Flows of Vector fields on manifolds

We have proved in class the following theorems for integral curves of vector fields on manifolds.

Theorem 1 (Existence). If v is a C^1 vector field on a smooth manifold M, for any point $p \in M$, there exists some $\epsilon > 0$ and an integral curve of v

$$\gamma: (-\epsilon, \epsilon) \longrightarrow M$$

so that $\gamma(0) = p$.

Theorem 2 (Uniqueness). If v is a C^1 vector field on M, let $\gamma_i : I_i \to M$, i = 1, 2, be integral curves of v. If $a \in I_1 \cap I_2$ and $\gamma_1(a) = \gamma_2(a)$ then $\gamma_1 \equiv \gamma_2$ on $I_1 \cap I_2$ and the curve $\gamma : I_1 \cup I_2 \to M$ defined by

$$\gamma(t) = \begin{cases} \gamma_1(t) \,, & t \in I_1 \\ \gamma_2(t) \,, & t \in I_2 \end{cases}$$

is an integral curve.

We also have the following theorem that says the there is a unique maximal integral curve passing through the point p which either exists for all time, or runs off to infinity, or off the edge of M.

Theorem 3. If v is a C^1 vector field on M, for any point p there exists a unique maximal integral curve

$$\gamma: [0,b) \longrightarrow M \qquad \qquad \gamma(0) = p$$

so that at least one of the following is true

1. either

 $b = \infty$

2. or:

For every compact set $K \subset M$ there exists some time T < b so that $\gamma(t) \notin K$ for all t > T.

Theorem 4 (Smooth dependence on initial data). Let v be a C^k -vector field on a smooth manifold M, and $U \subset M$ an open subset. Suppose that $\Phi(u, t) : (-\epsilon, \epsilon) \times U \longrightarrow M$ has the following properties:

(*i*) $\Phi(p, 0) = p$.

(ii) For all $p \in U$ the curve

$$\gamma_p: (-\epsilon, \epsilon) \to M \qquad \gamma_p(t) = \Phi(p, t)$$

is an integral curve of v.

Then Φ is C^k (If $k \ge 1$).

Definition 1. A C^1 vector field v on M is complete if for all $p \in M$ there exists an integral curve of v,

$$\gamma_p: \mathbb{R} \longrightarrow M \text{ so that } \gamma_p(0) = p$$

In such a case, the flow of v is defined by

$$\Phi_{tv}(p) := \gamma_p(t)$$

For example, Theorem 3 tells us that v is complete if M is compact, or if v is compactly supported.

Note that if $\gamma_p(t)$ is an integral curve, $\gamma_p(t+t_0)$ is also an integral curve. This tells us the following important identity:

$$\Phi_{t_1v} \circ \Phi_{t_2v} = \Phi_{(t_1+t_2)v}$$

Note that as $\Phi_{0v}(x) = x$, this in particular tells us that

$$\Phi_{tv}^{-1} = \Phi_{-t}$$

If v is smooth, then Theorem 4 tells us that that each of these must be smooth, so Φ_{tv} is a diffeomorphism.

If v is not complete, then $\Phi_{tv}(x)$ is not defined for all t and x. We can, however still make the following definition:

Definition 2. If v is a C^1 vector field on M define the flow Φ_{tv} as follows: If there exists an integral curve γ_p so that $\gamma_p(0) = p$, and $\gamma_p(t)$ is defined, then

$$\Phi_{tv}(p) = \gamma_p(t)$$

If there does not exist such a vector field, then $\Phi_{tv}(p)$ is not defined.

Theorem 5. If v is C^1 , then for all $p \in M$, there exists some open set U containing p, and $\epsilon > 0$ so that for all $t < \epsilon$, $\Phi_{tv} : U \to M$ is defined, and $p \in \Phi_{tv}(U)$.

