HOMEWORK FOR 18.101, FALL 2007 ASSIGNMENT 1 SOLUTIONS

(1) Given a linear map

$$T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

Define the operator norm of T as follows:

$$||T|| := \sup_{x \neq 0} \frac{||T(x)|}{||x||}$$

Similarly, if A is a matrix, define the operator norm of A by

$$||A|| := \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

- (a) Show that ||T|| is finite.
- (b) Show that $\|\cdot\|$ is a norm.
- (c) Show that if AB is defined,

$$\|A\| \, \|B\| \ge \|AB\|$$

Solution:

(a) By rescaling x to $\frac{x}{\|x\|}$ (which has norm equal to 1), and by using the fact that T is linear, we get an alternative characterization:

$$||T|| = \sup_{||x||=1} ||T(x)||$$

We will now show that this quantity is finite. Let us think of T as an $m \times n$ matrix in the corresponding standard bases of \mathbb{R}^n and \mathbb{R}^m . We find a constant M > 0 such that all the entries of T are bounded in absolute value by M. Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ be such that ||x|| = 1. We know that then $|x_j| \leq 1 \forall j = 1, \ldots, n$. Using the triangle inequality and the bounds on the entries of T, it follows that every entry of T(x) is bounded in absolute value by nM. Hence $||T(x)|| \leq nM\sqrt{n}$. We can take supremums over all $x \in \mathbb{R}^n$ such that ||x|| = 1 to obtain that: $||T|| \leq nM\sqrt{n} < +\infty$ Hence, ||T|| is indeed finite.

- (b) In order to show that $\|\cdot\|$ indeed gives us a norm on the space $L(\mathbb{R}^n, \mathbb{R}^m)$ of linear operators from \mathbb{R}^n to \mathbb{R}^m , we need to check the following properties:
 - (i) Positive Definiteness: For all T ∈ L(ℝⁿ, ℝ^m), ||T|| ≥ 0 and ||T|| = 0 if and only if T = 0. The fact that ||T|| ≥ 0, ∀T ∈ L(ℝⁿ, ℝ^m) follows from definition of ||·||. It is also an immediate consequence of the definition that ||0|| = 0. Suppose T ∈ L(ℝⁿ, ℝ^m) is such that ||T|| = 0. Then T(x) = 0, ∀x ∈ ℝⁿ such that ||x|| = 1. Since every element of ℝⁿ is a scalar multiple of an element of unit norm, it follows by

linearity of T that T = 0 on \mathbb{R}^n .

- (ii) **Homogeneity:** Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $\lambda \in \mathbb{R}$ be given. We must show that: $\|\lambda T\| = |\lambda| \|T\|$.
 - To see this, suppose that $x \in \mathbb{R}^n$ and ||x|| = 1. Then $||(\lambda T)(x)|| = |\lambda| ||T(x)||$. Taking supremums over $x \in \mathbb{R}^n$ with ||x|| = 1, it follows that $||\lambda T|| = |\lambda| ||T||$.
- (iii) **Triangle Inequality:** We must show that $\forall A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ $\|A + B\| \leq \|A\| + \|B\|$. To see this, let A, B be as above. Let $x \in \mathbb{R}^n$ be such that $\|x\| = 1$. Then, by the triangle inequality in \mathbb{R}^n , we have that:

$$||(A+B)(x)|| \le ||A(x)|| + ||B(x)||$$

Taking supremums over ||x|| = 1, we indeed get:

$$|A + B|| \le ||A|| + ||B||$$

- (c) We observe that $\forall T \in L(\mathbb{R}^n, \mathbb{R}^m), \forall x \in \mathbb{R}^n$, we have: $||T(x)|| \leq ||T|| ||x||$ (*). Namely, this fact evidently holds in the case that x = 0 and the case $x \neq 0$ follows from the original definition of ||T||. Suppose now that A and B are such that AB is well defined. Let v be an element of the domain of B and suppose that ||v|| = 1. We obtain that: $||(AB)(v)|| = ||A(B(v))|| \leq \{\text{by using }(^*)\} \leq ||A|| ||B(v)|| \leq \{\text{by using }(^*) \text{ again }\} \leq ||A|| ||B|| ||v||$. Taking supremums over ||v|| = 1, it follows that indeed $||A|| ||B|| \geq ||AB||$, as was claimed.
- (2) Prove that the two norms $|\cdot|_s$ and $||\cdot||$ on \mathbb{R}^n give the same topology in the sense that if U is an open set using the metric from one norm, it is open using the metric from the other norm.

(Recall that we defined $|x|_s := \max |x_i|$, and $||x|| := \sqrt{\sum x_i^2}$.) Solution:

We observe that $\forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ we have: $|x|_s \leq ||x||$. This is because for $j = 1, \ldots, n$ we have: $|x_j| \leq \sqrt{\sum x_i^2}$. On the other hand, $|x_j| \leq |x|_s \forall j = 1, \ldots, n$. We thus get that: ||x|| =

On the other hand, $|x_j| \leq |x|_s \forall j = 1, ..., n$. We thus get that: $||x|| = \sqrt{\sum x_i^2} \leq \sqrt{n} |x|_s$.

