
HOMEWORK FOR 18.101, FALL 2007

ASSIGNMENT 1 SOLUTIONS

(1) Given a linear map

T : R
m −→ R

n

Define the operator norm of T as follows:

‖T ‖ := sup
x 6=0

‖T (x)‖
‖x‖

Similarly, if A is a matrix, define the operator norm of A by

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖

(a) Show that ‖T ‖ is finite.
(b) Show that ‖·‖ is a norm.
(c) Show that if AB is defined,

‖A‖ ‖B‖ ≥ ‖AB‖
Solution:

(a) By rescaling x to x
‖x‖ (which has norm equal to 1), and by using the

fact that T is linear, we get an alternative characterization:

‖T ‖ = sup
‖x‖=1

‖T (x)‖

We will now show that this quantity is finite. Let us think of T as an
m× n matrix in the corresponding standard bases of R

n and R
m. We

find a constant M > 0 such that all the entries of T are bounded in
absolute value by M . Let x = (x1, . . . , xn) ∈ R

n be such that ‖x‖ = 1.

We know that then |xj | ≤ 1∀j = 1, . . . , n. Using the triangle inequality
and the bounds on the entries of T , it follows that every entry of T (x)
is bounded in absolute value by nM. Hence ‖T (x)‖ ≤ nM

√
n. We can

take supremums over all x ∈ R
n such that ‖x‖ = 1 to obtain that:

‖T ‖ ≤ nM
√

n < +∞ Hence, ‖T ‖ is indeed finite.
(b) In order to show that ‖·‖ indeed gives us a norm on the space L(Rn, Rm)

of linear operators from R
n to R

m, we need to check the following
properties:

(i) Positive Definiteness: For all T ∈ L(Rn, Rm), ‖T ‖ ≥ 0 and
‖T ‖ = 0 if and only if T = 0.
The fact that ‖T ‖ ≥ 0, ∀T ∈ L(Rn, Rm) follows from definition
of ‖·‖ . It is also an immediate consequence of the definition that
‖0‖ = 0. Suppose T ∈ L(Rn, Rm) is such that ‖T ‖ = 0. Then
T (x) = 0, ∀x ∈ R

n such that ‖x‖ = 1. Since every element of
R

n is a scalar multiple of an element of unit norm, it follows by
linearity of T that T = 0 on R

n.
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(ii) Homogeneity: Let T ∈ L(Rn, Rm) and λ ∈ R be given. We
must show that:‖λT ‖ = |λ| ‖T ‖ .

To see this, suppose that x ∈ R
n and ‖x‖ = 1. Then ‖(λT )(x)‖ =

|λ| ‖T (x)‖ . Taking supremums over x ∈ R
n with ‖x‖ = 1, it fol-

lows that ‖λT ‖ = |λ| ‖T ‖ .

(iii) Triangle Inequality: We must show that ∀A, B ∈ L(Rn, Rm)
‖A + B‖ ≤ ‖A‖ + ‖B‖ . To see this, let A, B be as above. Let
x ∈ R

n be such that ‖x‖ = 1. Then, by the triangle inequality
in R

n, we have that:

‖(A + B)(x)‖ ≤ ‖A(x)‖ + ‖B(x)‖

Taking supremums over ‖x‖ = 1, we indeed get:

‖A + B‖ ≤ ‖A‖ + ‖B‖

(c) We observe that ∀T ∈ L(Rn, Rm), ∀x ∈ R
n, we have: ‖T (x)‖ ≤

‖T ‖ ‖x‖ (∗). Namely, this fact evidently holds in the case that x = 0
and the case x 6= 0 follows from the original definition of ‖T ‖ . Suppose
now that A and B are such that AB is well defined. Let v be an
element of the domain of B and suppose that ‖v‖ = 1. We obtain
that: ‖(AB)(v)‖ = ‖A(B(v))‖ ≤ {by using (*)} ≤ ‖A‖ ‖B(v)‖ ≤
{by using (*) again } ≤ ‖A‖ ‖B‖ ‖v‖ . Taking supremums over ‖v‖ =
1, it follows that indeed ‖A‖ ‖B‖ ≥ ‖AB‖ , as was claimed.

(2) Prove that the two norms |·|s and ‖·‖ on R
n give the same topology in the

sense that if U is an open set using the metric from one norm, it is open
using the metric from the other norm.

(Recall that we defined |x|s := max |xi|, and ‖x‖ :=
√

∑

x2
i .)

