HOMEWORK FOR 18.101, FALL 2007 ASSIGNMENT 1 SOLUTIONS

(1) Given a linear map

$$
T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}
$$

Define the operator norm of T as follows:

$$
\|T\|:=\sup _{x \neq 0} \frac{\|T(x)\|}{\|x\|}
$$

Similarly, if A is a matrix, define the operator norm of A by

$$
\|A\|:=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

(a) Show that $\|T\|$ is finite.
(b) Show that $\|\cdot\|$ is a norm.
(c) Show that if $A B$ is defined,

$$
\|A\|\|B\| \geq\|A B\|
$$

Solution:
(a) By rescaling x to $\frac{x}{\|x\|}$ (which has norm equal to 1), and by using the fact that T is linear, we get an alternative characterization:

$$
\|T\|=\sup _{\|x\|=1}\|T(x)\|
$$

We will now show that this quantity is finite. Let us think of T as an $m \times n$ matrix in the corresponding standard bases of \mathbb{R}^{n} and \mathbb{R}^{m}. We find a constant $M>0$ such that all the entries of T are bounded in absolute value by M. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be such that $\|x\|=1$. We know that then $\left|x_{j}\right| \leq 1 \forall j=1, \ldots, n$. Using the triangle inequality and the bounds on the entries of T, it follows that every entry of $T(x)$ is bounded in absolute value by $n M$. Hence $\|T(x)\| \leq n M \sqrt{n}$. We can take supremums over all $x \in \mathbb{R}^{n}$ such that $\|x\|=1$ to obtain that: $\|T\| \leq n M \sqrt{n}<+\infty$ Hence, $\|T\|$ is indeed finite.
(b) In order to show that $\|\cdot\|$ indeed gives us a norm on the space $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of linear operators from \mathbb{R}^{n} to \mathbb{R}^{m}, we need to check the following properties:
(i) Positive Definiteness: For all $T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right),\|T\| \geq 0$ and $\|T\|=0$ if and only if $T=0$.
The fact that $\|T\| \geq 0, \forall T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ follows from definition of $\|\cdot\|$. It is also an immediate consequence of the definition that $\|0\|=0$. Suppose $T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is such that $\|T\|=0$. Then $T(x)=0, \forall x \in \mathbb{R}^{n}$ such that $\|x\|=1$. Since every element of \mathbb{R}^{n} is a scalar multiple of an element of unit norm, it follows by linearity of T that $T=0$ on \mathbb{R}^{n}.
(ii) Homogeneity: Let $T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and $\lambda \in \mathbb{R}$ be given. We must show that: $\|\lambda T\|=|\lambda|\|T\|$.
To see this, suppose that $x \in \mathbb{R}^{n}$ and $\|x\|=1$. Then $\|(\lambda T)(x)\|=$ $|\lambda|\|T(x)\|$. Taking supremums over $x \in \mathbb{R}^{n}$ with $\|x\|=1$, it follows that $\|\lambda T\|=|\lambda|\|T\|$.
(iii) Triangle Inequality: We must show that $\forall A, B \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ $\|A+B\| \leq\|A\|+\|B\|$. To see this, let A, B be as above. Let $x \in \mathbb{R}^{n}$ be such that $\|x\|=1$. Then, by the triangle inequality in \mathbb{R}^{n}, we have that:

$$
\|(A+B)(x)\| \leq\|A(x)\|+\|B(x)\|
$$

Taking supremums over $\|x\|=1$, we indeed get:

