

by D∞(U) and D∞
0 (U).

4. Given densities, σi, i = 1, 2, on U σ1 + σ2 is the density whose value at p is
the sum, σ1(p) + σ2(p) ∈ |TpR

n|. It’s clear that if σ1 and σ2 are both in D∞(U)
or in D∞

0 (U)then so is σ1 + σ2.

5. Let V be an open subset of R
n and f : V → U a diffeomorphism. Given

σ ∈ D∞(U) one defines a density, f ∗σ, on V by the following recipe. For each
p ∈ V and q = f(p) the bijective linear map

dfp : TpR
n → TqR

n

gives rise (as in example 7 in the notes for Lecture 10) to a map

(dfp)
∗ : |TqR

n| → |TpR
n|

and so f ∗σ is defined at p by

(11.3) f ∗σ = (dfp)
∗σ(q) .

For example, if σ = σLeb then by (1.17)

(dfP )∗σLeb (q) = (dfp)
∗σq,e

=

∣

∣

∣

∣

det

[

∂fi

∂xj
(p)

]
∣

∣

∣

∣

σp,e

=

∣

∣

∣

∣

det

[

∂fi

∂xj
(p)

]
∣

∣

∣

∣

σLeb (q)

and hence

(11.4) f ∗σLeb =

∣

∣

∣

∣

det

[

∂fi

∂xj

]
∣

∣

∣

∣

σLeb .
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More generally, if σ = ψσLeb with ψ ∈ C∞(V )

(11.5) f ∗σ = ψ · f

∣

∣

∣

∣

det

[

∂fi

∂xj

]
∣

∣

∣

∣

σLeb .

Since the function on the right is C∞ this proves

Proposition 11.2. If σ is in D∞(U), f ∗σ is in D∞(V ).

We will next show how to extend the results above to manifolds.
We’ll begin with the definition of density (which is exactly the same for manifolds

as for open sets in R
n).

Definition 11.3. Let X be an n-dimensional submanifold of R
N . A density on X is

a function which assigns to each p ∈ X an element σ(p) of |TpX|.

Examples.

Example 1. The volume density, σvol . For each p ∈ X, TpX is by definition a vector
subspace of TpR

N . Moreover since

TpR
N = {(p, v) , v ∈ R

N}

one has a bijective linear map,

(11.6) TpR
N → R

N

mapping (p, v) to v. Since R
N is equipped with a natural inner product (the “dot

product”) one can equip TpR
N with this inner product via the identification (11.6),

and since TpX sits inside TpR
N as a vector subspace, this gives us an inner product

on TpX. Let’s call this inner product Bp.

Definition 11.4. The volume density on X is the density defined by the formula

(11.7) σvol (p) = σBp

at each point p ∈ X.

N.B. The term on the right is by definition an element of |TpX|, so this formula
does assign to each p ∈ X an element of |TpX| as required. (See example 4 in the
notes for Lecture 10.)

Exercise 1. Check that for X = R
n, σvol = σLeb .

Example 2. Given a density, σ, on X and a real-valued function, ϕ : X → R one
defines the density ϕσ, as above, by

(ϕσ)(p) = ϕ(p)σ(p)
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at p ∈ X.
Example 3. Given densities, σi, i = 1, 2, one defines their sum, σ1 + σ2, as above,
by

(σ1 + σ2)(p) = σ1(p) + σ2(p) .

Example 4. Let X and Y be n-dimensional manifolds and f : X → Y a diffeomor-
phism. Given a density, σ, on Y one defines as above, the pull-back density, f ∗σ on
X by the recipe (11.3). Namely if p ∈ X and q = f(p) the derivative of f at p is a
bijective linear map

dfp : TpX → TpY

and from this map one gets a linear map

df ∗
p : |TqY | → |TpX| ,

and one defines f ∗σ by:
(f ∗σ)(p) = (dfp)

∗σ(q) .

Exercise 2. Check that if σ is a density on Y and ψ : Y → R a real valued
function

(11.8) f ∗(ψσ) = f ∗ψf ∗σ

i.e., the pull-back operation on densities, is consistent with the pull-back operation
on functions that we defined earlier in the course.

Exercise 3. Let Z be an n-dimensional manifold and g : Y → Z a diffeomor-
phism. Check that if σ is a density on Z

(11.9) f ∗(g∗σ) = (g ◦ f)∗σ .

Hint: The manifold version of the chain rule for derivatives of mappings.
We will next show how to define analogues of the spaces D∞(U) and D∞

0 (U) for
manifolds. Recall that if U is an open subset of X, a parametrization of U is a pair,
(U0, ϕ), where U0 is an open subset of R

n and ϕ : U0 → U is a diffeomorphism.

Definition 11.5. Let σ be a density on X. We will say that σ is C∞ on U if
ϕ∗σ ∈ D∞(U0).

Claim: This definition doesn’t depend on (U0, ϕ).

Proof. Let (U ′
0, ϕ

′) be another parametrization of U and let f : U0 → U ′
0 be the

diffeomorphism, f = (ϕ′)−1 ◦ϕ. Letting σ0 = ϕ∗σ and σ′
0 = (ϕ′

0)
∗σ we get from (11.9)

(11.10) σ0 = f ∗σ′
0

and hence by Proposition 11.2, σ′
0 is in D∞(U ′

0) if and only if σ0 is in D∞(U0).

59



Example 5. σvol . Let (U0, ϕ) be a parameterization of U . Since X sits inside R
N

we can regard ϕ as a C∞ map

(11.11) ϕ : U0 → R
N ,

and for p ∈ U0 and q = ϕ(p) we can regard dϕp as an injective linear map

(11.12) dϕp : TpR
n → TpR

N

which maps TpR
n bijectively onto the subspace, TpX, of TpR

N . Let ϕ1, . . . , ϕN be
the coordinates of the map (11.11) and let e1, . . . , en be the standard basis vectors of
R

N . Then if ui = (p, ei)

dϕp(ui) = wi = (q, vi)(11.13)

where

vi =

(

∂ϕ1

∂xi

(p) , · · · ,
∂ϕN

∂xi

(p)

)

(11.14)

and hence

((dϕp)
∗σBq

)(u1, . . . , un) = σBq
(w1, . . . , wn)(11.15)

= (det[bi,j(p)])
1
2

where bi,j(p) is the matrix

(11.16) bi,j(p) = vi · vj =
n
∑

k=1

∂ϕk

∂xi

(p)
∂ϕk

∂x0

(p) .

