1 Exercise 1 Solution

Let us first observe the following fact (*)
If $Y \subseteq \mathbb{R}^{k}$ is bounded, then $\bar{\int} \chi_{Y}=0$ implies that Y has measure zero. Furthermore, if Y has measure zero, then $\underline{\int} \chi_{Y}=0$.

Proof of (*)
Suppose first that $Y \subseteq \mathbb{R}^{k}$ is bounded and $\bar{\int} \chi_{Y}=0$. Let Q be a rectangle containing Y. By definition of $\bar{\int} \chi_{Y}$, it follows that for all $\epsilon>0$, we can find a partition of Q such that $U\left(\chi_{Y}, P\right) \leq \epsilon$, where we are now considering χ_{Y} to be a function on Q. This, in turn, gives us a finite collection of rectangles covering Y whose volume adds up to less than ϵ. Such a collection can be found for all $\epsilon>0$ so, in particular, Y has measure zero.

Suppose now that Y has measure zero. Let Q be a rectangle in \mathbb{R}^{k} containing Y as before. Then, for all partitions P of Q, we have $L\left(\chi_{Y}, P\right)=0$ since the fact that Y has measure zero implies that no rectangle of P having non-zero measure is wholly contained in Y, so every term in the sum defining $L\left(\chi_{Y}, P\right)$ is zero. This holds for all partitions P of Q hence $\underline{\int} \chi_{y}=0$.

This proves (*)
We now prove the claim:
We first fix some notation. Let us suppose that $X \subseteq \mathbb{R}^{n} \times \mathbb{R}^{m}$ is bounded and rectifiable. From the fact that X is bounded, it follows that we can find rectangles $Q_{1} \subseteq \mathbb{R}^{n}$ and $Q_{2} \subseteq \mathbb{R}^{m}$ such that $X \subseteq Q_{1} \times Q_{2}$. Let $Q:=Q_{1} \times Q_{2}$. Then Q is a rectangle in $\mathbb{R}^{n} \times \mathbb{R}^{m}$ that contains X. Let us denote by f the function χ_{Y} restricted to Q.

Finally, we denote by:

$$
A:=\left\{p \in \mathbb{R}^{n} \pi\left(X \cap\left(\{p\} \times \mathbb{R}^{m}\right)\right) \subseteq \mathbb{R}^{m} \text { doesn't have measure zero }\right\}
$$

where $\pi: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the canonical projection map $\pi(x, y)=y$. In other words, A is the subset of all $p \in \mathbb{R}^{n}$ whose "horizontal slice in $\mathbb{R}^{m "}$ doesn't have measure zero in \mathbb{R}^{m}

1) Suppose that X has measure zero.

Then

$$
\begin{aligned}
0=\int_{Q} f(x, y) & =\{\text { Using Fubini's Theorem }\}= \\
& =\int_{Q_{1}} \int_{Q_{2}} f(x, y)
\end{aligned}
$$

We know by Fubini's Theorem that the function

$$
x \mapsto \bar{\int}_{Q_{2}} f(x, y)
$$

is an integrable function on Q_{1}. By construction, this function is non-negative and from the preceding calculations it follows that its integral over Q_{1} equals zero. By applying Theorem 11.3.b) on Page 96 of the textbook "Analysis on Manifolds" by James Munkres, we deduce that $\bar{\int}_{Q_{2}} f(x, y)$ vanishes except on a set of measure zero.

On the other hand, by using (*) and arguing contrapositively together with the definition of A, it follows that for all $x \in A \bar{\int}_{Q_{2}} f(x, y)>0$

Combining the previous results, it follows that A has measure zero.
2)Suppose that A has measure zero.

