
Flows of Vector fields on manifolds

We have proved in class the following theorems for integral curves of vector fields
on manifolds.

Theorem 1 (Existence). If v is a C1 vector field on a smooth manifold M , for any
point p ∈ M , there exists some ǫ > 0 and an integral curve of v

γ : (−ǫ, ǫ) −→ M

so that γ(0) = p.

Theorem 2 (Uniqueness). If v is a C1 vector field on M , let γi : Ii → M , i = 1, 2,
be integral curves of v. If a ∈ I1 ∩ I2 and γ1(a) = γ2(a) then γ1 ≡ γ2 on I1 ∩ I2 and
the curve γ : I1 ∪ I2 → M defined by

γ(t) =

{

γ1(t) , t ∈ I1

γ2(t) , t ∈ I2

is an integral curve.

We also have the following theorem that says the there is a unique maximal
integral curve passing through the point p which either exists for all time, or runs off
to infinity, or off the edge of M .

Theorem 3. If v is a C1 vector field on M , for any point p there exists a unique
maximal integral curve

γ : [0, b) −→ M γ(0) = p

so that at least one of the following is true

1. either
b = ∞

2. or:

For every compact set K ⊂ M there exists some time T < b so that γ(t) /∈ K
for all t ≥ T .

Theorem 4 (Smooth dependence on initial data). Let v be a Ck-vector field on a
smooth manifold M, and U ⊂ M an open subset. Suppose that Φ(u, t) : (−ǫ, ǫ)×U −→
M has the following properties:

(i) Φ(p, 0) = p.

1



(ii) For all p ∈ U the curve

γp : (−ǫ, ǫ) → M γp(t) = Φ(p, t)

is an integral curve of v.

Then Φ is Ck (If k ≥ 1).

Definition 1. A C1 vector field v on M is complete if for all p ∈ M there exists an
integral curve of v,

γp : R −→ M so that γp(0) = p

In such a case, the flow of v is defined by

Φtv(p) := γp(t)

For example, Theorem 3 tells us that v is complete if M is compact, or if v is
compactly supported.

Note that if γp(t) is an integral curve, γp(t + t0) is also an integral curve. This
tells us the following important identity:

Φt1v ◦ Φt2v = Φ(t1+t2)v

Note that as Φ0v(x) = x, this in particular tells us that

Φ−1
tv = Φ−tv

If v is smooth, then Theorem 4 tells us that that each of these must be smooth,
so Φtv is a diffeomorphism.

If v is not complete, then Φtv(x) is not defined for all t and x. We can, however
still make the following definition:

Definition 2. If v is a C1 vector field on M define the flow Φtv as follows: If there
exists an integral curve γp so that γp(0) = p, and γp(t) is defined, then

Φtv(p) = γp(t)

If there does not exist such a vector field, then Φtv(p) is not defined.

Theorem 5. If v is C1, then for all p ∈ M , there exists some open set U containing
p, and ǫ > 0 so that for all t < ǫ, Φtv : U → M is defined, and p ∈ Φtv(U).
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Theorem 4 tells us Φtv : U → M is Ck if v is. Note also that if this is the case,
the inverse of Φtv is given by

Φ−1
tv : Φtv(U) −→ U

Φ−1
tv = Φ−tv

In the following, we shall use the following notation for the pull back of a function

f ∗g := g ◦ f

Theorem 6. If v is a C1 vector field, then

Lvf(p) =
d

dt
|t=0(Φ

∗

tvf)(p)

Proof.

d

dt
|t=0(Φ

∗

tvf)(p) =
d

dt
|t=0f(Φtv(p)) = df(

d

dt
|t=0Φtv(p)) = df(v(p)) = Lvf(p)

This says that Lvf measures how f changes in the direction of the flow of v.
Recall that we defined a conserved quantity of v to be a function which is constant
on all integral curves of v. The following theorem was proved in class:

Theorem 7. If v is a C1 vector field on M , and f : M −→ R is a differentiable
function, f is a conserved quantity of v if and only if Lvf = 0.

Now, let us define the Lie derivative of a vector field. We have defined the push
forward of a vector field w by

f∗w := Tf ◦ w ◦ f−1

Define the pull back of a vector field by

f ∗w := (f−1)∗w := Tf−1 ◦ w ◦ f

Definition 3. If v and w are two C1 vector field on M , define the Lie derivative of
w with respect to v as follows:

Lvw(p) :=
d

dt
|t=0Φ

∗

tvw :=
d

dt
|t=0(Φ−tv)∗w
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Note that theorem 5 says that Φ∗

tvw(p) ∈ TpM will be defined for t small enough,
so this definition is valid even if v is not complete.