Since σp,e is a basis of the one-dimensional vector space, |TpR
n|,

(11.17) (dϕp)
∗σBq

= cσp,e

for some constant, c, and since, by definition,

σp,e(u1, . . . , un) = 1

we see from (11.15) that this constant has to be equal to the expression on the right
hand side of (11.15) i.e.,

(11.18) (dϕ)∗pσBq
= (det[bi,j(p)])

1
2σp,e .

Therefore since σBq
= σvol (q) and σp,e = σLeb (p) we get from (11.18)

(11.19) ϕ∗σvol = (det[ψi,j])
1
2σLeb

where ψi,j is the function

(11.20) ψi,j =
∑ ∂ϕk

∂xi

∂ϕk

∂xj

.

Thus σvol is C∞ on U .
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Definition 11.6. We will say that a density, σ, on X is C∞ if for every point, p ∈ X
it is C∞ on a neighborhood, U of p.

Notation: We will denote by D∞(X) the space of C∞ densities on X and by
D∞

0 (X) the space of compactly supported C∞ densities on X.

Exercise 4. Show that

D∞(X) = {ϕσvol , ϕ ∈ C∞(X)}

and

D∞
0 (X) = {ϕσvol , ϕ ∈ C∞

0 (X)}.

Hint: For every p ∈ X, σBp
is a basis vector for the one-dimensional vector space,

|TpX|.
Let Y be an n-dimensional manifold and f : X → Y a diffeomorphism. We will

show that Proposition 11.2 is true for manifolds.

Proposition 11.7. If σ ∈ D∞(Y ), then f ∗σ ∈ D∞(X).

Proof. Let U be an open subset of X and ϕ : U0 → U a parameterization of U . Let
V = f(U). Then f ◦ ϕ : U0 → V is a parameterization of V and by (11.9)

ϕ∗f ∗σ = (f ◦ ϕ)∗σ .

Since σ is a C∞ density on Y the right side of this identity is in D∞(U0) and hence
so is the left side.

Some additional exercises.

Exercise 5. Given a C∞ function f : R → R its graph

X = {(x, f(x)) , x ∈ R}

is a submanifold of R
2 and

ϕ : R
2 → X , x→ (x, f(x))

is a diffeomorphism. Show that

(11.21) ϕ∗σvol =

(

1 +

(

df

dx

)2
)

1
2

σLeb .

Exercise 6. Given a C∞ function f : R
2 → R its graph

X = {(x, f(x)) , x ∈ R
2}
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is a submanifold of R
3 and

ϕ : R
2 → X , x→ (x, f(x))

is a diffeomorphism. Show that

(11.22) ϕ∗σvol =

(

1 +

(

∂f

∂x1

)2

+

(

∂f

∂x2

)2
)

1
2

σLeb .

Exercise 7*. Given a C∞ function, f : R
n → R its graph

X = {(x, f(x)) , x ∈ R
n}

is a submanifold of R
n+1 and

(11.23) ϕ : R
n → X , x→ (x, f(x))

is a diffeomorphism. Show that

(11.24) ϕ∗σvol =

(

1 +
n
∑

i=1

(

∂f

∂xi

)2
)

1
2

σLeb .

Hints:

a. Let v = (c1, . . . , cn) ∈ R
n. Show that if C : R

n → R
n is the linear mapping

defined by the matrix [cicj] then Cv = (
∑

c2i )v and Cw = 0 if w · v = 0.

b. Conclude that the eigenvalues of C are λ1 =
∑n

i=1 c
2
i and λ2 = · · · = λn = 0.

c. Show that the determinant of I + C is 1 +
∑

c2i .

d. Use the preceding results to compute the determinant of the matrix (11.20)
where ϕ is the mapping (11.23).

Exercise 8. Let X be the unit (n− 1)-sphere in R
n and let v be the vector field,

v =
∑

xi ∂/∂xi .

For p ∈ X let V = TpR
n and let W = TpX. Show that if σvol is the volume density

on X and σLeb the Lebesgue density on R
n then at p these two densities are related

by

(11.25) σvol (p) = ι(vp)σLeb (p) .

(For the definition of the term on the right see example 6 in the notes for Lecture 10.)
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Lecture 12. Integrating densities

In this section we will show how to integrate densities over manifolds. First, however,
we will have to explain how to integrate densities over open subsets, U , of R

n. Recall
that if ϕ is in D∞(U) it can be written as a product, σ = ψσLeb, where ψ is in C∞(U).
We will say that σ is integrable over U if ψ is integrable over U , and will define the
integral of σ over U to be the usual Riemann integral

(12.1)

∫

U

σ =

∫

U

ψ dx .

The advantage of using “density” notation for this integral is that it makes the change
of variables formula more transparent. Namely if U1 is an open subset of R

n and
f : U1 → U a diffeomorphism, then by (2.4) f ∗σ = ψ1σLeb where

(12.2) ψ1 = ψ ◦ f

∣

∣

∣

∣

det

[

∂fi

∂xj

]
∣

∣

∣

∣

and hence by the change of variables formula2 ψ1 is integrable over U1 and

∫

U1

ψ1 dx =

∫

U

ψ dx .

Thus using density notation the change of variables formula takes the much simpler
form

(12.3)

∫

U1

f ∗σ =

∫

U

σ .

Now let X ⊆ R
N be an n-dimensional manifold. Our goal below will be to define the

integral

(12.4)

∫

W

σ

where W is an open subset ofX and σ is a compactly supported C∞ density. We’ll first
show how to define this integral when the support of σ is contained in a “parametriz-
able” open subset of X and then, using partition of unity argument, define it in
general.