$$
\|A+B\| \leq\|A\|+\|B\|
$$

(c) We observe that $\forall T \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right), \forall x \in \mathbb{R}^{n}$, we have: $\|T(x)\| \leq$ $\|T\|\|x\|(*)$. Namely, this fact evidently holds in the case that $x=0$ and the case $x \neq 0$ follows from the original definition of $\|T\|$. Suppose now that A and B are such that $A B$ is well defined. Let v be an element of the domain of B and suppose that $\|v\|=1$. We obtain that: $\|(A B)(v)\|=\|A(B(v))\| \leq\left\{\right.$ by using $\left.\left(^{*}\right)\right\} \leq\|A\|\|B(v)\| \leq$ $\left\{\right.$ by using $\left(^{*}\right)$ again $\} \leq\|A\|\|B\|\|v\|$. Taking supremums over $\|v\|=$ 1, it follows that indeed $\|A\|\|B\| \geq\|A B\|$, as was claimed.
(2) Prove that the two norms $|\cdot|_{s}$ and $\|\cdot\|$ on \mathbb{R}^{n} give the same topology in the sense that if U is an open set using the metric from one norm, it is open using the metric from the other norm.
(Recall that we defined $|x|_{s}:=\max \left|x_{i}\right|$, and $\|x\|:=\sqrt{\sum x_{i}^{2}}$.)

Solution:

We observe that $\forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we have: $|x|_{s} \leq\|x\|$. This is because for $j=1, \ldots, n$ we have: $\left|x_{j}\right| \leq \sqrt{\sum x_{i}^{2}}$.
On the other hand, $\left|x_{j}\right| \leq|x|_{s} \forall j=1, \ldots, n$. We thus get that: $\|x\|=$ $\sqrt{\sum x_{i}^{2}} \leq \sqrt{n}|x|_{s}$.
From the preceding discussion, we deduce that:

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n},|x|_{s} \leq\|x\| \leq \sqrt{n}|x|_{s} \tag{*}
\end{equation*}
$$

Using $(*)$, we now prove the claim.
Let us now define the notation that we will use for the rest of the problem. Let $p \in \mathbb{R}^{n}$, and $r>0$ be given. We denote by

$$
\begin{aligned}
B_{r}(p) & :=\left\{x \in \mathbb{R}^{n},\|x-p\|<r\right\} \\
B_{r, s}(p) & :=\left\{x \in \mathbb{R}^{n},|x-p|_{s}<r\right\}
\end{aligned}
$$

- Suppose that $U \subseteq \mathbb{R}^{n}$ is open with respect to $\|\cdot\|$. If U is empty, then U is automatically open with respect to $|\cdot|_{s}$. Hence, it suffices to consider the case when U is nonempty. Let us choose $p \in U$. Then, since U is open with respect to $\|\cdot\|$, we can find $r>0$ such that $B_{r}(p) \subseteq U$. From $(*)$, we have that $B_{\frac{r}{\sqrt{n}}, s}(p) \subseteq B_{r}(p)$. Hence $B_{\frac{r}{\sqrt{n}}, s}(p) \subseteq U$, so U is open with respect to $|\cdot|_{s}$.
- Suppose that $U \subseteq \mathbb{R}^{n}$ is open with respect to $|\cdot|_{s}$. As before, we consider the case of nonempty U and let $p \in U$ be given. We can find $r>0$ such that $B_{r, s}(p) \subseteq U$. By using $\left(^{*}\right)$, we know that $B_{r}(p) \subseteq$ $B_{r, s}(p)$.Hence $B_{r}(p) \subseteq U$,so U is open with respect to $\|\cdot\|$.
Conclusion: $\|\cdot\|$ and $|\cdot|_{s}$ define the same topology.
(3) (a) Show that given any $m \times n$ matrix A, the transpose of the matrix A^{T} is the unique $n \times m$ matrix with the property that

$$
(A x) \cdot y=x \cdot\left(A^{T}\right) y \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

(b) Show that

$$
\|A\|=\left\|A^{T}\right\|
$$

Solution:

(a) Suppose that A is an $m \times n$ matrix. Let $\left\{e_{j}, j=1, \ldots, n\right\},\left\{f_{i}, i=\right.$ $1, \ldots, m\}$ denote the standard bases for \mathbb{R}^{n} and \mathbb{R}^{m} respectively. We know from bilinearity that an $n \times m$ matrix B satisfies $(A x) \cdot y=x \cdot(B y)$ $\forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$ if and only if we have that $\forall i=1, \ldots, m, j=$ $1, \ldots, n\left(A e_{j}\right) \cdot f_{i}=e_{j} \cdot\left(B f_{i}\right)$ Now, $\forall i=1, \ldots, m, j=1, \ldots, n$, we have that: $\left(A e_{j}\right) \cdot f_{i}=i^{\text {th }}$ entry of the $j^{\text {th }}$ column of A, which we denote by $A_{i j}$. Also, $e_{j} \cdot\left(B f_{i}\right)=j^{t h}$ entry of the $i^{t h}$ column of B, which we denote by $B_{j i}$. Hence, from the above we may conclude that, given an $n \times m$ matrix B we have that:

$$
(A x) \cdot y=x \cdot(B y) \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

if and only if

$$
A_{i j}=B_{j i} \forall i=1, \ldots, m, j=1, \ldots, n .
$$

The latter set of equalities is equivalent to the fact that $B=A^{T}$, i.e. that B is the transpose of A.
(b) Let us show that $\left\|A^{T}\right\| \leq\|A\|$. Since $\left(A^{T}\right)^{T}=A$, i.e since $(\cdot)^{T}$ is an involution, the claim will then follow. We know from Problem 1 that, given any linear map $B: \mathbb{R}^{p} \longrightarrow, \mathbb{R}^{q}\|B\|=\sup _{\|v\|=1}\|B v\|$.
Suppose now that $v \in \mathbb{R}^{n}$ with $\|v\|=1$ and $w \in \mathbb{R}^{m}$ with $\|w\|=1$ are given.
Then we know that $\left(A^{T}\right) w \cdot v=w \cdot A v$. Combining the Schwarz-Cauchy Inequality and the fact that $\|A v\| \leq\|A\|\|v\|$, it follows that the right hand side of the above inequality has absolute value less than or equal to: $\|w\|\|A\|\|v\|=\|A\|$.
In particular, given $w \in \mathbb{R}^{m}$ with $\|w\|=1$, we can find $v \in \mathbb{R}^{n}$ with $\|v\|=1$ such that $\left(A^{T}\right) w \cdot v=\left\|\left(A^{T}\right) w\right\|$ Namely, we let $v:=\frac{\left(A^{T}\right) w}{\left\|\left(A^{T}\right) w\right\|}$ if $\left(A^{T}\right) w \neq 0$ and we let v be an arbitrary element of unit norm in \mathbb{R}^{m} if $\left(A^{T}\right) w=0$.
It follows from the previous discussion that, $\forall w \in \mathbb{R}^{m}$ with $\|w\|=1$ we have $\left\|\left(A^{T}\right) w\right\| \leq\|A\|$ Taking supremums over such w, it follows that:

$$
\left\|A^{T}\right\| \leq\|A\|
$$

As we noted earlier, from this inequality we may deduce that:

$$
\left\|A^{T}\right\|=\|A\|
$$

(4) (a) Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is differentiable, and suppose that for all $x,\|D f(x)\| \leq 1$. Prove that

$$
\|f(x)-f(y)\| \leq\|x-y\|
$$

(Hint: Try taking the dot product with $f(x)-f(y)$, and use the chain rule to convert this into a single variable problem. Then you can use the mean value theorem.)
(b) Find a counterexample to the following naive generalization of the mean value theorem: Given $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ differentiable and points $x, y \in \mathbb{R}^{n}$, there exists some point c on the line segment between x and y so that

$$
D f(c)(x-y)=f(x)-f(y)
$$

Solution:
(a) Let $x, y \in \mathbb{R}^{n}$ be given. Let us define:
$g: \mathbb{R} \longrightarrow \mathbb{R}$ by
$g(t):=(f(y+t(x-y))-f(y)) \cdot(f(x)-f(y))$. We observe that then g is a differentiable function of t. Also $g(0)=0$ and $g(1)=(\|f(x)-f(y)\|)^{2}$
By applying the Chain Rule, we know that $\forall t \in \mathbb{R}$

$$
g^{\prime}(t)=(D f(y+t(x-y))(x-y)) \cdot(f(x)-f(y))
$$

We can now use the Mean Value Theorem to get that there exists some $t_{0} \in(0,1)$ so that

$$
g(1)-g(0)=g^{\prime}\left(t_{0}\right)
$$

Therefore,

$$
\|f(x)-f(y)\|^{2}=\left(D f\left(y+t_{0}(x-y)\right)(x-y)\right) \cdot(f(x)-f(y))
$$

