
1 Exercise 1 Solution

Let us first observe the following fact (*)

If Y ⊆ R
k is bounded, then

∫
χY = 0 implies that Y has measure zero. Further-

more, if Y has measure zero, then
∫
χY = 0.

Proof of (*)

Suppose first that Y ⊆ R
k is bounded and

∫
χY = 0. Let Q be a rectangle

containing Y. By definition of
∫
χY , it follows that for all ǫ > 0, we can find a

partition of Q such that U(χY , P ) ≤ ǫ, where we are now considering χY to be a
function on Q. This, in turn, gives us a finite collection of rectangles covering Y

whose volume adds up to less than ǫ. Such a collection can be found for all ǫ > 0 so,
in particular, Y has measure zero.

Suppose now that Y has measure zero. Let Q be a rectangle in R
k containing

Y as before. Then, for all partitions P of Q, we have L(χY , P ) = 0 since the fact
that Y has measure zero implies that no rectangle of P having non-zero measure
is wholly contained in Y , so every term in the sum defining L(χY , P ) is zero. This
holds for all partitions P of Q hence

∫
χy = 0.

This proves (*)
We now prove the claim:
We first fix some notation. Let us suppose that X ⊆ R

n × R
m is bounded and

rectifiable. From the fact that X is bounded, it follows that we can find rectangles
Q1 ⊆ R

n and Q2 ⊆ R
m such that X ⊆ Q1 × Q2. Let Q := Q1 × Q2. Then Q is a

rectangle in R
n×R

m that contains X. Let us denote by f the function χY restricted
to Q.

Finally,we denote by:

A := {p ∈ R
n π(X ∩ ({p} × R

m)) ⊆ R
m doesn’t have measure zero}

where π : R
n × R

m → R
m is the canonical projection map π(x, y) = y. In other

words, A is the subset of all p ∈ R
n whose ”horizontal slice in R

m” doesn’t have
measure zero in R

m

1)Suppose that X has measure zero.
Then

0 =

∫
Q

f(x, y) = {Using Fubini’s Theorem} =

=

∫
Q1

∫
Q2

f(x, y)

1



We know by Fubini’s Theorem that the function

x 7→
∫

Q2

f(x, y)

is an integrable function on Q1. By construction, this function is non-negative and
from the preceding calculations it follows that its integral over Q1 equals zero. By
applying Theorem 11.3.b) on Page 96 of the textbook ”Analysis on Manifolds”

by James Munkres, we deduce that
∫
Q2

f(x, y) vanishes except on a set of measure
zero.

On the other hand, by using (*) and arguing contrapositively together with the

definition of A, it follows that for all x ∈ A
∫
Q2

f(x, y) > 0
Combining the previous results, it follows that A has measure zero.
2)Suppose that A has measure zero.
We know that then, by (*) for all x ∈ Q1 −A we have

∫
Q2

f(x, y) = 0 (⋄)
Also, by Fubini’s Theorem x 7→

∫
Q2

f(x, y) is integrable on Q1 (⋄⋄)
Hence, we have:

∫
Q

f(x, y) =

∫
Q1

∫
Q2

f(x, y) =

=

∫
Q1

∫
Q2

f(x, y) = 0

by using (⋄) and (*) together with the fact that A has measure zero.
We deduce that ∫

Q

f(x, y) =

∫
χX = 0

Since X is rectifiable, we know that
∫
χX =

∫
χX . Hence

∫
χX = 0

By (*), we deduce that X has measure zero.
Conclusion:)X has measure zero if and only if A has measure zero. �

2 Exercise 2 Solution

Solution 1:
We first consider the cases n = 1 and n = 2 separately.
For n=1:
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λ1 =

∫ 1

−1

dx = 2

For n=2: By polar coordinates:

λ2 =

∫ 2π

0

∫ 1

0

r dr dθ = π

Suppose now that n ≥ 3
We recall the fact from Calculus that

∫ +∞

−∞

e−x
2

dx =
√
π

From this observation, it follows that:

∫
Rn

e−|x|2dx =

∫
Rn

e−x
2

1
−···−x2

n dx1 · · · dxn =

= (

∫ +∞

−∞

e−x
2

1 dx1) · · · (
∫ +∞

−∞

e−x
2
n dxn) = π

n
2 (*)

On the other hand, by using n-dimensional polar coordinates, we have:

∫
Rn

e−|x|2dx =

∫ +∞

0

∫
Sn−1

e−r
2

rn−1 dσ dr

where dσ denotes the surface measure on Sn−1.

