Vector fields and one forms

Definition 1. $A C^{k}$ vector field on M is a C^{k} map

$$
v: M \longrightarrow T M
$$

so that for all $p \in M, v(p) \in T_{p} M$.
You should think of this as a C^{k} choice of vector in $T_{p} M$ for all $p \in M$.
We can use the vector space structure on $T_{p} M$ to add vector fields and multiply them by real valued functions. Explicitly, if v and w are vector fields, and $\lambda: M \longrightarrow \mathbb{R}$ is a function,

$$
(v+w)(p):=v(p)+w(p)
$$

Think of this as adding the vector fields pointwise.

$$
(\lambda v)(p):=\lambda(p) v(p)
$$

Think of this as scaling the vector field by $\lambda(p)$ at the point p.
This allows us to write vector fields on \mathbb{R}^{n} in coordinates as follows:

$$
v=\sum v_{i} \frac{\partial}{\partial x_{i}}
$$

where

$$
v_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R} \text { are } C^{k} \text { functions if } v \text { is } C^{k}
$$

and $\frac{\partial}{\partial x_{i}}$ is the vector field which is the i th standard basis vector e_{i} at each point.

Definition 2. The cotangent space of M at $p \in M$ is the dual vector space to $T_{p} M$, which we shall denote by $T_{p}^{*} M$.

In other words, $T_{p}^{*} M$ is given by linear maps

$$
\left.\alpha\right|_{p}: T_{p} M \longrightarrow \mathbb{R}
$$

There is actually a vector bundle $T^{*} M$ over M which has as it's fiber over $p T_{p}^{*} M$. $T^{*} M$ is actually diffeomorphic to $T M$, but there is not a canonical choice of diffeomorphism.

Definition 3. $A C^{k}$ differential one form on M is a C^{k} map

$$
\alpha: T M \longrightarrow \mathbb{R}
$$

so that the restriction to $T_{p} M$

$$
\left.\alpha\right|_{p}: T_{p} M \longrightarrow \mathbb{R}
$$

is linear.
We can also regard α as a choice of $\left.\alpha\right|_{p} \in T_{p}^{*} M$ for all p, which gives a C^{k} map $M \longrightarrow T^{*} M$. We shall often shorten 'differential one form' to 'one form'.

We can evaluate a one form α on M on any vector field v on M to give us a real valued function defined by

$$
\begin{gathered}
\alpha(v): M \longrightarrow \mathbb{R} \\
\alpha(v)(p):=\left.\alpha\right|_{p}(v(p))
\end{gathered}
$$

this is just the composition

$$
M \xrightarrow{v} T M \xrightarrow{\alpha} \mathbb{R}
$$

Just as for vector fields, we can add one forms and multiply them by real valued functions on M, so we have the following identities if α and β are one forms, v, w are vector fields and λ is a real valued function,

$$
\begin{gathered}
(\alpha+\beta)(v)=\alpha(v)+\beta(v) \\
(\lambda \alpha)(v)=\lambda \times(\alpha(v))
\end{gathered}
$$

The following identities are because $\left.\alpha\right|_{p}$ is linear:

$$
\begin{gathered}
\alpha(v+w)=\alpha(v)+\alpha(w) \\
\alpha(\lambda v)=\lambda \alpha(v)
\end{gathered}
$$

On \mathbb{R}^{n}, we can write one forms in a standard basis as follows:

$$
\alpha=\sum \alpha_{i} d x_{i}
$$

where

$$
\alpha_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R} \text { are } C^{k} \text { if } \alpha \text { is } C^{k}
$$

and

$$
d x_{i}\left(\frac{\partial}{\partial x_{i}}\right)=1 \quad d x_{i}\left(\frac{\partial}{\partial x_{j}}\right)=0 \text { if } i \neq j
$$

Definition 4. Given a differentiable function $f: M \longrightarrow \mathbb{R}$ we have defined $T f$: $T M \longrightarrow T \mathbb{R}$. Let $\pi_{2}: T \mathbb{R} \longrightarrow \mathbb{R}$ be given by $\pi_{2}(x, v):=v$. This identifies $T_{x} \mathbb{R}$ with \mathbb{R} itself using the fact that \mathbb{R} is a vector space. Now we can define a differential one form

$$
d f: T M \longrightarrow \mathbb{R}
$$

by

$$
d f:=\pi_{2} \circ T f
$$

If f is a function $\mathbb{R}^{n} \longrightarrow \mathbb{R}$, this is simply

$$
d f(p, v):=D f(p)(v)
$$

Note that the one forms $d x_{i}$ above are simply given by taking d of the coordinate function $x_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$.