Note that if Lvw = 0, Φ∗

tvw = w, in other words, the flow defined by v preserves
w. For example, this means that if γ is an integral curve of w, and Lvw = 0, then
Φtv ◦ γ is also an integral curve.

You should think of L−vw as measuring how you see w change as you flow it
by v. Lvw measures how you see w change if you flow yourself by v. Unless you
happen to be particularly diffuse and flexible, this is somewhat less intuitive than
the interpretation of L−vw, however it has the advantage of coinciding with the nice
formula Lvf = df(v).

Theorem 8. If v and w are C1 vector fields,

Lvw = [v, w]

Proof. Recall that the Lie bracket [v, w] is the unique vector field so that

L[v,w]f = LvLwf − LwLvf for all smooth f

Let us compute

LLvwf =
d

dt
|t=0df(Φ∗

tvw)

=
d

dt
|t=0df ◦ TΦ−1

tv ◦ w ◦ Φtv

=
d

dt
|t=0df ◦ TΦ−1

tv ◦ w +
d

dt
|t=0df ◦ w ◦ Φtv

=
d

dt
|t=0d(Φ∗

−tvf)(w) +
d

dt
|t=0df(w) ◦ Φtv

= −LwLvf + LvLwf

= [v, w]f

Note that this says that if the flow of v preserves w, the flow of w preserves v.
Strictly speaking, to know that if the Lvw is 0, the flow of v preserves w, we need

the following theorem:

Theorem 9. If v and w are C1 vector fields on M , and v is complete, then Φ∗

tvw :=
(Φ−tv)∗w is the unique time dependent vector field wt so that:

1.
∂

∂t
wt = Lvwt
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2.
w0 = w

Proof. First, we show that Φ∗

tv satisfies the above partial differential equation:

d

dt
Φ∗

tvw =
d

ds
|s=0Φ

∗

(s+t)vw =
d

ds
|s=0Φ

∗

sv(Φ
∗

tvw) = Lv(Φtvw)

As it also obeys the initial condition Φ∗

0vw = w, it obeys both the above conditions.
We must show that this uniquely determines it.

Consider the above equation in local coordinates,

wt := W1(x, t)
∂

∂x1
+ · · · + Wn(x, t)

∂

∂xn

v =
∑

vi

∂

∂xi

We have
∂Wj

∂t
= LvWj −

∑

i

Wi

∂vj

∂xi

We shall solve this partial differential equation by the method of characteristics.
Define the vector field

ṽ :=
∂

∂t
−

∑

i

vi

∂

∂xi

We can now rewrite our system of equations as

LṽWj = −
∑

i

Wi

∂vj

∂xi

This gives an equation for how W (x, t) changes along integral curves of ṽ. Note that
the flow defined by ṽ is give by

Φtṽ(x, 0) = (t, Φ−tvx)

As v is C1, the flow it defines is C1, and therefore the flow defined by ṽ is also C1. We
therefore have that along any integral curve, this gives a system of ordinary differential
equations for W which is continuous, and, because it is linear at any particular time,
obeys a Lipshitz condition on any finite time interval. Our uniqueness theorem for
Ordinary differential equations then tells us that if two solutions agree anywhere along
an integral curve of ṽ, they agree along the entire integral curve. But any integral
curve of ṽ passes through the slice where t = 0, where w0 = w, so the solution to the
above differential equation is unique.
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We can also define the Lie derivative of a one form α. Recall that the pull back
is defined by

f ∗α := α ◦ Tf

Definition 4. If v is a C1 vector field and α is a C1 one form on M , the Lie derivative
of α with respect to v is the one form Lvα defined by

Lvα :=
d

dt
|t=0Φ

∗

tvα

1. Show that

Lv(α(w)) = Lv(α)(w) + α(Lvw)

2. Show that
Lvdf = dLvf

3. Show that if f is a function and α a one form

Lv(fα) = (Lvf)α + fLvα

Show that the same formula holds if w is a vector field

Lv(fw) = (Lvf)w + fLvw

4. find
Lx1

∂

∂x1
+x2

∂

∂x2

(x1dx1 + x2dx2)

Lx1x2x3
∂

∂x1

(dx1 + x2dx3)

5. Suppose that v and w are complete C1 vector fields on M Show that Lvw = 0
if and only if

Φtv ◦ Φsw = Φsw ◦ Φtv

In such a case, we say that the flows commute.

6. Suppose that v and w are C1 vector fields on R
N which are tangent to M ⊂ R

N .
Prove that Lvw is also tangent to M . Show also that if v1 and w1 indicates the
restriction of v and w to M , the restriction of Lvw is Lv1

w1.

