HOMEWORK FOR 18.101, FALL 2007
ASSIGNMENT 1 SOLUTIONS

(1) Given a linear map

T:R™ — R"

Define the operator norm of T as follows:

[T ()]

]

|T'|| := sup
z#0

Similarly, if A is a matrix, define the operator norm of A by

(a)
(b)
()

A
) = sup 1221
" T

Show that ||| is finite.
Show that ||-|| is a norm.
Show that if AB is defined,

[AIIBI = [|AB]

Solution:

(a)

By rescaling x to H;”—H (which has norm equal to 1), and by using the
fact that T is linear, we get an alternative characterization:

1T = Sp 1T ()]

We will now show that this quantity is finite. Let us think of 7" as an
m X n matrix in the corresponding standard bases of R™ and R™. We
find a constant M > 0 such that all the entries of T" are bounded in
absolute value by M. Let © = (x1,...,2,) € R be such that ||z| = 1.
We know that then |x;| < 1Vj = 1,...,n. Using the triangle inequality
and the bounds on the entries of T, it follows that every entry of T'(x)
is bounded in absolute value by nM. Hence | T(z)|| < nM+/n. We can
take supremums over all z € R™ such that ||z| = 1 to obtain that:
IT| < nM+/n < 400 Hence, ||T|| is indeed finite.
In order to show that ||-|| indeed gives us a norm on the space L(R™, R™)
of linear operators from R™ to R™, we need to check the following
properties:
(i) Positive Definiteness: For all T € L(R",R™), |T|| > 0 and
IT|| =0 if and only if T'= 0.
The fact that [|T']] > 0, VT € L(R™,R™) follows from definition
of ||-|| . Tt is also an immediate consequence of the definition that
l0]] = 0. Suppose T' € L(R™,R™) is such that ||T'|| = 0. Then
T(x) = 0, Yo € R™ such that ||z|| = 1. Since every element of
R™ is a scalar multiple of an element of unit norm, it follows by
linearity of T' that "= 0 on R™.
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(i) Homogeneity: Let T € L(R",R™) and A € R be given. We
must show that:|[|AT'|| = |A| || T|| -
To see this, suppose that 2 € R™ and ||z|| = 1. Then ||(A\T)(z)|| =
A |T(z)|| . Taking supremums over z € R™ with ||z|| = 1, it fol-
lows that [|AT|| = |A| || T -

(iii) Triangle Inequality: We must show that VA, B € L(R™,R™)
lA+ B| < [|A|| + ||B]| - To see this, let A, B be as above. Let
x € R™ be such that ||z|| = 1. Then, by the triangle inequality
in R™, we have that:

1(A+ B)(2)|| < [[A(@)[| + [[B(=)]
Taking supremums over ||z|| = 1, we indeed get:
1A+ Bl <[lAl + B

(c) We observe that VI € L(R™,R™), Vz € R™, we have: ||T(x)] <
|| ||| (). Namely, this fact evidently holds in the case that z = 0
and the case z # 0 follows from the original definition of || T|| . Suppose
now that A and B are such that AB is well defined. Let v be an
element of the domain of B and suppose that ||v]| = 1. We obtain
that: (AB)(w)|| = JA(B())]| < {by using ()} < 4] |B@)]| <
{by using (*) again } < [|A4]| || B]| ||v||. Taking supremums over |jv| =
1, it follows that indeed ||A]| |B]| > ||AB||, as was claimed.

(2) Prove that the two norms |-|, and [|-|| on R™ give the same topology in the
sense that if U is an open set using the metric from one norm, it is open
using the metric from the other norm.

(Recall that we defined |z|, := max|z;|, and ||z|| = /D> z7.)
Solution:
We observe that Vz = (z1,...,2,) € R™ we have: |z
because for j = 1,...,n we have: |z;| < /> 2.
On the other hand, |z;| < |z|,Vj = 1,...,n. We thus get that: [jz| =

From the preceding discussion, we deduce that:

< ||lz||. This is

S

vz € R™, |z|, <|z|| < vVn|zl, (*)

Using (%), we now prove the claim.
Let us now define the notation that we will use for the rest of the problem.
Let p € R™, and r > 0 be given. We denote by

B.(p) :={z eR", |z —p|| < r}

Br,s(p) = {.’IJ € Rnu |.’II _p|s < T}

e Suppose that U C R"™ is open with respect to ||| . If U is empty, then U
is automatically open with respect to |-|,. Hence, it suffices to consider
the case when U is nonempty. Let us choose p € U. Then, since U
is open with respect to ||-||, we can find » > 0 such that B,.(p) C U.
From (*), we have that Bﬁﬁ(p) C B, (p). Hence Bﬁﬁ(p) CU,soU

is open with respect to ||, .
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e Suppose that U C R™ is open with respect to |-|,. As before, we
consider the case of nonempty U and let p € U be given. We can find
r > 0 such that B, (p) C U. By using (*), we know that B,.(p) C
B, s(p).Hence B,(p) C U,so U is open with respect to |||| .
Conclusion: |[-|| and |-|, define the same topology.
(3) (a) Show that given any m x n matrix A, the transpose of the matrix AT
is the unique n x m matrix with the property that

(Aa:)-y::z:-(AT)y Ve e R" y € R™

(b) Show that
Al = []A"]
Solution:

(a) Suppose that A is an m x n matrix. Let {e; ,j =1,...,n},{fi,i =
1,...,m} denote the standard bases for R™ and R™ respectively. We
know from bilinearity that an nxm matrix B satisfies (Az)-y = z-(By)
Vr € R* y € R™ if and only if we have that Vi = 1,...,m,j =
1,...,n (Aej) - fi = e - (Bf;) Now, Vi = 1,...,m,j = 1,...,n, we
have that: (Ae;) - fi = i*" entry of the j* column of A, which we
denote by A;;. Also, e; - (Bfi) = j' entry of the i*" column of B,
which we denote by Bj;. Hence, from the above we may conclude
that, given an n x m matrix B we have that:

(Az) -y ==x-(By) Ve e R",y e R™
if and only if
Aij=BjiVi=1,...,m,j:1,...,n.