For example, if $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is differentiable,

$$
d f:=\sum \frac{\partial f}{\partial x_{i}} d x_{i}
$$

Definition 5. The Lie derivative of a C^{1} function $f: M \longrightarrow \mathbb{R}$ with respect to the vector field v on M is defined to be the function

$$
L_{v} f: M \longrightarrow \mathbb{R}
$$

defined by

$$
L_{v} f:=d f(v)
$$

For example if $v=\sum v_{i} \frac{\partial}{\partial x_{i}}$,

$$
L_{v} f=\sum v_{i} \frac{\partial f}{\partial x_{i}}
$$

(motivating our "derivation notation" for v).
Note that as the result of L_{v} is a function, we can compose Lie derivatives, for example,

$$
L_{\frac{\partial}{\partial x_{1}}} L_{\frac{\partial}{\partial x_{2}}} f=D_{1} D_{2} f
$$

Exercise.

Check that if $f_{i} \in C^{1}(M), i=1,2$, then

$$
\begin{equation*}
L_{v}\left(f_{1} f_{2}\right)=f_{1} L_{v} f_{2}+f_{1} L_{v} f_{2} . \tag{1}
\end{equation*}
$$

Definition 6. Given a differentiable map $f: M \longrightarrow N$ and a one form α on N, the pull back of α is a one form $f^{*} \alpha$ on M defined as follows

$$
\begin{gathered}
f^{*} \alpha: T M \longrightarrow \mathbb{R} \\
f^{*} \alpha:=\alpha \circ T f \\
T M \xrightarrow{T f} T N \xrightarrow{\alpha} \mathbb{R}
\end{gathered}
$$

Exercise

1. Show that

$$
f^{*}\left(\lambda_{1} \alpha+\lambda_{2} \beta\right)=\left(\lambda_{1} \circ f\right) f^{*} \alpha+\left(\lambda_{2} \circ f\right) f^{*} \beta
$$

2. If $f=\left(x_{1}^{2}+x_{2}^{2}, x_{1}^{2}-x_{2}^{2}\right)$, compute

$$
f^{*}\left(x_{2} d x_{1}+3 d x_{2}\right)
$$

3. Prove that

$$
(f \circ g)^{*}=g^{*} \circ f^{*}
$$

4. Prove that

$$
f^{*} d g=d(g \circ f)
$$

We can pull back one forms with any smooth map. There is an analogous push forward of vector fields which is defined for any diffeomorphism. This should be regarded as how vector fields change under a coordinate change.

Definition 7. If $f: M \longrightarrow N$ is a diffeomorphism, and $v: M \longrightarrow T M$ is a vector field, the push forward of v is a vector field on $N f_{*} v: N \longrightarrow T N$. This is defined by

$$
\begin{gathered}
f_{*} v=T F \circ v \circ f^{-1} \\
N \xrightarrow{f^{-1}} M \xrightarrow{v} T M \xrightarrow{T f} T N
\end{gathered}
$$

In other words,

$$
f_{*} v(f(p))=T_{p} f(v(p))
$$

Exercise

1.

$$
f_{*}(v+w)=f_{*} v+f_{*} w
$$

2.

$$
f_{*}(\lambda v)=\left(\lambda \circ f^{-1}\right) f_{*} v
$$

3. if $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{1} x_{2}\right)$, on the set $\left\{x_{1}>0\right\}$ calculate $f_{*}\left(\frac{\partial}{\partial x_{1}}\right)$ and $f_{*}\left(x_{1} \frac{\partial}{\partial x_{1}}+\right.$ $\left.x_{2} \frac{\partial}{\partial x_{2}}\right)$
4.