Let

ωn :=

∫
Sn−1

dσ = Surface Measure of Sn−1 ⊆ R
n

By using (*), it follows that

ωn ·
∫ +∞

0

e−r
2

rn−1 dr = π
n
2

In other words,

ωn =
π

n
2∫ +∞

0
e−r

2

rn−1 dr

Using n dimensional polar coordinates again, we deduce that:
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λn := vol(B(0, 1) ⊆ R
n) =

∫ 1

0

∫
Sn−1

rn−1 dσ dr =
1

n
· ωn

Hence, in order to calculate λn, we need to calculate ωn.
To calculate ωn explicitly, we observe:

∫ +∞

0

e−r
2

rn−1dr = {Change variables s = r2} =

=

∫ +∞

0

e−s s
n−1

2

1

2
s−

1

2 ds =

=
1

2

∫ +∞

0

e−s s
n
2
−1 ds

Now:

∫ +∞

0

e−s s
n
2
−1 ds =

= {Integrating by parts by setting u = s
n
2
−1 , dv = e−s,

and noting that u vanishes at zero, since n ≥ 3} =

= (
n

2
− 1)

∫ +∞

0

e−s s
n
2
−2 ds =

= (
n

2
− 1)

∫ +∞

0

e−s s
n−2

2
−1 ds (**)

We can also define ω1, ω2 by ωj := j · λj , j = 1, 2 and we get:

ωj =
2π

j

2∫ +∞

0
e−s s

j

2
−1
ds

since the whole previous calculation up to the integration by parts step still works
for these j

Combining (**) with this extended definition of the ωj−s, we obtain the recursion
that for all n ≥ 3

ωn =
π

n
2
− 1

ωn−2 =
2π

n− 2
ωn−2 (⋄)

This is the main recursive step.
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By ⋄, we obtain by induction on k that for all k ∈ N0

ω2k+1 =
2k πk

(2k − 1)!!
ω1 =

2k πk

(2k − 1)!!
· 2 =

=
2k+1 πk

(2k − 1)!!

Here (2k−1)!! denotes (2k−1) · (2k−3) · · · 1 if k ≥ 1 and 1!! = 0 by convention.
It follows that for all k ∈ N0

λ2k+1 =
1

2k + 1
ω2k+1 =

1

2k + 1

2k+1 πk

(2k − 1)!!

(This gives us the volume of the unit ball for odd dimensions)
Similarly, for k ∈ N we obtain:

ω2k =
πk−1

(k − 1)!
ω2 =

πk−1

(k − 1)!
· 2π =

=
2 πk

(k − 1)!

It follows that for all k ∈ N

λ2k =
1

2k
ω2k =

1

2k

2πk

(k − 1)!
=
πk

k!

(This gives us the volume of the unit ball for even dimensions)
Conclusion:For all k ∈ N0 we have:

λ2k+1 =
1

2k + 1

2k+1 πk

(2k − 1)!!

and for all k ∈ N we have:

λ2k =
πk

k!
. �

Alternative Solution:
Let us denote by λn,a the volume of the ball of radius a in R

n. Then, by definition
λn,1 = λn. By using the change of variables x 7→ ay, we obtain:

λn,a = anλn
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As before,
λ1 = 2, λ2 = π

Applying Fubini’s Theorem, we obtain:

λn =

∫
x2

1
+···+x2

n≤1

1dx1 · · ·dxn =

=

∫
x2

1
+x2

2
≤1

(

∫
x2

3
+···+x2

n≤1

1dx3 · · · dxn)dx1dx2 =

=

∫
x2

1
+x2

2
≤1

λn−2,1−x2

1
−x2

2
dx1dx2 =

=

∫
x2

1
+x2

2
≤1

λn−2 · (1 − x2
2 − x2

2)
n−2

2 dx1dx2 =

= {By using Polar Coordinates in two dimensions} =

= λn−2 ·
∫ 1

0

∫ 2π

0

(1 − r2)
n−2

2 drdθ =

= −λn−2 · 2π · 1

n
· (1 − r2)

n
2 |r=1
r=0 =

=
2π

n
λn−2

In this way, we obtain the same recursion as earlier. From here, we analogously
deduce what λn is, considering separately the cases when n is odd and when n is
even.

3 Exercise 3 Solution

We will use Theorem 15.2 on Page 123 of the textbook ”Analysis on Manifolds”
by James Munkres.

With notation as in the Theorem, we take

Ck := {1

k
≤ ‖x‖ ≤ 1 − 1

k
}

Then (Ck) is a sequence of compact rectifiable subsets of A whose union is A
such that Ck ⊆ int(Ck+1) for all k.

