
The theory of manifolds Lecture 2

Let X be a subset of R
N , Y a subset of R

n and f : X → Y a continuous map.
We recall

Definition 1. f is a C∞ map if for every p ∈ X, there exists a neighborhood, Up, of

p in R
N and a C∞ map, gp : Up → R

n, which coincides with f on Up ∩X.

We will say that f is a diffeomorphism if it is one–one and onto and f and f−1

are both C∞. In particular if Y is an open subset of R
n, X is a simple example of

what we will call a manifold. More generally,

Definition 2. A subset, X, of R
N is an n-dimensional manifold if, for every p ∈

X, there exists a neighborhood, V , of p in R
m, an open subset, U , in R

n, and a

diffeomorphism ϕ : U → X ∩ V .

Thus X is an n-dimensional manifold if, locally near every point p, X “looks like”
an open subset of R

n.
Often, we are only interested in the manifold X itself, and not in how it is sitting

inside R
N . Properties of X that don’t depend on this embedding are called intrinsic

properties of X. The following is the notion of when two manifolds are the same for
this purpose.

Definition 3. Two manifolds X ⊂ R
N and Y ⊂ R

M are diffeomorphic if there exists

a diffeomorphism f : X −→ Y

Note that the chain rule tells us that the above is an equivalence relation.
We’ll now describe how manifolds come up in concrete applications. Let U be an

open subset of R
N and f : U → R

k a C∞ map.

Definition 4. A point, a ∈ R
k, is a regular value of f if for every point, p ∈ f−1(a),

f is a submersion at p.

Note that for f to be a submersion at p, Df(p) : R
N → R

k has to be onto, and
hence k has to be less than or equal to N . Therefore this notion of “regular value” is
interesting only if N ≥ k.

Theorem 1. Let N − k = n. If a is a regular value of f , the set, X = f−1(a), is an

n-dimensional manifold.

Proof. Replacing f by τ−a ◦ f we can assume without loss of generality that a = 0.
Let p ∈ f−1(0). Since f is a submersion at p, the canonical submersion theorem tells
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us that there exists a neighborhood, O, of 0 in R
N , a neighborhood, U0, of p in U

and a diffeomorphism, g : O → U0 such that

f ◦ g = π (1)

where π is the projection map

R
N = R

k × R
n → R

k , (x, y) → x .

Hence π−1(0) = {0}×R
n = R

n and by (1), g maps O∩π−1(0) diffeomorphically onto
U0∩f

−1(0). However, O∩π−1(0) is a neighborhood, V , of 0 in R
n and U0∩f

−1(0) is a
neighborhood of p inX, and, as remarked, these two neighborhoods are diffeomorphic.

Some examples:

1. The n-sphere. Let
f : R

n+1 → R

be the map,
(x1, . . . , xn+1) → x2

1 + · · · + x2

n+1 − 1 .

Then
Df(x) = 2(x1, . . . , xn+1)

so, if x 6= 0 f is a submersion at x. In particular f is a submersion at all points,
x, on the n-sphere

Sn = f−1(0)

so the n-sphere is an n-dimensional submanifold of R
n+1.

2. Graphs. Let g : R
n → R

k be a C∞ map and let

X = graph g = {(x, y) ∈ R
n × R

k , y = g(x)} .

We claim that X is an n-dimensional submanifold of R
n+k = R

n × R
k.

Proof. Let
f : R

n × R
k → R

k

be the map, f(x, y) = y − g(x). Then

Df(x, y) = [−Dg(x) , Ik]

where Ik is the identity map of R
k onto itself. This map is always of rank k.

Hence graph g = f−1(0) is an n-dimensional submanifold of Rn+k.
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3. Munkres, §24, #6. Let Mn be the set of all n × n matrices and let Sn be
the set of all symmetric n× n matrices, i.e., the set

Sn = {A ∈ Mn , A = At} .

The map
[ai,j ] → (a11, a12, . . . , a1n, a2,1, . . . , a2n, . . .)

gives us an identification
Mn

∼= R
n2

and the map

[ai,j] → (a11, . . . a1n, a22, . . . a2n, a33, . . . a3n, . . .)

gives us an identification

Sn
∼= R

n(n+1)
2 .

