1 Exercise 1 Solution

Let us first observe the following fact (*)

If Y C R¥ is bounded, then TXY = (0 implies that Y has measure zero. Further-
more, if Y has measure zero, then f xy = 0.

Proof of (*) B

Suppose first that ¥ C RF is bounded and TXY = 0. Let @ be a rectangle

containing Y. By definition of [xy, it follows that for all € > 0, we can find a
partition of @ such that U(xy, P) < €, where we are now considering yy to be a
function on (). This, in turn, gives us a finite collection of rectangles covering Y
whose volume adds up to less than e. Such a collection can be found for all € > 0 so,
in particular, Y has measure zero.

Suppose now that Y has measure zero. Let @) be a rectangle in R* containing
Y as before. Then, for all partitions P of @), we have L(yy, P) = 0 since the fact
that Y has measure zero implies that no rectangle of P having non-zero measure
is wholly contained in Y, so every term in the sum defining L(yy, P) is zero. This
holds for all partitions P of @ hence [x, = 0.

This proves (*) B

We now prove the claim:

We first fix some notation. Let us suppose that X C R"™ x R™ is bounded and
rectifiable. From the fact that X is bounded, it follows that we can find rectangles
Q1 € R™ and Q2 € R™ such that X C @1 X Q2. Let @ := @1 X Q2. Then Q is a
rectangle in R™ x R™ that contains X. Let us denote by f the function yy restricted
to Q.

Finally,we denote by:

A={peR"n(XN({p} xR™)) CR™ doesn’t have measure zero}

where 7 : R" x R™ — R™ is the canonical projection map 7(x,y) = y. In other
words, A is the subset of all p € R™ whose ”horizontal slice in R™” doesn’t have
measure zero in R™

1)Suppose that X has measure zero.

Then

0= / f(z,y) = {Using Fubini’s Theorem} =
Q

= /Ql _sz(x,y)



We know by Fubini’s Theorem that the function

z [ fx,y)
Q2

is an integrable function on ). By construction, this function is non-negative and
from the preceding calculations it follows that its integral over () equals zero. By
applying Theorem 11.3.b) on Page 96 of the textbook ” Analysis on Manifolds”
by James Munkres, we deduce that [ Qs f(z,y) vanishes except on a set of measure
Z€ero.

On the other hand, by using (*) and arguing contrapositively together with the
definition of A, it follows that for all z € A IQQf(x, y) >0

Combining the previous results, it follows that A has measure zero.

2)Suppose that A has measure zero.

We know that then, by (*) for all z € Q; — A we have fQ flz,y) =0 ()
=Q2
Also, by Fubini’s Theorem z +— [ o f(z,y) is integrable on @y (¢©)
—2
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by using (¢) and (*) together with the fact that A has measure zero.

We deduce that
[ ra = [xx=0
Q

Since X is rectifiable, we know that Tx x = [ xx. Hence TX x=0
By (*), we deduce that X has measure zero.
Conclusion:) X has measure zero if and only if A has measure zero. [

Hence, we have:

2 Exercise 2 Solution

Solution 1:
We first consider the cases n =1 and n = 2 separately.
For n=1:



1
)\1:/ dr = 2
-1

For n=2: By polar coordinates:

2T 1
)\2:/ / rdrdf =mx
o Jo

Suppose now that n > 3
We recall the fact from Calculus that

+00 9
/ e Vdr =/m

oo

From this observation, it follows that:

12 2 2
/ e le dx f— / e 7 Tn dxl “ .. d:[;n =
n n

_ (/_v-i-oo et day) - (/_+oo e~ da,) = 7% (¥)

[e.e] e}

On the other hand, by using n-dimensional polar coordinates, we have:

~af? I e
e dr = e "r do dr
Rn 0 Snfl

where do denotes the surface measure on S™ 1.
Let

Wy, = / do = Surface Measure of S»~! C R”
Sn—1

By using (*), it follows that

+oo 9
_ _ n
wn~/ e dr = 2
0

In other words,

n
T2

+o0
Jo Tetrnmtdr

Wy =

Using n dimensional polar coordinates again, we deduce that:



1
1

An :=vol(B(0,1) CR") = / / r"dodr =~ - w,

0 Sn—1 n

Hence, in order to calculate \,,, we need to calculate w,.
To calculate w,, explicitly, we observe:

+00
/ e~ "r"'dr = {Change variables s = 12} =
0

+oo 1
_g n=1 _1
= e ’s 2?2 —s 2ds=
0 2

Now:

+o00
/ e ®s2 1 ds =
0
S

— {Integrating by parts by setting u = 527, dv = e,

and noting that u vanishes at zero, since n > 3} =

+o0o
= (E — 1)/ e 52 2ds =
2 0

“+oo
:(%-1)/0 et s"T L ds (%)

We can also define wy,ws by wj :=j-A; ,j =1,2 and we get:

Wj=—F—"——4ds

—+00 PR G |
Jo e st

since the whole previous calculation up to the integration by parts step still works
for these j

Combining (**) with this extended definition of the w;—s, we obtain the recursion
that for all n > 3

T 2T ()
Wy = W9 = Wh—
T D N

This is the main recursive step.