From the preceding discussion, we deduce that:

$$\forall x \in \mathbb{R}^n, \ |x|_s \le ||x|| \le \sqrt{n} \, |x|_s \tag{*}$$

Using (*), we now prove the claim.

Let us now define the notation that we will use for the rest of the problem. Let $p \in \mathbb{R}^n$, and r > 0 be given. We denote by

$$B_r(p) := \{ x \in \mathbb{R}^n, \, \|x - p\| < r \}$$
$$B_{r,s}(p) := \{ x \in \mathbb{R}^n, \, |x - p|_s < r \}$$

• Suppose that $U \subseteq \mathbb{R}^n$ is open with respect to $\|\cdot\|$. If U is empty, then U is automatically open with respect to $|\cdot|_s$. Hence, it suffices to consider the case when U is nonempty. Let us choose $p \in U$. Then, since U is open with respect to $\|\cdot\|$, we can find r > 0 such that $B_r(p) \subseteq U$. From (*), we have that $B_{\frac{r}{\sqrt{n}},s}(p) \subseteq B_r(p)$. Hence $B_{\frac{r}{\sqrt{n}},s}(p) \subseteq U$, so U is open with respect to $|\cdot|_s$.

- Suppose that $U \subseteq \mathbb{R}^n$ is open with respect to $|\cdot|_s$. As before, we consider the case of nonempty U and let $p \in U$ be given. We can find r > 0 such that $B_{r,s}(p) \subseteq U$. By using (*), we know that $B_r(p) \subseteq B_{r,s}(p)$.Hence $B_r(p) \subseteq U$,so U is open with respect to $\|\cdot\|$. Conclusion: $\|\cdot\|$ and $|\cdot|_s$ define the same topology.
- (3) (a) Show that given any $m \times n$ matrix A, the transpose of the matrix A^T is the unique $n \times m$ matrix with the property that

$$(Ax) \cdot y = x \cdot (A^T)y \quad \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m$$

(b) Show that

$$\|A\| = \|A^T\|$$

Solution:

(a) Suppose that A is an $m \times n$ matrix. Let $\{e_j, j = 1, ..., n\}, \{f_i, i = 1, ..., m\}$ denote the standard bases for \mathbb{R}^n and \mathbb{R}^m respectively. We know from bilinearity that an $n \times m$ matrix B satisfies $(Ax) \cdot y = x \cdot (By)$ $\forall x \in \mathbb{R}^n, y \in \mathbb{R}^m$ if and only if we have that $\forall i = 1, ..., m, j = 1, ..., n$ $(Ae_j) \cdot f_i = e_j \cdot (Bf_i)$ Now, $\forall i = 1, ..., m, j = 1, ..., n$, we have that: $(Ae_j) \cdot f_i = i^{th}$ entry of the j^{th} column of A, which we denote by A_{ij} . Also, $e_j \cdot (Bf_i) = j^{th}$ entry of the i^{th} column of B, which we denote by B_{ji} . Hence, from the above we may conclude that, given an $n \times m$ matrix B we have that:

$$(Ax) \cdot y = x \cdot (By) \ \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m$$

if and only if

$$A_{i\,j} = B_{j\,i} \,\forall i = 1, \dots, m, j = 1, \dots, n.$$

The latter set of equalities is equivalent to the fact that $B = A^T$, i.e. that B is the *transpose* of A.

(b) Let us show that $||A^T|| \leq ||A||$. Since $(A^T)^T = A$, i.e since $(\cdot)^T$ is an *involution*, the claim will then follow. We know from Problem 1 that, given any linear map $B : \mathbb{R}^p \longrightarrow \mathbb{R}^q ||B|| = \sup_{\|v\|=1} ||Bv||$.

Suppose now that $v \in \mathbb{R}^n$ with ||v|| = 1 and $w \in \mathbb{R}^m$ with ||w|| = 1 are given.

Then we know that $(A^T)w \cdot v = w \cdot Av$. Combining the Schwarz-Cauchy Inequality and the fact that $||Av|| \leq ||A|| ||v||$, it follows that the right hand side of the above inequality has absolute value less than or equal to: ||w|| ||A|| ||v|| = ||A||.

In particular, given $w \in \mathbb{R}^m$ with ||w|| = 1, we can find $v \in \mathbb{R}^n$ with ||v|| = 1 such that $(A^T)w \cdot v = ||(A^T)w||$ Namely, we let $v := \frac{(A^T)w}{||(A^T)w||}$ if $(A^T)w \neq 0$ and we let v be an arbitrary element of unit norm in \mathbb{R}^m if $(A^T)w = 0$.

It follows from the previous discussion that, $\forall w \in \mathbb{R}^m$ with ||w|| = 1 we have $||(A^T)w|| \leq ||A||$ Taking supremums over such w, it follows that:

$$\left\|A^T\right\| \le \left\|A\right\|$$

As we noted earlier, from this inequality we may deduce that:

$$\left\|A^{T}\right\| = \left\|A\right\|$$

(4) (a) Suppose that $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable, and suppose that for all $x, \|Df(x)\| \leq 1$. Prove that

$$||f(x) - f(y)|| \le ||x - y||$$

(Hint: Try taking the dot product with f(x) - f(y), and use the chain rule to convert this into a single variable problem. Then you can use the mean value theorem.)