Theorem 4 tells us $\Phi_{tv}: U \to M$ is C^k if v is. Note also that if this is the case, the inverse of Φ_{tv} is given by

$$\Phi_{tv}^{-1}:\Phi_{tv}(U)\longrightarrow U$$
$$\Phi_{tv}^{-1}=\Phi_{-tv}$$

In the following, we shall use the following notation for the pull back of a function

$$f^*g := g \circ f$$

Theorem 6. If v is a C^1 vector field, then

$$L_v f(p) = \frac{d}{dt} |_{t=0} (\Phi_{tv}^* f)(p)$$

Proof.

$$\frac{d}{dt}|_{t=0}(\Phi_{tv}^*f)(p) = \frac{d}{dt}|_{t=0}f(\Phi_{tv}(p)) = df(\frac{d}{dt}|_{t=0}\Phi_{tv}(p)) = df(v(p)) = L_vf(p)$$

This says that $L_v f$ measures how f changes in the direction of the flow of v. Recall that we defined a conserved quantity of v to be a function which is constant on all integral curves of v. The following theorem was proved in class:

Theorem 7. If v is a C^1 vector field on M, and $f : M \longrightarrow \mathbb{R}$ is a differentiable function, f is a conserved quantity of v if and only if $L_v f = 0$.

Now, let us define the Lie derivative of a vector field. We have defined the push forward of a vector field w by

$$f_*w := Tf \circ w \circ f^{-1}$$

Define the pull back of a vector field by

$$f^*w := (f^{-1})_*w := Tf^{-1} \circ w \circ f$$

Definition 3. If v and w are two C^1 vector field on M, define the Lie derivative of w with respect to v as follows:

$$L_v w(p) := \frac{d}{dt}|_{t=0} \Phi_{tv}^* w := \frac{d}{dt}|_{t=0} (\Phi_{-tv})_* w$$

Note that theorem 5 says that $\Phi_{tv}^* w(p) \in T_p M$ will be defined for t small enough, so this definition is valid even if v is not complete.

Note that if $L_v w = 0$, $\Phi_{tv}^* w = w$, in other words, the flow defined by v preserves w. For example, this means that if γ is an integral curve of w, and $L_v w = 0$, then $\Phi_{tv} \circ \gamma$ is also an integral curve.

You should think of $L_{-v}w$ as measuring how you see w change as you flow it by v. L_vw measures how you see w change if you flow yourself by v. Unless you happen to be particularly diffuse and flexible, this is somewhat less intuitive than the interpretation of $L_{-v}w$, however it has the advantage of coinciding with the nice formula $L_v f = df(v)$.

Theorem 8. If v and w are C^1 vector fields,

$$L_v w = [v, w]$$

Proof. Recall that the Lie bracket [v, w] is the unique vector field so that

$$L_{[v,w]}f = L_v L_w f - L_w L_v f$$
 for all smooth f

Let us compute

$$L_{L_vw}f = \frac{d}{dt}|_{t=0}df(\Phi_{tv}^*w)$$

$$= \frac{d}{dt}|_{t=0}df \circ T\Phi_{tv}^{-1} \circ w \circ \Phi_{tv}$$

$$= \frac{d}{dt}|_{t=0}df \circ T\Phi_{tv}^{-1} \circ w + \frac{d}{dt}|_{t=0}df \circ w \circ \Phi_{tv}$$

$$= \frac{d}{dt}|_{t=0}d(\Phi_{-tv}^*f)(w) + \frac{d}{dt}|_{t=0}df(w) \circ \Phi_{tv}$$

$$= -L_wL_vf + L_vL_wf$$

$$= [v,w]f$$

Note that this says that if the flow of v preserves w, the flow of w preserves v.

Strictly speaking, to know that if the $L_v w$ is 0, the flow of v preserves w, we need the following theorem:

Theorem 9. If v and w are C^1 vector fields on M, and v is complete, then $\Phi_{tv}^* w := (\Phi_{-tv})_* w$ is the unique time dependent vector field w_t so that:

1.

$$\frac{\partial}{\partial t}w_t = L_v w_t$$

$$w_0 = w$$

Proof. First, we show that Φ_{tv}^* satisfies the above partial differential equation:

$$\frac{d}{dt}\Phi_{tv}^*w = \frac{d}{ds}|_{s=0}\Phi_{(s+t)v}^*w = \frac{d}{ds}|_{s=0}\Phi_{sv}^*(\Phi_{tv}^*w) = L_v(\Phi_{tv}w)$$

As it also obeys the initial condition $\Phi_{0v}^* w = w$, it obeys both the above conditions. We must show that this uniquely determines it.