Definition 12.1. An open subset, U , of X is parametrizable if there exists an open
set, U0, in R

n and a diffeomorphism, ϕ0 : U0 → U .

2See Theorem 17.2 in Munkres.
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In other words “U is parametrizable” means that there exists a parameteriza-
tion, (U0, ϕ0), of U . It’s clear that if U is parametrizable every open subset of U is
parametrizable, and, in particular, if U1 and U2 are parametrizable, so is U1 ∩ U2.
Moreover the definition of manifold says that every point, p ∈ X, is contained in a
parametrizable open set.

Let σ be an element of D∞
0 (X) whose support is contained in a parametrizable

open set U . Picking a parameterization, ϕ0 : U0 → U we will define the integral of σ
over W by defining it to be

(12.5)

∫

W

σ =

∫

W0

ϕ∗
0σ

where W0 = ϕ−1
0 (W ). Note that since σ is compactly supported on U , ϕ∗

0σ is a
product, ϕ∗

0σ = ψσLeb, with ψ in C∞
0 (U0). Hence by Munkres, Theorem 15.2, ψ is

integrable over W0 and hence so is ϕ∗σ. We will prove

Lemma 12.2. The definition (12.5) doesn’t depend on the choice of the parameteri-
zation, (U0, ϕ0).

Proof. Let (U1, ϕ1) be another parameterization of U and let f = ϕ−1
1 ◦ ϕ0. Since ϕ0

and ϕ1 are diffeomorphisms of U0 and U1 onto U f is a diffeomorphism of U0 onto U1

with the property

(12.6) ϕ1 ◦ f = ϕ0 .

In particular if Wi = ϕ−1
i (W ), i = 1, 2 it follows from (12.6) that f maps W0 diffeo-

morphically onto W1 and from the chain rule it follows that f ∗ϕ∗
1σ = ϕ∗

0σ. Hence by
(12.3)

(12.7)

∫

W0

ϕ∗
0σ =

∫

W1

ϕ∗
1σ .

In other words (12.5) is unchanged if we substitute (U1, ϕ1) for (U0, ϕ0).

From the additivity of the Riemann integral for integrable functions on open
subsets of R

n we also conclude

Lemma 12.3. If σi ∈ D∞
0 (X), i = 1, 2, is supported on U
∫

W

σ1 + σ2 =

∫

W

σ1 +

∫

W

σ2

and if σ ∈ D∞
0 (X) is supported on U and c ∈ R

∫

W

cσ = c

∫

W

σ .
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To define the integral (12.4) for arbitrary elements of D∞(X) we will resort to
the same partition of unity arguments that we used earlier in the course to define
improper integrals of functions over open subsets of R

n. To do so we’ll need the
following manifold version of Munkres’ Theorem 16.3.

Theorem 12.4. Let

(12.8) U = {Uα , α ∈ I}

be a covering of X be open subsets. Then there exists a family of functions, ρi ∈
C∞

0 (X), i = 1, 2, 3, . . . , with the properties

(a) ρi ≥ 0.

(b) For every compact set, C ⊆ X there exists a positive integer N such that
if i > N , supp ρi ∩ C = ∅.

(c)
∑

ρi = 1.

(d) For every i there exists an α ∈ I such that supp ρi ⊆ Uα.

Remark. Conditions (a)–(c) say that the ρi’s are a partition of unity and (d) says
that this partition of unity is subordinate to the covering (12.8).

Proof. To simplify the proof a bit we’ll assume that X is a closed subset of R
N . For

each Uα choose an open subset, Oα in R
N with

(12.9) Uα = Oα ∩X

and let O be the union of the Oα’s. By the theorem in Munkres that we cited above
there exists a partition of unity, ρ̃i ∈ C∞

0 (O), i = 1, 2, . . . , subordinate to the covering
of X by the Oα’s. Let ρi be the restriction of ρ̃i to X. Since the support of ρ̃i is
compact and X is closed, the support of ρi is compact, so ρi ∈ C∞

0 (X) and it’s clear
that the ρi’s inherit from the ρ̃i’s the properties (a)–(d).

Now let the covering (12.8) be any covering of X by parametrizable open sets and
let ρi ∈ C∞

0 (X), i = 1, 2, . . . , be a partition of unity subordinate to this covering.
Given σ ∈ D∞

0 (X) we will define the integral of σ over W by the sum

(12.10)
∞
∑

i=1

∫

W

ρiσ .

Note that since each ρi is supported in some Uα the individual summands in this sum
are well-defined and since the support of σ is compact all but finitely many of these
summands are zero by part (b) of Theorem 12.4. Hence the sum itself is well-defined.
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Let’s show that this sum doesn’t depend on the choice of U and the ρi’s. Let U
′ be

another covering of X by parametrizable open sets and ρ′j, j = 1, 2, . . . , a partition
of unity subordinate to U

′. Then

∑

j

∫

W

ρ′jσ =
∑

j

∫

W

∑

i

ρ′jρiσ(12.11)

=
∑

j

(

∑

i

∫

W

ρ′jρiσ

)

by Lemma 12.3. Interchanging the orders of summation and resumming with respect
to the j’s this sum becomes

∑

i

∫

W

∑

j

ρ′jρiσ

or

∑

i

∫

W

ρiσ .

Hence
∑

i

∫

W

ρ′jσ =
∑

i

∫

W

ρiσ ,

so the two sums are the same. Q.E.D.
From (12.10) and Lemma 12.3 one easily deduces

Proposition 12.5. For σi ∈ D∞
0 (X), i = 1, 2

(12.12)

∫

W

σ1 + σ2 =

∫

W

σ1 +

∫

W

σ2

and for σ ∈ D∞
0 (X) and c ∈ R

(12.13)

∫

W

cσ = c

∫

W

σ .

