
The theory of Densities

For those of you who have a good grounding in linear algebra (and I hope most
of you do) this set of notes is intended to give a slightly more algebraic approach to
the theory of densities than that in §3 of Loomis–Sternberg.

We recall that if V is an n-dimensional vector space, u1, . . . un, a basis of V and
A : V → V a linear map then from the identities

Aui =
n

∑

j=1

ai,j,uj

one gets an n × n matrix, [ai,j], and the determinant of A is defined to be the
determinant of this matrix. It’s easy to check that this definition of determinant
doesn’t depend on the choice of u1, . . . , un and also to check that if one is given a
linear mapping, B : V → V , then detBA = detB detA. Now let

V n = V × · · · × V (n copies) .

Definition 1. A map σ : V n → R is a density on V if for all (v1, . . . vn) ∈ V n and

all linear mappings A : V → V

σ(Av1, . . . , Avn) = | detA|σ(v1, . . . , vn) . (1)

Check:

1. If σi : V n → R i = 1, 2 is a density, σ1 + σ2 is a density.

2. If σ : V n → R is a density and c ∈ R, cσ is a density.

Thus the set of densities on V form a vector space. We’ll denote this vector space
by |V |.

Claim:

|V | is a one-dimensional vector space.

Proof. Let u = (u1, . . . , un) be a basis of V . Then for every (v1 . . . , vn) ∈ V n there
exists a unique linear mapping, A : V → V , with

Aui = vi i = 1, . . . , n .

Hence if σ : V n → R is a density

σ(v1, . . . , vn) = σ(Au1, . . . , Aun)
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and hence
σ(v1, . . . , vn) = | detA|σ(u1, . . . , un) (2)

i.e., σ is completely determined by its value at u.

Note that if σ(v1, . . . , vn) > 0 for any basis v1, . . . , vn, then given any other basis
u1, . . . , un, σ(u1, . . . , un) > 0 (of course, σ applied to any collection of vectors which
is not a basis will be 0.) Therefore, it makes sense to call σ a positive density, and
use the notation

σ > 0

It also makes sense to say that one density is larger than another, we write σ1 ≥ σ2

or σ1 > σ2 if these inequalities hold for σ1 and σ2 applied to any basis.

Some examples of densities

1. In formula 2 set σ(u1, . . . , un) = 1. Then the density defined by this formula
will be denoted by σu.

Exercise 1. Show that σu is a density, i.e., show that if B : V → V is a linear
map

σu(Bv1, . . . , Bvn) = | detB|σu(v1, . . . , vn) .

Hint: detBA = detB detA.

2. In particular let V = R
n and let (e1, . . . , en) = e be the standard basis of R

n.
Then σe ∈ |Rn| is the unique density which is 1 on (e1, . . . , en).

3. More generally if p ∈ R
n and

V = TpR
n = {(p, v) , v ∈ R

n} ,

σp,e ∈ |TpR
n| is the unique density which is 1 on the basis of vectors: (p, e1), . . . , (p, en).

4. Let 〈 , 〉 be an inner product on V and for (v1, . . . , vn) ∈ V let

C = [ci,j] , ci,j = 〈vi, vj〉 .

Then the volume density on V

σvol : V n → R

is defined by setting
σvol (v1, . . . , vn) = | detC|1/2 . (3)

Exercise 2. Check that σvol is a positive density.
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Hint: Let u1, . . . , un be an orthogonal basis of V , i.e., a basis having the
property, 〈ui, uj〉 = 0 for i 6= j and 〈ui, ui〉 = 1. If (v1, . . . , vn) ∈ V n then
vi =

∑

ai,juj, hence

ci,j = 〈vi, vj〉 =

n
∑

k=1

aikajk ,

so if C = [ci,j] and A = [ai,j ]
C = AAt

and detC = (detA)2.

5. In particular if V = TpR
n (which we can identify with R

n via the map, (p, v) →
v) and 〈v, w〉 is the usual dot product of v with w, the vectors (p, ei), i = 1, . . . , n
are an orthonormal basis of TpR

n and σvol = σp,e.

6. Let V1 be an (n− 1)-dimensional subspace of V . Then for v ∈ V , ι(v)σ is the
density on V1 defined by

ιvσ(v1, . . . , vn−1) = σ(v, v1, . . . , vn−1) . (4)

7. Let V and W be n-dimensional vector spaces and A : V →W a bijective linear
mapping. Given σ ∈ |W |, one defines A∗σ ∈ |V | by the recipe

A∗σ(v1, . . . , vn) = σ(Av1, . . . , Avn) . (5)

We call A∗σ the pull-back of σ to V by A.

Exercise 3. Check that A∗σ is a density.

Hint: If B : V → V is a linear map then

A∗σ(Bv1, . . . , Bvn) = σ(ABv1, . . . , ABvn) (6)

= σ(B′Av1, . . . , B
′Avn)

where B′ = ABA−1.

Exercise 4.

