
Vector fields and one forms

Definition 1. A Ck vector field on M is a Ck map

v : M −→ TM

so that for all p ∈ M , v(p) ∈ TpM .

You should think of this as a Ck choice of vector in TpM for all p ∈ M .
We can use the vector space structure on TpM to add vector fields and multiply

them by real valued functions. Explicitly, if v and w are vector fields, and λ : M −→ R

is a function,
(v + w)(p) := v(p) + w(p)

Think of this as adding the vector fields pointwise.

(λv)(p) := λ(p)v(p)

Think of this as scaling the vector field by λ(p) at the point p.

This allows us to write vector fields on R
n in coordinates as follows:

v =
∑

vi

∂

∂xi

where
vi : R

n −→ R are Ck functions if v is Ck

and ∂
∂xi

is the vector field which is the ith standard basis vector ei at each point.

Definition 2. The cotangent space of M at p ∈ M is the dual vector space to TpM ,

which we shall denote by T ∗

p M .

In other words, T ∗

p M is given by linear maps

α|p : TpM −→ R

There is actually a vector bundle T ∗M over M which has as it’s fiber over p T ∗

p M .
T ∗M is actually diffeomorphic to TM , but there is not a canonical choice of diffeo-
morphism.
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Definition 3. A Ck differential one form on M is a Ck map

α : TM −→ R

so that the restriction to TpM

α|p : TpM −→ R

is linear.

We can also regard α as a choice of α|p ∈ T ∗

p M for all p, which gives a Ck map
M −→ T ∗M . We shall often shorten ‘differential one form’ to ‘one form’.

We can evaluate a one form α on M on any vector field v on M to give us a real
valued function defined by

α(v) : M −→ R

α(v)(p) := α|p(v(p))

this is just the composition
M

v
−→ TM

α
−→ R

Just as for vector fields, we can add one forms and multiply them by real valued
functions on M , so we have the following identities if α and β are one forms, v, w are
vector fields and λ is a real valued function,

(α + β)(v) = α(v) + β(v)

(λα)(v) = λ × (α(v))

The following identities are because α|p is linear:

α(v + w) = α(v) + α(w)

α(λv) = λα(v)

On R
n, we can write one forms in a standard basis as follows:

α =
∑

αidxi

where
αi : R

n −→ R are Ck if α is Ck

and

dxi

(

∂

∂xi

)

= 1 dxi

(

∂

∂xj

)

= 0 if i 6= j
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Definition 4. Given a differentiable function f : M −→ R we have defined Tf :
TM −→ TR. Let π2 : TR −→ R be given by π2(x, v) := v. This identifies TxR with

R itself using the fact that R is a vector space. Now we can define a differential one

form

df : TM −→ R

by

df := π2 ◦ Tf

If f is a function R
n −→ R, this is simply

df(p, v) := Df(p)(v)

Note that the one forms dxi above are simply given by taking d of the coordinate
function xi : R

n −→ R.

For example, if f : R
n −→ R is differentiable,

df :=
∑ ∂f

∂xi

dxi

Definition 5. The Lie derivative of a C1 function f : M −→ R with respect to the

vector field v on M is defined to be the function

Lvf : M −→ R

defined by

Lvf := df(v)

For example if v =
∑

vi
∂

∂xi
,

Lvf =
∑

vi

∂f

∂xi

(motivating our “derivation notation” for v).
Note that as the result of Lv is a function, we can compose Lie derivatives, for

example,
L ∂

∂x1

L ∂

∂x2

f = D1D2f

Exercise.

Check that if fi ∈ C1(M), i = 1, 2, then

Lv(f1f2) = f1Lvf2 + f1Lvf2 . (1)

3



Definition 6. Given a differentiable map f : M −→ N and a one form α on N , the

pull back of α is a one form f ∗α on M defined as follows

f ∗α : TM −→ R

f ∗α := α ◦ Tf

TM
Tf
−→ TN

α
−→ R

Exercise

1. Show that
f ∗(λ1α + λ2β) = (λ1 ◦ f)f ∗α + (λ2 ◦ f)f ∗β

2. If f = (x2
1 + x2

2, x
2
1 − x2

2), compute

f ∗(x2dx1 + 3dx2)

3. Prove that
(f ◦ g)∗ = g∗ ◦ f ∗

4. Prove that
f ∗dg = d(g ◦ f)

We can pull back one forms with any smooth map. There is an analogous push
forward of vector fields which is defined for any diffeomorphism. This should be
regarded as how vector fields change under a coordinate change.