We know that then, by $(*)$ for all $x \in Q_{1}-A$ we have $\underline{\int}_{Q_{2}} f(x, y)=0(\diamond)$
Also, by Fubini's Theorem $x \mapsto \underline{\int}_{Q_{2}} f(x, y)$ is integrable on $Q_{1}(\propto)$
Hence, we have:

$$
\begin{gathered}
\int_{Q} f(x, y)=\int_{Q_{1}} \underline{\int}_{Q_{2}} f(x, y)= \\
=\underline{\int}_{Q_{1}} \int_{Q_{2}} f(x, y)=0
\end{gathered}
$$

by using (\diamond) and $(*)$ together with the fact that A has measure zero.
We deduce that

$$
\int_{Q} f(x, y)=\int \chi_{X}=0
$$

Since X is rectifiable, we know that $\bar{\int} \chi_{X}=\int \chi_{X}$. Hence $\bar{\int} \chi_{X}=0$
By (*), we deduce that X has measure zero.
Conclusion:) X has measure zero if and only if A has measure zero.

2 Exercise 2 Solution

Solution 1:

We first consider the cases $n=1$ and $n=2$ separately.
For $\mathrm{n}=1$:

$$
\lambda_{1}=\int_{-1}^{1} d x=2
$$

For $\mathbf{n}=\mathbf{2}$: By polar coordinates:

$$
\lambda_{2}=\int_{0}^{2 \pi} \int_{0}^{1} r d r d \theta=\pi
$$

Suppose now that $n \geq 3$
We recall the fact from Calculus that

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

From this observation, it follows that:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\int_{\mathbb{R}^{n}} e^{-x_{1}^{2} \cdots-x_{n}^{2}} d x_{1} \cdots d x_{n}= \\
= & \left(\int_{-\infty}^{+\infty} e^{-x_{1}^{2}} d x_{1}\right) \cdots\left(\int_{-\infty}^{+\infty} e^{-x_{n}^{2}} d x_{n}\right)=\pi^{\frac{n}{2}}(*)
\end{aligned}
$$

On the other hand, by using n-dimensional polar coordinates, we have:

$$
\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\int_{0}^{+\infty} \int_{S^{n-1}} e^{-r^{2}} r^{n-1} d \sigma d r
$$

where $d \sigma$ denotes the surface measure on S^{n-1}.
Let

$$
\omega_{n}:=\int_{S^{n-1}} d \sigma=\text { Surface Measure of } S^{n-1} \subseteq \mathbb{R}^{n}
$$

By using (*), it follows that

$$
\omega_{n} \cdot \int_{0}^{+\infty} e^{-r^{2}} r^{n-1} d r=\pi^{\frac{n}{2}}
$$

In other words,

$$
\omega_{n}=\frac{\pi^{\frac{n}{2}}}{\int_{0}^{+\infty} e^{-r^{2}} r^{n-1} d r}
$$

Using n dimensional polar coordinates again, we deduce that:

$$
\lambda_{n}:=\operatorname{vol}\left(\overline{B(0,1)} \subseteq \mathbb{R}^{n}\right)=\int_{0}^{1} \int_{S^{n-1}} r^{n-1} d \sigma d r=\frac{1}{n} \cdot \omega_{n}
$$

Hence, in order to calculate λ_{n}, we need to calculate ω_{n}.
To calculate ω_{n} explicitly, we observe:

$$
\begin{gathered}
\int_{0}^{+\infty} e^{-r^{2}} r^{n-1} d r=\left\{\text { Change variables } s=r^{2}\right\}= \\
=\int_{0}^{+\infty} e^{-s} s^{\frac{n-1}{2}} \frac{1}{2} s^{-\frac{1}{2}} d s= \\
=\frac{1}{2} \int_{0}^{+\infty} e^{-s} s^{\frac{n}{2}-1} d s
\end{gathered}
$$

Now:

$$
\begin{gathered}
\qquad \int_{0}^{+\infty} e^{-s} s^{\frac{n}{2}-1} d s= \\
=\left\{\text { Integrating by parts by setting } u=s^{\frac{n}{2}-1}, d v=e^{-s},\right. \\
\text { and noting that } u \text { vanishes at zero, since } n \geq 3\}= \\
=\left(\frac{n}{2}-1\right) \int_{0}^{+\infty} e^{-s} s^{\frac{n}{2}-2} d s= \\
=\left(\frac{n}{2}-1\right) \int_{0}^{+\infty} e^{-s} s^{\frac{n-2}{2}-1} d s(* *)
\end{gathered}
$$

