CHAPTER 10

THE INTEGRAL CALCULUS ON MANIFOLDS

In this chapter we shall study integration on manifolds. In order to develop
the integral calculus, we shall have to restrict the class of manifolds under
consideration. In this chapter we shall assume that all manifolds M that arise
satisfy the following two conditions:

1) M is finite-dimensional.

2) M possesses an atlas @ containing (at most) a countable number of
charts; that is, @ = {(U;, @)} i=1,2.... -

Before getting down to the business of integration, there are several technical
facts to be established. The first two sections will be devoted to this task.

1. COMPACTNESS

A subset A of a manifold M is said to be compact if it has the following property:
1) If {U. is any collection of open sets with

AcUu,

there exist finitely many of the U,, say U.,, ..., U., such that

ACULIU"'UUL'_-
Alternatively, we can say:

il) A set A is compact if and only if for any family {F.} of closed sets
such that

AﬂnFLZ,@,

there exist finitely many of the F, such that
AﬂFtlﬂ--'ﬂFL,= Q

The equivalence of (i) and (ii) can be seen by taking U, equal to the comple-
ment of F..

In Section 5 of Chapter 4 we established that if M = U is an open subset of
R™, then A C U is compact if and only if A is a closed bounded subset of R".
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404 THE INTEGRAL CALCULUS ON MANIFOLDS 10.1

We make some further trivial remarks about compactness:

i) If Ay,..., A, are compact, sois Ay U+ - U 4,.

In fact, if {U.} covers A; U--- U A,, it certainly covers each A;. We can
thus choose for each j a finite subcollection which covers 4;. The union of these
subcollections forms a finite subcollection covering A; U--- U A4,.

iv) If y: M, — M, is continuous and A C M, is compact, then Y[A4] is

compact.

In fact, if {U.} covers y[A], then {y~}(U.)} covers A. If the U, are open,
so are the ¢ ~1(U.), since ¢ is continuous. We can thus choose ¢y, . . ., t, so that

AC \p_l(ULI) U---u II/—I(ULT))

which implies that y[A]C U, U--- U U..

We see from this that if A = A; U--- U 4,, where each 4; is contained
in some W;, where (W, 8,) is a chart, and B;(A4;) is a compact subset of R",
then A is compact. In particular, the manifold M itself may be compact. For
instance, we can write S™ as the union of the upper and lower hemispheres:
S = {x:2""! > 0} U {x:2""! < 0}. Each hemisphere is compact. In fact,
the upper hemisphere is mapped onto {y : [|y]| < 1} by the map ¢; of Section 8.1,
and the lower hemisphere is mapped onto the same set by ¢3. Thus the sphere
is compact.

On the other hand, an open subset of R™ is not compact. However, it can
be written as a countable union of compact sets. In fact, if U C R™ is an open
set, let

A, = {x e U:|z| < nandp(z, oU) > 1/n}.

It is easy to check that A, is compact and that
U4, = U. ' .

In view of condition (2), we can say the same for any manifold M under
consideration:

Proposition 1.1. Any manifold M satisfying (1) and (2) can be written as

M= U 4,
i=1
where each A; C M is compact.

Proof. In fact, by (2)
M= U v,
=1

J
and by the preceding discussion each U, can be written as the countable union
of compact sets. Since the countable union of a countable union is still count-
able, we obtain Proposition 1.1. [



10.2 PARTITIONS OF UNITY 405

An immediate corollary is:

Proposition 1.2. Let M be a manifold [satisfying (1) and (2)], and let {U.}
be an open covering of M. Then we can select a countable subcollection
{U,} such that

Uu; = M.

Proof. Write M = UA,, where A, is compact. For each r we can choose finitely
many U, 1, Ur g, ..., Uy, so that

A, CU, U - U U,
The collection

is a countable subcollection covering M. O

2. PARTITIONS OF UNITY

In the following discussion it will be convenient for us to have a method of
“breaking up” functions, vector fields, etc., into “little pieces”. For this purpose
we introduce the following notation:

Definition 2.1. A collection {g;} of C*-functions is said to be a partition of
unity if

i) ¢; > 0forallz;

ii) supp ¢:t is compact for all ¢;

iii) each x € M has a neighborhood V. such that V,Nsuppg: = &
for all but a finite number of ¢; and

iv) > gix) = 1 forallz € M.

Note that in view of (iii) the sum occurring in (iv) is actually finite, since
for any z all but a finite number of the g;(x) vanish. Note also that:

Proposition 2.1. If A is a compact set and {g;} is a partition of unity, then
A nsupp g; = I
for all but a finite number of <.

Proof. In fact, each x € A has a neighborhood V, given by (iii). The sets
{V .} ze4 form an open covering of A. Since A is compact, we can select a finite
subcollection {Vi,...,V,} with ACV,U---UV,. Since each V; has a
nonempty intersection with only finitely many of the supp g;, so does their
union, and so a fortior: does 4. [

T Recall that supp g is the closure of the set {z: g(z) # 0}.
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Definition 2.2. Let {U.} be an open covering of M, and let {g,} be a parti-
tion of unity. We say that {g,} is subordinate to {U.} if for every j there
exists an «(7) such that

supp ¢; C U, (2.1)

Theorem 2.1. Let {{/.} be any open covering of M. There exists a partition
of unity {g,} subordinate to {l/.}.