In the definition of the integral (12.4) we’ve allowed W to be an arbitrary open
subset of X but required σ ∈ D∞(X) to be compactly supported. This integral is
also well-defined if we allow σ to be an arbitrary element of D∞(X) but require the
closure of W in X to be compact. To see this, note that under this assumption the
sum (12.10) is still a finite sum, so the definition of the integral still makes sense, and
the double sum on the right side of (12.11) is still a finite sum so it’s still true that
the definition of the integral doesn’t depend on the choice of partitions of unity. In
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particular if the closure of W in X is compact we will define the volume of W to be
the integral,

(12.14) vol(W ) =

∫

W

σvol ,

and if X itself is compact we’ll define its volume to be the integral

(12.15) vol(X) =

∫

X

σvol .

(For an alternative way of defining the volume of a manifold see Munkres, §22.)
We’ll conclude this discussion of integration by proving a manifold version of the

change of variables formula (12.3).

Theorem 12.6. Let X ′ and X be n-dimensional manifolds and f : X ′ → X a
diffeomorphism. If W is an open subset of X and W ′ = f−1(W )

(12.16)

∫

W ′

f ∗σ =

∫

W

σ

for all σ ∈ D∞
0 (X).

Proof. By (12.11) the integrand of the integral above is a finite sum of C∞ densities,
each of which is supported on a parametrizable open subset, so we can assume that
σ itself as this property. Let V be a parametrizable open set containing the support
of σ and let ϕ0 : U → V be a parameterization of V . Since f is a diffeomorphism
its inverse exists and is a diffeomorphism of X onto X1. Let V ′ = f−1(V ) and
ϕ′

0 = f−1 ◦ ϕ0. Then ϕ′
0 : U → V ′ is a parameterization of V ′. Moreover, f ◦ ϕ′

0 = ϕ
so if W0 = ϕ−1

0 (W ) we have

W0 = (ϕ0)
−1
0 (f−1(W )) = (ϕ′

0)
−1(W ′)

and by the chain rule we have

ϕ∗
0σ = (f ◦ ϕ′)∗σ = (ϕ′

0)
∗f ∗σ

hence

∫

W

σ =

∫

W0

ϕ∗
0σ =

∫

W0

(ϕ′
0)

∗(f ∗σ) =

∫

W ′

f ∗σ .
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Lecture 13. Lie derivatives of densities

In the next three lectures of this course we will prove a manifold version of one of
the fundamental theorems in multi-variable calculus: the divergence theorem. The
calculus version of this theorem says that if S ⊆ R

3 is a closed surface and v a vector
field, the flux of v through S is equal to integral of the divergence of v over the
region bounded by S. To extend this theorem to manifolds we will need manifold
versions of the notion of divergence and flux. The notion of divergence is closely
related to another important manifold notion: the Lie derivative of a density by a
vector field. We’ll discuss both of these concepts below, and discuss the concept of
flux in Lecture 14.

Let X be an n-dimensional manifold and v a vector field on X. To simplify
slightly the exposition in what follows we’ll assume that v is complete, and hence
that it generates a one-parameter group of diffeomorphisms

(13.1) ft : X → X , −∞ < t <∞ .

Let’s recall that if ϕ is a C∞ function on X its Lie derivative with respect to v can
be defined by the formula

(13.2) Lvϕ =

(

d

dt
f ∗

t ϕ

)

(t = 0) .

This formula makes sense for densities as well. Namely if σ is an element of D∞(X)
we can define its Lie derivative by the recipe:

(13.3) Lvσ =

(

d

dt
f ∗

t σ

)

(t = 0) (∗) .

Moreover, the operations (13.2) and (13.3) are compatible: if ϕ is a C∞ function and
σ a C∞ density then3

f ∗
t ϕσ = (f ∗

t ϕ)f ∗
t σ ,

hence

3This definition makes sense without the assumption that v be complete, however it is slightly
more complicated. In the vector field segment of this course we pointed out that for every point, p, in
X there exists a neighborhood, U , of p, an interval, −ε < t < ε, and a family of local diffeomorphisms

ft : U → X

such that for q ∈ U the curve, δq(t) = ft(q), −ε < t < ε, is an integral curve of v with initial point,
γq(0) = q. In other words, v generates a “local” one-parameter group of diffeomorphisms on U , so
the Lie derivative of σ with respect to v can still be defined by the recipe (13.3) in the vicinity of p

for every p ∈ X .
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d

dt
f ∗

t (ϕσ) =
d

dt
f ∗

t ϕf
∗
t σ + f ∗

t σ + f ∗
t ϕ

d

dt
f ∗

t σ

which for t = 0 reduces to:

(13.4) Lv(ϕσ) = (Lvϕ)σ + ϕLvσ .

To see what this Lie differentiation operation looks like “locally” let’s compute
(13.3) for the special case of open subsets of R

n. We’ll begin by proving a linear
algebra lemma which we’ll need for this computation.

Lemma 13.1. Let A(t) = [ai,j(t)], −ε < t < ε, be an n × n matrix whose entries,
ai,j(t), are C∞ functions of t. Then if A(0) is the identity matrix

d

dt
(detA)(0) = trace

d

dt
A(0)(13.5)

where

trace
d

dt
A(0) =

n
∑

i=1

d

dt
ai,i(0) .(13.6)

Proof. By Theorem 2.15 in Munkres, §2

detA(t) =

n
∑

i=1

(−1)ia1,i(t) detA1,i(t)

where A1,i(t) is the (n− 1) × (n− 1) matrix obtained by deleting from A(t) its first
row and ith column. Thus d

dt
detA(t) is equal at t = 0 to the sum of

∑

(−1)i d

dt
a1,i(0) detA1,i(0)(13.7)

and

∑

(−1)ia1,i(0)
d

dt
detA1,i(0) .(13.8)

However, A1,1(0) is the identity (n − 1) × (n − 1) matrix and for i 6= 1, the first
column of the matrix A1,i(0) consists entirely of zeros. Thus detA1,1(0) = 1 and, for
i = 1, detA1,i(0) = 0, so (13.7) is just d

dt
a1,1(0). Moreover, a1,1(0) = 1 and a1,i(0) = 0

for i 6= 1, so (13.8) is just d
dt
A1,1(0). Arguing by induction we can assume that the

theorem is true for n− 1 and hence that (13.8) is equal to

n
∑

i=2

d

dt
ai,i(0) .

