HOMEWORK FOR 18.101, FALL 2007
 ASSIGNMENT 1

DUE 11AM FRIDAY SEPTEMBER 21 IN ROOM 108

Each part of each problem is worth 10 points.
(1) Given a linear map

$$
T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}
$$

Define the operator norm of T as follows:

$$
\|T\|:=\sup _{x \neq 0} \frac{\|T(x)\|}{\|x\|}
$$

Similarly, if A is a matrix, define the operator norm of A by

$$
\|A\|:=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

(a) Show that $\|T\|$ is finite.
(b) Show that $\|\cdot\|$ is a norm.
(c) Show that if $A B$ is defined,

$$
\|A\|\|B\| \geq\|A B\|
$$

(2) Pove that the two norms $|\cdot|_{s}$ and $\|\cdot\|$ on \mathbb{R}^{n} give the same topology in the sense that if U is an open set using the metric from one norm, it is open using the metric from the other norm.
(Recall that we defined $|x|_{s}:=\max \left|x_{i}\right|$, and $\|x\|:=\sqrt{\sum x_{i}^{2}}$.)
(3) (a) Show that given any $m \times n$ matrix A, the transpose of the matrix A^{T} is the unique $n \times m$ matrix with the property that

$$
(A x) \cdot y=x \cdot\left(A^{T}\right) y \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

(b) Show that

$$
\|A\|=\left\|A^{T}\right\|
$$

(4) (a) Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is differentiable, and suppose that for all $x,\|D f(x)\| \leq 1$. Prove that

$$
\|f(x)-f(y)\| \leq\|x-y\|
$$

(Hint: Try taking the dot product with $f(x)-f(y)$, and use the chain rule to convert this into a single variable problem. Then you can use the mean value theorem.)
(b) Find a counterexample to the following naive generalization of the mean value theorem: Given $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ differentiable and points $x, y \in \mathbb{R}^{n}$, there exists some point c on the line segement between x and y so that

$$
D f(c)(x-y)=f(x)-f(y)
$$

(5) (a) Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be of class C^{1}. Prove that the set $S \subset \mathbb{R}^{n}$ consisting of points $x \in \mathbb{R}^{n}$ where $D f(x)$ has rank n is open.
(Hint: The determinent has a formula which is a polynomial in the coefficients of the matrix. This tells you that the determinent in a continuous function of the coefficients of a matrix. Use this.)
(b) Use the inverse function theorem to prove that $f(S) \subset \mathbb{R}^{n}$ is also open.