The proof that we shall present below 1s due to Bonic and Frampton.{
First we introduce some preliminary notions.
The function f on R defined by

eV i u >0,
fw) =10 if u<0

isC*. Forwu 5 0 it is clear that f has derivatives of all orders. To check that f1s
C* at 0, it suffices to show that f*'(u) — 0 as u — 0 from the right. But
f® (u) = Pr(1/u)e "% where P} is a polynomial of degree 2k. So

lim f®u) = lim Pi(s)e™" = 0,

w—0) g >

since €° goes to infinity faster than any polynomial.
Note that f(u) > 0if and only if w > 0. Now consider the function g2 on R
defined by

QE(E?) — f(x — a)f(b — x).
Then ¢’ is C* and nonnegative and
ge(z) #~ 0 if and only if a <z <b

More generally, if a = <a!,...,a*> and b= <b',...,b">, define the
function ¢? on R* by setting

1 2 b}c
ge(x) = gar(x)gaz(z®) - - - gar(z"),
where z = <z!,...,z¥>. Then g2 > 0, g> € C*, and
go(z) > 0 if and only if al <zt < bl ... dfF < 2F < b (2.2)

Lemma. Let fq, ..., fr be C*-functions on a manifold M, and let W =
(x:a' < fi(x) < bY,...,d" < fix) < b*}. There exists a nonnegative
C=-function ¢ such that W = {z : g(x) > 0}.

In fact, if we dehne g by
9(x) = ga(fr@), ..., fulx)),

then it is clear that ¢ has the desired properties.

 Smooth functions on Banach manifolds, J. Math and Mech. 15, 877-898 (1966).
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We now turn to the proof of Theorem 2.1.

Proof. For each x € M choosc a U, containing  and a chart (U, ) about .
Then a(U N U,) is an open set containing «(z) in R™ Choose a and b such that

a(z) € int [P and (P ca(UnU.

Let W, = a~!(int [ ?). Then

—_—

W,CU, and W, 1s compact. (2.3)

Also if z', ..., 2™ are the coordinates given by «,
We={y:a' <z'(y) <bl,..., a" < z"(y) < b"}.
By our lemma we can find a nonnegative C-function f, such that

W:r — {yf::(y) > 0}

Since x € W, the {W,} cover M. By Proposition 1.2 we can select a countable
subcovering {W;}. Let us dcnote the corresponding functions by f;; that is,
it W, = W,, we set f; = f..
Let,
Vi= Wi = {z:fi(x) > 0},
Vo= {z:[a(x) >0, f1(z) < 3},

V, = @:£:@) >0, f1(z) < 1/r,. .., fr_s(x) < 1/1}.
It is clear that V; is open and that V,; C W, so that, by (2.3),

V; iscompact  and V;cU. (2.4)
for some « = (7).
For each x € M let q(xr) denote the first integer ¢ for which f,(z) > 0.
Thus fp(x) = 0if p < ¢(z) and f,; (x) > 0.
Let Vo = {y: fary(y) > 3fqn(x)}. Since fy(x) > 0, it follows that z € V,
and V, 1s open. Furthermore,

VNV, =& if > q(x) and 1/r < 3f, (). (2.5)

According to the lemma, each set V; can be given as V; = {z : §:(x) > 0},
where g, is a suitable C*-function. Let ¢ = > 7;. In view of (2.5) this is really
a finite sum in the neighborhood of any x. Thus ¢ is C*. Now Fgu () > 0,
since x € V. Thus g > 0. Set

9

d; g

We claim that {g;} is the desired partition of unity. In fact, (i) holds by our
construction, (ii) and (2.1) follow from (2.4), (iii) follows from (2.5), and (iv)
holds by construction. [
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3. DENSITIES

If we regard R” as a differentiable manifold, then the law for change of variables
for an integral shows that the integrand does not have the same transition law
as that of a function under change of chart. For this reason we cannot expect
to integrate functions on a manifold. We now introduce the type of object that
we can integrate.

Definition 3.1. A density p is a rule which assigns to each chart (U, a) of
M a function p, defined on «(U) subject to the following transition law:
If (W, B) is a second chart of M, then

Pa®) = pg(B o @™ (v))|det Jgoa— (V)] for vea(UNW). (3.1

If @ is an atlas of M and functions p,, are given for all (U;, ;) € @ satisfying
(3.1), then the po, define a density p on M. In fact, if (U, a) is any chart of M
(not necessarily belonging to @), define p, by

Pa(®) = pa,(ai 0 a7 (v))|det Ju 001 (v)] if vea(UnU,).
This definition is consistent: If v € (U N U;) N a(U N U;), then by (3.1),

paj(aj o a~1(v))|det Jajoa1 (V)]
= o, (a,- ° a]-—l(aj o a”1(v)))|det Jaioaj—l(aj ° a_l(v))Hdet Jajoa—l(v)|
= pa,- (ai ° a_l(v))|d6t Jﬂli"a_l ('l))l

by the chain rule and the multiplicative property of determinants.

In view of (3.1) it makes sense to talk about local smoothness properties of
densities. We will say that a density p is C* if for any chart (U, «) the function
po is C*. Asusual, it suffices to verify this for all charts (U, «) belonging to some
atlas. Similarly, we say that a density p is locally absolutely integrable if for
any chart (U, a) the function p, is absolutely integrable. By the last proposition
of Chapter 8 this is again independent of the choice of atlases.

Let p be a density on M, and let x be a point of M. It does not make sense
to talk about the value of p at x. However, (3.1) shows that it does make sense
to talk about the sign of p at z, More precisely, we say that

p>0atz if pa(a(z)) >0 (3.2)

for a chart (U, a) about z. Equation (3.1) shows that if p,(a(z)) > 0, then
ps(B(x)) > 0 for any other chart (W, 8) about z. Similarly, it makes sense to
say that p < Oatx,p > 0atz, orp # 0 at z.