By ¢, we obtain by induction on k that for all k£ € Ny

ok 7k ok 7k
= = — 2 pu—
LT o Dt T 2k — 1)
2k+1 ﬂ_k
T2k 1)

Here (2k — 1)!! denotes (2k—1)-(2k—3)---1if £ > 1 and 1!! = 0 by convention.
It follows that for all £ € Ny
1 1 2k+1 ﬂ.k
2 S o 1 T 9k 1 (2 — 1)

(This gives us the volume of the unit ball for odd dimensions)
Similarly, for k£ € N we obtain:

k=1 k=1
= — = 2 =
B U et R A R
B 2k
- (k-1
It follows that for all k € N
N 1 B 1 27k B Tk
T T ok k-1l &

(This gives us the volume of the unit ball for even dimensions)
Conclusion:For all £ € Ny we have:

1 2k+1 ﬂ.k
A =
T 9k +1 2k — 1)
and for all k£ € N we have: i
T

Alternative Solution:

Let us denote by A, , the volume of the ball of radius a in R". Then, by definition
An1 = An. By using the change of variables x — ay, we obtain:

)\ma

a" \,



As before,
)\1 = 2, )\2 =T

Applying Fubini’s Theorem, we obtain:

)\n:/ 1dxy - - - dx,, =
z24-+x2 <1

x%+x2§1 x§+~~~+x%§1

2

= / )‘n—Z,l—x%—x% dl’ldllfg =
x%—l—wggl
n—2
:/ Mg - (1 — 23 —23) 2 dvydzy =
x%—l—mggl

= {By using Polar Coordinates in two dimensions} =

1 2T "o
= A2 / / (1—7%)"2 drdf =
o Jo

In this way, we obtain the same recursion as earlier. From here, we analogously
deduce what ), is, considering separately the cases when n is odd and when n is

evell.

3 Exercise 3 Solution

We will use Theorem 15.2 on Page 123 of the textbook ” Analysis on Manifolds”

by James Munkres.
With notation as in the Theorem, we take

1 1
Cri= {3 <llall £1- 1)

Then (Cy) is a sequence of compact rectifiable subsets of A whose union is A

such that Cy C int(Cly1) for all .
We must show that [, |z|| =Y is uniformly bounded in k.
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By using n-dimensional polar coordinates, we have that for all k

1
Hx||_(”_1) §/ / r= =D =1 45 dy
Ch % Sn—1

where do denotes the surface measure on S™*
The above expression equals:

1
vol(S™™1) / dr

k

This expression is less than or equal to vol(S™1).
Hence, the claim now follows by applying Theorem 15.2.[]

4 Exercise 4 Solution

4.1 Part a)

Let og € |T.G| be an arbitrary positive density on T,.G.
We define for h € G :
O'(h) = (Thlh—l)*(ao) € |ThG|

Hence, o gives us a density on G.
For all h € G, vq,...,v, € T;,G a basis of T),G we have:

a(h)(vl, e ,Un) = (Thlhfl)*((fo)(’l}l, Ce ,’Un) =
= oo(Ti-1vy, .., Timavy) > 0

since by construction oy € |T,.G| is positive.

So, o gives us a positive density on G.

Let us check that o is left-invariant.

To do this, suppose that g, h € G and vy,...,v, € TG are given. Then:

(o) (h) (v, - vn) =
o(ly(R)(Thlgvy, ..., Thlgv,) =
a(gh)(Tplgve, ..., Thlyv,) =
= ((Tynlgny-1)"00)(Thlgv1, - . ., Thlgv,) =
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= ((Tyn(lp-1 0 ly=1)) 00)(Thlgvr, . .., Thlgvy,) =
= ((Thlp-1 o Typly—1)"00) (Thlgvn, . . ., Thlgv,) =
= Tynly—1 o Thlj-1 0 oo(Thlgvy, . . ., Thlgv,) =
= (Tl -100)(Typlg—1Thlgv, . . ., Tgply—1Thlgv,) =
= {By the Chain Rule} = (T,l;-100)(v1, ..., v,) =
= {By construction of ¢} = o(h)(vy,...,v,)

It follows from the above calculation that [0 = o for all g € G so o is left-
invariant.

We now check that o is smooth.

To do this, suppose that ¥ : U — M is a coordinate chart with coordinates
(x1,...,2,). Then, forpe U :

0 0
= ((Twp)l(w(p))fl)*Uo)(pr(z)pa L5 )p) =

= o0(Tywlwe 1 Trd (5 - ) ST lwon Ty (5 — >>

We observe that this expression depends smoothly on p. Namely, fori=1,...,n
the vector

Tyl pw( ) € T.G

depends smoothly on p. Namely, arguing sunllarly as in Homework 4 Problem 4, we
know that Ty )l () -1 pw(aw )» depends smoothly on 1(p) ' on Tah(32- -)p, both of
which depend smoothly on p.

