
Solutions to Problem Set 5 for 18.101, Fall 2007

1 Exercise 1 Solution

For the counterexample, let us consider M = (0,+∞) and let us take V = ∂
∂x

on M.

Let W be the vector field on M that is identically equal to 0. Then the given ODE
has the trivial solution Wt = 0. We will now construct another solution to the ODE.

We first extend V to R by V = ∂
∂x

, and we extend W to R, by W = f ∂
∂x

,
where f ∈ C∞(R) is an arbitrary function that is identically zero on M. We know
that ΦtV (x) = x + t We now let Wt be the restriction to M of (Φ−tV )∗W Then,
we know that W0 = W. Also, by Theorem 9 from the lecture notes, we know that
∂Wt

∂t
= (LV )Wt.

However, by construction, for x ∈ M, we have: Wt(x) = f(x + t) ∂
∂x

, which is
not identically zero for all t < 0 if we take f not to be identically zero on (−∞, 0).
Hence, the given ODE doesn’t have a unique solution.

Remark: We observe that the vector field V is not complete. Namely, its
trajectories starting from each point are not defined for sufficiently negative time.

2 Exercise 2 Solution

Let us fix p ∈M , and t0 ∈ R.

We define f(t) := (Φ∗
tV α)(p). Then f(0) = α(p), Also, f : R → T ∗

pM is smooth
and

d

dt
|t=t0f(t) =

d

dt
|t=t0(Φ

∗
tV α)(p) =

=
d

ds
|s=0(Φ

∗
(s+t0)V α)(p) =

=
d

ds
|s=0((ΦsV ◦ Φt0V )∗α)(p)

=
d

ds
|s=0(Φ

∗
t0V ◦ Φ∗

sV )α)(p) =

Φ∗
t0V α(

d

ds
|s=0Φ

∗
sV α)(p) =

= Φ∗
t0V (LV α)(p) = {since LV α = 0} = 0

Hence d
dt
f = 0, so f is constant, and equal to α(p).
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It follows that
Φ∗

tV α = α.

3 Exercise 3 Solution

Let us denote by n the dimension of M. We start out by observing that M can
be covered by a countable union of sets Ai which are images of [0, 1]n under a
diffeomorphism from an open subset of R

n containing [0, 1]n onto a subset of M .
We deduce this fact by using appropriate coordinate charts to find an open cover
(not necessarily countable satisfying this property) The fact that we can extract a
countable subcover follows from the Second Countability property of subspaces of
Euclidean Space (i.e. that every open cover has a countable subcover. This can
be proved by noting that every open set is a union of balls centered on rational
points with rational radii. A countable subcover can be obtained by representing
each open set as a union of these rational balls, then by choosing one set containing
each rational ball involved as our countable subcover.)

Since the countable union of sets of measure zero has measure zero and since f
”preserves unions” in the sense that f(

⋃
Ai) =

⋃
f(Ai), it follows that we have to

show that the image under f of every f(Ai) ∈ R
k has measure zero.

For a fixed index i, we look at:

[0, 1]n
φi

→ Ai
f
→ R

k

where φi : [0, 1]n → Ai is the map constructed earlier.
Now, by compactness of [0, 1]n Ai is also compact and φi is Lipschitz. Further-

more, by compactness of Ai, f restricted to Ai is also Lipschitz. Hence, f ◦ φi :
[0, 1]n → R

k is Lipschitz, being the composition of two Lipschitz functions. Thus if,
we define F : [0, 1]n×R

k−n → R
k by F (x, y) := f(x), F then be a Lipschitz function

from a subset of R
k to R

k.

We know that F ([0, 1]n × 0) = f(Ai).
Hence, we have reduced the claim to showing that F ([0, 1]n×0) ∈ R

k has measure
zero.

Let s ∈ N be fixed. Let us take a partition of [0, 1]n by sn cubes in R
k of sidelength

1
s

in the canonical way. By ”adding k − n dimensions to each cube”, we obtain a
cover of [0, 1]n by cubes in R

k. We call these cubes Qj , j = 1, . . . sn By the Lipschitz
property of F , each F (Qj) is contained in a cube of sidelength ≤ C 1

s
, where the

constant C > 0 depends only on the function F and the dimension k (and not on s
and j).
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Hence, it follows that F ([0, 1]n × 0) ∈ R
k can be covered by cubes in R

k whose
volume adds up to:

≤ Cks−ksn = Cksn−k → 0 as s→ ∞

It follows that F ([0, 1]n × 0) ∈ R
k can be covered by cubes in R

k of arbitrarily
small volume so F ([0, 1]n × 0) ∈ R

k has measure zero. The claim now follows.