The latter set of equalities is equivalent to the fact that B = A7, i.e.
that B is the transpose of A.

(b) Let us show that ||AT|| < ||A]|. Since (AT)T = A, i.e since (-)7 is an
involution, the claim will then follow. We know from Problem 1 that,
given any linear map B : R? —,R? || B|| = sup, = [| Bv|| .

Suppose now that v € R with |[v|| = 1 and w € R™ with ||w| = 1 are
given.

Then we know that (AT )w-v = w- Av. Combining the Schwarz-Cauchy
Inequality and the fact that || Av|| < || 4| ||v]l, it follows that the right
hand side of the above inequality has absolute value less than or equal
to: [[wl| [[A[ o]l = [[Al

In particular, given w € R™ with |lw|| = 1, we can find v € R™ with

_ T — (AT — (ADw
[v]| = 1 such that (AT)w - v = [|(AT)w|| Namely, we let v := ATyl
if (AT)w # 0 and we let v be an arbitrary element of unit norm in R™
if (AT)w = 0.
It follows from the previous discussion that, Vw € R™ with ||w| =1
we have H(AT)wH < ||A]| Taking supremums over such w, it follows
that:

1AM < 114l
As we noted earlier, from this inequality we may deduce that:

AT =14l
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(4) (a) Suppose that f:R™ — R™ is differentiable, and suppose that for all
z, |Df(x)]| < 1. Prove that
1f (@) = FW)ll < llz—yll

(Hint: Try taking the dot product with f(z) — f(y), and use the chain
rule to convert this into a single variable problem. Then you can use
the mean value theorem.)

(b) Find a counterexample to the following naive generalization of the
mean value theorem: Given f : R"™ — R™ differentiable and points
x,y € R™, there exists some point c on the line segment between x and
y so that

Solution:

(a) Let z,y € R™ be given. Let us define:
g:R— R by
g(t) == (fly+t(z—y))—f()-(f(x)—f(y)). We observe that then g is a
differentiable function of t. Also g(0) = 0 and g(1) = (|| f(z) — f(y)|)?
By applying the Chain Rule, we know that V¢ € R
g'(t) = (Df(y+tx—y)(x—y)- (flz) - )

We can now use the Mean Value Theorem to get that there exists some
to € (0,1) so that

9(1) = 9(0) = g'(to)
Therefore,
1/ (@) = F @I = (DF(y +to(x = y) (@ =) - (f(2) = £()
Now we can use the Cauchy-Schwartz inequality
1 @) = F@)I* < IDf(y+ tole —y) (@ —y)| 1 /(@) = f)]
Therefore, as all terms are non negative,
/(@) = fWIl < IDf(y + to(z —y)(@ — )| < [Df(y+to(z —y)ll |z —yll < llz -yl
(b) We consider the function f : R — R? be such that f(t) is:
cost
sint
Then f is differentiable and D f(t) is given by
—sint
cost
Since (sint)? + (cost)? = 1, it follows that D f(¢) has rank 1Vt € R, so
Df(t) is injective V¢ € R. Observe that then f(0) = f(27). However,
if there existed a point ¢ on the line segment joining 0 and 27 such that
Df(c)(2mr—0) = f(2m)— f(0), then it would follow that D f(c)(27) = 0.

This is impossible since 27 # 0 and since D f(¢) is injective. Thus, the
‘naive’ generalization of the Mean Value Theorem doesn’t hold.
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(5) (a) Let f: R® — R™ be of class C'!. Prove that the set S C R™ consisting

of points € R™ where D f(z) has rank n is open.
(Hint: The determinant has a formula which is a polynomial in the
coeflicients of the matrix. This tells you that the determinant in a
continuous function of the coefficients of a matrix. Use this.)

(b) Use the inverse function theorem to prove that f(S) C R™ is also open.

Solution:
(a) We observe that:

S ={ze€R", Df(x)hasrank n} = {z € R", det(Df(z)) # 0}

We also know that the determinant of a matrix is a polynomial in its
entries. This follows from the definition of a determinant. Now, for f
as above, the quantity det(D f(z)) is a polynomial in the n? quantities

%(m), where i,j = 1,...,n. Since f is a class C' function, it follows
that % (x) is a continuous function in z for ¢,j = 1,...,n. From here

we may deduce that det(Df(x)) is a continuous function in z € R".
Hence, by continuity, the set S = {z € R", det(Df(x)) # 0} is open
as it is the inverse image of an open subset of R.

(b) In order to prove the claim, we want to use the Inverse Function The-
orem.
Suppose that y € f(S) is given. By definition, we can find = € S such
that f(x) = y. Then, since x € S, it follows that det(Df(x)) # 0 so
by the Inverse Function Theorem, we can find a neighborhood U of x
in R™ and a neighborhood V of y in R™ such that f is a bijection from
U to V which has an inverse that is of class C'. Call this inverse g.
In particular, we know by the Chain Rule that:
(Df(w))o(Dg(f(w))) = I, YVw € U. Hence D f(w) is invertible Yw € U.
Thus, it follows that U C S. Hence, V = f(U) C f(S). V is also a
neighborhood of y in R™ by construction. Since such a neighborhood
V can be found for all y € f(S), it follows that f(S) is open, as was
claimed.