Consider the above equation in local coordinates,

$$w_t := W_1(x,t)\frac{\partial}{\partial x_1} + \dots + W_n(x,t)\frac{\partial}{\partial x_n}$$
$$v = \sum v_i \frac{\partial}{\partial x_i}$$

We have

$$\frac{\partial W_j}{\partial t} = L_v W_j - \sum_i W_i \frac{\partial v_j}{\partial x_i}$$

We shall solve this partial differential equation by the method of characteristics. Define the vector field

$$\tilde{v} := \frac{\partial}{\partial t} - \sum_{i} v_i \frac{\partial}{\partial x_i}$$

We can now rewrite our system of equations as

$$L_{\tilde{v}}W_j = -\sum_i W_i \frac{\partial v_j}{\partial x_i}$$

This gives an equation for how W(x,t) changes along integral curves of \tilde{v} . Note that the flow defined by \tilde{v} is give by

$$\Phi_{t\tilde{v}}(x,0) = (t,\Phi_{-tv}x)$$

As v is C^1 , the flow it defines is C^1 , and therefore the flow defined by \tilde{v} is also C^1 . We therefore have that along any integral curve, this gives a system of ordinary differential equations for W which is continuous, and, because it is linear at any particular time, obeys a Lipshitz condition on any finite time interval. Our uniqueness theorem for Ordinary differential equations then tells us that if two solutions agree anywhere along an integral curve of \tilde{v} , they agree along the entire integral curve. But any integral curve of \tilde{v} passes through the slice where t = 0, where $w_0 = w$, so the solution to the above differential equation is unique.

We can also define the Lie derivative of a one form α . Recall that the pull back is defined by

$$f^*\alpha := \alpha \circ Tf$$

Definition 4. If v is a C^1 vector field and α is a C^1 one form on M, the Lie derivative of α with respect to v is the one form $L_v \alpha$ defined by

$$L_v \alpha := \frac{d}{dt}|_{t=0} \Phi_{tv}^* \alpha$$

1. Show that

$$L_v(\alpha(w)) = L_v(\alpha)(w) + \alpha(L_v w)$$

2. Show that

$$L_v df = dL_v f$$

3. Show that if f is a function and α a one form

$$L_v(f\alpha) = (L_v f)\alpha + fL_v\alpha$$

Show that the same formula holds if w is a vector field

$$L_v(fw) = (L_v f)w + fL_v w$$

4. find

$$L_{x_1\frac{\partial}{\partial x_1}+x_2\frac{\partial}{\partial x_2}}(x_1dx_1+x_2dx_2)$$
$$L_{x_1x_2x_3\frac{\partial}{\partial x_1}}(dx_1+x_2dx_3)$$

5. Suppose that v and w are complete C^1 vector fields on M Show that $L_v w = 0$ if and only if

$$\Phi_{tv} \circ \Phi_{sw} = \Phi_{sw} \circ \Phi_{tv}$$

In such a case, we say that the flows commute.

- 6. Suppose that v and w are C^1 vector fields on \mathbb{R}^N which are tangent to $M \subset \mathbb{R}^N$. Prove that $L_v w$ is also tangent to M. Show also that if v_1 and w_1 indicates the restriction of v and w to M, the restriction of $L_v w$ is $L_{v_1} w_1$.
- 7. (a) Let $U = \mathbb{R}^2$ and let v be the vector field, $x_1 \partial / \partial x_2 x_2 \partial / \partial x_1$. Show that the curve

$$t \in \mathbb{R} \to (r\cos(t+\theta), r\sin(t+\theta))$$

is the unique integral curve of v passing through the point, $(r \cos \theta, r \sin \theta)$, at t = 0.

(b) Let $U = \mathbb{R}^n$ and let v be the constant vector field: $\sum c_i \partial / \partial x_i$. Show that the curve

$$t \in \mathbb{R} \to a + t(c_1, \dots, c_n)$$

is the unique integral curve of v passing through $a \in \mathbb{R}^n$ at t = 0.

(c) Let $U = \mathbb{R}^n$ and let v be the vector field, $\sum x_i \partial / \partial x_i$. Show that the curve

$$t \in \mathbb{R} \to e^t(a_1, \ldots, a_n)$$

is the unique integral curve of v passing through a at t = 0.