4 Exercise 4 Solution

Suppose that f is Riemann Integrable on Q. We argue that:

lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn)

We will show that

lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn) =

∫
Q

f(x)dx

which we denote by I.
We first observe that both limits indeed exist because P(n+1) is a refinement of

Pn. Also, the sequence U(f, Pn) is monotonically decreasing, whereas the sequence
L(f, Pn) is monotonically increasing.

Let us show that:
lim

n→∞
U(f, Pn) = I

The other case is analogous.
It is true by definition that

I = inf
P -partition of Q

U(f, P ) ≤ lim
n→∞

U(f, Pn)

Let us now show that:
I ≥ lim

n→∞
U(f, Pn)

Let ǫ > 0 be given. By definition, we can find a partition P such that U(f, P ) ≤ ǫ
2
.

We observe that for n sufficiently large

U(f, Pn) ≤ U(f, P ) +
C

2n
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for some constant C > 0 depending only on the partition P and the function.(*)
We now prove the claim (*)
Let R be a fixed rectangle in the partition P . Then:

∑
Qi∈Pn,Qi⊆R

sup
Qi

f |Qi| ≤ {since each Qi ⊆ R} ≤
∑

Qi∈Pn,Qi⊆R

sup
R

f |Qi|

≤ sup
R

f |R|

This first estimate deals with the dyadic cubes that are wholly contained in R.
We now have to consider the dyadic cubes that intersect R but are not wholly

contained inside it. Intuitively, we expect the contribution from these cubes to the
sum U(f, Pn) to be small as n grows large.

Namely, we observe

∑
Qi∈Pn,Qi

T

R6=∅,Qi 6⊆R

sup
Qi

f |Qi| ≤
∑

Qi∈Pn,Qi

T

R6=∅,Qi 6⊆R

sup
Q

f |Qi| ≤

≤ K sup
Q

f | boundary of R |
1

2n

for some constant K > 0 depending on R. The last observation follows from the
fact that all of the Qi we are considering in the above sum lie in an appropriate
”thickening of the boundary of R by 1

2n .

Summing over all rectangles R in the partition P , we obtain the claim (*).
We now find n ∈ N sufficiently large so that C

2n <
ǫ
2
.

Using (*) and the construction of P , we obtain that:

U(f, Pn) ≤ I + ǫ

Such an n can be found for all ǫ > 0 so, by the fact that U(f, Pn) is monotonically
decreasing, we obtain:

lim
n→∞

U(f, Pn) ≤ I

.
Since we know from before that the opposite inequality holds, we obtain:

lim
n→∞

U(f, Pn) = I

Analogously:
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lim
n→∞

L(f, Pn) = I

Hence:
lim

n→∞
U(f, Pn) = lim

n→∞
L(f, Pn) = I

Conversely,
Suppose that f isn’t Riemann Integrable on Q. Let I+ and I− denote the Upper

and Lower Riemann Integral of f over Q. Then

∀n ∈ N L(f, Pn) ≤ I− < I+ ≤ U(f, Pn)

So:

lim
n→∞

L(f, Pn) ≤ I− < I+ ≤ lim
n→∞

U(f, Pn)

In particular:

lim
n→∞

L(f, Pn) 6= lim
n→∞

U(f, Pn)

5 Exercise 5 Solution:

5.1 Part a)

Let k denote the dimension of M. For the first part, we use adapted coordinates (in
other words, the Canonical Immersion Theorem). Let p ∈ M be given. Then, we can
find a neighborhood Up of p in R

n and a map φ : Up → R
n, which is a diffeomorphism

such that:
φ(Up ∩M) = {xk+1 = . . . = xn = 0}

In other words,near p, we get local coordinates (x1, ..., xk) on M , which we can
extend to local coordinates (x1, ..., xn) on R

n.
Let us show how this construction allows us to extend the restriction of V to

Up ∩M to a smooth vector field on Up.

