
Flux and the divergence theorem

We now know one way of calculating how an integral changes under the flow of a
vector field, namely,

d

dt
|t=0

∫

ΦtvU

σ =

∫

U

Lvσ

When we flow a region U with a nice boundary, all changes to U happen close to the
boundary, so we should be able to express with something which depends only on σ
and v close to the boundary of U .

We shall use the following lemma which is a version of Fubini’s theorem:

Lemma 1. If M is a compact manifold, I ⊂ R is an interval, and σ is a continuous
density on M × I, then

∫

M×I

σ =

∫

I

f

where the function f : I −→ R is continuous, and defined by

f(t) :=

∫

M×{t}

i ∂

∂t

σ :=

∫

M×{t}

σ

(

∂

∂t
, ·, . . . , ·

)

We shall leave the proof of this as an exercise. It amounts to using Fubini’s
theorem in the correct coordinates.

To reduce our computations of how the integral changes under the flow of a vector
field to this case, we shall use the following:

Theorem 2. Suppose that v is a Ck vector field on a smooth (n + 1) dimensional
manifold N , and M is a compact n dimensional sub manifold of N . If v is transverse
to M (in other words, for all p ∈ M v(p) /∈ TpM ⊂ TpN), then there exists some
ǫ > 0 and a Ck diffeomorphism ψ from M × (−ǫ, ǫ) onto some open neighborhood of
M in N , where

ψ(p, t) := Φtv(p) where p ∈M and t ∈ (−ǫ, ǫ)

Proof. First, note that as M is compact, there exists some ǫ′ > 0 so that Φtvp is
defined for all |t| < ǫ′ and all p ∈M , so it is possible to define ψ as above. We must
verify that ψ is indeed a diffeomorphism onto a neighborhood of M ⊂ N .

Note that ψ(·, 0) is a diffeomorphism M × {0} −→M ⊂ N . Also note that

ψ∗
∂

∂t
= v

The fact that v is transverse to M then tells us that T(p,0)ψ is surjective. Therefore
the inverse function theorem states that, ψ is a diffeomorphism from a neighborhood
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of (p, 0) onto a neighborhood of p ∈ N . By using the fact that M ⊂ N is closed, we
can arrange that the image of this diffeomorphism intersects M ⊂ N only where it
should, in the image of M × {0}.

Then using this, and the fact that M is compact, we get that there exists some
ǫ > 0 so that ψ : M × (−2ǫ, 2ǫ) −→ N is a local diffeomorphism, and so that
ψ(p, t) /∈ M if t 6= 0.

We claim that ψ : M × (−ǫ, ǫ) −→ N is injective: To see this, suppose that
ψ(p, t) = ψ(p′, t′). Then

ψ(p, 0) = Φ−tvψ(p, t) = Φ−tvψ(p′, t′) = ψ(p′, t− t′)

As |t − t′| < 2ǫ, and ψ(p′, t − t′) ∈ M , we must conclude that t′ = t, and therefore,
p′ = p. As ψ is injective, and a local diffeomorphism, it is our required diffeomorphism
onto a neighborhood of M ⊂ N .

Theorem 3. Suppose that U ⊂ N is an open subset so that Ū is compact, and the
boundary of U , bdy(U) = bdy(Ū) = M ⊂ N is a manifold with one dimension less
than N . Let σ be a continuous density on N , and v a C1 vector field on N which is
transverse to M , and which points out of U . Then

d

dt
|t=0

∫

Φtv(U)

σ =

∫

M

ivσ :=

∫

M

σ(v, ·, . . . , ·)

Proof. Use theorem 2 to get a C1 diffeomorphism ψ from M × (−ǫ, ǫ) onto a neigh-
borhood of M ⊂ N so that

ψ(·, 0) : M × {0} −→M ⊂ N is a diffeomorphism

and

ψ∗
∂

∂t
= v

Note that for t ∈ (−ǫ, ǫ) we can write Φtv(U) as a disjoint union:

Φtv(U) = Φ−ǫv(Ū) ∪ ψ (M × (−ǫ, t))

Therefore,

d

dt
|t=0

∫

Φtv(U)

σ =
d

dt
|t=0

∫

ψ(M×(−ǫ,t))

σ =
d

dt
|t=0

∫

M×(−ǫ,t)

ψ∗σ

We are now placed to use Lemma 1,

∫

M×(−ǫ,t)

ψ∗σ =

∫

(−ǫ,t)

f
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where

f(t) =

∫

M×{t}

i ∂

∂t

(ψ∗σ)

Therefore, using the fundamental theorem of calculus,

d

dt
|t=0

∫

Φtv(U)

σ =

∫

M×{0}

i ∂

∂t

(ψ∗σ)

But

i ∂

∂t

(ψ∗σ) = (ψ∗σ)

(

∂

∂t
, ·

)

= ψ(·, 0)∗(σ

(

ψ∗
∂

∂t
, ·

)

= ψ(·, 0)∗(ivσ)

Therefore,
d

dt
|t=0

∫

Φtv(U)

σ =

∫

M×{0}

i ∂

∂t

(ψ∗σ) =

∫

M

ivσ

as required.

The set Ū in the theorem above is what is known as a manifold with boundary.
This is a subset of R

N so that every point has an open neighborhood diffeomorphic
to either an open subset of R

n+1, or an open subset of [0,∞) ×Rn.

Theorem 4 (Divergence theorem). Let N be an n + 1 dimensional manifold, and
Ū a compact n + 1 dimensional manifold with boundary the n dimensional manifold
M , and interior the open set U ⊂ N . If v is a C1 vector field on N , and σ is a C1

density, then

∫

U

Lvσ =

∫

M

sgn(v)ivσ

where

sgn(v) =











1 if v points out of U

−1 if v points into U

0 otherwise

Proof. We may assume that v is complete by smoothly cutting it off outside Ū to
make it compactly supported. (To prove that this is possible, use a smooth, compactly
supported partition of unity {φi}, and replace v with the sum of φiv for all φi who’s
support intersects Ū .) By using a partition of unity, we can construct a smooth,
complete vector field w so that w and v + w both point out of U . Then

d

dt
|t=0

∫

Φtw(U)

σ =

∫

U

Lwσ =

∫

M

iwσ

and
d

dt
|t=0

∫

Φt(w+v)(U)

σ =

∫

U

Lw+vσ =

∫

M

iw+vσ
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so
∫

U

Lvσ =

∫

U

Lv+wσ −

∫

U

Lwσ =

∫

M

iv+wσ − iwσ =

∫

M

sgn(v)ivσ

Exercises

1. Prove Lemma 1

2. Show that ifN is a manifold with a smooth metric, we have the following version
of the divergence theorem:

∫

U

Lvσvol,N =

∫

M

(v · n)σvol,M

where n is an outward pointing unit normal vector to M , and σvol,N means the
volume form on N coming from the metric, and σvol,M means the volume form
on M coming from the restriction of this metric to M .

3. Use the divergence theorem to calculate the ratio between the volume of the
unit sphere in R

n and the unit ball in R
n.
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