Adding to this the term (13.7), which we’ve just observed to be d
dt
a1,1(0), we get the

formula (13.5).
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Now let U be an open subset of R
n and let v be the vector field

(13.9) v =
∑

vi
∂

∂xi

,

A density, σ ∈ D∞(U) can be written as a product ϕσLeb with ϕ in C∞(U), so by
(13.4)

(13.10) Lvσ = ((Lvϕ)σLeb + ϕLvσLeb ,

so to compute Lvσ it suffices to compute LvσLeb . Let

ft(x) = (f1(x, t), · · · , fn(x, t))

then by (2.4):

f ∗
t σLeb = | detJ(t)|σLeb(13.11)

where

J(t) =

[

∂fi

∂xj
(x, t)

]

.

Note that since f0 is the identity map, J(0) is the identity matrix, so its determinant
is 1. Moreover, J(t) is an invertible matrix, so its determinant is non-zero. Hence
since det J(t) depends continuously on t it has to be positive for all t, so we can drop
the absolute value sign from (13.11) and write (13.11) in the form

f ∗
t σLeb = det J(t)σLeb .

Thus

LvσLeb =

(

d

dt
f ∗

t σLeb

)

(t = 0) =
d

dt
(det J)(0)σLeb ,

and hence by the lemma:

(13.12) LvσLeb =

(

n
∑

i=1

d

dt

∂fi

∂xi
(x, 0)

)

σLeb .

Now recall that ft(x) = γx(t) where γx(t) is the integral curve of v with initial point
γx(0) = x, i.e,

d

dt
γx(0) = v(x)

and hence
d

dt
fi(x, 0) = vi(x) .
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Differentiating this identity with respect to xi we get

(13.13)
d

dt

∂fi

∂xi
(x, 0) =

∑ ∂vi(x)

∂xi

and hence, finally, by (13.12)

LvσLeb = ÷(v)σLeb(13.14)

where

÷(v) =

n
∑

i=1

∂vi

∂xi
(13.15)

is the divergence of v. Coming back to (13.10) we get for Lvσ the formula

(

∑

vi
∂ϕ

∂xi
+ ϕ

∑ ∂vi

∂xi
σLeb

)

so we can write (13.10) in the more compact form:

(13.16) Lvσ =

(

∑ ∂

∂xi
(viϕ)

)

σLeb .

We will next show how the Lie differentiation operation behaves under global
change of variables. Let X and Y be n-dimensional manifolds and γ : X → Y a
diffeomorphism. In the “theory of manifolds” segment of this course we showed that
if v is a vector field on X and w = γ∗v then for ϕ ∈ C∞(Y )

(13.17) Lvγ
∗ϕ = γ∗Lwϕ .

We will prove that the same identity holds for densities, i.e., for σ in D∞(Y )

(13.18) Lvγ
∗σ = γ∗Lwσ .

Proof. Let ft : X → X be the one-parameter group of diffeomorphisms generated
by v. Then the one-parameter group of diffeomorphisms generated by w is the group

gt = γ ◦ ft ◦ γ
−1

so
gt ◦ γ = γ ◦ ft and hence

γ∗g∗t σ = f ∗
t γ

∗σ .

Differentiating this identity with respect to t and setting t = 0 we get (13.15).
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One application of this change of variables formula is the following result (which
we’ve implicitly been assuming to be true, but nonetheless requires a proof).

Theorem 13.2. If σ is in D∞(X), so is Lvσ.

Proof. One has to prove that Lvσ is C∞ on parametrizable open subset of X and
hence, by Theorem 13.2, that Lvσ is C∞ when X is an open subset of R

n. This,
however, is obvious by the formula (13.15).

The statement and proof of the divergence theorem requires some further machin-
ery (which we’ll develop in the next lecture) but we can already prove an important
special case of this theorem.

Theorem 13.3. If σ is in D∞(X)

(13.19)

∫

X

Lvσ = 0 .

Proof. Let ft : X → X −∞ < t <∞ be the one-parameter group of diffeomorphisms
generated by v. Then by the global change of variables formula for integration which
we proved in Lecture 12

∫

X

f ∗
t σ =

∫

X

σ

and hence

0 =
d

dt

∫

X

f ∗
t σ =

∫

X

d

dt
f ∗

t σ

and at t = 0 the term on the right is
∫

X
Lvσ .

We still have to show how to extend the notion of divergence to manifolds. This
we will do as follows: If v is a vector field on X then, as we observed in Lecture 11,
we can write the C∞ density, Lvσvol , as the product of a C∞ function with σvol , and
we’ll call this C∞ function the divergence of v, i.e., we will define the divergence of v
by the identity

(13.20) Lvσvol = ÷(v)σvol .

For R
n σvol = σLeb , so for vector fields on R

n this definition coincides with the calculus
definition (13.15) of divergence.

Exercises.

1. For X = R
n derive Theorem 13.2 directly from the formula (13.15).
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2. A vector field, v, on R
n is divergence-free if ÷(v) = 0. Show that the vector

fields below are divergence free.

(a) The coordinate vector fields, ∂/∂xi.

(b) The vector field

(13.21) v =
∑

xi
∂

∂xj
− xj

∂

∂xi
.

(c) The vector field

(13.22) v = (x2
1 + · · ·+ x2

n)−n/2
∑

xi
∂

∂xi
.

3. Let [ai,j(x)] be a skew-symmetric n × n matrix of functions, ai,j ∈ C∞(Rn),
i.e.,

ai,j = aj,i .

Show that the vector field

(13.23) v =
∑

(

∂

∂xi
ai,j

)

∂

∂xj

is divergence-free.

4. Let v be a vector field on R
n. Show that there exists a vector field of the

form

(13.24) w = f
∂

∂xn

, f ∈ C∞(Rn)

with the property ÷(v) = ÷(w).

5∗. Prove by induction on n that every divergence-free vector field on R
n, n > 1,

is of the form (13.23).

6.