We observe that on Up, we can write

V =

k∑
i=1

fi

∂

∂xi
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where f1, ..., fk are smooth functions on Up. Hence, f1 ◦ φ
−1, ..., fk ◦ φ

−1 are smooth
functions from W × {0} to R, where W is the open set in R

k such that W × {0} =
φ(Up)∩(Rk×{0}) We can canonically extend f1◦φ

−1, ..., fk◦φ
−1 to smooth functions

on all of φ(Up) by letting them be independent of the last n − k variables. Pulling
back by φ, it follows that we can extend f1, ..., fk to smooth functions f̃1, ..., f̃k on
Up.

If we let

Ṽp :=
k∑

i=1

f̃i

∂

∂xi

Ṽp will be an extension of V as a vector field on all of Up. (Namely, we are now
thinking of x1, ..., xk as coordinates on R

n)
We now consider the collection of sets

{{Up, p ∈M}, {R
n −M}}

By the previous construction and the fact that M is closed, it follows that this
collection gives us an open cover of R

n.

Let {ψp; p ∈M,ψ0} be a subordinate Partition of Unity of this open cover.
It follows that then: ∑

p∈M

ψp = 1 on M.(1)

In addition to that, by construction we know:

(ψpṼp)|M = (ψpV )|M ∀p ∈M(2)

Hence, if we define

U :=
∑
p∈M

ψpṼp

then U will be a smooth vector field on R
n

By (2), we have that

U |M =
∑
p∈M

(ψpV )|M

By (1), this is precisely equal to V.
Hence, U gives us the desired extension.
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5.2 Part b)

Arguing as we did in the previous part of the problem, given a point p ∈M , we can
find an open set Wp ⊆ R

n containing p on which we can extend f to a smooth map

(̃fp) : Wp → R
k (the fact that the map f is vector-valued doesn’t affect the previous

proof)
Let

U :=
⋃

p∈M

Wp

Then, U ⊆ R
n is an open set containing M, and {{Wp}, p ∈M} is an open cover

of U.
We find a Partition of Unity {ψp, p ∈M} subordinate to this cover.
If we let f̃ :=

∑
p∈M ψpf̃p, f̃ gives us a smooth map f̃ : U → R

k

Since ∀p ∈ M ψp(̃fp)|M = ψpf |M and since
∑

p∈M ψp = 1 by properties of the

partition of unity, we have that f̃ extends f to all of U.
If M is closed, we consider as before the open cover:

{{Up, p ∈M}, {R
n −M}}

of R
n

We look at a subordinate Partition of Unity:

{ψp; p ∈M,ψ0}

Then, we have
∑

p∈M ψp = 1 on M.

We argue as in part a) to deduce that

f̃ :=
∑
p∈M

ψpfp

is a smooth map f̃ : R
n → R

k that extends f.

6 Exercise 6 Solution

6.1 Part a)

We first observe that, under the assumptions on f and g, f∗g is well-defined. Namely,
for given x ∈ R

n, the integrand in the integral is nonzero outside a compact set by
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the assumption that g is compactly supported. Since f, g are continuous, (f ∗ g)(x)
is thus given as an integral of a bounded continuous function over a compact set,
which is indeed well-defined.

Let us now check that (f ∗ g) is continuous.
Let us fix x ∈ R

n. We consider v ∈ R
n with |v| ≤ 1

Then

(f ∗ g)(x+ v) − (f ∗ g)(x) =

∫
Rn

f(s)(g(x+ v − s) − g(x− s))ds

Since g is compactly supported and since we are considering v ∈ R
n with |v| ≤ 1,

it follows that the integrand is zero outside a compact set K ⊆ R
n which depends

on x, but not on v.
In other words, for all v ∈ R

n with |v| ≤ 1

(f ∗ g)(x+ v) − (f ∗ g)(x) =

∫
K

f(s)(g(x+ v − s) − g(x− s))ds

By using the Mean Value Theorem, the Triangle inequality the compactness of
K, it follows that there exists a constant C > 0 such that ∀s ∈ K and ∀v ∈ R

n with
|v| ≤ 1

|g(x+ v − s) − g(x− s)| ≤ C|v|

Combining the previous results, we obtain:
∀v ∈ R

n with |v| ≤ 1

|(f ∗ g)(x+ v) − f(x)| ≤ C|v|

∫
K

|f(s)|ds

Since f is continuous and K is compact,
∫

K
|f(s)|ds is finite. Consequently,

C|v|
∫

K
|f(s)|ds converges to 0 as |v| → 0

Hence (f ∗ g) is continuous.