Definition 3.2. Let p be a density on M. By the support of p, denoted by
supp p, we shall mean the closure of the set of points of M at which p does
not vanish. That is,

suppp = {z:p # 0 at z}.
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Let p; and ps be densities. We define their sum by setting

(pl + p2)a = P1a + P2a (33)

for any chart (U, «). It is immediate that the right-hand side of (3.3) satisfies
the transition law (3.1), and so defines density on M.
Let p be a density, and let f be a function. We define the density fp by

(fp)tx = fapa- (34)

Again, the verification of (3.1) is immediate in view of the transition laws for
functions.
It is clear that

supp (p1 - p2) C supp p; U supp p2 (3.5)
and

supp (fp) = supp f N supp p. (3.6)
We shall write

p1 < pgatx if ps—p; 20atzx
and
p1 < po if py <pgatallze M.

Let P denote the space of locally absolutely integrable densities of compact
support. We observe that P is a vector space and that the product fp belongs
to P if fis a (bounded) locally contented function and p € P.

Theorem 3.1. There exists a unique linear function f on P satisfying the
following condition: If p € P is such that supp p C U, where (U, a) is a

chart of M, then
= » 3.7
f P ]; " (3.7

Proof. We first show that there is at most one linear function satisfying (3.7).
Let @ be an atlas of M, and let {g;} be a partition of unity subordinate to Q.
For each j choose an #(j) so that

supp ¢; C Uiy

Write p=1-p = 3> g;- p. Since supp p is compact, only finitely many
of the terms g¢;p are not identically zero. Thus the sum is finite. Since f is linear,

Jo= /Egjp=2fgjp-

By (3.7),
/g]p = Li(j)(Ui(j)) (gjp)ai(]«).

— Pasy- 3.8
/p ; /a i(,»)(Ui(,»))(g]p) o (3.8)

Thus [, if it exists, must be given by (3.8). To establish the existence of [,

Thus
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we must show that (3.8) defines a linear function on P satisfying (3.7). The
linearity is obvious; we must verify (3.7).
Suppose supp p C U for some chart (U, «). We must show that

/ Pa = Z / (gjp)ai(j)'
al) i JeigyWUigy)

Since p = > ¢;p and therefore p, = 2 (¢;p)a, it suffices to show that
Lo, @Pa= [ @P)as (3.9)
where supp g;p C U N U;. By (3.1),
(@5P)a = (giP)ay © (o © &™) - [det Jaoa],
so that (3.9) holds by the transformation law for integrals in R”™. [
We can derive a number of useful properties of the integral from the for-

mula (3.8):
if py <ps  then /pls /Pz- (3.10)

In fact, since g; > 0, we have (g;01)a < (¢jp2)a for any chart (U, o).
Thus (3.10) follows from the corresponding fact on R™ if we use (3.8).

Let us say that a set A has content zero if A C 4; U- - - U 4, where each
A; is compact, A, C U; for some chart (U,, a;), and «;(4,) has content zero in
R™ It is easy to see that the union of any finite number of sets of content zero
has content zero. It is also clear that the function e4 is contented.

Let us call a set B C M contented if the function ep is contented. For any

p € P we define fB p by
/ p= /eBp. (3.11)
B

fio=o

It follows from (3.8) that

for any p € P if A has content zero. We can thus ignore sets of content zero for
the purpose of integration. In practice, one usually takes advantage of this when
computing integrals, rather than using (3.8). For instance, in computing an
integral over 8", we can “ignore” any meridian: for example, if

A={zesS :z=(t0,..., +v/I —12) e R},

/sn p= /S"-A p for any p.

This means that we can compute fsn p by introducing polar coordinates
(Fig. 10.1) and expressing p in terms of them. Thus in 82, if U = 8% — A and
« is the polar coordinate chart on U, then

(o= [ [ padsde.

then
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a(S—A)

27

Fig. 10.1

It is worth observing that if N is a differentiable manifold of dimension less
than dim M and ¢ is a differentiable map of N — M, then Proposition 7.3 of
Chapter 8 implies that if A is any compact subset of N, then ¢(A) has content
zero in M. In this sense, one can ignore “lower-dimensional sets” when integrat-
ing on M.

4. VOLUME DENSITY OF A RIEMANN METRIC

Let M be a differentiable manifold with a Riemann metric a. We define the
density o [=0(a)] as follows. For each chart (U, «) with coordinates z!, ..., 2"

let
det [(% @), o (x)>]

(2@ 2o)

is the matrix whose 4jth entry is the scalar product of the vectors

1/2
= |det (g;;())["'%. (4.1

oa(a(@)) =

Here

9
dxi

9

(z) and Fyer

(z),

so that (in view of Exercise 8.1 of Chapter 8)

o.(a(z)) = volume of the parallelepiped spanned by (9/9z)(x) with
respect to the Euclidean metric ( , )a,, on T,(M).

It is easy to see that (4.1) actually defines a density. Let (W, 8) be a second
chart about 2 with coordinates %, ..., y". Then

o _ w9
oy S dyk ozt

wl(G0 5]

so that
1/2

os(8(x)) =



412 THE INTEGRAL CALCULUS ON MANIFOLDS 104

0 0\ _ szt (o o
ayk’ ayt) 9yt oyl ozt oxi

for all k£ and I. We can write this as the matrix equation

e 2))- 21 2
(30 o222

det [(% (@), £7 (x))] 12 det [gzk]

= 0,(a(z)) |det [a k] ().

If M is an open subset of Euclidean space with the Euclidean metric, then
the volume density, when integrated over any contented set, yields the ordinary
Euclidean volume of that set. In fact, if z, ..., ™ are orthonormal coordinates
corresponding to the identity chart, then ¢;;(z) = 0 if 7 # 7 and ¢;; = 1, so

that gi;q = 1 and thus
/Aa - /A L= ud).