(Note that if A is a symmetric matrix,

a12 = a21 , a13 = a13 = a31 , a32 = a23, etc.

so this map avoids redundancies.) Let

O(n) = {A ∈ Mn , A
tA = I} .

This is the set of orthogonal n×n matrices, and the exercise in Munkres requires
you to show that it’s an n(n− 1)/2-dimensional manifold.

Hint: Let f : Mn → Sn be the map f(A) = AtA− I. Then

O(n) = f−1(0) .

These examples show that lots of interesting manifolds arise as zero sets of sub-
mersions, f : U → R

k. We’ll conclude this lecture by showing that locally every

manifold arises this way. More explicitly let X ⊆ R
N be an n-dimensional manifold,

p a point of X, U a neighborhood of 0 in R
n, V a neighborhood of p in R

N and
ϕ : (U, 0) → (V ∩ X, p) a diffeomorphism. We will for the moment think of ϕ as a
C∞ map ϕ : U → R

N whose image happens to lie in X.

Lemma 2. The linear map

Dϕ(0) : R
n → R

N

is injective.
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Proof. ϕ−1 : V ∩ X → U is a diffeomorphism, so, shrinking V if necessary, we can
assume that there exists a C∞ map ψ : V → U which coincides with ϕ−1on V ∩ X
Since ϕ maps U onto V ∩X, ψ ◦ ϕ = ϕ−1 ◦ ϕ is the identity map on U . Therefore,

D(ψ ◦ ϕ)(0) = (Dψ)(p)Dϕ(0) = I

by the chain rule, and hence if Dϕ(0)v = 0, it follows from this identity that v = 0.

Lemma 6 says that ϕ is an immersion at 0, so by the canonical immersion the-
orem there exists a neighborhood, U0, of 0 in U a neighborhood, Vp, of p in V , a
neighborhood, O, of 0 in R

N and a diffeomorphism

g : (Vp, p) → (O, 0)

such that

ι−1(O) = U0 (2)

and

g ◦ ϕ = ι , (3)

ι being, as in lecture 1, the canonical immersion

ι(x1, . . . , xk) = (x1, . . . , xk, 0, . . . 0) . (4)

By (3) g maps ϕ(U0) diffeomorphically onto ϕ(U0). However, by (2) and (3) ι(U0)
is the subset of O defined by the equations, xi = 0, i = n + 1, . . . , N . Hence if
g = (g1, . . . , gN) the set, ϕ(U0) = Vp ∩X is defined by the equations

gi = 0 , i = n+ 1, . . . , N . (5)

Let ℓ = N − n, let
π : R

N = R
n × R

ℓ → R
ℓ

be the canonical submersion,

π(x1, . . . , xN) = (xn+1, . . . xN )

and let f = π ◦ g. Since g is a diffeomorphism, f is a submersion and (5) can be
interpreted as saying that

Vp ∩X = f−1(0) . (6)

A nice way of thinking about Theorem 2 is in terms of the coordinates of the
mapping, f . More specifically if f = (f1, . . . , fk) we can think of f−1(a) as being the
set of solutions of the system of equations

fi(x) = ai , i = 1, . . . , k (7)
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and the condition that a be a regular value of f can be interpreted as saying that for
every solution, p, of this system of equations the vectors

(dfi)p =
∑ ∂fi

∂xj

(0) dxj (8)

in T ∗

p R
n are linearaly independent, i.e., the system (7) is an “independent system of

defining equations” for X.

Problem set

1. Show that the set of solutions of the system of equations

x2

1 + · · ·+ x2

n = 1

and

x1 + · · ·+ xn = 0

is an n− 2-dimensional submanifold of R
n.

2. Let Sn−1 be the (n− 1)-sphere in R
n and let

Xq = {x ∈ Sn−1 , x1 + · · · + xn = q} .

For what values of q is Xq an (n− 2)-dimensional submanifold of Sn−1?

3. Show that if Xi, i = 1, 2, is an ni-dimensional submanifold of R
Ni then

X1 ×X2 ⊆ R
N1 × R

N2

is an (n1 + n2)-dimensional submanifold of R
N1 × R

N2.

4. Show that the set

X = {(x, v) ∈ Sn−1 × R
n , x · v = 0}

is a 2n−2-dimensional submanifold of R
n×R

n. (Here “x ·v” is the dot product,∑
xivi.)

5