We can also define ω_{1}, ω_{2} by $\omega_{j}:=j \cdot \lambda_{j}, j=1,2$ and we get:

$$
\omega_{j}=\frac{2 \pi^{\frac{j}{2}}}{\int_{0}^{+\infty} e^{-s} s^{\frac{j}{2}-1}} d s
$$

since the whole previous calculation up to the integration by parts step still works for these j

Combining $\left({ }^{* *}\right)$ with this extended definition of the $\omega_{j}-$ s, we obtain the recursion that for all $n \geq 3$

$$
\omega_{n}=\frac{\pi}{\frac{n}{2}-1} \omega_{n-2}=\frac{2 \pi}{n-2} \omega_{n-2}(\diamond)
$$

This is the main recursive step.

By \diamond, we obtain by induction on k that for all $k \in \mathbb{N}_{0}$

$$
\begin{gathered}
\omega_{2 k+1}=\frac{2^{k} \pi^{k}}{(2 k-1)!!} \omega_{1}=\frac{2^{k} \pi^{k}}{(2 k-1)!!} \cdot 2= \\
=\frac{2^{k+1} \pi^{k}}{(2 k-1)!!}
\end{gathered}
$$

Here $(2 k-1)$!! denotes $(2 k-1) \cdot(2 k-3) \cdots 1$ if $k \geq 1$ and 1 !! $=0$ by convention. It follows that for all $k \in \mathbb{N}_{0}$

$$
\lambda_{2 k+1}=\frac{1}{2 k+1} \omega_{2 k+1}=\frac{1}{2 k+1} \frac{2^{k+1} \pi^{k}}{(2 k-1)!!}
$$

(This gives us the volume of the unit ball for odd dimensions)
Similarly, for $k \in \mathbb{N}$ we obtain:

$$
\begin{gathered}
\omega_{2 k}=\frac{\pi^{k-1}}{(k-1)!} \omega_{2}=\frac{\pi^{k-1}}{(k-1)!} \cdot 2 \pi= \\
=\frac{2 \pi^{k}}{(k-1)!}
\end{gathered}
$$

It follows that for all $k \in \mathbb{N}$

$$
\lambda_{2 k}=\frac{1}{2 k} \omega_{2 k}=\frac{1}{2 k} \frac{2 \pi^{k}}{(k-1)!}=\frac{\pi^{k}}{k!}
$$

(This gives us the volume of the unit ball for even dimensions)
Conclusion:For all $k \in \mathbb{N}_{0}$ we have:

$$
\lambda_{2 k+1}=\frac{1}{2 k+1} \frac{2^{k+1} \pi^{k}}{(2 k-1)!!}
$$

and for all $k \in \mathbb{N}$ we have:

$$
\lambda_{2 k}=\frac{\pi^{k}}{k!}
$$

Alternative Solution:

Let us denote by $\lambda_{n, a}$ the volume of the ball of radius a in \mathbb{R}^{n}. Then, by definition $\lambda_{n, 1}=\lambda_{n}$. By using the change of variables $x \mapsto a y$, we obtain:

$$
\lambda_{n, a}=a^{n} \lambda_{n}
$$

As before,

$$
\lambda_{1}=2, \quad \lambda_{2}=\pi
$$

Applying Fubini's Theorem, we obtain:

$$
\begin{gathered}
\lambda_{n}=\int_{x_{1}^{2}+\cdots+x_{n}^{2} \leq 1} 1 d x_{1} \cdots d x_{n}= \\
=\int_{x_{1}^{2}+x_{2}^{2} \leq 1}\left(\int_{x_{3}^{2}+\cdots+x_{n}^{2} \leq 1} 1 d x_{3} \cdots d x_{n}\right) d x_{1} d x_{2}= \\
=\int_{x_{1}^{2}+x_{2}^{2} \leq 1} \lambda_{n-2,1-x_{1}^{2}-x_{2}^{2}} d x_{1} d x_{2}= \\
=\int_{x_{1}^{2}+x_{2}^{2} \leq 1} \lambda_{n-2} \cdot\left(1-x_{2}^{2}-x_{2}^{2}\right)^{\frac{n-2}{2}} d x_{1} d x_{2}=
\end{gathered}
$$

