
Integrating Densities on Manifolds

Suppose that we have a density σ on an an open set U ⊂ R
n. Recall that we can

write σ as
σ = hσLeb

where h : U −→ R is give by

h = σ

(

∂

∂x1
, . . . ,

∂

∂xn

)

Definition 1. The integral of σ = hσLeb over U is defined to be

∫

U

σ =

∫

U

hσLeb :=

∫

U

h

where the the right hand side indicates the extended Riemann integral of h over U .
The integral of σ over U is defined if and only if

∫

U
h is.

In other words,
∫

U

σ :=

∫

U

σ

(

∂

∂x1
, . . . ,

∂

∂xn

)

The change of variable theorem for the extended Riemann integral tells us the
following:

Theorem 1. if f : U ′ −→ U is a C1 diffeomorphism,

∫

U

σ =

∫

U ′

f ∗σ

Proof. Recall that f ∗σLeb = |det Df |. If σ = hσLeb ,

∫

U

σ =

∫

U

h =

∫

U ′

h ◦ f |detDf | =

∫

U ′

f ∗(hσLeb ) =

∫

U ′

f ∗σ

We shall now define the integral of a density on a manifold M .

Definition 2. Suppose that σ is a density on a manifold M , and ϕα : Uα −→ Vα ⊂ M

is a collection of diffeomorphisms so that {Vα} is an open cover of M . Choose a
partition of unity {φi} subordinate to Vα, so the support of φi is contained inside Vi.

Note that σ =
∑

i φiσ.
Then if
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1.
∫

Ui

ϕ∗

i (φiσ) exists for all i

2.
∞

∑

i=1

∫

Ui

ϕ∗

i (φi|σ|) < ∞

Then we say that σ is integrable. In that case, we define

∫

M

σ =

∞
∑

i=1

=

∫

Ui

ϕ∗(φiσ)

We must check that this definition is well defined. Suppose that σ is integrable,
and that we have another partition of unity, φ′

j so that the support of each φ′

j is
contained in the open set V ′

j ⊂ M which is the image of the diffeomorphism ϕ′ :
U ′

j −→ V ′

j .
Then

∑

i

∫

Ui

ϕ∗

i (φi|σ|) =
∑

i

∑

j

∫

Ui

ϕ∗

i (φiφ
′

j|σ|)

=
∑

i,j

∫

ϕ−1

i
(Vi∩V ′

j
)

ϕ∗

i (φiφ
′

j|σ|)

=
∑

j

∑

i

∫

(ϕ′

j
)−1(Vi∩V ′

j
)

(ϕ−1
i ϕ′

j)
∗ϕ∗

i (φiφ
′

j |σ|)

=
∑

j

∫

U ′

j

(ϕ
′

j)
∗(φj |σ|)

We can repeat the same argument with σ in place of |σ|, noting that we can
rearrange the sums involved because they are absolutely convergent to get that

∑

i

∫

Ui

ϕ∗

i φi =
∑

j

∫

Uj

(ϕ′

j)
∗(φ′

jσ)

(and in particular all the integrals on the right hand side are defined), so the integral
is well defined. Note also that this agrees with our definition of the integral on open
sets.

We shall leave the proof of the following four important theorems as exercises:

Theorem 2. If σ is a continuous density on a compact manifold M ,
∫

M
σ exists.
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Theorem 3. If f : M −→ N is a C1 diffeomorphism, and σ is a density on N ,
∫

M

f ∗σ =

∫

N

σ

Recall that diffeomorphisms preserve the property of a set having measure 0. We
can therefore say that a subset X of a manifold M has measure 0 if it has measure 0
in any coordinate chart.

Theorem 4. If X ⊂ M is a closed subset of M with measure 0, and σ is integrable
on M , then

∫

M−X

σ =

∫

M

σ

Theorem 5. Let M be a smooth manifold.

1. If σ1 and σ2 are integrable, so is aσ1 + bσ2, and
∫

M

(aσ1 + bσ2) = a

∫

M

σ1 + b

∫

M

σ2

2. If σ is nonnegative (ie σ(v1, . . . , vn) ≥ 0 for any collection of vector fields),
∫

M

σ ≥ 0

3. If U is an open subset of M and σ is integrable on M , σ is integrable on U . If
σ is a positive density, then

∫

U

σ ≤
∫

M

σ

4. If σ is integrable on open subsets U and V of M , σ is integrable on U ∩ V and
U ∪ V , and

∫

U∪V

σ =

∫

U

σ +

∫

V

σ −
∫

U∩V

σ

Examples

1. Suppose that Mn ⊂ R
N is an n dimensional submanifold of R

N . The n-
dimensional volume of M is defined to be

vol(M) :=

∫

M

σvol

Where σvol is the volume density on M given by the Riemannian metric < ·, · >

given by restricting the Euclidean metric on R
N to M . This agrees with our

earlier definition of volume in the case that M is an open subset of R
N .
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2. For example, consider a one dimensional submanifold M ⊂ R
n. To calculate

vol(M) (which we’d usually call the length of M), suppose that there exists a
diffeomorphism γ : (0, 1) −→ M . Then

vol(M) =

∫

(0,1)

γ∗σvol =

∫

(0,1)

∣

∣

∣

∣

∂γ

∂x

∣

∣

∣

∣

σLeb

If M was diffeomorphic to a circle instead of an interval, we could either use a
partition of unity and two coordinate patches, or we could note that as σvol is
continuous, and M is compact the integral of σvol must exist, so we can simply
integrate σvol over M minus 1 point, because the point will have measure 0.
This will be diffeomorphic to an inverval, so we can integrate it in one step as
above.

3. Suppose that Mn is an n dimensional submanifold of R
N , and ϕ : U −→ M is

a diffeomorphism. To calculate vol(M), we need to calculate ϕ∗σvol.

ϕ∗σvol(p)(e1, . . . , en) = σvol(Dϕ(p)e1, . . . , Dϕ(p)en)

=
√

det A

where A is the matrix with entries ai,j = Dϕ(p)ei · Dϕ(p)ej. In other words,
A = (Dϕ(p))TDϕ(p), where (Dϕ(p))T is the transpose, or adjoint of Dϕ(p).
Therefore

ϕ∗σvol =
√

det(DϕTDϕ)σLeb

so
∫

M

σ =

∫

U

√

det(DϕT Dϕ)σLeb

This formula also works if ϕ : U −→ M is a diffeomorphism onto M minus a
set of measure 0.

Exercises

1. Prove theorem 2

2. Prove theorem 3

3. Prove theorem 4

4. Prove theorem 5

5. State and prove the formula for the area of a two dimensional submanifold of
R

3 which you remember from multivariable calculus.

6. Let
M = {x2

1 + x2
2 = 1, x2

3 + x2
4 = 1} ⊂ R

4

Calculate vol(M).

7. Calculate the volume of the unit sphere in R
4.
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