8. Let U be an open subset of \mathbb{R}^n and $F: U \times \mathbb{R} \to U$ a \mathcal{C}^{∞} mapping. The family of mappings

$$f_t: U \to U, \quad f_t(x) = F(x,t)$$

is said to be a one-parameter group of diffeomorphisms of U if f_0 is the identity map and $f_s \circ f_t = f_{s+t}$ for all s and t. (Note that $f_{-t} = f_t^{-1}$, so each of the f_t 's is a diffeomorphism.) Show that the following are one-parameter groups of diffeomorphisms:

- (a) $f_t : \mathbb{R} \to \mathbb{R}$, $f_t(x) = x + t$ (b) $f_t : \mathbb{R} \to \mathbb{R}$, $f_t(x) = e^t x$ (c) $f_t : \mathbb{R}^2 \to \mathbb{R}^2$, $f_t(x, y) = (\cos t x - \sin t y, \sin t x + \cos t y)$
- 9. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping. Show that the series

$$\exp tA = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

converges and defines a one-parameter group of diffeomorphisms of \mathbb{R}^n .

- 10. (a) What are the infinitesimal generators of the one-parameter groups in exercise 8? In other words, what is the vector field v so that the flow of v gives the above group of diffeomorphisms.
 - (b) Show that the infinitesimal generator of the one-parameter group in exercise 9 is the vector field

$$\sum a_{i,j} x_j \frac{\partial}{\partial x_i}$$

where $[a_{i,j}]$ is the defining matrix of A.

11. Let $X \subseteq \mathbb{R}^3$ be the paraboloid, $x_3 = x_1^2 + x_2^2$ and let w be the vector field

$$w = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + 2x_3 \frac{\partial}{\partial x_3}$$

- (a) Show that w is tangent to X and hence defines by restriction a vector field, v, on X.
- (b) What are the integral curves of v?
- 12. Let S^2 be the unit 2-sphere, $x_1^2 + x_2^2 + x_3^2 = 1$, in \mathbb{R}^3 Consider the following vector fields:

$$w_1 = x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}$$
$$w_2 = x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3}$$
$$w_3 = x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}$$

- (a) Show that w_i is tangent to S^2 , and hence by restriction defines a vector field, v_i , on S^2 .
- (b) What are the integral curves of v_i ?
- (c) Find $L_{v_i}v_j$ for all i, j.
- (d) Give a formula for $(\Phi_{tv_1})_*v_2$.
- 13. Let S^2 be the unit 2-sphere in \mathbb{R}^3 and let w be the vector field

$$w = \frac{\partial}{\partial x_3} - x_3 \left(x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} \right)$$

- (a) Show that w is tangent to S^2 and hence by restriction defines a vector field, v, on S^2 .
- (b) What do its integral curves look like?
- 14. Let S^1 be the unit sphere, $x_1^2 + x_2^2 = 1$, in \mathbb{R}^2 and let $X = S^1 \times S^1$ in \mathbb{R}^4 with defining equations

$$f_1 = x_1^2 + x_2^2 - 1 = 0$$

$$f_2 = x_3^2 + x_4^2 - 1 = 0.$$

(a) Show that the vector field

$$w = x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} + \lambda \left(x_4 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_4} \right) ,$$

 $\lambda \in \mathbb{R}$, is tangent to X and hence defines by restriction a vector field, v, on X.

- (b) What are the integral curves of v?
- (c) Show that $L_w f_i = 0$.
- 15. For the vector field, v, in problem 14a, describe the one-parameter group of diffeomorphisms it generates.
- 16. Let X and v be as in problem 11 and let $f : \mathbb{R}^2 \to X$ be the map, $f(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$. Show that if u is the vector field,

$$u = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2},$$

then $f_*u = v$.

17.* An elementary result in number theory asserts

Theorem. A number, $\lambda \in \mathbb{R}$, is irrational if and only if the set

$$\{m + \lambda n, m \text{ and } n \text{ intgers}\}$$

is a dense subset of \mathbb{R} .

Let v be the vector field in problem 14a. Using the theorem above prove that if $\lambda/2\pi$ is irrational then for every integral curve, $\gamma(t)$, $-\infty < t < \infty$, of v the set of points on this curve is a dense subset of X.