$$
=\{\text { By using Polar Coordinates in two dimensions }\}=
$$

$$
\begin{gathered}
=\lambda_{n-2} \cdot \int_{0}^{1} \int_{0}^{2 \pi}\left(1-r^{2}\right)^{\frac{n-2}{2}} d r d \theta= \\
=-\left.\lambda_{n-2} \cdot 2 \pi \cdot \frac{1}{n} \cdot\left(1-r^{2}\right)^{\frac{n}{2}}\right|_{r=0} ^{r=1}= \\
=\frac{2 \pi}{n} \lambda_{n-2}
\end{gathered}
$$

In this way, we obtain the same recursion as earlier. From here, we analogously deduce what λ_{n} is, considering separately the cases when n is odd and when n is even.

3 Exercise 3 Solution

We will use Theorem 15.2 on Page 123 of the textbook "Analysis on Manifolds" by James Munkres.

With notation as in the Theorem, we take

$$
C_{k}:=\left\{\frac{1}{k} \leq\|x\| \leq 1-\frac{1}{k}\right\}
$$

Then $\left(C_{k}\right)$ is a sequence of compact rectifiable subsets of A whose union is A such that $C_{k} \subseteq \operatorname{int}\left(C_{k+1}\right)$ for all k.

We must show that $\int_{C_{k}}\|x\|^{-(n-1)}$ is uniformly bounded in k.

By using n-dimensional polar coordinates, we have that for all k

$$
\int_{C_{k}}\|x\|^{-(n-1)} \leq \int_{\frac{1}{k}}^{1} \int_{S^{n-1}} r^{-(n-1)} r^{n-1} d \sigma d r
$$

where $d \sigma$ denotes the surface measure on S^{n-1}
The above expression equals:

$$
\operatorname{vol}\left(S^{n-1}\right) \int_{\frac{1}{k}}^{1} d r
$$

This expression is less than or equal to $\operatorname{vol}\left(S^{n-1}\right)$.
Hence, the claim now follows by applying Theorem 15.2.

4 Exercise 4 Solution

4.1 Part a)

Let $\sigma_{0} \in\left|T_{e} G\right|$ be an arbitrary positive density on $T_{e} G$.
We define for $h \in G$:

$$
\sigma(h):=\left(T_{h} l_{h^{-1}}\right)^{*}\left(\sigma_{0}\right) \in\left|T_{h} G\right|
$$

Hence, σ gives us a density on G.
For all $h \in G, v_{1}, \ldots, v_{n} \in T_{h} G$ a basis of $T_{h} G$ we have:

$$
\begin{gathered}
\sigma(h)\left(v_{1}, \ldots, v_{n}\right)=\left(T_{h} l_{h^{-1}}\right)^{*}\left(\sigma_{0}\right)\left(v_{1}, \ldots, v_{n}\right)= \\
=\sigma_{0}\left(T_{l_{h}^{-1}} v_{1}, \ldots, T_{l_{h}^{-1}} v_{n}\right)>0
\end{gathered}
$$

since by construction $\sigma_{0} \in\left|T_{e} G\right|$ is positive.
So, σ gives us a positive density on G.
Let us check that σ is left-invariant.
To do this, suppose that $g, h \in G$ and $v_{1}, \ldots, v_{n} \in T_{h} G$ are given. Then:

$$
\begin{gathered}
\left(l_{g}^{*} \sigma\right)(h)\left(v_{1}, \ldots, v_{n}\right)= \\
=\sigma\left(l_{g}(h)\right)\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)= \\
=\sigma(g h)\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)= \\
=\left(\left(T_{g h} l_{(g h)^{-1}}\right)^{*} \sigma_{0}\right)\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\left(\left(T_{g h}\left(l_{h^{-1}} \circ l_{g^{-1}}\right)\right)^{*} \sigma_{0}\right)\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)= \\
=\left(\left(T_{h} l_{h^{-1}} \circ T_{g h} l_{g^{-1}}\right)^{*} \sigma_{0}\right)\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)= \\
=T_{g h} l_{g^{-1}}^{*} \circ T_{h} l_{h^{-1}}^{*} \circ \sigma_{0}\left(T_{h} l_{g} v_{1}, \ldots, T_{h} l_{g} v_{n}\right)= \\
=\left(T_{h} l_{h^{-1}}^{*} \sigma_{0}\right)\left(T_{g h} l_{g^{-1}} T_{h} l_{g} v_{1}, \ldots, T_{g h} l_{g-1} T_{h} l_{g} v_{n}\right)= \\
=\{\text { By the Chain Rule }\}=\left(T_{h} l_{h^{-1}}^{*} \sigma_{0}\right)\left(v_{1}, \ldots, v_{n}\right)= \\
=\{\text { By construction of } \sigma\}=\sigma(h)\left(v_{1}, \ldots, v_{n}\right)
\end{gathered}
$$

It follows from the above calculation that $l_{g}^{*} \sigma=\sigma$ for all $g \in G$ so σ is leftinvariant.

We now check that σ is smooth.
To do this, suppose that $\psi: U \rightarrow M$ is a coordinate chart with coordinates $\left(x_{1}, \ldots, x_{n}\right)$. Then, for $p \in U$:

$$
\begin{gathered}
\left(\psi^{*} \sigma\right)(p)\left(\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{p}\right)= \\
=\sigma(\psi(p))\left(T_{p} \psi\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots, T_{p} \psi\left(\frac{\partial}{\partial x_{n}}\right)_{p}\right)= \\
=\left(\left(T_{\psi(p)} l_{(\psi(p))^{-1}}\right)^{*} \sigma_{0}\right)\left(T_{p} \psi\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots, T_{p} \psi\left(\frac{\partial}{\partial x_{n}}\right)_{p}\right)= \\
=\sigma_{0}\left(T_{\psi(p)} l_{(\psi(p))^{-1}} T_{p} \psi\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots, T_{\psi(p)} l_{(\psi(p))^{-1}} T_{p} \psi\left(\frac{\partial}{\partial x_{n}}\right)_{p}\right)
\end{gathered}
$$

We observe that this expression depends smoothly on p. Namely, for $i=1, \ldots, n$ the vector

$$
T_{\psi(p)} l_{(\psi(p))^{-1}} T_{p} \psi\left(\frac{\partial}{\partial x_{i}}\right)_{p} \in T_{e} G
$$

depends smoothly on p. Namely, arguing similarly as in Homework 4 Problem 4, we know that $T_{\psi(p)} l_{(\psi(p))^{-1}} T_{p} \psi\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ depends smoothly on $\psi(p)^{-1}$ on $T_{p} \psi\left(\frac{\partial}{\partial x_{i}}\right)_{p}$, both of which depend smoothly on p.

Hence, we conclude that: σ is a positive smooth left-invariant density on G

Since σ is smooth and G is compact, it follows that σ is integrable on G. Hence $\int_{g} \sigma$ is a finite real number. Furthermore, since σ is positive, it follows that $\int_{G} \sigma$ is positive, hence nonzero. In particular, $C:=\int_{G} \sigma \in(0,+\infty)$.

Let

$$
\sigma_{G}:=\frac{1}{C} \sigma
$$

Then: σ_{G} is a left-invariant density on G that satisfies $\int_{G} \sigma_{G}=1$. This shows existence.

Let us now check uniqueness.
Suppose that $\overline{\sigma_{G}}$ is a left-invariant density on G whose integral over G exists and equals 1.