(a) Let X ⊆ R
n be the (n− 1)-sphere. Show that the vector field

∑

xi
∂

∂xj

− xj
∂

∂xi

is tangent to X at all points, p ∈ X and hence restricts to a vector field,
v, on X.

(b) Prove that the divergence of this vector field is zero.
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Lecture 14. Flux

Let X be an n-dimensional manifold and Z a closed, connected (n− 1)-dimensional
submanifold of X. We will say that Z is two-sided if there exists a neighborhood, U
of Z in X and a vector field, v, on U which is nowhere tangent to Z, i.e., has the
property

(14.1) v(p) /∈ TpZ for all p ∈ Z .

We’ll say for short that a vector field with this property is a non-tangential vector
field. (Hence two-sidedness means that a non-tangential vector field exists.)

The notion of two-sidedness is a nontrivial notion. For instance the Möbius band
fails to have this property. (By staring at the figure on p. 285 of Munkres’ book you
can easily convince yourself that it’s one-sided.)

Let v1 and v2 be non-tangential vector fields. Then for every p ∈ Z

(14.2) v1(p) = a(p)v2(p) + w(p)

where a(p) is nowhere zero constant and w(p) is in TpZ. We will say that v1 and v2

are compatibly oriented if a(p) > 0 for all p. We’ll leave the following as an exercise.

Lemma 14.1. Let vi, i = 1, 2, 3, be non-tangential vector fields. Then

i. If v1 and v2 are compatibly oriented, v2 and v1 are compatibly oriented.

ii. If v1 and v2 and v3 are compatibly oriented, v1 and v3 are compatibly oriented.

iii. Either v1 is compatibly oriented with v2 or with −v2.

In other words if v is a non-tangential vector field it determines a co-orientation
of Z and there are just two ways in which Z can be co-oriented.

Let v be a non-tangential vector field and let σ be an element of D∞(X). Then
we can define a C∞ density on Z by defining it pointwise by the following procedure.
For p ∈ Z let V = TpX and W = TpZ. Since W is an (n−1)-dimensional subspace of
V one gets from σ(p) ∈ |V | and v(p) ∈ TpX an element ι(v(p))σ(p) of |W | by (1.14)
and since |W | = |TpZ| the assignment

(14.3) p ∈ Z → ι(v(p))σ(p)

defines a density on Z which we’ll denote by ι(v)σ.4 Notice that if v1 and v2 are
non-tangential vector fields then by (14.2)

(14.4) v1 = av2 + w

4We’ll postpone to the end of this lecture the proof that this is a C∞ density.
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along Z, where w is a vector field on Z itself and a ∈ C∞(Z) a non-vanishing function.
Thus by (1.19)

(14.5) ι(v1)σ = |a|ι(v2)σ

and in particular of v1 and v2 are compatibly oriented

(14.6) ι(v1)σ = aι(v2)σ .

Now let v be an arbitrary vector field on X. The along Z

(14.7) v = ϕ1v1 + w1

where ϕ1 is in C∞(Z) and w1 is in a C∞ vector field on Z itself. Let

(14.8) σv = ϕ1ι(v1)σ1 .

Notice that by (14.4)

(14.9) v = ϕ2v2 + w2

along Z where ϕ2 = ϕ1/a and w2 is a vector field on Z itself. Hence if v1 and v2 are
compactly oriented

(14.10) ϕ1ι(v1)σ1 = ϕ2ι(v2)σ2

by (14.6). Thus if we fix a co-orientation of Z the form (14.8) is intrinsically defined.

Exercise 1. Show that if one changes the co-orientation the form (14.8) changes
sign, i.e., σ−v = −σv.

Now suppose that σ is compactly supported or alternatively that Z itself is com-
pact. We define the flux of (v, σ) through Z to be the integral

(14.11) Flux(v, σ) =

∫

Z

σv .

Remarks

1. Notice that this definition depends upon the co-orientation of Z. If we
reverse the co-orientation the flux changes sign.

2. If v itself is a non-tangential vector field and its orientation is compatible
with the co-orientation of Z then σv = ι(v)σ so we get for the flux of (v, σ) the
simpler definition

∫

Z

ι(v)σ .
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3. If Z is compact we can take σ to be σvol . For σ = σvol the flux of (v, σ)
through Z coincides with the standard definition of flux which one encounters
in text books in physics and calculus courses.

We will next show that the definition of flux is invariant under “global changes of
variables”. Let X ′ be another n-dimensional manifold and f : X ′ → X a diffeomor-
phism. Then Z ′ = f−1(Z) is an (n− 1)-dimensional submanifold of X ′ and it is easy
to see that it, like Z, is two-sided. In fact if U is a neighborhood of Z in X and v1 is
a vector field on U having the non-tangency property (14.1) then U ′ = f−1(U) is a
neighborhood of Z ′ in X ′ and the vector field

v′1 = (f−1)∗v1 = f ∗v1

is a vector field on U ′ with the analogous non-tangency property:

v′1(p) /∈ TpZ
′ for all p ∈ Z ′ .

Hence from the co-orientation of Z associated with the vector field, v1, we get an
induced co-orientation of Z ′.

Let g : Z ′ → Z be the restriction of f to Z ′. We claim

Lemma 14.2. For σ ∈ D∞(X)

(14.12) ι(v′1)f
∗σ = g∗ι(v1)σ .

Proof. This amounts to showing that for every p ∈ Z ′ and q = f(p)

ι(v′1(p))(dfp)
∗σ(q) = (dgp)

∗ι(v1(q))σ(q) .

But v1(q) = dfp(v
′
1(p)) and dgp is the restriction of dfp to TpZ

′, so this follows from
the linear algebra result (1.18).

We’ll use this result to prove

Theorem 14.3. Let v be any vector field on X. Then if v ′ = f ∗v and σ′ = f ∗σ

(14.13) σ′
v′ = g∗σv .