More generally, let ¢ be an immersion of a k-dimensional manifold M into
R™ such that ¢(M) is an open subset of a k-dimensional hyperplane in R®, and
let m be the Riemann metric induced on M by ¢. Then, if ¢ denotes the corre-
sponding volume density, fA g is the k-dimensional Euclidean volume of ¢(4).
In fact, by a Euclidean motion, we may assume that ¢ maps M into R* C R™.
Then, since ¢ is an immersion and M is k-dimensional, we can use z!, ..., 2"
as coordinates on M and conclude, as before, that ¢ is given by the function in
terms of these coordinates, and hence that [4 o0 = u(e(4)).

Now let ¢; and ¢2 be two immersions of M — R™. Let (U, a) be a coordinate
chart on M with coordinates ', ..., %*. If m; is the Riemann metric induced

by ¢;, then
0 9\ _ (91 9¢1
oyt dyi)my  \9yi oy

9 9 dp2 3s02
61%”63/1' me  \Oyi 9yl

where the scalar product on the right is the Euclidean scalar product. Let o4

Now

so that
1/2

op(8(2)) =

and
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and o, be the volume densities corresponding to m; and ms. Then

d¢1 o1 ]

det Kay" ’ 6yf>
_ dps oy

020 = ldet [(ayi ) ayi)]

In particular, given an L > 0, there is a K = K(k, n, L) such that if

1/2

Ola =

and
1/2

d¢1 de2
Iy Yt
then, by the mean-value theorem,

<L and

<L forall ¢=1,...,k,
dpy _ 8oy dos _ do1 ) .
ay! oyt ayk  oyk
Roughly speaking, this means that if ¢; and ¢, are close, in the sense that their
derivatives are close, then the densities they induce are close.

We apply this remark to the following situation. We let ¢; be an immersion
of M into R™ and let (W, ) be some chart of M with coordinates y!, ..., y*
We let U= W — C = UU;, where C is some closed set of content zero and
such that Uy N Uy = & if I £ I'. For each [ let z; be a point of U; whose
coordinates are <y7, ..., yf>, and forz = <y!, ..., y*> define ¢, by setting,

i N
oo 1) = ) + X T — ) 50 @)
ifiz € U;. (See Fig. 10.2.)

la-la - 0'211[ S K(
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If the U/’s are sufficiently small, then

will be small. More generally, we could choose ¢, to be any affine linear map
approximating ¢; on each U;. We thus see that the volume of W in terms of the
Riemann metric induced by ¢ is the limat of the (surface) volume of polyhedra
approximating ¢(W). Here the approximation must be in the sense of slope
(i.e., the derivatives must be close) and not merely in the sense of position.

dp2 _ d¢1

The construction of the volume density can be generalized and suggests an
alternative definition of the notion of density. In fact, let p be a rule which
assigns to each z in M a function, p,, on n tangent vectors in T.(M) subject to
the rule

p;(AEl, ] Agn) = Idet Alpz(fl: ] fn)y (42)

where ¢; € To(M) and A: T.(M) — T,(M) is a linear transformation. Then
we see that p determines a density by setting

i] a
pa(a@) = p (32 @, -5 @) @3)
if (U, @) is a chart with coordinates u', ..., u™ The fact that (4.3) defines a

density follows immediately from (4.2) and the transformation law for the
8/du’ under change of coordinates.

Conversely, given a density p in terms of the p,, define p(3/dul, . .., 9/0u™)
by (4.3). Since the vectors {d/du’},_; ., form a basis at each z in U, any
£1,..., £, in T, (M) can be written as

9

ti= B

(2),

where B is a linear transformation of T',(J) into itself. Then (4.2) determines

p(El; ey En) as
p(¢1, .-, &) = |det Bloy(a(z)). (4.4)

That this definition is consistent (i.e., doesn’t depend on «) follows from (4.2)
and the transformation law (3.1) for densities.

EXERCISES

4.1 Let M = S!X S! be the torus, and let ¢: M — R* be given by

zl o0 ¢(0, 62) = cos By,
22 0 (61, 02) = sin 0y,
23 0 (01, 82) = 2 cos 02,

z% 0 (01, 02) = 2sin b2,

It
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where z1, . .., 2% are the rectangular coordinates on R* and 6!, 62 are angular coordi-
nates on M.

a) Express the Riemann metric induced on M by ¢ (from the Euclidean metric
on R%) in terms of the coordinates 81, §2. [That is, compute the g;;(6, 62).]
b) What is the volume of M relative to this Riemann metric?

4.2 Consider the Riemann metric in-
duced on S! X S! by the immersion ¢ into
E3 by

zop(u,v) = (@ — cosu) cosv,
yo o(u,v) = (@ — cosu) sinv,
z o o(u,v) = sin u,
where u and v are angular coordinates and

a > 2. What is the total surface area of
S1 X S! under this metric?

4.3 Let ¢ map a region U of the zy-plane
into E3 by the formula

Fig. 10.3

o, y) = (z,9, Fz,9),
so that ¢(U) is the surface z = F(z,y). (See Fig. 10.3.) Show that the area of this

surface is given by
aF\? | (oF\*
I G+ G

4.4 TFind the area of the paraboloid
z =22+ y2? for z24+y2< 1.
4.5 Let U C R2 and let ¢: U — [E3 be given by

e(u,v) = (z(u,v), y(u,v), 2(u, v)),

where z, y, z are rectangular coordinates on E3. Show the area of the surface ¢(U)
is given by

[z _ezay (e _ovar)' (om0:_arvy:
U Judv v du dudv v du Judv Jdv du
4.6 Compute the surface area of the unit sphere in E3,

4.7 Let M; and M2 be differentiable manifolds, and let ¢ be a density on M2
which is nowhere zero. For each density p on M1 X Mg, each product chart (U X Ug,
a1 X asg), and each z2 € Ug, define the function pyq, (-, z2) by

plal(vly $2)Ua(a2(x2)) = Pal)(az(vly a2(x2))
for all v1 € a1 (U1).
a) Show that p1e,(v1, z2) is independent of the chart (Usg, asz).
b) Show that for each fixed z2 € M2 the functions p14,(-, z2) define a density on M.
We shall call this density p;(z2).