Hence, we conclude that: o is a positive smooth left-invariant density on
G

Since ¢ is smooth and G is compact, it follows that ¢ is integrable on G. Hence
fg o is a finite real number. Furthermore, since o is positive, it follows that fG o is

positive, hence nonzero. In particular, C' := fGa € (0, 400).
Let

og \— o

1
C



Then: og is a left-invariant density on G that satisfies fG og = 1. This
shows existence.

Let us now check uniqueness.

Suppose that 7 is a left-invariant density on G whose integral over G exists and
equals 1.

Then, since |T.G| is one-dimensional and since og(e) = 09 # 0 we can find a € R
such that o = aoy

By left-invariance of og, for all h € G and for all vy, ..., v, in T;,G

ga(h) (v, ..., v,) = ((lh-1)"aG)(h) (v, ..., v,) =
=goc(e)(Thlp—1v1, ..., Tplp-1v,) =
= aoo(Thlp-1v1, ..., Thlp—1v,) =
= aog(e)(Tplp-1v1, ..., Thlp-1,,) =
= {By an analogous calculation, using the left-invariance of o5} =
= aog(h)(vi,...,v,)

We deduce that 75 = aog.
Since

it follows that o = 1 so indeed

which proves uniqueness.

4.2 Part b)

Let g € G be fixed.
We consider 506, which is a density on G.
We know that for all h € G

lZ(r;fag) =
= (rgoln)"oc =
= {since r, 0l, =1, o1y, i.e left and right multiplication commute} =

= (lnory)oc=r,(l0c) =



_ *
= T’gO'G

Consequently, 77 is left-invariant.
Since 7, is a diffeomorphism, we also know by Theorem 3 from the handout on

Integrating Densities that:
/T;O’G = / oG — 1
G a

By using the uniqueness part of a), it follows that
r,0G6 = 0¢g

This holds for all g € G.
We may thus conclude that o is right-invariant.

4.3 Part c)

Let p be an arbitrary positive density on M (which exists by patching together
locally defined Lebesgue Densities via a Partition of Unity).
We define:

0= /G(Cb;M)UG

where o is the density defined in a).
More precisely:
Given p € M and vy, ..., v, vectors in T, M

a@mmnw%wzéwmmmew%wG

This quantity is well-defined because,arguing as earlier g +— (¢;u)(p) (v, ..., vn)
is smooth and G is compact.

In this way, we indeed obtain a density on G because if A : T,M — T, M is linear
then:

o(p)(Avy, ..., Av,) =

= [ @ dn..... Av)oq -

= {Since ¢;u is a density for all g € G} =
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:/G|detA|¢;,u(p)(v1,...,vn)UG:

= |detA| /ng;u(p)(vl, C,Up)OG =

= |detAlo(p)(v1, ..., vn)

So o is indeed a density on M.
We observe that ¢ is a positive density on M.
Namely, if {vy,...,v,} is a basis for T,M then for all g € G

(Dgr)(P) (v, - 0n) = 1(dg(P))(Tpdguis - -, Tydgvn) > 0

since ;1 was chosen to be a positive density on M and since ¢, is a diffeomorphism
of M so {T,pqv1,. .., Typ4v,} is a basis of Ty M.

Hence o is a positive density on M.

We now check the invariance of ¢ under the action of GG. In order to do this, we
want to "put the pullback under the integral sign”

As before, we fix p € M and vy,...,v, € T,M

Then, for all h € G

(Gi0)P) - v) =
= 0(on(p))(Typdnv1, - ., Typnv,) =
[ @@ Ty, Ty =
= {By definition of the pullback of a density} =
_ /G (@) P)(0r, - v)0G =

= ((¢g 0 on) ) (P)(v1, ..., vn)oG =
= {By the definition of Group Action: ¢, 0 ¢, = Pgn} =

- [ @) )
Now, let us define f : G — R by
f(g) == (¢y1) () (V1. .. vn)

Then, the latter integral equals:
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/G F(gh)og = /G (f o ra)(g)o =

- [ wintee -

= {Using the right-invariance of o from part b)} =

:/Gr;f~r*ac;=/G7“Z(f0'G):

= {By using Theorem 3 from the handout on Integrating Densities} =

[ goc-

= {By the definition of f} =
= [ v =
G

=o(p)(vi,...,v,)

Hence:

(9r0)(p)(v1, ... vn) = a(p)(v1,...,0,)

This holds for all h € G ,p € M and for all v4,...,v, € T,M
Conclusion:o is a positive density on M that is preserved by the action of G. [J
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