Proof. By (14.7) v = ϕ1v1 + w1 along Z and hence along Z ′, v′ = g∗ϕ1v
′
1 + w′

1 where
w′

1 = g∗w1 . Thus
σ′

v′ = f ∗ϕ1ι(v
′
1)σ

′ = f ∗(ϕ1ι(v1)σ)

by the lemma.
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By the global change of variables formula that we proved in Lecture 12
∫

Z′

σ′
v′ =

∫

Z′

f ∗(σv) =

∫

Z

σv

so as a corollary of Theorem 14.3 we get

Theorem 14.4. The flux of (v, σ) through Z is equal to the flux of (v ′, σ′) through
Z ′.

We will conclude this lecture by proving a theorem about (n − 1)-dimensional
submanifolds of X which we’ll need in the next lecture. (We’ll also use this result to
verify an assertion we made earlier in this lecture but whose proof we postponed: If
v is non-tangential and σ is in D∞(X), ι(v)σ is in D∞(Z).)

Let’s identify R
n−1 with the submanifold

(14.14) {(x1, . . . , xn) ∈ R
n , x1 = 0}

of R
n and also think of this submanifold as the boundary of the open set

(14.15) H
n = {(x1, . . . , xn) ∈ R

n , xn < 0} .

We will prove the following general result.

Theorem 14.5. Let Z be an (n− 1)-dimensional submanifold of X. Then for every
p ∈ Z there exists an open set, U , in X containing p and a parametrization

(14.16) ψ : U0 → U

of U with the property

(14.17) ψ(U0 ∩ R
n−1) = U ∩ Z .

Proof. X is locally diffeomorphic at p to an open subset of R
n so it suffices to prove

this assertion for submanifolds of R
n. However, if Z is an (n − 1)-dimensional sub-

manifold of R
n then by Theorem 2.2 in the theory of manifolds segment of this course

there exists, for every p ∈ Z a neighborhood, U , of p in R
n and a function, ϕ ∈ C∞(U)

with the property

x ∈ U ∩ Z ⇔ ϕ(x) = 0(14.18)

and

dϕp 6= 0 .(14.19)

Without loss of generality we can assume by (14.19) that

(14.20)
∂ϕ

∂x1

(p) 6= 0 .
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Hence if ρ : U → R
n is the map

(14.21) ρ(x1, . . . , xn) = (ϕ(x), x2, . . . , xn)

(dρ)p is bijective, and hence ρ is locally a diffeomorphism at p. Shrinking U we can
assume that ρ is a diffeomorphism of U onto an open set, U0. By (14.18) and (14.20)
ρ maps U ∩ Z onto U0 ∩ R

n−1 hence if we take ψ to be ρ−1, it will have the property
(14.17).

Let’s now come back to the issue of proving that if σ is in D∞(X) and v is a
non-tangential vector field, ι(v)σ is in D∞(Z). By the theorem we’ve just proved and
Lemma 14.2 it suffices to prove this for X = R

n and Z = R
n−1. Let

v =
n
∑

i=1

ai
∂

∂xi

(14.22)

and

σ = ϕσLeb .(14.23)

Then by (14.5)

(14.24) ι(v)σ = ϕ|ai|ι

(

∂

∂x1

)

σLeb .

However, by (1.20) the density

(14.25) ι

(

∂

∂x1

)

σLeb

is the Lebesgue density on R
n−1 and since v is non-tangential, |a1| is non-vanishing

and hence is in C∞(Rn−1). Thus (14.23) is in D∞(Rn−1).

Exercises.

1. Let U be a bounded open subset of R
n−1 and f : U → R a C∞ function. Let

Zf be the graph of f :

{(x1, . . . , xn) ∈ R
n , xn = f(x1, . . . , xn−1)} .

Compute the flux of (v, σ) through Zf where v = ∂/∂xn and σ = σLeb .

2. Let v = xn∂/∂xn and σ = σLeb . Show that the flux of (v, σ) through Zf is
the integral of f over U .
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3. Let Z1 ⊆ R
n be the unit sphere, x2

1 + · · · + x2
n = 1, and let v be the vector

field

v = x1
∂

∂x1
+ · · ·+ xn

∂

∂x1
.

Show that the flux of (v, σLeb ) through Z1 is in the volume of Z.

4. Let Za be the sphere

x2
1 + · · · + x2

n = a , 0 < a .

What is the flux of (v, σLeb ) through Z?

5. Prove Lemma 14.1.

6. Show that the density σv satisfies σ−v = −σv and conclude that the flux of
(v, σ) through an (n− 1)-dimensional submanifold, Z, of X changes sign if one
changes the co-orientation of Z.

Lecture 15. The divergence theorem

To formulate the divergence theorem we need one final ingredient: Let D be an open
subset of X and D̄ its closure.

Definition 15.1. D is a smooth domain if

(a) its boundary is an (n− 1)-dimensional submanifold of X and

(b) the boundary of D coincides with the boundary of D̄.

Examples.

1. The n-ball, x2
1 + · · ·+ x2

n < 1, whose boundary is the sphere, x2
1 + · · ·+ x2

n = 1.

2. The n-dimensional annulus,

1 < x2
1 + · · ·+ x2

n < 2

whose boundary consists of the spheres,

x2
1 + · · · + x2

n = 1 and x2
1 + · · · + x2

n = 2 .

3. Let Sn−1 be the unit sphere, x2
1 + · · · + x2

2 = 1 and let D = R
n − Sn−1. Then

the boundary of D is Sn−1 but D is not a smooth domain since the boundary
of D̄ is empty.
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The simplest example of a smooth domain is the half-space (5.15). We will show
that every bounded domain looks locally like this example.

Theorem 15.2. Let D be a smooth domain and p a boundary point of D. Then there
exists a neighborhood, U , of p in X, an open set, U0, in R

n and a diffeomorphism,
ϕ0 : U0 → U such that ϕ0 maps U0 ∩ H

n onto U ∩D.

Proof. Let Z be the boundary of D. Then by Theorem 5.5 there exists a neigh-
borhood, U of p in X, an open ball, U0 in R

n, with center at q ∈ BdHn, and a
diffeomorphism,

ϕ : (U0, q) → (U, p)

mapping U0 ∩BdH
n onto U ∩ Z. Thus for ϕ−1(U ∩D) there are three possibilities.

i. ϕ−1(U ∩D) = (Rn − BdHn) ∩ U0.

ii. ϕ−1(U ∩D) = H
n ∩ U0.

or

iii. ϕ−1(U ∩D) = H
nU0.