416 THE INTEGRAL CALCULUS ON MANIFOLDS 10.5

c) Show that if p is a smooth density of compact support on M3 X M2 and ¢ is
smooth, then p1(z2) is a smooth density of compact support on Mj.
d) Let p be asin (¢). Define the function F, on M2 by

Fo(z2) = /M p1(x2).

Sketch how you would prove the fact that F, is a smooth function of compact
support on M2 and that

[ p= F,-o.
My XMy My

5. PULLBACK AND LIE DERIVATIVES OF DENSITIES

Let ¢: M; — M, be a diffeomorphism, and let p be a density on M. Define
the density ¢*p on M, by

e*0(E1y oy En) = ploxkr, - oo, oxén) (5.1)

for &, € To(M ) and ¢4 = ¢4,. To show that ¢*p is actually a density, we must
check that (4.2) holds for any linear transformation A of T,(M;). But

O'P(AEr, ..., Akn) = plexAfy, . .., pxAEy)
= ploxAox "oxt1, . . ., oxAox "oxkn)
= |det pxA x| plexkr, . . ., oxén)

= |dQt AI(P*P(S], ] gn),
which is the desired identity.
Let (U, a) and (W, 8) be compatible charts on M ; and M, with coordinates
uwl, ..., u" and w!, ..., w" respectively. Then for all points of U we have,

by (4.3),
. _ : 0 Y _ | get (2 <L . L)
(¢ P)a(a(‘)) =p <<P*W 1t % m> = 'det <6ui> P\oui’ " aun

ow’
det (au)
In other words, we have
(¢*0)a = |det Jgopoa—t|p(B 0 ¢ 0 a™1(")). (5.2)

The density ¢*p is called the pullback of p by ¢*. It is clear that
e*(p1 -+ p2) = ¢*(p1) + ¢*(p2)

ps(B o ().

and that
e*(fp) = ©*(e*(p)

for any function f.
It follows directly from the definition that

supp ¢*p = ¢~ '[supp pl.
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Proposition 5.1. Let ¢: M — M, be a diffeomorphism, and let p be a
locally absolutely integrable density with compact support on M. Then

/ o'p = / p. (5.3)
Proof. 1t suffices to prove (5.3) for the case

supp p C ¢(U)

for some chart (U, a) of M; with o(U) C W, where (W, 8) is a chart of M.
In fact, the set of all such ¢(U) is an open covering of Mo, and we can therefore
choose a partition of unity {g;} subordinate to it. If we write p = >_ g;p, then
the sum is finite and each ¢;p has the observed property. Since both sides of (5.3)
are linear, we conclude that it suffices to prove (5.3) for each term.

Now if supp p C ¢(U), then

/p - ./B(W) Pe = /Bw(U)pﬂ

* *
[ = @ a
f P /W) )
- / ps(B o ¢ o a™t)|det Jgopoa!|
a(l)

= P
/;w(U) p

thus establishing (5.3). 0

and

Now let ¢; be a one-parameter group on M with infinitesimal generator X.
Let p be a density on M, let (U, «) be a chart, and let W be an open subset of U
such that ¢,(W) C U for all |¢{| < e. Then

0%,
det | —=
( 9 >(v.t>

where ®,(v, t) = a o ¢;0 a”(v) and (0®,/3v)»,1) is the Jacobian of v > ®4(v, ¢).
We would like to compute the derivative of this expression with respect to ¢ at
t = 0. Now ®,(v,0) = v, and so

det (‘9—‘53) = 1.
av ,0) .

Consequently, we can conclude that

det (@) >0
v (v,8)

for t close to zero. We can therefore omit the absolute-value sign and write

deip)a|  _ dpa(®a)
dt t=0 dt

(‘pr)a(v) = Pa ((I)a(v; t)) for v e a(W);

d 0P,
-Vpa(v) % (dEt _130—) o .

t=
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We simply evaluate the first derivative on the right by the chain rule, and get

o (%5) = dpa(Xa)).

In terms of coordinates z?, ..., z", we can write

dpa (‘IJO,(U, t)) _ apa z
A D dai e
if X, = <X} ..., X2>.
To evaluate the second term on the right, we need to make a preliminary
observation. Let A(f) = (a:;({)) be a differentiable matrix-valued function of ¢
with 4(0) = id = (8}). Then

ddet 40) _ i L (get ) — 1).

Now a;;(0) = 1 and a;;(0) = 0 (¢ # j). To say that A is differentiable means
that each of the functions a;;(t) is differentiable. We can therefore find a constant
K such that |a;;(t)] < K|t| (¢ # j) and |a;(t) — 1| < K|t|. In the expansion of
det A (t), the only term which will not vanish at least as ¢* is the diagonal product
ay1(t) - - - any(t). In fact, any other term in 3 &£ ay4(f) - - - @ (f) involves at
least two off-diagonal terms and thus vanishes at least as t>. Thus

(—;l—t(det A®) lim% (a11(t) - - ana(t) — 1)
t=0

= alll(O) + -+ a;m(o)
= tr A’(0).
If we take A = 4%,/dv, we conclude that

d 8.\ _ , 0Xa < 0X4
d (det 577) = trg =2

Thus

d(‘P;kp)a _ P i aXi _ i i
= 2 g Xa T pag = 2 5 (paXa).

