Flows of Vector fields on manifolds

We have proved in class the following theorems for integral curves of vector fields on manifolds.

Theorem 1 (Existence). If v is a C^{1} vector field on a smooth manifold M, for any point $p \in M$, there exists some $\epsilon>0$ and an integral curve of v

$$
\gamma:(-\epsilon, \epsilon) \longrightarrow M
$$

so that $\gamma(0)=p$.
Theorem 2 (Uniqueness). If v is a C^{1} vector field on M, let $\gamma_{i}: I_{i} \rightarrow M, i=1,2$, be integral curves of v. If $a \in I_{1} \cap I_{2}$ and $\gamma_{1}(a)=\gamma_{2}(a)$ then $\gamma_{1} \equiv \gamma_{2}$ on $I_{1} \cap I_{2}$ and the curve $\gamma: I_{1} \cup I_{2} \rightarrow M$ defined by

$$
\gamma(t)= \begin{cases}\gamma_{1}(t), & t \in I_{1} \\ \gamma_{2}(t), & t \in I_{2}\end{cases}
$$

is an integral curve.
We also have the following theorem that says the there is a unique maximal integral curve passing through the point p which either exists for all time, or runs off to infinity, or off the edge of M.

Theorem 3. If v is a C^{1} vector field on M, for any point p there exists a unique maximal integral curve

$$
\gamma:[0, b) \longrightarrow M \quad \gamma(0)=p
$$

so that at least one of the following is true

1. either

$$
b=\infty
$$

2. or:

For every compact set $K \subset M$ there exists some time $T<b$ so that $\gamma(t) \notin K$ for all $t \geq T$.

Theorem 4 (Smooth dependence on initial data). Let v be a C^{k}-vector field on a smooth manifold M, and $U \subset M$ an open subset. Suppose that $\Phi(u, t):(-\epsilon, \epsilon) \times U \longrightarrow$ M has the following properties:
(i) $\Phi(p, 0)=p$.
(ii) For all $p \in U$ the curve

$$
\gamma_{p}:(-\epsilon, \epsilon) \rightarrow M \quad \gamma_{p}(t)=\Phi(p, t)
$$

is an integral curve of v.
Then Φ is C^{k} (If $k \geq 1$).
Definition 1. $A C^{1}$ vector field v on M is complete if for all $p \in M$ there exists an integral curve of v,

$$
\gamma_{p}: \mathbb{R} \longrightarrow M \text { so that } \gamma_{p}(0)=p
$$

In such a case, the flow of v is defined by

$$
\Phi_{t v}(p):=\gamma_{p}(t)
$$

For example, Theorem 3 tells us that v is complete if M is compact, or if v is compactly supported.

Note that if $\gamma_{p}(t)$ is an integral curve, $\gamma_{p}\left(t+t_{0}\right)$ is also an integral curve. This tells us the following important identity:

$$
\Phi_{t_{1} v} \circ \Phi_{t_{2} v}=\Phi_{\left(t_{1}+t_{2}\right) v}
$$

Note that as $\Phi_{0 v}(x)=x$, this in particular tells us that

$$
\Phi_{t v}^{-1}=\Phi_{-t v}
$$

If v is smooth, then Theorem 4 tells us that that each of these must be smooth, so $\Phi_{t v}$ is a diffeomorphism.

If v is not complete, then $\Phi_{t v}(x)$ is not defined for all t and x. We can, however still make the following definition:

Definition 2. If v is a C^{1} vector field on M define the flow $\Phi_{t v}$ as follows: If there exists an integral curve γ_{p} so that $\gamma_{p}(0)=p$, and $\gamma_{p}(t)$ is defined, then

$$
\Phi_{t v}(p)=\gamma_{p}(t)
$$

If there does not exist such a vector field, then $\Phi_{t v}(p)$ is not defined.
Theorem 5. If v is C^{1}, then for all $p \in M$, there exists some open set U containing p, and $\epsilon>0$ so that for all $t<\epsilon, \Phi_{t v}: U \rightarrow M$ is defined, and $p \in \Phi_{t v}(U)$.

Theorem 4 tells us $\Phi_{t v}: U \rightarrow M$ is C^{k} if v is. Note also that if this is the case, the inverse of $\Phi_{t v}$ is given by

$$
\begin{gathered}
\Phi_{t v}^{-1}: \Phi_{t v}(U) \longrightarrow U \\
\Phi_{t v}^{-1}=\Phi_{-t v}
\end{gathered}
$$

In the following, we shall use the following notation for the pull back of a function

$$
f^{*} g:=g \circ f
$$

Theorem 6. If v is a C^{1} vector field, then

$$
L_{v} f(p)=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{t v}^{*} f\right)(p)
$$

Proof.

