The theory of manifolds Lecture 1

In this lecture we will discuss two generalizations of the inverse function theorem. We'll begin by reviewing some linear algebra. Let

$$A: \mathbb{R}^m \to \mathbb{R}^n$$

be a linear mapping and $[a_{i,j}]$ the $n \times m$ matrix associated with A. Then

$$A^t: \mathbb{R}^n \to \mathbb{R}^m$$

is the linear mapping associated with the transpose matrix $[a_{j,i}]$. For k < n we define the *canonical submersions*

$$\pi: \mathbb{R}^n \to \mathbb{R}^k$$

to be the map $\pi(x_1,\ldots,x_n)=(x_1,\ldots,x_k)$ and the canonical immersion

$$\iota: \mathbb{R}^k \to \mathbb{R}^n$$

to be the map, $\iota(x_1,\ldots,x_k)=(x_1,\ldots x_k,0,\ldots 0)$. We leave for you to check that $\pi^t=\iota$.

Proposition 1. If $A : \mathbb{R}^n \to \mathbb{R}^k$ is onto, there exists a bijective linear map $B : \mathbb{R}^n \to \mathbb{R}^n$ such that $AB = \pi$.

We'll leave the proof of this as an exercise.

Hint: Show that one can choose a basis, v_1, \ldots, v_n of \mathbb{R}^n such that

$$Av_i = e_i$$
, $i = 1, \ldots, k$

is the standard basis of \mathbb{R}^k and

$$Av_i = 0, \quad i > k.$$

Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n and set $Be_i = v_i$.

Proposition 2. If $A: \mathbb{R}^k \to \mathbb{R}^n$ is one-one, there exists a bijective linear map $C: \mathbb{R}^n \to \mathbb{R}^n$ such that $CA = \iota$.

Proof. The rank of $[a_{i,j}]$ is equal to the rank of $[a_{j,i}]$, so if if A is one—one, there exists a bijective linear map $B: \mathbb{R}^n \to \mathbb{R}^n$ such that $A^tB = \pi$.

Letting $C = B^t$ and taking transposes we get $\iota = \pi^t = CB$

Immersions and submersions

Definition 1. Let E be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^k$ a \mathcal{C}^{∞} map. f is a submersion at $p \in E$ if

$$Df(p): \mathbb{R}^n \to \mathbb{R}^k$$

is onto.

f is an immersion at $p \in E$ if

$$Df(p): \mathbb{R}^n \longrightarrow \mathbb{R}^k$$

is injective.

Our first main result in this lecture is a non-linear version of Proposition 1.

Theorem 1 (Canonical submersion theorem). If f is a submersion at p and f(p) = 0, there exists a neighborhood, U of p in E, a neighborhood, V, of 0 in \mathbb{R}^n and a \mathcal{C}^{∞} diffeomorphism, $g: V \to U$ such that $f \circ g = \pi$ and g(0) = p.

Proof. Let $\tau_p : \mathbb{R}^n \to \mathbb{R}^n$ be the map, $x \to x + p$. Replacing f by $f \circ \tau_p$ we can assume p = 0. Let A be the linear map

$$Df(0): \mathbb{R}^n \to \mathbb{R}^k$$
.

By assumption this map is onto, so there exists a bijective linear map

$$B:\mathbb{R}^n\to\mathbb{R}^n$$

such that $AB = \pi$. And hence for $\widetilde{f} = f \circ B$ we have

$$D\widetilde{f}(0) = \pi$$
.

Let $h: U \to \mathbb{R}^n$ be the map

$$h(x_1,\ldots,x_n)=(\widetilde{f}_1(x),\ldots,\widetilde{f}_k(x),\,x_{k+1},\ldots,x_n)$$

where the \widetilde{f}_i 's are the coordinate functions of \widetilde{f} . I'll leave for you to check that

$$Dh(0) = I (1)$$

and

$$\pi \circ h = \widetilde{f}. \tag{2}$$

By (1) Dh(0) is bijective, so by the inverse function theorem h maps a neighborhood, U of 0 in E diffeomorphically onto a neighborhood, V, of 0 in \mathbb{R}^n . Letting $g = B \circ h^{-1}$ we get from (2) $\pi = \widetilde{f} \circ h^{-1} = f \circ g$.

Our second main result is a non-linear version of Proposition 2. Let E be an open neighborhood of 0 in \mathbb{R}^k and $f: E \to \mathbb{R}^n$ a \mathcal{C}^{∞} -map.

Theorem 2 (Canonical immersion theorem). If f is an immersion at 0, there exists a neighborhood, V, of f(0) in \mathbb{R}^n , a neighborhood, U, of 0 in \mathbb{R}^n and a \mathcal{C}^{∞} -diffeomorphism $g: V \to U$ such that $\iota^{-1}(U) \subseteq E$ and $g \circ f = \iota$.

Proof. Let p = f(0). Replacing f by $\tau_{-p} \circ f$ we can assume that f(0) = 0. Since $Df(0) : \mathbb{R}^k \to \mathbb{R}^n$ is injective there exists a bijective linear map, $B : \mathbb{R}^n \to \mathbb{R}^n$ such that $BDf(0) = \iota$, so if we define $\widetilde{f} = B \circ f$ we have $D\widetilde{f}(0) = \iota$. Let $\ell = n - k$ and let

$$h: U \times \mathbb{R}^{\ell} \to \mathbb{R}^n$$

be the map

$$h(x_1,\ldots,x_n) = \widetilde{f}(x_1,\ldots,x_k) + (0,\ldots,0,x_{k+1},\ldots,x_n).$$

I'll leave for you to check that

$$Dh(0) = I (3)$$

and

$$h \circ \iota = \widetilde{f}. \tag{4}$$

By (3) Dh(0) is bijective, so by the inverse function theorem, h maps a neighborhood, U, of 0 in $E \times \mathbb{R}^{\ell}$ diffeomorphically onto a neighborhood, V, of 0 in \mathbb{R}^{n} . Let $g: V \to U$ be the inverse map composed with B. Then by (4), $\iota = h^{-1} \circ \widetilde{f} = g \circ f$.

Problem set

- 1. Prove Proposition 1.
- 2. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be the map

$$(x_1, x_2, x_3) \rightarrow (x_1^2 - x_2^2, x_2^2 - x_3^2).$$

At what points $p \in \mathbb{R}^3$ is f a submersion?

3. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the map

$$(x_1, x_2) \rightarrow (x_1, x_2, x_1^2, x_2^2).$$

At what points, $p \in \mathbb{R}^2$, is f an immersion?

- 4. Let U and V be open subsets of \mathbb{R}^m and \mathbb{R}^n , respectively, and let $f: U \to V$ and $g: V \to \mathbb{R}^k$ be C^1 -maps. Prove that if f is a submersion at $p \in U$ and g a submersion at q = f(p) then $g \circ f$ is a submersion at p.
- 5. Let f and g be as in exercise 5. Suppose that g is a submersion at g. Show that $g \circ f$ is a submersion at g if and only if

$$\mathbb{R}^n = \operatorname{Span}\{\operatorname{Image} Df(p) + \operatorname{Kernel} Dg(q)\}$$

i.e., if and only if every vector, $v \in \mathbb{R}^n$ can be written as a sum, $v = v_1 + v_2$, where v_1 is in the image of Df(p) and $Dg(q)(v_2) = 0$.