Then, since $\left|T_{e} G\right|$ is one-dimensional and since $\sigma_{G}(e)=\sigma_{0} \neq 0$ we can find $\alpha \in \mathbb{R}$ such that $\overline{\sigma_{G}}=\alpha \sigma_{0}$

By left-invariance of $\overline{\sigma_{G}}$, for all $h \in G$ and for all v_{1}, \ldots, v_{n} in $T_{h} G$

$$
\begin{gathered}
\overline{\sigma_{G}}(h)\left(v_{1}, \ldots, v_{n}\right)=\left(\left(l_{h^{-1}}\right)^{*} \overline{\sigma_{G}}\right)(h)\left(v_{1}, \ldots, v_{n}\right)= \\
=\overline{\sigma_{G}}(e)\left(T_{h} l_{h^{-1}} v_{1}, \ldots, T_{h} l_{h^{-1}} v_{n}\right)= \\
=\alpha \sigma_{0}\left(T_{h} l_{h^{-1}} v_{1}, \ldots, T_{h} l_{h^{-1}} v_{n}\right)= \\
=\alpha \sigma_{G}(e)\left(T_{h} l_{h^{-1}} v_{1}, \ldots, T_{h} l_{h^{-1} v_{n}}\right)=
\end{gathered}
$$

$=\left\{\right.$ By an analogous calculation, using the left-invariance of $\left.\sigma_{G}\right\}=$

$$
=\alpha \sigma_{G}(h)\left(v_{1}, \ldots, v_{n}\right)
$$

We deduce that $\overline{\sigma_{G}}=\alpha \sigma_{G}$.
Since

$$
\int_{G} \overline{\sigma_{G}}=\int_{G} \sigma_{G}=1
$$

it follows that $\alpha=1$ so indeed

$$
\overline{\sigma_{G}}=\sigma_{G}
$$

which proves uniqueness.

4.2 Part b)

Let $g \in G$ be fixed.
We consider $r_{g}^{*} \sigma_{G}$, which is a density on G.
We know that for all $h \in G$

$$
\begin{gathered}
l_{h}^{*}\left(r_{g}^{*} \sigma_{G}\right)= \\
=\left(r_{g} \circ l_{h}\right)^{*} \sigma_{G}= \\
=\left\{\text { since } r_{g} \circ l_{h}=l_{h} \circ r_{g}, \text { i.e left and right multiplication commute }\right\}= \\
=\left(l_{h} \circ r_{g}\right)^{*} \sigma_{G}=r_{g}^{*}\left(l_{h}^{*} \sigma_{G}\right)=
\end{gathered}
$$

$$
=r_{g}^{*} \sigma_{G}
$$

Consequently, r_{g}^{*} is left-invariant.
Since r_{g} is a diffeomorphism, we also know by Theorem 3 from the handout on Integrating Densities that:

$$
\int_{G} r_{g}^{*} \sigma_{G}=\int_{G} \sigma_{G}=1
$$

By using the uniqueness part of a), it follows that

$$
r_{g}^{*} \sigma_{G}=\sigma_{G}
$$

This holds for all $g \in G$.
We may thus conclude that σ_{G} is right-invariant.

4.3 Part c)

Let μ be an arbitrary positive density on M (which exists by patching together locally defined Lebesgue Densities via a Partition of Unity).

We define:

$$
\sigma:=\int_{G}\left(\phi_{g}^{*} \mu\right) \sigma_{G}
$$

where σ_{G} is the density defined in a).
More precisely:
Given $p \in M$ and v_{1}, \ldots, v_{n} vectors in $T_{p} M$

$$
\sigma(p)\left(v_{1}, \ldots, v_{n}\right):=\int_{G}\left(\phi_{g}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}
$$

This quantity is well-defined because,arguing as earlier $g \mapsto\left(\phi_{g}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right)$ is smooth and G is compact.