$$
(f \circ g)_{*}=f_{*} \circ g_{*}
$$

5.

$$
f^{*} \alpha(v)=\alpha\left(f_{*} v\right) \circ f
$$

6.

$$
L_{f_{*} v} g=L_{v}(g \circ f) \circ f^{-1}
$$

Definition 8. A C^{1} curve $\gamma:(a, b) \rightarrow M$ is an integral curve of the vector field v if for all $a<t<b$ and $p=\gamma(t)$

$$
\left(p, \frac{d \gamma}{d t}(t)\right)=v(p)
$$

In other words, if e_{1} is the standard basis vector in $T_{t}(a, b)$,

$$
T \gamma\left(t, e_{1}\right)=v(\gamma(t))
$$

For example, if $v=\sum v_{i} \frac{\partial}{\partial x_{i}}$ is a vector field on \mathbb{R}^{n}, and $X: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is the function $\left(v_{1}, \ldots, v_{n}\right)$ the condition for $\gamma(t)$ to be an integral curve of v is that it satisfy the system of ODEs

$$
\begin{equation*}
\frac{d \gamma}{d t}(t)=X(\gamma(t)) \tag{2}
\end{equation*}
$$

The following theorem allows us to just consider the problem of finding integral curves in coordinate charts, as it tells us how the problem changes when we change coordinates using a diffeomorphism.

Theorem 1. If $f: M \longrightarrow N$ is a diffeomorphism, v a vector field on M and $\gamma:(a, b) \longrightarrow M$ an integral curve of v, then

$$
f \circ \gamma:(a, b) \longrightarrow N
$$

is an integral curve of the vector field $f_{*} v$ on N.
Proof.

$$
T(f \circ \gamma)\left(t, e_{1}\right)=T f \circ T \gamma\left(t, e_{1}\right)=T f(v(\gamma(t)))=f_{*} v(f \circ \gamma(t))
$$

Exercises on integrating one forms

1. Suppose that $\alpha:=f d x$ is a continuous one form on $[a, b]$. Define the integral

$$
\int_{[a, b]} \alpha:=\int_{[a, b]} f d x
$$

Show that given any C^{1} map $g:[c, d] \longrightarrow[a, b]$ sending c to a and d to b,

$$
\int_{[a, b]} \alpha=\int_{[c, d]} g^{*} \alpha
$$

2. Let M be a smooth manifold and let $\gamma:[a, b] \rightarrow M$, be a C^{1} curve. Given a one form ω, define the line integral of ω over γ to be the integral

$$
\int_{\gamma} \omega=\int_{[a, b]} \gamma^{*} \omega
$$

Show that if $\omega=d f$ for some $f \in \mathcal{C}^{\infty}(U)$

$$
\int_{\gamma} \omega=f(\gamma(b))-f(\gamma(a))
$$

In particular conclude that if γ is a closed curve, i.e., $\gamma(a)=\gamma(b)$, this integral is zero.
3. Let

$$
\omega=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{x_{1}^{2}+x_{2}^{2}}
$$

and let $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}-\{0\}$ be the closed curve, $t \rightarrow(\cos t, \sin t)$. Compute the line integral, $\int_{\gamma} \omega$, and show that it's not zero. Conclude that ω can't be " d " of a function, $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}-\{0\}\right)$.
4. Let f be the function

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
\arctan \frac{x_{2}}{x_{1}}, x_{1}>0 \\
\frac{\pi}{2}, x_{1}=0, x_{2}>0 \\
\arctan \frac{x_{2}}{x_{1}}+\pi, x_{1}<0
\end{array}\right.
$$

where, we recall: $-\frac{\pi}{2}<\arctan t<\frac{\pi}{2}$. Show that this function is \mathcal{C}^{∞} and that $d f$ is the 1 -form, ω, in the previous exercise. Why doesn't this contradict what you proved earlier?