We must show that
∫
Ck

‖x‖−(n−1) is uniformly bounded in k.
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By using n-dimensional polar coordinates, we have that for all k

∫
Ck

‖x‖−(n−1) ≤
∫ 1

1

k

∫
Sn−1

r−(n−1)rn−1dσdr

where dσ denotes the surface measure on Sn−1

The above expression equals:

vol(Sn−1)

∫ 1

1

k

dr

This expression is less than or equal to vol(Sn−1).
Hence, the claim now follows by applying Theorem 15.2.�

4 Exercise 4 Solution

4.1 Part a)

Let σ0 ∈ |TeG| be an arbitrary positive density on TeG.
We define for h ∈ G :

σ(h) := (Thlh−1)∗(σ0) ∈ |ThG|
Hence, σ gives us a density on G.
For all h ∈ G , v1, . . . , vn ∈ ThG a basis of ThG we have:

σ(h)(v1, . . . , vn) = (Thlh−1)∗(σ0)(v1, . . . , vn) =

= σ0(Tl−1

h
v1, . . . , Tl−1

h
vn) > 0

since by construction σ0 ∈ |TeG| is positive.
So, σ gives us a positive density on G.
Let us check that σ is left-invariant.
To do this, suppose that g, h ∈ G and v1, . . . , vn ∈ ThG are given. Then:

(l∗gσ)(h)(v1, . . . , vn) =

= σ(lg(h))(Thlgv1, . . . , Thlgvn) =

= σ(gh)(Thlgv1, . . . , Thlgvn) =

= ((Tghl(gh)−1)∗σ0)(Thlgv1, . . . , Thlgvn) =
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= ((Tgh(lh−1 ◦ lg−1))∗σ0)(Thlgv1, . . . , Thlgvn) =

= ((Thlh−1 ◦ Tghlg−1)∗σ0)(Thlgv1, . . . , Thlgvn) =

= Tghl
∗
g−1 ◦ Thl∗h−1 ◦ σ0(Thlgv1, . . . , Thlgvn) =

= (Thl
∗
h−1σ0)(Tghlg−1Thlgv1, . . . , Tghlg−1Thlgvn) =

= {By the Chain Rule} = (Thl
∗
h−1σ0)(v1, . . . , vn) =

= {By construction of σ} = σ(h)(v1, . . . , vn)

It follows from the above calculation that l∗gσ = σ for all g ∈ G so σ is left-
invariant.

We now check that σ is smooth.
To do this, suppose that ψ : U → M is a coordinate chart with coordinates

(x1, . . . , xn). Then, for p ∈ U :

(ψ∗σ)(p)((
∂

∂x1
)p, . . . , (

∂

∂xn
)p) =

= σ(ψ(p))(Tpψ(
∂

∂x1
)p, . . . , Tpψ(

∂

∂xn
)p) =

= ((Tψ(p)l(ψ(p))−1)∗σ0)(Tpψ(
∂

∂x1
)p, . . . , Tpψ(

∂

∂xn
)p) =

= σ0(Tψ(p)l(ψ(p))−1Tpψ(
∂

∂x1

)p, . . . , Tψ(p)l(ψ(p))−1Tpψ(
∂

∂xn
)p)

We observe that this expression depends smoothly on p. Namely, for i = 1, . . . , n
the vector

Tψ(p)l(ψ(p))−1Tpψ(
∂

∂xi
)p ∈ TeG

depends smoothly on p. Namely, arguing similarly as in Homework 4 Problem 4, we
know that Tψ(p)l(ψ(p))−1Tpψ( ∂

∂xi
)p depends smoothly on ψ(p)−1 on Tpψ( ∂

∂xi
)p, both of

which depend smoothly on p.
Hence, we conclude that: σ is a positive smooth left-invariant density on

G

Since σ is smooth and G is compact, it follows that σ is integrable on G. Hence∫
g
σ is a finite real number. Furthermore, since σ is positive, it follows that

∫
G
σ is

positive, hence nonzero. In particular, C :=
∫
G
σ ∈ (0,+∞).

Let

σG :=
1

C
σ
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Then: σG is a left-invariant density on G that satisfies
∫
G
σG = 1. This

shows existence.
Let us now check uniqueness.
Suppose that σG is a left-invariant density on G whose integral over G exists and

equals 1.
Then, since |TeG| is one-dimensional and since σG(e) = σ0 6= 0 we can find α ∈ R

such that σG = ασ0

By left-invariance of σG, for all h ∈ G and for all v1, . . . , vn in ThG

σG(h)(v1, . . . , vn) = ((lh−1)∗σG)(h)(v1, . . . , vn) =

= σG(e)(Thlh−1v1, . . . , Thlh−1vn) =

= ασ0(Thlh−1v1, . . . , Thlh−1vn) =

= ασG(e)(Thlh−1v1, . . . , Thlh−1vn
) =

= {By an analogous calculation, using the left-invariance of σG} =

= ασG(h)(v1, . . . , vn)

We deduce that σG = ασG.