Now we can use the Cauchy-Schwartz inequality

$$
\|f(x)-f(y)\|^{2} \leq\left\|D f\left(y+t_{0}(x-y)\right)(x-y)\right\|\|f(x)-f(y)\|
$$

Therefore, as all terms are non negative,

$$
\|f(x)-f(y)\| \leq\left\|D f\left(y+t_{0}(x-y)\right)(x-y)\right\| \leq\left\|D f\left(y+t_{0}(x-y)\right)\right\|\|x-y\| \leq\|x-y\|
$$

(b) We consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ be such that $f(t)$ is:

$$
\left[\begin{array}{l}
\cos t \\
\sin t
\end{array}\right]
$$

Then f is differentiable and $D f(t)$ is given by

$$
\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right]
$$

Since $(\sin t)^{2}+(\cos t)^{2}=1$, it follows that $D f(t)$ has rank $1 \forall t \in \mathbb{R}$, so $D f(t)$ is injective $\forall t \in \mathbb{R}$. Observe that then $f(0)=f(2 \pi)$. However, if there existed a point c on the line segment joining 0 and 2π such that $D f(c)(2 \pi-0)=f(2 \pi)-f(0)$, then it would follow that $D f(c)(2 \pi)=0$. This is impossible since $2 \pi \neq 0$ and since $D f(c)$ is injective. Thus, the 'naive' generalization of the Mean Value Theorem doesn't hold.
(5) (a) Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be of class C^{1}. Prove that the set $S \subset \mathbb{R}^{n}$ consisting of points $x \in \mathbb{R}^{n}$ where $D f(x)$ has rank n is open.
(Hint: The determinant has a formula which is a polynomial in the coefficients of the matrix. This tells you that the determinant in a continuous function of the coefficients of a matrix. Use this.)
(b) Use the inverse function theorem to prove that $f(S) \subset \mathbb{R}^{n}$ is also open. Solution:
(a) We observe that:

$$
S=\left\{x \in \mathbb{R}^{n}, D f(x) \text { has rank } \mathrm{n}\right\}=\left\{x \in \mathbb{R}^{n}, \operatorname{det}(D f(x)) \neq 0\right\}
$$

We also know that the determinant of a matrix is a polynomial in its entries. This follows from the definition of a determinant. Now, for f as above, the quantity $\operatorname{det}(D f(x))$ is a polynomial in the n^{2} quantities $\frac{\partial f_{j}}{\partial x_{i}}(x)$, where $i, j=1, \ldots, n$. Since f is a class C^{1} function, it follows that $\frac{\partial f_{j}}{\partial x_{i}}(x)$ is a continuous function in x for $i, j=1, \ldots, n$. From here we may deduce that $\operatorname{det}(D f(x))$ is a continuous function in $x \in \mathbb{R}^{n}$. Hence, by continuity, the set $S=\left\{x \in \mathbb{R}^{n}\right.$, $\left.\operatorname{det}(D f(x)) \neq 0\right\}$ is open as it is the inverse image of an open subset of \mathbb{R}.
(b) In order to prove the claim, we want to use the Inverse Function Theorem.
Suppose that $y \in f(S)$ is given. By definition, we can find $x \in S$ such that $f(x)=y$. Then, since $x \in S$, it follows that $\operatorname{det}(D f(x)) \neq 0$ so by the Inverse Function Theorem, we can find a neighborhood U of x in \mathbb{R}^{n} and a neighborhood V of y in \mathbb{R}^{n} such that f is a bijection from U to V which has an inverse that is of class C^{1}. Call this inverse g. In particular, we know by the Chain Rule that:
$(D f(w)) \circ(D g(f(w)))=I_{n} \forall w \in U$. Hence $D f(w)$ is invertible $\forall w \in U$. Thus, it follows that $U \subseteq S$. Hence, $V=f(U) \subseteq f(S)$. V is also a neighborhood of y in \mathbb{R}^{n} by construction. Since such a neighborhood V can be found for all $y \in f(S)$, it follows that $f(S)$ is open, as was claimed.

