18.101 Final Exam

December 18, 2006

1. (20 points)
a. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function:

$$
f(x, y)= \begin{cases}\frac{2 x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq 0 \\ 0, & (x, y)=0\end{cases}
$$

For what vectors, $u \in \mathbb{R}^{2}$, does the directional derivative, $D_{u} f(0)$, exist? Is f differentiable at 0 ?
b. Same question for the function

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq 0 \\ 0, & (x, y)=0\end{cases}
$$

2. (20 points)

In the exercise below Q is the rectangle, $I \times I, I=[0,1]$, and $f: Q \rightarrow \mathbb{R}$ is a bounded function. True or false:
a. If f is zero except on a countable set, f is integrable.
b. If f is zero except on a set of measure zero, f is integrable.
c. Let $A \subseteq Q$ be a subset of measure zero. If f is continuous at all points, $p \in Q-A, f$ is integrable.
d. If f is integrable then for some point, $x \in I$, the upper and lower Riemann integrals,

$$
\int_{I} f(x, y) d y \quad \text { and } \int_{I} f(x, y) d y
$$

are equal.
e. If the upper Riemann integral, $\int_{Q} f$, and the lower Riemann integral, $\int_{Q} f$, are both zero, f is integrable.
3. (25 points) Let A be the subset $[1, \infty) \times[1, \infty)$, of \mathbb{R}^{2}. For which of the functions below does the improper integral of f over A exist?
a. $f(x, y)=\frac{1}{x^{3} y}+\frac{1}{x y^{3}}$.
b. $f(x, y)=\frac{1}{x^{2} y^{2}}$.
c. $f(x, y)=\frac{1}{x^{2}+y^{2}}$.
d. $f(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}$.
e. $f(x, y)=\frac{1}{x^{4}}+\frac{1}{y^{4}}$.
4. (15 points) The volume of the unit ball, $x_{1}^{2}+\cdots+x_{2 n}^{2} \leq 1$, in $\mathbb{R}^{2 n}$ is π^{n} / n !. What is the volume of the set, $4 x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 n}^{2} \leq 1$?
5. (20 points) Compute the integral

$$
\int_{\mathbb{R}^{n}} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Hint: Polar coordinates and the change of variables formula.
6. (20 points)
a. Let v be the vector field on \mathbb{R}^{2} :

$$
v=x_{1} \frac{\partial}{\partial x_{1}}+2 x_{2} \frac{\partial}{\partial x_{2}} .
$$

What are its integral curves? Is this vector field complete?
b. Let v be the vector field

$$
v=x_{1} \frac{\partial}{\partial x_{1}}+x_{2}^{2} \frac{\partial}{\partial x_{2}} .
$$

What are its integral curves? Is this vector field complete?
7. (20 points) Let U be the open set

$$
\left\{(x, y) \in \mathbb{R}^{2}, \quad 0<x, \quad 0<y<\frac{\pi}{2}\right\}
$$

V the open set

$$
\left\{(x, y) \in \mathbb{R}^{2}, \quad 0<x, 0<y\right\}
$$

and $f: U \rightarrow V$ the diffeomorphism

$$
f(x, y)=(x \cos y, x \sin y) .
$$

Let

$$
w=f_{*} \frac{\partial}{\partial y}=w_{1}(x, y) \frac{\partial}{\partial x}+w_{2}(x, y) \frac{\partial}{\partial y} .
$$

What are w_{1} and w_{2} ?
8. (15 points) Let X be the n-dimensional paraboloid: $x_{n+1}=x_{1}^{2}+\cdots+x_{n}^{2}$, in \mathbb{R}^{n-1}. What is the tangent space, $T_{p} X$, at $p=(1,1, \ldots, 1, n)$?
9. (20 points) Prove that the subset of \mathbb{R}^{n} defined by the pair of equations

$$
4 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}=1
$$

and

$$
x_{1}+x_{2}+\cdots+x_{n}=0
$$

is an $(n-2)$-dimensional submanifold of \mathbb{R}^{n}.
10. (25 points)
a. (Munkres, $\S 22, \# 2)$ Let U be a bounded subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ a \mathcal{C}^{∞} function. Suppose the derivatives

$$
\frac{\partial f}{\partial x_{k}}, \quad k=1, \ldots, n
$$

are bounded on U. Let

$$
X=\{(x, f(x)), \quad x \in U\}
$$

be the graph of f viewed as an n-dimensional submanifold of \mathbb{R}^{n+1}. Express $\operatorname{vol}(X)$ as an integral over U.
b. (Loomis-Sternberg, 10.4, \#3) For $n=2$ show that this integral reduces to standard formula of elementary calculus for the area of the surface X.