Since ∫
G

σG =

∫
G

σG = 1

it follows that α = 1 so indeed
σG = σG

which proves uniqueness.

4.2 Part b)

Let g ∈ G be fixed.
We consider r∗gσG, which is a density on G.
We know that for all h ∈ G

l∗h(r
∗
gσG) =

= (rg ◦ lh)∗σG =

= {since rg ◦ lh = lh ◦ rg, i.e left and right multiplication commute} =

= (lh ◦ rg)∗σG = r∗g(l
∗
hσG) =
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= r∗gσG

Consequently, r∗g is left-invariant.
Since rg is a diffeomorphism, we also know by Theorem 3 from the handout on

Integrating Densities that:

∫
G

r∗gσG =

∫
G

σG = 1

By using the uniqueness part of a), it follows that

r∗gσG = σG

This holds for all g ∈ G.

We may thus conclude that σG is right-invariant.

4.3 Part c)

Let µ be an arbitrary positive density on M (which exists by patching together
locally defined Lebesgue Densities via a Partition of Unity).

We define:

σ :=

∫
G

(φ∗
gµ)σG

where σG is the density defined in a).
More precisely:
Given p ∈M and v1, . . . , vn vectors in TpM

σ(p)(v1, . . . , vn) :=

∫
G

(φ∗
gµ)(p)(v1, . . . , vn)σG

This quantity is well-defined because,arguing as earlier g 7→ (φ∗
gµ)(p)(v1, . . . , vn)

is smooth and G is compact.
In this way, we indeed obtain a density on G because if A : TpM → TpM is linear

then:

σ(p)(Av1, . . . , Avn) =

=

∫
G

(φ∗
gµ)(p)(Av1, . . . , Avn)σG =

= {Since φ∗
gµ is a density for all g ∈ G} =
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=

∫
G

|detA|φ∗
gµ(p)(v1, . . . , vn)σG =

= |detA|
∫
G

φ∗
gµ(p)(v1, . . . , vn)σG =

= |detA|σ(p)(v1, . . . , vn)

So σ is indeed a density on M .
We observe that σ is a positive density on M.

Namely, if {v1, . . . , vn} is a basis for TpM then for all g ∈ G

(φ∗
gµ)(p)(v1, . . . , vn) = µ(φg(p))(Tpφgv1, . . . , Tpφgvn) > 0

since µ was chosen to be a positive density on M and since φg is a diffeomorphism
of M so {Tpφgv1, . . . , Tpφgvn} is a basis of Tφg(p)M.

Hence σ is a positive density on M.

We now check the invariance of σ under the action of G. In order to do this, we
want to ”put the pullback under the integral sign”

As before, we fix p ∈ M and v1, . . . , vn ∈ TpM

Then, for all h ∈ G

(φ∗
hσ)(p)(v1, . . . , vn) =

= σ(φh(p))(Tpφhv1, . . . , Tpφhvn) =∫
G

(φ∗
gµ)(φh(p))(Tpφhv1, . . . , Tpφhvn)σG =

= {By definition of the pullback of a density} =

=

∫
G

(φ∗
h(φ

∗
gµ))(p)(v1, . . . , vn)σG =

= ((φg ◦ φh)∗µ)(p)(v1, . . . , vn)σG =

= {By the definition of Group Action: φg ◦ φh = φgh} =

=

∫
G

(φ∗
ghµ)(p)(v1, . . . , vn)σG

Now, let us define f : G→ R by

f(g) := (φ∗
gµ)(p)(v1, . . . , vn)

Then, the latter integral equals:
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∫
G

f(gh)σG =

∫
G

(f ◦ rh)(g)σG =

=

∫
G

(r∗hf)(g)σG =

= {Using the right-invariance of σG from part b)} =

=

∫
G

r∗hf · r∗σG =

∫
G

r∗h(fσG) =

= {By using Theorem 3 from the handout on Integrating Densities} =

=

∫
G

fσG =

= {By the definition of f} =

=

∫
G

(φ∗
gµ)(p)(v1, . . . , vn)σG =

= σ(p)(v1, . . . , vn)

Hence:

(φ∗
hσ)(p)(v1, . . . , vn) = σ(p)(v1, . . . , vn)

This holds for all h ∈ G , p ∈M and for all v1, . . . , vn ∈ TpM

Conclusion:σ is a positive density on M that is preserved by the action of G. �
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