Definition 7. If f : M −→ N is a diffeomorphism, and v : M −→ TM is a vector

field, the push forward of v is a vector field on N f∗v : N −→ TN . This is defined by

f∗v = TF ◦ v ◦ f−1

N
f−1

−−→ M
v
−→ TM

Tf
−→ TN

In other words,

f∗v(f(p)) = Tpf(v(p))

Exercise

1.
f∗(v + w) = f∗v + f∗w

2.
f∗(λv) = (λ ◦ f−1)f∗v
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3. if f(x1, x2) = (x1, x1+x1x2), on the set {x1 > 0} calculate f∗(
∂

∂x1

) and f∗(x1
∂

∂x1

+

x2
∂

∂x2

)

4.
(f ◦ g)∗ = f∗ ◦ g∗

5.
f ∗α(v) = α(f∗v) ◦ f

6.
Lf∗vg = Lv(g ◦ f) ◦ f−1

Definition 8. A C1 curve γ : (a, b) → M is an integral curve of the vector field v if

for all a < t < b and p = γ(t)

(

p,
dγ

dt
(t)

)

= v(p)

In other words, if e1 is the standard basis vector in Tt(a, b),

Tγ(t, e1) = v(γ(t))

For example, if v =
∑

vi
∂

∂xi
is a vector field on R

n, and X : R → R
n is the function

(v1, . . . , vn) the condition for γ(t) to be an integral curve of v is that it satisfy the

system of ODEs
dγ

dt
(t) = X(γ(t)) . (2)

The following theorem allows us to just consider the problem of finding integral
curves in coordinate charts, as it tells us how the problem changes when we change
coordinates using a diffeomorphism.

Theorem 1. If f : M −→ N is a diffeomorphism, v a vector field on M and

γ : (a, b) −→ M an integral curve of v, then

f ◦ γ : (a, b) −→ N

is an integral curve of the vector field f∗v on N .

Proof.

T (f ◦ γ)(t, e1) = Tf ◦ Tγ(t, e1) = Tf(v(γ(t))) = f∗v(f ◦ γ(t))
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Exercises on integrating one forms

1. Suppose that α := fdx is a continuous one form on [a, b]. Define the integral

∫

[a,b]

α :=

∫

[a,b]

fdx

Show that given any C1 map g : [c, d] −→ [a, b] sending c to a and d to b,

∫

[a,b]

α =

∫

[c,d]

g∗α

2. Let M be a smooth manifold and let γ : [a, b] → M , be a C1 curve. Given a
one form ω, define the line integral of ω over γ to be the integral

∫

γ

ω =

∫

[a,b]

γ∗ω

Show that if ω = df for some f ∈ C∞(U)

∫

γ

ω = f(γ(b)) − f(γ(a)) .

In particular conclude that if γ is a closed curve, i.e., γ(a) = γ(b), this integral
is zero.

3. Let

ω =
x1 dx2 − x2 dx1

x2
1 + x2

2

and let γ : [0, 2π] → R
2 − {0} be the closed curve, t → (cos t, sin t). Compute

the line integral,
∫

γ
ω, and show that it’s not zero. Conclude that ω can’t be

“d” of a function, f ∈ C∞(R2 − {0}).

4. Let f be the function

f(x1, x2) =











arctan x2

x1

, x1 > 0
π
2
, x1 = 0 , x2 > 0

arctan x2

x1

+ π , x1 < 0

where, we recall: −π
2

< arctan t < π
2
. Show that this function is C∞ and that

df is the 1-form, ω, in the previous exercise. Why doesn’t this contradict what
you proved earlier?
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