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{t v}^{*} f\right)(p)=\left.\frac{d}{d t}\right|_{t=0} f\left(\Phi_{t v}(p)\right)=d f\left(\left.\frac{d}{d t}\right|_{t=0} \Phi_{t v}(p)\right)=d f(v(p))=L_{v} f(p)
$$

This says that $L_{v} f$ measures how f changes in the direction of the flow of v. Recall that we defined a conserved quantity of v to be a function which is constant on all integral curves of v. The following theorem was proved in class:

Theorem 7. If v is a C^{1} vector field on M, and $f: M \longrightarrow \mathbb{R}$ is a differentiable function, f is a conserved quantity of v if and only if $L_{v} f=0$.

Now, let us define the Lie derivative of a vector field. We have defined the push forward of a vector field w by

$$
f_{*} w:=T f \circ w \circ f^{-1}
$$

Define the pull back of a vector field by

$$
f^{*} w:=\left(f^{-1}\right)_{*} w:=T f^{-1} \circ w \circ f
$$

Definition 3. If v and w are two C^{1} vector field on M, define the Lie derivative of w with respect to v as follows:

$$
L_{v} w(p):=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t v}^{*} w:=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{-t v}\right)_{*} w
$$

Note that theorem 5 says that $\Phi_{t v}^{*} w(p) \in T_{p} M$ will be defined for t small enough, so this definition is valid even if v is not complete.

Note that if $L_{v} w=0, \Phi_{t v}^{*} w=w$, in other words, the flow defined by v preserves w. For example, this means that if γ is an integral curve of w, and $L_{v} w=0$, then $\Phi_{t v} \circ \gamma$ is also an integral curve.

You should think of $L_{-v} w$ as measuring how you see w change as you flow it by v. $L_{v} w$ measures how you see w change if you flow yourself by v. Unless you happen to be particularly diffuse and flexible, this is somewhat less intuitive than the interpretation of $L_{-v} w$, however it has the advantage of coinciding with the nice formula $L_{v} f=d f(v)$.

Theorem 8. If v and w are C^{1} vector fields,

$$
L_{v} w=[v, w]
$$

Proof. Recall that the Lie bracket $[v, w]$ is the unique vector field so that

$$
L_{[v, w]} f=L_{v} L_{w} f-L_{w} L_{v} f \text { for all smooth } f
$$

Let us compute

$$
\begin{aligned}
L_{L_{v} w} f & =\left.\frac{d}{d t}\right|_{t=0} d f\left(\Phi_{t v}^{*} w\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} d f \circ T \Phi_{t v}^{-1} \circ w \circ \Phi_{t v} \\
& =\left.\frac{d}{d t}\right|_{t=0} d f \circ T \Phi_{t v}^{-1} \circ w+\left.\frac{d}{d t}\right|_{t=0} d f \circ w \circ \Phi_{t v} \\
& =\left.\frac{d}{d t}\right|_{t=0} d\left(\Phi_{-t v}^{*} f\right)(w)+\left.\frac{d}{d t}\right|_{t=0} d f(w) \circ \Phi_{t v} \\
& =-L_{w} L_{v} f+L_{v} L_{w} f \\
& =[v, w] f
\end{aligned}
$$

Note that this says that if the flow of v preserves w, the flow of w preserves v.
Strictly speaking, to know that if the $L_{v} w$ is 0 , the flow of v preserves w, we need the following theorem:

Theorem 9. If v and w are C^{1} vector fields on M, and v is complete, then $\Phi_{t v}^{*} w:=$ $\left(\Phi_{-t v}\right)_{*} w$ is the unique time dependent vector field w_{t} so that:
1.

$$
\frac{\partial}{\partial t} w_{t}=L_{v} w_{t}
$$

2.

$$
w_{0}=w
$$

Proof. First, we show that $\Phi_{t v}^{*}$ satisfies the above partial differential equation:

$$
\frac{d}{d t} \Phi_{t v}^{*} w=\left.\frac{d}{d s}\right|_{s=0} \Phi_{(s+t) v}^{*} w=\left.\frac{d}{d s}\right|_{s=0} \Phi_{s v}^{*}\left(\Phi_{t v}^{*} w\right)=L_{v}\left(\Phi_{t v} w\right)
$$

As it also obeys the initial condition $\Phi_{0 v}^{*} w=w$, it obeys both the above conditions. We must show that this uniquely determines it.