However, i. is excluded by the second hypothesis in Definition 15.1 and if ii.
occurs we can rectify the situation by composing ϕ with the map, (x1, . . . , xn) →
(−xn, x2, . . . , xn).

Definition 15.3. We will call an open set, U , with the properties above a D-adapted
parametrizable open set.

We will leave the following as an exercise:

Proposition 15.4. The boundary of D is two-sided.

Hint: At boundary points, p, of D there are two kinds of non-tangential vector
fields: inward-pointing vector fields and outward-pointing vector fields. In the diver-
gence theorem we will co-orient the boundary of D by giving it the outward-pointing
co-orientation.

Theorem 15.5 (Divergence Theorem). If v is a vector field on X and σ a compactly
supported C∞ density the flux of (v, σ) through the boundary of D is equal to the
integral over D of Lvσ.

The key ingredient of the proof of this theorem is the following lemma.

Lemma 15.6. Let Xi, i = 1, 2, be an n-dimensional manifold and Di ⊆ Xi a smooth
domain. If (X1, D1) is diffeomorphic to (X2, D2) then the divergence theorem is true
for (X1, D1) if and only if it is true for (X2, D2).

80



Proof. This follows from the identities (4.18) and (5.13) and the global change of
variables formula for integrals of densities that we proved in Lecture 12.

Let’s now prove the theorem itself. By a partition of unity argument we can
assume one of the following three alternatives holds.

1. σ is supported in the exterior of D.

2. σ is supported in D.

3. σ is supported in a D-adapted parametrizable open set of U .

In case 1 there is nothing to prove. The integral of Lvσ over D and the integral
of σv over the boundary are both zero. In case 2

∫

D

Lvσ =

∫

X

Lvσ

and since σ is zero on the boundary the flux through the boundary is zero, so in this
case Theorem 15.5 follows from Theorem 4.3. Let’s prove the theorem in case 3. By
Theorem 15.2 there exists an open ball, U0, in R

n and a diffeomorphism of U0 onto U
mapping U0 ∩ H

n onto U ∩D, hence by Lemma 15.6 it suffices to prove the theorem
for H

n and R
n. Let’s do so. Let v be the vector field

∑

ai
∂

∂xi

and σ the density

σ = ϕσLeb

with ϕ ∈ C∞
0 (U0). Let v1 = ∂/∂x1. Then

σv = (a1ϕ)(0, x2, . . . , xn)ι

(

∂

∂xi

)

σLeb .

However, by (1.20) ι(∂/∂xi)σLeb is the Lebesgue density on R
n−1, so

(15.1) Flux(v, σ) =

∫

Rn−1

ϕ(0, x2, . . . , xn)a1(0, x2, . . . , xn) dx2 · · ·dxn .

On the other hand by (4.8)

Lvσ =
∑

(

∂

∂xi
aiϕ

)

σLeb

so the right hand side of the divergence formula is the sum from 1 to n of the integrals

(15.2)

∫

Hn

(

∂

∂xi
aiϕ

)

dx .
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By Fubini’s theorem we can write this integral as an iterated integral, integrating first
with respect to the variable, xi, then with respect to the other variables. For i 6= 1
the integration with respect to xi is over the interval, −∞ < xi <∞, so we get

∫ ∞

−∞

∂

∂xi
(aiϕ) dxi = 0

since aiϕ is compactly supported in the variable, xi. On the other hand for i = 1,
the integration is over the integral, −∞ < x1 < 0 so we get

∫ 0

−∞

∂

∂xi

(a1ϕ) dx1 = a1(0, x2, . . . , xn)ϕ(0, x1, . . . , xn) ,

and integrating over the remaining variables we get (15.1).
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Exercises.

1. Let Bn be the unit ball in R
n and Sn−1 the unit (n− 1)-sphere. Prove that

vol (Sn−1) = n vol (Bn) .

Hint: Lecture 14, exercise 3.

2. Let D be the annulus,

a < x2
1 + · · ·+ x2

2 < b , 0 < a < b .

From the divergence theorem conclude that if v is a divergence free vector field,
the flux of (v, σLeb ) through the sphere, x2

1 + · · · + x2
n = a is equal to its flux

through the sphere, x2
1 + · · ·+ x2

n = b.

3. Let U be a bounded open subset of R
n−1 and let X = U × R. Given a positive

C∞ function f : U → R let D be the open subset of X defined by

0 < xn < f(x1, . . . , xn−1) .

For v = xn∂/∂xn and σ = σLeb , verify the divergence theorem by computing
the flux of (v, σ) through the boundary of D and the integral of the divergence
of v over D and showing they’re equal.

4. Let D be a bounded smooth domain in R
n and v a vector field. The classical

divergence theorem of multivariable calculus asserts that
∫

D

÷(v) =

∫

BdD

(n · v)σLeb

where, at p ∈ BdD, np is the unit outward normal vector and (n · v)(p) is the
dot product of v(p) and np. Deduce this version of the divergence theorem from
the divergence theorem that we proved above.

5. Let v be a vector field on R
n and for a ∈ R

n let ∆ be the n-cube

−ε + ai < xi < ε+ ai , i = 1, . . . , n .

Prove that if Flux(v,∆) is the sums of the fluxes of (v, σLeb ) over the 2n faces
of ∆ then for ε small,

Flux(v,∆)
.
= ÷(v)(a) vol (∆) .

6. Prove Proposition 15.4.

Hint: Let U = {Ui , i = 1, 2, . . .} be a covering of the boundary of D by D-adapted
parametrizable open sets. Let U be their union and ρi ∈ C∞

0 (U), i = 1, 2, . . . , a
partition of unity subordinate to U. Show that on each Ui there exists and outward-
pointing vector field, vi, and let v =

∑

ρivi.
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