We repeat:

Proposition 5.2. Let ¢; be a one-parameter group of diffeomorphisms of M
with infinitesimal generator X, and let p be a differentiable density on M.
Then

Dxp = lim &

*
p—p
t=0 l

exists and is given locally by

(DXp)a = Z M

axt

if X = <X ..., X?> on the chart (U, ).
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The density Dxp is sometimes called the divergence of <X, p> and is
denoted by div <X, p>. Thus div <X, p> = Dxp is the density given by

(div <X, p>)a = 3 o (Xips)  on (U,a).

Now let p be a differentiable density,
and let A be a compact contented set.

Then
[P /., eecar
=/ <P;k(€<p(A)P)
M t
= [(eFeoa)(olp)
= f €A<P:: (p)
*
= / Ptp-
4
Thus

1 1 . )
—(/ p—fp)=/—(sa’fp—p)- Fig. 10.4
t \Jgy4) 4 4l

Using a partition of unity, we can easily see that the limit under the integral
sign is uniform, and we thus have the formula

i(/ p> =/DXp=/div <X,p>.
dt \Jg,ay " /li=o0 4 A

6. THE DIVERGENCE THEOREM

Let ¢ be a flow on a differentiable manifold M with infinitesimal generator X.
Let p be a density belonging to P, and let A be a contented subset of /. Then
for small values of ¢, we would expect the difference [,,4,p — [4 p to depend
only on what is happening near the boundary of A (Fig. 10.4). In the limit,
we would expect the derivative of [, p at ¢t =0 (which is given by
f 4 div <X, p>) to be given by some integral over dA. In order to formulate
such a result, we must first single out a class of sets whose boundaries are suffi-
ciently nice to allow us to integrate over them. We therefore make the following
definition:

Definition. Let M be a differentiable manifold, and let D be a subset of M.
We say that D is a domain with regular boundary if for every x € M thereis a
chart (U, a) about x, with coordinates zl, ..., z%, such that one of the
following three possibilities holds:

i)y UnD=(;
ii) UcD;
iii) «(UND) = aU) N {v=<v},...,0"> €R":p" > 0}.
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Note that if z € D, we can always find a (U, ) about z such that (i) holds.
If x €int D, we can always find a chart (U, &) about = such that (ii) holds.
This imposes no restrictions on D. The crucial condition is imposed when
z € dD. Then we cannot find charts about z satisfying (i) or (ii). In this case,
(iii) implies that «(U N dD) is an open subset of R®~! (Fig. 10.5). In fact,
a(UNa3D) = {vea(l) :v" = 0} = «(U) N R*™!, where we regard R"~! as
the subspace of R™ consisting of those vectors with last component zero.

o(UnaD)

o(U)

Fig. 10.5

Let @ be an atlas of M such that each chart of @ satisfies either (i), (ii), or
(iii). For each (U, a) € @ consider the map o« [ dD: U N 4D — R*~! C R™.
[Of course, the maps o [ 3D will have a nonempty domain of definition only for
charts of type (iii).] We claim that {(U N 4D, a [ D)} is an atlas on dD. In
fact, let (U, @) and (W, 8) be two charts in @ such that U N W N 4D # <.
Let z!,...,z" be the coordinates of (U, ), and let y*, ..., y" be those of
(W, 8). The map 8o o™ ! is given by

<zl ..., 2"> > <yl ..., z"),...,y"@& .. ) >,

On o(U N W N aD), we have 2" = 0 and y™* = 0. In particular,

yn(xly I xn—l’ 0) =0,
and the functions y(z!,...,z""%0),...,
y* "Iz, ..., 2", 0) are differentiable. This

shows that (8 [ D)o (a [ D)™} is differen-

tiable on a(U N dD). We thus get a manifold ,
structure on dD. ‘

It is easy to see that this manifold strue-

ture is independent of the particular atlas of A1

that was chosen. We shall denote by ¢ the map

of 9D — M which sends each x € 9D, regarded Fig. 10.6

as an element of M, into itself. It is clear that

tis a differentiable map. (In fact, (U N dD, a« [ D) and (U, a) are compatible

charts in terms of which a o ¢o (a [ 4D)7! is just the map of R*™! — R™.)
Let x be a point of dD regarded as a point of M, and let £ be an element

of T.(M). We say that ¢ points into D if for every curve C with C'(0) = ¢
we have C(t) € D for sufficiently small positive ¢ (Fig. 10.6). In
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terms of a chart (U, a) of type (iii), let &, = <£', ..., £*>. Then it is clear
that £ points into D if and only if £* > 0. Similarly, a tangent vector £ points
out of D (obvious definition) if and only if £* < 0. If £* = 0, then £ is tangent
to the boundary—it lies in «+7,(dD).

Let p be a density on M and X a vector field on M. Define the density px
on D by

px(Ery ooy Enm1) = P(uéy, .o, by, X(@))  for & € To(8D). (6.1)
It is easy to check that (6.1) defines a density. (This is left as an exercise for
the reader.) If (U, ) is a chart of type (iii) about x and X, = <X!,..., X">,

then applying (4.3) to the chart (U N 4D, a | D) and the density px, we see
that

(PX)araD=P(%w--:£g:I’X>-
Let A be the linear transformation of T',(41) given by
52—1:6—.%1’ Aaxg—lzaxg—l’ A(’%ZX'
The matrix of A4 is ) ]
0 .. b &
0O 1 0 ... X2
o ... ... 1 O
| 0 ... ... X" |
and therefore |det A| = |X™|. Thus we have
(Px)arop = | X"0a at all points of «(U N D). (6.2)

We can now state our results.