Consider the above equation in local coordinates,

$$
\begin{gathered}
w_{t}:=W_{1}(x, t) \frac{\partial}{\partial x_{1}}+\cdots+W_{n}(x, t) \frac{\partial}{\partial x_{n}} \\
v=\sum v_{i} \frac{\partial}{\partial x_{i}}
\end{gathered}
$$

We have

$$
\frac{\partial W_{j}}{\partial t}=L_{v} W_{j}-\sum_{i} W_{i} \frac{\partial v_{j}}{\partial x_{i}}
$$

We shall solve this partial differential equation by the method of characteristics. Define the vector field

$$
\tilde{v}:=\frac{\partial}{\partial t}-\sum_{i} v_{i} \frac{\partial}{\partial x_{i}}
$$

We can now rewrite our system of equations as

$$
L_{\tilde{v}} W_{j}=-\sum_{i} W_{i} \frac{\partial v_{j}}{\partial x_{i}}
$$

This gives an equation for how $W(x, t)$ changes along integral curves of \tilde{v}. Note that the flow defined by \tilde{v} is give by

$$
\Phi_{t \tilde{v}}(x, 0)=\left(t, \Phi_{-t v} x\right)
$$

As v is C^{1}, the flow it defines is C^{1}, and therefore the flow defined by \tilde{v} is also C^{1}. We therefore have that along any integral curve, this gives a system of ordinary differential equations for W which is continuous, and, because it is linear at any particular time, obeys a Lipshitz condition on any finite time interval. Our uniqueness theorem for Ordinary differential equations then tells us that if two solutions agree anywhere along an integral curve of \tilde{v}, they agree along the entire integral curve. But any integral curve of \tilde{v} passes through the slice where $t=0$, where $w_{0}=w$, so the solution to the above differential equation is unique.

We can also define the Lie derivative of a one form α. Recall that the pull back is defined by

$$
f^{*} \alpha:=\alpha \circ T f
$$

Definition 4. If v is a C^{1} vector field and α is a C^{1} one form on M, the Lie derivative of α with respect to v is the one form $L_{v} \alpha$ defined by

$$
L_{v} \alpha:=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t v}^{*} \alpha
$$

1. Show that

$$
L_{v}(\alpha(w))=L_{v}(\alpha)(w)+\alpha\left(L_{v} w\right)
$$

2. Show that

$$
L_{v} d f=d L_{v} f
$$

3. Show that if f is a function and α a one form

$$
L_{v}(f \alpha)=\left(L_{v} f\right) \alpha+f L_{v} \alpha
$$

Show that the same formula holds if w is a vector field

$$
L_{v}(f w)=\left(L_{v} f\right) w+f L_{v} w
$$

4. find

$$
\begin{gathered}
L_{x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}}\left(x_{1} d x_{1}+x_{2} d x_{2}\right) \\
L_{x_{1} x_{2} x_{3} \frac{\partial}{\partial x_{1}}}\left(d x_{1}+x_{2} d x_{3}\right)
\end{gathered}
$$

5. Suppose that v and w are complete C^{1} vector fields on M Show that $L_{v} w=0$ if and only if

$$
\Phi_{t v} \circ \Phi_{s w}=\Phi_{s w} \circ \Phi_{t v}
$$

In such a case, we say that the flows commute.
6. Suppose that v and w are C^{1} vector fields on \mathbb{R}^{N} which are tangent to $M \subset \mathbb{R}^{N}$. Prove that $L_{v} w$ is also tangent to M. Show also that if v_{1} and w_{1} indicates the restriction of v and w to M, the restriction of $L_{v} w$ is $L_{v_{1}} w_{1}$.
7. (a) Let $U=\mathbb{R}^{2}$ and let v be the vector field, $x_{1} \partial / \partial x_{2}-x_{2} \partial / \partial x_{1}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow(r \cos (t+\theta), r \sin (t+\theta))
$$

is the unique integral curve of v passing through the point, $(r \cos \theta, r \sin \theta)$, at $t=0$.
(b) Let $U=\mathbb{R}^{n}$ and let v be the constant vector field: $\sum c_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow a+t\left(c_{1}, \ldots, c_{n}\right)
$$

is the unique integral curve of v passing through $a \in \mathbb{R}^{n}$ at $t=0$.
(c) Let $U=\mathbb{R}^{n}$ and let v be the vector field, $\sum x_{i} \partial / \partial x_{i}$. Show that the curve