In this way, we indeed obtain a density on G because if $A: T_{p} M \rightarrow T_{p} M$ is linear then:

$$
\begin{gathered}
\sigma(p)\left(A v_{1}, \ldots, A v_{n}\right)= \\
=\int_{G}\left(\phi_{g}^{*} \mu\right)(p)\left(A v_{1}, \ldots, A v_{n}\right) \sigma_{G}=
\end{gathered}
$$

$=\left\{\right.$ Since $\phi_{g}^{*} \mu$ is a density for all $\left.g \in G\right\}=$

$$
\begin{gathered}
=\int_{G}|\operatorname{det} A| \phi_{g}^{*} \mu(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}= \\
=|\operatorname{det} A| \int_{G} \phi_{g}^{*} \mu(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}= \\
=|\operatorname{det} A| \sigma(p)\left(v_{1}, \ldots, v_{n}\right)
\end{gathered}
$$

So σ is indeed a density on M.
We observe that σ is a positive density on M.
Namely, if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $T_{p} M$ then for all $g \in G$

$$
\left(\phi_{g}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right)=\mu\left(\phi_{g}(p)\right)\left(T_{p} \phi_{g} v_{1}, \ldots, T_{p} \phi_{g} v_{n}\right)>0
$$

since μ was chosen to be a positive density on M and since ϕ_{g} is a diffeomorphism of M so $\left\{T_{p} \phi_{g} v_{1}, \ldots, T_{p} \phi_{g} v_{n}\right\}$ is a basis of $T_{\phi_{g}(p)} M$.

Hence σ is a positive density on M.
We now check the invariance of σ under the action of G. In order to do this, we want to "put the pullback under the integral sign"

As before, we fix $p \in M$ and $v_{1}, \ldots, v_{n} \in T_{p} M$
Then, for all $h \in G$

$$
\begin{gathered}
\left(\phi_{h}^{*} \sigma\right)(p)\left(v_{1}, \ldots, v_{n}\right)= \\
=\sigma\left(\phi_{h}(p)\right)\left(T_{p} \phi_{h} v_{1}, \ldots, T_{p} \phi_{h} v_{n}\right)= \\
\int_{G}\left(\phi_{g}^{*} \mu\right)\left(\phi_{h}(p)\right)\left(T_{p} \phi_{h} v_{1}, \ldots, T_{p} \phi_{h} v_{n}\right) \sigma_{G}= \\
=\{\text { By definition of the pullback of a density }\}= \\
=\int_{G}\left(\phi_{h}^{*}\left(\phi_{g}^{*} \mu\right)\right)(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}= \\
=\left(\left(\phi_{g} \circ \phi_{h}\right)^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}= \\
=\left\{\text { By the definition of Group Action: } \phi_{g} \circ \phi_{h}=\phi_{g h}\right\}= \\
=\int_{G}\left(\phi_{g h}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}
\end{gathered}
$$

Now, let us define $f: G \rightarrow \mathbb{R}$ by

$$
f(g):=\left(\phi_{g}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right)
$$

Then, the latter integral equals:

$$
\begin{gathered}
\int_{G} f(g h) \sigma_{G}=\int_{G}\left(f \circ r_{h}\right)(g) \sigma_{G}= \\
=\int_{G}\left(r_{h}^{*} f\right)(g) \sigma_{G}= \\
\left.=\left\{\text { Using the right-invariance of } \sigma_{G} \text { from part b }\right)\right\}= \\
=\int_{G} r_{h}^{*} f \cdot r^{*} \sigma_{G}=\int_{G} r_{h}^{*}\left(f \sigma_{G}\right)=
\end{gathered}
$$

$=\{$ By using Theorem 3 from the handout on Integrating Densities $\}=$

$$
=\int_{G} f \sigma_{G}=
$$

$$
\begin{gathered}
=\{\text { By the definition of } f\}= \\
=\int_{G}\left(\phi_{g}^{*} \mu\right)(p)\left(v_{1}, \ldots, v_{n}\right) \sigma_{G}= \\
=\sigma(p)\left(v_{1}, \ldots, v_{n}\right)
\end{gathered}
$$

Hence:

$$
\left(\phi_{h}^{*} \sigma\right)(p)\left(v_{1}, \ldots, v_{n}\right)=\sigma(p)\left(v_{1}, \ldots, v_{n}\right)
$$

This holds for all $h \in G, p \in M$ and for all $v_{1}, \ldots, v_{n} \in T_{p} M$
Conclusion: σ is a positive density on M that is preserved by the action of G.