Solution:

We observe that ∀x = (x1, . . . , xn) ∈ R
n we have: |x|s ≤ ‖x‖. This is

because for j = 1, . . . , n we have: |xj | ≤
√

∑

x2
i .

On the other hand, |xj | ≤ |x|s ∀j = 1, . . . , n. We thus get that: ‖x‖ =
√

∑

x2
i ≤ √

n |x|s .

From the preceding discussion, we deduce that:

∀x ∈ R
n, |x|s ≤ ‖x‖ ≤

√
n |x|s (∗)

Using (∗), we now prove the claim.
Let us now define the notation that we will use for the rest of the problem.
Let p ∈ R

n, and r > 0 be given. We denote by

Br(p) := {x ∈ R
n, ‖x − p‖ < r}

Br,s(p) := {x ∈ R
n, |x − p|s < r}

• Suppose that U ⊆ R
n is open with respect to ‖·‖ . If U is empty, then U

is automatically open with respect to |·|s. Hence, it suffices to consider
the case when U is nonempty. Let us choose p ∈ U . Then, since U

is open with respect to ‖·‖, we can find r > 0 such that Br(p) ⊆ U .
From (*), we have that B r

√

n
,s(p) ⊆ Br(p). Hence B r

√

n
,s(p) ⊆ U, so U

is open with respect to |·|s .
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• Suppose that U ⊆ R
n is open with respect to |·|s . As before, we

consider the case of nonempty U and let p ∈ U be given. We can find
r > 0 such that Br,s(p) ⊆ U. By using (*), we know that Br(p) ⊆
Br,s(p).Hence Br(p) ⊆ U,so U is open with respect to ‖·‖ .

Conclusion: ‖·‖ and |·|s define the same topology.
(3) (a) Show that given any m× n matrix A, the transpose of the matrix AT

is the unique n × m matrix with the property that

(Ax) · y = x · (AT )y ∀x ∈ R
n, y ∈ R

m

(b) Show that

‖A‖ =
∥

∥AT
∥

∥

Solution:

(a) Suppose that A is an m × n matrix. Let {ej , j = 1, . . . , n}, {fi , i =
1, . . . , m} denote the standard bases for R

n and R
m respectively. We

know from bilinearity that an n×m matrix B satisfies (Ax)·y = x·(By)
∀x ∈ R

n, y ∈ R
m if and only if we have that ∀i = 1, . . . , m, j =

1, . . . , n (Aej) · fi = ej · (Bfi) Now, ∀i = 1, . . . , m, j = 1, . . . , n, we
have that: (Aej) · fi = ith entry of the jth column of A, which we
denote by Ai j . Also, ej · (Bfi) = jth entry of the ith column of B,
which we denote by Bj i. Hence, from the above we may conclude
that, given an n × m matrix B we have that:

(Ax) · y = x · (By) ∀x ∈ R
n, y ∈ R

m

if and only if

Ai j = Bj i ∀i = 1, . . . , m, j = 1, . . . , n.

The latter set of equalities is equivalent to the fact that B = AT , i.e.
that B is the transpose of A.

(b) Let us show that
∥

∥AT
∥

∥ ≤ ‖A‖. Since (AT )T = A, i.e since (·)T is an
involution, the claim will then follow. We know from Problem 1 that,
given any linear map B : R

p −→, Rq ‖B‖ = sup‖v‖=1 ‖Bv‖ .

Suppose now that v ∈ R
n with ‖v‖ = 1 and w ∈ R

m with ‖w‖ = 1 are
given.
Then we know that (AT )w·v = w·Av. Combining the Schwarz-Cauchy
Inequality and the fact that ‖Av‖ ≤ ‖A‖ ‖v‖, it follows that the right
hand side of the above inequality has absolute value less than or equal
to: ‖w‖ ‖A‖ ‖v‖ = ‖A‖ .

In particular, given w ∈ R
m with ‖w‖ = 1, we can find v ∈ R

n with

‖v‖ = 1 such that (AT )w · v =
∥

∥(AT )w
∥

∥ Namely, we let v := (AT )w
‖(AT )w‖

if (AT )w 6= 0 and we let v be an arbitrary element of unit norm in R
m

if (AT )w = 0.

It follows from the previous discussion that, ∀w ∈ R
m with ‖w‖ = 1

we have
∥

∥(AT )w
∥

∥ ≤ ‖A‖ Taking supremums over such w, it follows
that:

∥

∥AT
∥

∥ ≤ ‖A‖
As we noted earlier, from this inequality we may deduce that:

∥

∥AT
∥

∥ = ‖A‖
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(4) (a) Suppose that f : R
n −→ R

m is differentiable, and suppose that for all
x, ‖Df(x)‖ ≤ 1. Prove that

‖f(x) − f(y)‖ ≤ ‖x − y‖
(Hint: Try taking the dot product with f(x)− f(y), and use the chain
rule to convert this into a single variable problem. Then you can use
the mean value theorem.)