Let u = (u1, . . . , un) be a basis of V and w = (w1, . . . , wn) a basis of W . Show
that if

Aui =
∑

aijwj

and A = [ai,j ]
A∗σw = | detA|σu .
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8. In particular let U and U ′ be open subsets of R
n and

f : (U, p) → (U ′, q)

a diffeomorphism. Then if ui = (p, ei) and wi = (q, ei),

Tpf(ui) =
∑ ∂fi

∂xj
(p)wj

so
(Tpf)∗σq,e = | det ∂fi/∂xj(p)|σp,e . (7)

This terminates our discussion of “densities on vector spaces”. We will next discuss
the notion of densities on manifolds. These densities will be more or less identical
with the “densities” in §3 of Loomis–Sternberg.

Definition 2. Let M be a smooth manifold. A density on U is a map, σ, which

assigns to each point, p ∈M , an element, σ(p) of |TpM |.

Examples.

1. If U ⊂ R
n is open the Lebesgue density, σLeb . This is the density

p ∈ U → σp,e ∈ |TpR
n|

2. (a) If σ is any density on M and ϕ : M −→ R is any real valued function on
M , ϕσ is the density

p ∈ U → ϕ(p)σ .

(b) If σ1 and σ2 are densities on M , the density σ1 + σ2 is defined by

(σ1 + σ2)(p) = σ1(p) + σ2(p)

(c) |σ| is the density defined by

|σ|(v1, . . . , vn) := |σ(v1, . . . , vn)|

3. Note that we can write any density σ on an open subset U ⊂ R
n as ϕσLeb using

ϕ = σ

(

∂

∂x1

, . . . ,
∂

∂xn

)

We will say that a density on U is a C∞ density if it is of the form ϕσLeb , with
ϕ in C∞(U), and is compactly supported if ϕ ∈ C∞

o (U).
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4. Pull-backs. Let f : M −→ N be a diffeomorphism. Then if σ is density on N ,
we define a density f ∗σ on U by the formula

f ∗σ(p) = (Tpf)∗σ(q) q = f(p) . (8)

Another way of writing this is

f ∗σ = (Tpf)∗σ ◦ f

Since Tpf : TpM → TqN is a bijective linear map and σ(q) is in |TqN | the left
hand side of (8) is in |TpM |, so the formula (8) defines a density

p ∈M → f ∗σ(p) ∈ |TpM |

as claimed.

Note that if v1, . . . , vn are vector fields on M ,

f ∗σ(v1, . . . , vn) = f ∗(σ(f∗v1, . . . , f∗vn)) = σ(f∗v1, . . . , f∗vn) ◦ f

In other words, if f(p) = q

f ∗σ(p)(v1(p), . . . , vn(p)) = σ(q)(Tpfv1(p), . . . , Tpfvn(p))

Exercise 5. Show that if f is a C1 diffeomorphism between open subsets of
R

n,
f ∗σLeb = | det (Df) |σLeb . (9)

Hint: Formula (7).

More generally show that if σ = ϕσLeb , then

f ∗σ = f ∗ϕ| det (Df) |σLeb . = ϕ ◦ f | det (Df) |σLeb (10)

Definition 3. A density σ on M is Ck if for all smooth coordinate charts

ψ : U −→M ,

ψ∗σ = ϕσLeb

where ϕ is a Ck function.

Definition 4. A Riemannian metric < ·, · > on a manifold M is a map which

assigns to every point p, an inner product < ·, · >p on TpM for all p ∈M . We

can put any two vector fields v1, v2 on M into the metric < ·, · > to obtain a

function

< v1, v2 >: M −→ R

defined by

< v1, v2 > (p) =< v1(p), v2(p) >p

We call a Riemannian metric Ck if for any pair of smooth vector fields <
v1, v2 > is a Ck function.
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5. If < ·, · > is a Riemannian metric on a manifold M , define the density σvol by
defining σvol(p) ∈ |TpM | by σvol(p) = σvol on (TpM,< ·, · >p).

In particular, if M is n dimensional and v1, . . . , vn are n vector fields, we can find
σ(v1, . . . , vn) as follows: Define the matrix C to have entries ci,j =< vi, vj >,
then

σvol(v1, . . . , vn) :=
√

det(C)

Note that if < ·, · > is a Ck metric, σvol is a Ck density.

6. If M ⊂ R
N is a smooth submanifold, we can put a metric on M which is the

restriction of the Euclidean metric on R
N . In particular, for v, w ∈ TpM define

< v,w >:= v · w, the usual dot product. We therefore get a corresponding
volume density σvol defined on M .

Problem set.

Exercises 1, 2, 3, 4 and 5.

6. Verify that if V1 is an (n − 1)-dimensional subspace of V the density, ιvσ,
defined by formula (4) is, in fact, a density on V1.

7. Let Vi, i = 1, 2, 3 be n-dimensional vector spaces and Ai : Vi → Vi+1, i = 1, 2,
bijective linear mapping. Show that if σ ∈ |V3|, A

∗

1(A
∗

2σ) = (A2A1)
∗σ.
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