Theorem 6.1 (The divergence theorem).t Let D be a domain with regular
boundary, let p € P, and let X be a smooth vector field on M. Define the
function ex on 4D by
1 if X(x) points out of D,
ex(x) = 0 if X(x) is tangent to 9D,
—1 if X(z) points into D.
Then

/ div <X, p> = / €xPx. (6.3)
D oD

Remark. In terms of a chart of type (iii), the function ex is given by
€ex = —sgn X" (6.4)

t This formulation and proof of the divergence theorem was suggested to us by
Richard Rasala.
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Fig. 10.7 Fig. 10.8
R
UPP p
supp (X%)a
_R Fig. 10.9 Fig. 10.10

Proof. Let @ be an atlas of M each of whose charts is one of the three types.
Let {g;} be a partition of unity subordinate to @. Write p = 3_ ¢;p. Thisis a
finite sum. Since both sides of (6.3) are linear functions of p it suffices to verify
(6.3) for each of the summands ¢;,p. Changing our notation (replacing g;p by p),
we reduce the problem to proving (6.3) under the additional assumption
supp p C U, where (U, @) is a chart of type (i), (ii), or (iii). There are therefore
three cases to consider.

CASE I supppCU and UND = &. (See Fig. 10.7.) Then both sides of
(6.3) vanish, and so (6.3) is correct.

CASE II. suppp C U with U Cint D. (See Fig. 10.8.) Then the right-hand
side of (6.3) vanishes. We must show that the left-hand side does also. But

. _ _ A(X'pa) _ / 3(Xipa)
/Ddlv <X,p>—/Ud1V <X,P>—/MU)Z 9zt =2 Uy 0%E

Now each of the functions X‘p, has its support lying inside a(U). Choose some
large R so that a(U) C [[®gr. We can then replace fa(u, by f ORg- We extend
its domain of definition to all of R™ by setting it equal to zero outside a(U).
(See Fig. 10.9.) Writing the integral as an iterated integral and integrating with
respect to x* first, we see that

/ 0Xip,
a(U) 6.7:5

=/Xipa(...,R,...)—Xipa(...,——R,...)dxld.vzdxi“ldxi---dx"z0.

This last integral vanishes, because the function X‘o, vanishes outside a(U).
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CASE III. supp p is contained in a chart of type (iii). (See Fig. 10.10.) Then

/div<X,p>=/ div <X,p> = 2, 9X pa
D DNU

adnU) OT¢

Now
a(UND) = a(U)n {v:v" > 0}.

We can therefore replace the domain
of integration by the rectangle
3Bk pos.  (See Tig. 10.11.)
Tor 1 < 7 < n all the integrals in <&, ...,
the sum vanish as before. For
1 = m we obtain

[ div <X, 0> = — [ X"pa.

If we compare this with (6.2) and (6.4), we see that this is exactly the assertion of
6.3). O

If the manifold M is given a Riemann metric, then we can give an alternative
version of the divergence theorem. Let dV be the volume density of the Riemann
metric, so that

dV(Ely L) En) = |det ((Eiy Ei))lllz, ¢ e TI(Z‘[)’

is the volume of the parallelepiped spanned by the £; in the tangent space (with
respect to the Euclidean metric given by the scalar product on the tangent space).

Now the map ¢ is an immersion, and therefore we get an induced Riemann
metric on dD. Let dS be the corresponding volume density on dD. Thus, if
{&}i=1,...n—1 are n — 1 vectors in T,(dD), dS(&y1, ..., £n_1) is the (n — 1)-
dimensional volume of the parallelepiped spanned by txé;, ..., txé,_; in
txT.(0D) C Ty,(M). For any z € dD let n € T,.(M) be the vector of unit length
which is orthogonal to ¢+7;(dD) and which points out of D (Fig. 10.12). We

%T(3D)

Fig. 10.12
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clearly have
ds(gh e gn-—l) = dV(L*El) ey txfn_1, 7’1,)

For any vector X(x) € T,(M) (Fig. 10.13) the volume of the parallelepiped
spanned by &1, ..., &u—1, X(z) is [ (X (2), n)|dS(&1, . . ., En—1). [In fact, write
X(@) = (X(x),n)n + m,

where m € 1«T(dD).] If we compare this with (6.1), we see that
dVx = |(X,n)|dS. (6.5)
Furthermore, it is clear that
e(x) = sgn (X(x), n).
Let p be any density on M. Then we can write
p=fdv,
where f is a function. Furthermore, we clearly have px = fdVx and
div <X, p> = div <X, fdV.>.

We can then rewrite (6.3) as

fD div <X, fdVy> = /wf- (X, n) dS. (6.6)

7. MORE COMPLICATED DOMAINS

For many purposes, Theorem 6.1 is not quite sufficiently broad. The trouble is
that we would like to apply (6.3) to domains whose boundaries are not com-
pletely smooth. For instance, we would like to apply it to a rectangle in R™.
Now the boundary of a rectangle is regular at all points except those lying on an
edge (i.e., the intersection of two faces). Since the edges form a set “of dimension
n — 2", we would expect that their presence does not invalidate (6.3). This is
in fact the case.

Let M be a differentiable manifold, and let D be a subset of M. We say
that D is a domain with almost regular boundary if to every x € M there is a

chart (U, «) about z, with coordinates z?, . . . , z%, such that one of the following
four possibilities holds:

i) UnD=g;

i) U CD;

iii) «(UND) = aU)N{v= <v',...,v"> €R":v" > 0};

iv) a(UND)=aU)n {v= <v!,...,0"> €R":0* >0,...,0" > 0}.