(b) Find a counterexample to the following naive generalization of the
mean value theorem: Given f : R

n −→ R
m differentiable and points

x, y ∈ R
n, there exists some point c on the line segment between x and

y so that

Df(c)(x − y) = f(x) − f(y)

Solution:

(a) Let x, y ∈ R
n be given. Let us define:

g : R −→ R by
g(t) := (f(y+t(x−y))−f(y))·(f(x)−f(y)). We observe that then g is a
differentiable function of t. Also g(0) = 0 and g(1) = (‖f(x) − f(y)‖)2
By applying the Chain Rule, we know that ∀t ∈ R

g′(t) = (Df(y + t(x − y))(x − y)) · (f(x) − f(y))

We can now use the Mean Value Theorem to get that there exists some
t0 ∈ (0, 1) so that

g(1) − g(0) = g′(t0)

Therefore,

‖f(x) − f(y)‖2
= (Df(y + t0(x − y))(x − y)) · (f(x) − f(y))

Now we can use the Cauchy-Schwartz inequality

‖f(x) − f(y)‖2 ≤ ‖Df(y + t0(x − y))(x − y)‖ ‖f(x) − f(y)‖
Therefore, as all terms are non negative,

‖f(x) − f(y)‖ ≤ ‖Df(y + t0(x − y))(x − y)‖ ≤ ‖Df(y + t0(x − y))‖ ‖x − y‖ ≤ ‖x − y‖
(b) We consider the function f : R −→ R

2 be such that f(t) is:
[

cos t

sin t

]

Then f is differentiable and Df(t) is given by
[

− sin t

cos t

]

Since (sin t)2 + (cos t)2 = 1, it follows that Df(t) has rank 1∀t ∈ R, so
Df(t) is injective ∀t ∈ R. Observe that then f(0) = f(2π). However,
if there existed a point c on the line segment joining 0 and 2π such that
Df(c)(2π−0) = f(2π)−f(0), then it would follow that Df(c)(2π) = 0.
This is impossible since 2π 6= 0 and since Df(c) is injective. Thus, the
‘naive’ generalization of the Mean Value Theorem doesn’t hold.
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(5) (a) Let f : R
n −→ R

n be of class C1. Prove that the set S ⊂ R
n consisting

of points x ∈ R
n where Df(x) has rank n is open.

(Hint: The determinant has a formula which is a polynomial in the
coefficients of the matrix. This tells you that the determinant in a
continuous function of the coefficients of a matrix. Use this.)

(b) Use the inverse function theorem to prove that f(S) ⊂ R
n is also open.

Solution:

(a) We observe that:

S = {x ∈ R
n, Df(x) has rank n} = {x ∈ R

n, det(Df(x)) 6= 0}
We also know that the determinant of a matrix is a polynomial in its
entries. This follows from the definition of a determinant. Now, for f

as above, the quantity det(Df(x)) is a polynomial in the n2 quantities
∂fj

∂xi
(x), where i, j = 1, . . . , n. Since f is a class C1 function, it follows

that
∂fj

∂xi
(x) is a continuous function in x for i, j = 1, . . . , n. From here

we may deduce that det(Df(x)) is a continuous function in x ∈ R
n.

Hence, by continuity, the set S = {x ∈ R
n, det(Df(x)) 6= 0} is open

as it is the inverse image of an open subset of R.
(b) In order to prove the claim, we want to use the Inverse Function The-

orem.
Suppose that y ∈ f(S) is given. By definition, we can find x ∈ S such
that f(x) = y. Then, since x ∈ S, it follows that det(Df(x)) 6= 0 so
by the Inverse Function Theorem, we can find a neighborhood U of x

in R
n and a neighborhood V of y in R

n such that f is a bijection from
U to V which has an inverse that is of class C1. Call this inverse g.
In particular, we know by the Chain Rule that:
(Df(w))◦(Dg(f(w))) = In ∀w ∈ U. Hence Df(w) is invertible ∀w ∈ U .
Thus, it follows that U ⊆ S. Hence, V = f(U) ⊆ f(S). V is also a
neighborhood of y in R

n by construction. Since such a neighborhood
V can be found for all y ∈ f(S), it follows that f(S) is open, as was
claimed.