(b) Find a counterexample to the following naive generalization of the mean value theorem: Given $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ differentiable and points $x, y \in \mathbb{R}^n$, there exists some point c on the line segment between x and y so that

$$Df(c)(x-y) = f(x) - f(y)$$

Solution:

- (a) Let $x, y \in \mathbb{R}^n$ be given. Let us define:
 - $g: \mathbb{R} \longrightarrow \mathbb{R}$ by

 $g(t) := (f(y+t(x-y))-f(y)) \cdot (f(x)-f(y))$. We observe that then g is a differentiable function of t. Also g(0) = 0 and $g(1) = (||f(x) - f(y)||)^2$ By applying the Chain Rule, we know that $\forall t \in \mathbb{R}$

$$g'(t) = (Df(y + t(x - y))(x - y)) \cdot (f(x) - f(y))$$

We can now use the Mean Value Theorem to get that there exists some $t_0 \in (0, 1)$ so that

$$g(1) - g(0) = g'(t_0)$$

Therefore,

$$||f(x) - f(y)||^{2} = (Df(y + t_{0}(x - y))(x - y)) \cdot (f(x) - f(y))$$

Now we can use the Cauchy-Schwartz inequality

$$||f(x) - f(y)||^{2} \le ||Df(y + t_{0}(x - y))(x - y)|| ||f(x) - f(y)||$$

Therefore, as all terms are non negative,

$$||f(x) - f(y)|| \le ||Df(y + t_0(x - y))(x - y)|| \le ||Df(y + t_0(x - y))|| ||x - y|| \le ||x - y||$$

(b) We consider the function $f : \mathbb{R} \longrightarrow \mathbb{R}^2$ be such that f(t) is:

$$\left[\begin{array}{c}\cos t\\\sin t\end{array}\right]$$

Then f is differentiable and Df(t) is given by

$$\left[\begin{array}{c} -\sin t\\ \cos t \end{array}\right]$$

Since $(\sin t)^2 + (\cos t)^2 = 1$, it follows that Df(t) has rank $1 \forall t \in \mathbb{R}$, so Df(t) is injective $\forall t \in \mathbb{R}$. Observe that then $f(0) = f(2\pi)$. However, if there existed a point c on the line segment joining 0 and 2π such that $Df(c)(2\pi-0) = f(2\pi) - f(0)$, then it would follow that $Df(c)(2\pi) = 0$. This is impossible since $2\pi \neq 0$ and since Df(c) is injective. Thus, the 'naive' generalization of the Mean Value Theorem doesn't hold.

4

- (5) (a) Let f: Rⁿ → Rⁿ be of class C¹. Prove that the set S ⊂ Rⁿ consisting of points x ∈ Rⁿ where Df(x) has rank n is open.
 (Hint: The determinant has a formula which is a polynomial in the coefficients of the matrix. This tells you that the determinant in a continuous function of the coefficients of a matrix. Use this.)
 - (b) Use the inverse function theorem to prove that $f(S) \subset \mathbb{R}^n$ is also open. Solution:
 - (a) We observe that:
 - $S = \{x \in \mathbb{R}^n, Df(x) \text{ has rank } n\} = \{x \in \mathbb{R}^n, \det(Df(x)) \neq 0\}$

We also know that the determinant of a matrix is a polynomial in its entries. This follows from the definition of a determinant. Now, for fas above, the quantity $\det(Df(x))$ is a polynomial in the n^2 quantities $\frac{\partial f_j}{\partial x_i}(x)$, where $i, j = 1, \ldots, n$. Since f is a class C^1 function, it follows that $\frac{\partial f_j}{\partial x_i}(x)$ is a continuous function in x for $i, j = 1, \ldots, n$. From here we may deduce that $\det(Df(x))$ is a continuous function in $x \in \mathbb{R}^n$. Hence, by continuity, the set $S = \{x \in \mathbb{R}^n, \det(Df(x)) \neq 0\}$ is open as it is the inverse image of an open subset of \mathbb{R} .

(b) In order to prove the claim, we want to use the Inverse Function Theorem.

Suppose that $y \in f(S)$ is given. By definition, we can find $x \in S$ such that f(x) = y. Then, since $x \in S$, it follows that $\det(Df(x)) \neq 0$ so by the Inverse Function Theorem, we can find a neighborhood U of x in \mathbb{R}^n and a neighborhood V of y in \mathbb{R}^n such that f is a bijection from U to V which has an inverse that is of class C^1 . Call this inverse g. In particular, we know by the Chain Rule that:

 $(Df(w))\circ(Dg(f(w))) = I_n \forall w \in U$. Hence Df(w) is invertible $\forall w \in U$. Thus, it follows that $U \subseteq S$. Hence, $V = f(U) \subseteq f(S)$. V is also a neighborhood of y in \mathbb{R}^n by construction. Since such a neighborhood V can be found for all $y \in f(S)$, it follows that f(S) is open, as was claimed.