The novel point is that we are now allowing for possibility (iv) where k < n.
This, of course, is a new possibility only if » > 1. Let us assume n > 1 and see
what (iv) allows. We can write a(U N dD) as the union of certain open subsets
lying in (n — 1)-dimensional subspaces of R™™!, together with a union of
portions lying in subspaces of dimension n — 2.
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Fig. 10.14

In fact, fork < p < nlet
Hf={v:*>0,...,02 =0, >0,...,0" > 0}.

Thus H'; is an open subset of the (n — 1)-dimensional subspace given by
v? = 0. (See Fig. 10.14.) We can write

(U NdD) Ca(U) N {(HFUHF . U--- UHY) US}),

where S is the union of the subspaces (of dimension n — 2) where at least two
of the v? vanish.

NG
@

Fig. 10.15

Observe that if x € U N 8D is such that a(z) € HE for some p, then there is a
chart about z of type (iii). In fact, simply renumber the coordinates so that »?

becomes »™, that is, map R™ %, R" by sending <v!,...,v"> — <w!, ..., w">,
where .

w =’ for 7 < p,

w' =o't for p <7<,

w" = P,

Then in a sufficiently small neighborhood U?! of z the chart (U, ¢ o ) is of
type (iii). (See Fig. 10.15.)
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We next observe the set of x € D having a neighborhood of type (iii) forms
a differentiable manifold. The argument is just as before. The only difference
is that this time these points do not exhaust all of dD. We shall denote this
manifold by dD. Thus dD is a manifold which, as a set, is not 4D but only the
“regular” points of 4D, that is, those having charts of type (iii).

Theorem 7.1 (The divergence theorem). Let M be an n-dimensional
manifold, and let D C M be a domain with almost regular boundary.
Let 9D be as above, and let ¢ be the injection of D — M. Then for any
p € P we have

/ div <X,p> = /v €xpx. (7.1)
D aD

Proof. The proof proceeds as before. We choose a connecting atlas of charts
of types (i) through (iv) and a partition of unity {g;} subordinate to the atlas.
We write p = Y g;p and now have four cases to consider. The first three cases
have already been handled.

The new case arises when p has its support in U, where (U, o) is a chart of
type (iv). We must evaluate

/ Z aXipa .
«(UND) gz

The terms in the sum corresponding to ¢ < k make no contribution to the
integral, as before. Let us extend X'p, to be defined on all of R™ by setting it
equal to zero outside a(U), just as before. Then, for k < 7 < n we have

/ 9X'pa _ / 39X pa
aUND) oxt B 6.’13"

where B= {v:v*>0,...,v" > 0}. Writing
this as an iterated integral and integrating first ‘
with respect to z*, we obtain

aXipa o / 7
L 6:1:@' - A; X pOt)

where the set A; C R*™! is given by
Ay = {<ol, . . 0 0T o> 0F > 0,.. ., 0™ > 0}

Fig. 10.16

Note that A; differs from HY by a set of content zero in R* ™! (namely, where at
least one of the o' = 0 for k = I < n). Thus we can replace the 4; by the H*
in the integral. Summing over k < 7 < n, we get

aXipa .- 3
X ba _ Xpa
/mDnU)Z 9z z):=k a Pa

which is exactly the assertion of Theorem 7.1 for case (iv). 0
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Fig. 10.17 Fig. 10.18

We should point out that even Theorem 7.1 does not cover all cases for which
it is useful to have a divergence theorem. For instance, in the plane, Theorem 7.1
does apply to the case where D is a triangle. (See Fig. 10.16.) This is because
we can “stretch” each angle to a right angle (in fact, we can do this by a linear
change of variables of R?). (See Fig. 10.17.)

However Theorem 7.1 does not apply to a quadrilateral such as the one in
Tig. 10.18, since there is no C''-transformation that will convert an angle greater
than 7 into one smaller than 7 (since its Jacobian at the corner must carry
lines into lines). Thus Theorem 7.1 doesn’t apply directly. However, we can
write the quadrilateral as the union of two triangles, apply Theorem 7.1 to each
triangle, and note that the contributions of each triangle coming from the
common boundary cancel each other out. Thus the divergence theorem does
apply to our quadrilateral.

This procedure works in a quite general context. In fact, it works for all
cases where we shall need the divergence theorem in this book, whether Theorem
7.1 applies directly or we can reduce to it by a finite subdivision of our domain,
followed by a limiting argument. We shall not, however, formulate a general
theorem covering all such cases; it is clear in each instance how to proceed.

EXERCISES

In Euclidean space we shall write div X instead of div <X, p> when p is taken to
be the Euclidean volume density.

7.1 Let z, y, 2 be rectangular coordinates on E3. Let the vector field X be given by

2 9 d Ie)
X=r (xgi—l— yé—?;—}— z(;;) )
where 72 = 22 4 y2 4+ 22. Show directly that
/ (X,n) dA = / div X
s B

by integrating both sides. Here B is a ball centered at the origin and S is its boundary.
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7.2 Let the vector field Y be given by
Y =Y.n, + Yone + Y,n,
in terms of polar “coordinates” r, 6,.¢ on E3, where n,, n.oand n, are the unit vectors in
the directions 4/dr, 8/30 and 9/d¢ respectively. Show that
L [o

divY = ——
A r2 sin ¢ \Or

2 . 0 i) )
(rsing Y,) + 36 (rYy) + @ (rsin ¢ Y,,,)} .

7.3 Compute the divergence of a vector field in terms of polar coodrinates in the
plane.

7.4 Compute the divergence of a vector field in terms of cylindrical coordinates
in E3.

7.5 Let o be the volume (area) density on the unit sphere S2. Compute div¢X
in terms of the coordinates 6, ¢ (polar coordinates) on the sphere.