$$
t \in \mathbb{R} \rightarrow e^{t}\left(a_{1}, \ldots, a_{n}\right)
$$

is the unique integral curve of v passing through a at $t=0$.
8. Let U be an open subset of \mathbb{R}^{n} and $F: U \times \mathbb{R} \rightarrow U$ a \mathcal{C}^{∞} mapping. The family of mappings

$$
f_{t}: U \rightarrow U, \quad f_{t}(x)=F(x, t)
$$

is said to be a one-parameter group of diffeomorphisms of U if f_{0} is the identity map and $f_{s} \circ f_{t}=f_{s+t}$ for all s and t. (Note that $f_{-t}=f_{t}^{-1}$, so each of the f_{t} 's is a diffeomorphism.) Show that the following are one-parameter groups of diffeomorphisms:
(a) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=x+t$
(b) $f_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{t}(x)=e^{t} x$
(c) $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f_{t}(x, y)=(\cos t x-\sin t y, \sin t x+\cos t y)$
9. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear mapping. Show that the series

$$
\exp t A=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots
$$

converges and defines a one-parameter group of diffeomorphisms of \mathbb{R}^{n}.
10. (a) What are the infinitesimal generators of the one-parameter groups in exercise 8? In other words, what is the vector field v so that the flow of v gives the above group of diffeomorphisms.
(b) Show that the infinitesimal generator of the one-parameter group in exercise 9 is the vector field

$$
\sum a_{i, j} x_{j} \frac{\partial}{\partial x_{i}}
$$

where $\left[a_{i, j}\right]$ is the defining matrix of A.
11. Let $X \subseteq \mathbb{R}^{3}$ be the paraboloid, $x_{3}=x_{1}^{2}+x_{2}^{2}$ and let w be the vector field

$$
w=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+2 x_{3} \frac{\partial}{\partial x_{3}} .
$$

(a) Show that w is tangent to X and hence defines by restriction a vector field, v, on X.
(b) What are the integral curves of v ?
12. Let S^{2} be the unit 2 -sphere, $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, in \mathbb{R}^{3} Consider the following vector fields:

$$
\begin{aligned}
w_{1} & =x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}} \\
w_{2} & =x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}} \\
w_{3} & =x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}
\end{aligned}
$$

(a) Show that w_{i} is tangent to S^{2}, and hence by restriction defines a vector field, v_{i}, on S^{2}.
(b) What are the integral curves of v_{i} ?
(c) Find $L_{v_{i}} v_{j}$ for all i, j.
(d) Give a formula for $\left(\Phi_{t v_{1}}\right)_{*} v_{2}$.

13 . Let S^{2} be the unit 2 -sphere in \mathbb{R}^{3} and let w be the vector field

$$
w=\frac{\partial}{\partial x_{3}}-x_{3}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right)
$$

(a) Show that w is tangent to S^{2} and hence by restriction defines a vector field, v, on S^{2}.
(b) What do its integral curves look like?
14. Let S^{1} be the unit sphere, $x_{1}^{2}+x_{2}^{2}=1$, in \mathbb{R}^{2} and let $X=S^{1} \times S^{1}$ in \mathbb{R}^{4} with defining equations

$$
\begin{aligned}
& f_{1}=x_{1}^{2}+x_{2}^{2}-1=0 \\
& f_{2}=x_{3}^{2}+x_{4}^{2}-1=0 .
\end{aligned}
$$

(a) Show that the vector field

$$
w=x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}+\lambda\left(x_{4} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{4}}\right),
$$

$\lambda \in \mathbb{R}$, is tangent to X and hence defines by restriction a vector field, v, on X.
(b) What are the integral curves of v ?
(c) Show that $L_{w} f_{i}=0$.
15. For the vector field, v, in problem 14a, describe the one-parameter group of diffeomorphisms it generates.
16. Let X and v be as in problem 11 and let $f: \mathbb{R}^{2} \rightarrow X$ be the map, $f\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$. Show that if u is the vector field,

$$
u=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}},
$$

then $f_{*} u=v$.
17.* An elementary result in number theory asserts

Theorem. A number, $\lambda \in \mathbb{R}$, is irrational if and only if the set

$$
\{m+\lambda n, \quad m \text { and } n \text { intgers }\}
$$

is a dense subset of \mathbb{R}.
Let v be the vector field in problem 14a. Using the theorem above prove that if $\lambda / 2 \pi$ is irrational then for every integral curve, $\gamma(t),-\infty<t<\infty$, of v the set of points on this curve is a dense subset of X.

