18.101 Final Exam December 18, 2006

- **1.** (20 points)
 - a. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function:

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}, & (x,y) \neq 0\\ 0, & (x,y) = 0 \end{cases}$$

For what vectors, $u \in \mathbb{R}^2$, does the directional derivative, $D_u f(0)$, exist? Is f differentiable at 0?

b. Same question for the function

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2}, & (x,y) \neq 0\\ 0, & (x,y) = 0 \end{cases}$$

2. (20 points)

In the exercise below Q is the rectangle, $I \times I$, I = [0, 1], and $f : Q \to \mathbb{R}$ is a bounded function. True or false:

- a. If f is zero except on a countable set, f is integrable.
- b. If f is zero except on a set of measure zero, f is integrable.

c. Let $A \subseteq Q$ be a subset of measure zero. If f is continuous at all points, $p \in Q - A$, f is integrable.

d. If f is integrable then for some point, $x \in I$, the upper and lower Riemann integrals,

$$\int_{I} f(x,y) \, dy$$
 and $\int_{I} f(x,y) \, dy$,

are equal.

e. If the upper Riemann integral, $\overline{\int}_{Q} f$, and the lower Riemann integral, $\underline{\int}_{Q} f$, are both zero, f is integrable.

3. (25 points) Let A be the subset $[1, \infty) \times [1, \infty)$, of \mathbb{R}^2 . For which of the functions below does the improper integral of f over A exist?

a.
$$f(x, y) = \frac{1}{x^3y} + \frac{1}{xy^3}$$
.
b. $f(x, y) = \frac{1}{x^2y^2}$.
c. $f(x, y) = \frac{1}{x^2+y^2}$.
d. $f(x, y) = \frac{1}{(x^2+y^2)^2}$.
e. $f(x, y) = \frac{1}{x^4} + \frac{1}{y^4}$.

4. (15 points) The volume of the unit ball, $x_1^2 + \cdots + x_{2n}^2 \leq 1$, in \mathbb{R}^{2n} is $\pi^n/n!$. What is the volume of the set, $4x_1^2 + x_2^2 + \cdots + x_{2n}^2 \leq 1$?

5. (20 points) Compute the integral

$$\int_{\mathbb{R}^n} e^{-(x^2+y^2)} \, dx \, dy \, .$$

Hint: Polar coordinates and the change of variables formula.

- **6.** (20 points)
 - a. Let v be the vector field on \mathbb{R}^2 :

$$v = x_1 \frac{\partial}{\partial x_1} + 2x_2 \frac{\partial}{\partial x_2}$$

What are its integral curves? Is this vector field complete?

b. Let v be the vector field

$$v = x_1 \frac{\partial}{\partial x_1} + x_2^2 \frac{\partial}{\partial x_2}.$$

What are its integral curves? Is this vector field complete?

7. (20 points) Let U be the open set

$$\{(x, y) \in \mathbb{R}^2, \quad 0 < x, \quad 0 < y < \frac{\pi}{2}\},\$$

V the open set

$$\{(x, y) \in \mathbb{R}^2, \quad 0 < x, \, 0 < y\}$$

and $f:U\to V$ the diffeomorphism

$$f(x,y) = (x\cos y, x\sin y).$$

Let

$$w = f_* \frac{\partial}{\partial y} = w_1(x, y) \frac{\partial}{\partial x} + w_2(x, y) \frac{\partial}{\partial y}$$

What are w_1 and w_2 ?

8. (15 points) Let X be the *n*-dimensional paraboloid: $x_{n+1} = x_1^2 + \cdots + x_n^2$, in \mathbb{R}^{n-1} . What is the tangent space, T_pX , at $p = (1, 1, \dots, 1, n)$?

9. (20 points) Prove that the subset of \mathbb{R}^n defined by the pair of equations

$$4x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2 = 1$$

and

$$x_1 + x_2 + \dots + x_n = 0$$

is an (n-2)-dimensional submanifold of \mathbb{R}^n .

10. (25 points)

a. (Munkres, §22, #2) Let U be a bounded subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ a \mathcal{C}^{∞} function. Suppose the derivatives

$$\frac{\partial f}{\partial x_k}, \quad k = 1, \dots, n$$

are bounded on U. Let

$$X = \{ (x, f(x)), \quad x \in U \}$$

be the graph of f viewed as an *n*-dimensional submanifold of \mathbb{R}^{n+1} . Express vol (X) as an integral over U.

b. (Loomis–Sternberg, 10.4, #3) For n = 2 show that this integral reduces to standard formula of elementary calculus for the area of the surface X.