7. (a) Let U = R
2 and let v be the vector field, x1∂/∂x2 − x2∂/∂x1. Show that

the curve
t ∈ R → (r cos(t + θ) , r sin(t + θ))

is the unique integral curve of v passing through the point, (r cos θ, r sin θ),
at t = 0.
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(b) Let U = R
n and let v be the constant vector field:

∑

ci∂/∂xi. Show that
the curve

t ∈ R → a + t(c1, . . . , cn)

is the unique integral curve of v passing through a ∈ R
n at t = 0.

(c) Let U = R
n and let v be the vector field,

∑

xi∂/∂xi. Show that the curve

t ∈ R → et(a1, . . . , an)

is the unique integral curve of v passing through a at t = 0.

8. Let U be an open subset of R
n and F : U ×R → U a C∞ mapping. The family

of mappings
ft : U → U , ft(x) = F (x, t)

is said to be a one-parameter group of diffeomorphisms of U if f0 is the identity
map and fs ◦ ft = fs+t for all s and t. (Note that f−t = f−1

t , so each of the
ft’s is a diffeomorphism.) Show that the following are one-parameter groups of
diffeomorphisms:

(a) ft : R → R , ft(x) = x + t

(b) ft : R → R , ft(x) = etx

(c) ft : R
2 → R

2 , ft(x, y) = (cos t x − sin t y , sin t x + cos t y)

9. Let A : R
n → R

n be a linear mapping. Show that the series

exp tA = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

converges and defines a one-parameter group of diffeomorphisms of R
n.

10. (a) What are the infinitesimal generators of the one-parameter groups in ex-
ercise 8? In other words, what is the vector field v so that the flow of v
gives the above group of diffeomorphisms.

(b) Show that the infinitesimal generator of the one-parameter group in exer-
cise 9 is the vector field

∑

ai,jxj

∂

∂xi

where [ai,j ] is the defining matrix of A.

11. Let X ⊆ R
3 be the paraboloid, x3 = x2

1 + x2
2 and let w be the vector field

w = x1
∂

∂x1
+ x2

∂

∂x2
+ 2x3

∂

∂x3
.
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(a) Show that w is tangent to X and hence defines by restriction a vector field,
v, on X.

(b) What are the integral curves of v?

12. Let S2 be the unit 2-sphere, x2
1 + x2

2 + x2
3 = 1, in R

3 Consider the following
vector fields:

w1 = x2
∂

∂x3

− x3
∂

∂x2

w2 = x3
∂

∂x1
− x1

∂

∂x3

w3 = x1
∂

∂x2
− x2

∂

∂x1

(a) Show that wi is tangent to S2, and hence by restriction defines a vector
field, vi, on S2.

(b) What are the integral curves of vi?

(c) Find Lvi
vj for all i, j.

(d) Give a formula for (Φtv1
)∗v2.

13. Let S2 be the unit 2-sphere in R
3 and let w be the vector field

w =
∂

∂x3

− x3

(

x1
∂

∂x1

+ x2
∂

∂x2

+ x3
∂

∂x3

)

(a) Show that w is tangent to S2 and hence by restriction defines a vector
field, v, on S2.

(b) What do its integral curves look like?

14. Let S1 be the unit sphere, x2
1 + x2

2 = 1, in R
2 and let X = S1 × S1 in R

4 with
defining equations

f1 = x2
1 + x2

2 − 1 = 0

f2 = x2
3 + x2

4 − 1 = 0 .

(a) Show that the vector field

w = x1
∂

∂x2
− x2

∂

∂x1
+ λ

(

x4
∂

∂x3
− x3

∂

∂x4

)

,

λ ∈ R, is tangent to X and hence defines by restriction a vector field, v,
on X.
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(b) What are the integral curves of v?

(c) Show that Lwfi = 0.

15. For the vector field, v, in problem 14a, describe the one-parameter group of
diffeomorphisms it generates.

16. Let X and v be as in problem 11 and let f : R
2 → X be the map, f(x1, x2) =

(x1, x2, x
2
1 + x2

2). Show that if u is the vector field,

u = x1
∂

∂x1

+ x2
∂

∂x2

,

then f∗u = v.

17.* An elementary result in number theory asserts

Theorem. A number, λ ∈ R, is irrational if and only if the set

{m + λn , m and n intgers}

is a dense subset of R.

Let v be the vector field in problem 14a. Using the theorem above prove that
if λ/2π is irrational then for every integral curve, γ(t), −∞ < t < ∞, of v the
set of points on this curve is a dense subset of X.
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