6.2 Part b)

Let i ∈ {1, ..., n} be given. From the first part, we know that f ∗Dig makes sense.
For h ∈ R − {0} with |h| ≤ 1 we look at the expression:

(f ∗ g)(x+ hei) − (f ∗ g)(x)

h
− (f ∗Dig)(x) =
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∫
Rn

f(s)(
g(x+ hei − s) − g(x− s)

h
−Dig(x− s))ds

We use Taylor’s Theorem for the function t −→ (f ∗ g)(x+ tei − s) and the fact
that g is smooth and compactly supported, it follows that there exists a constant
C > 0 and a compact subset K ⊆ R

n such that for all h ∈ R
n − {0} with |h| ≤ 1

|
(f ∗ g)(x+ hei) − (f ∗ g)(x)

h
− (f ∗Dig)(x)| ≤ C|h|

∫
K

|f(s)|ds

The quantity on the right-hand side converges to 0 as |h| → 0
It follows that Di(f ∗ g) exists and equals f ∗Dig.

Iterating this procedure, we obtain that f ∗ g is smooth.

6.3 Part c)

Suppose that f is a continuous function on R
n.

Let K ⊆ R
n be compact.

Let x ∈ K be fixed.
Then, for t > 0, we observe by using a Change of Variable that

∫
Rn φt =

∫
Rn φ = 1.

Hence:

(f ∗ φt)(x) − f(x) =

∫
Rn

f(x− s)φt(s)ds− f(x) =

= { Since

∫
Rn

φt = 1} =

∫
Rn

f(x− s)φt(s)ds−

∫
Rn

f(x)φt(s)ds =

=

∫
Rn

(f(x− s) − f(x))φt(s)ds = { By the support properties of φt} =

=

∫
|s|≤t

(f(x− s) − f(x))φt(s)ds

Thus, we have:

|(f ∗ φt)(x) − f(x)| ≤ sup
|y|≤t

|f(x− y) − f(x)|

∫
Rn

|φt(y)|dy

We observe as before by rescaling that
∫

Rn |φt(s)|ds is independent of t > 0
Hence, we just have to show that sup|y|≤t |f(x − y) − f(x)| → 0 uniformly in

x ∈ K. (*)
To do this, we define Φ : K + B̄(0, 1) → R by:
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Φ(x, y) := f(x− y) − f(x)

Φ is continuous because f is continuous. Furthermore, K + B̄(0, 1) is compact.
Hence Φ is uniformly continuous on K + B̄(0, 1). Using this observation, (*) imme-
diately follows so the claim holds.

6.4 Part d)

Let f be a continuous real-valued function on M and let ǫ > 0 be given.
Let p ∈M be given. Let n denote the dimension of M.

We find a coordinate chart (U, φ) centered at p (i.e. such that φ(p) = 0)
Then f ◦ φ−1 is a continuous function on φ(U), which is an open subset of R

n.

We find a closed ball V ⊆ R
n centered at 0 that is contained in φ(U).

Then, the restriction of f ◦ φ−1 to V is a continuous function defined on a closed
ball of R

n,.Let us observe that we can extend f ◦ φ−1|V to a continuous function
F : R

n → R. To do this, we argue similarly as in Problem 5. Let fV denote the given
restriction of f We can find for each point q ∈ V an open set Wq in R

n on which we
can extend fV to Wq. Call this extension f q

V . Since V is closed and the Wq cover V ,
we get that {Wq, ; q ∈ V, R

n − V } is an open cover of R
n. We find a subordinate

partition of unity {αq, ; q ∈ V, α} We consider,

∑
q∈V

αqf
q
V

Arguing analogously as in Problem 5, we obtain that this gives us a continuous
extension of fV to all of R

n.

By using part c), we can find a smooth function G : R
n → R such that |F−G| < ǫ

on V.
We now find an open ball W ⊆ R

n which is centered at 0 and which is contained
in V.

Let
Wp := φ−1(W ), gp := (G ◦ φ) restricted to Wp

Then, by construction Wp is an open subset of M containing p and gp : Wp → R

is smooth.
Furthermore, since φ(Wp) ⊆ V , we have that onWp |f−gp| = |(F◦φ)−(G◦φ)| < ǫ

by the fact that |F −G| < ǫ on V.
We obtain in this way an Open Cover of M :
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{{Wp}, p ∈M}

We find a corresponding Partition of Unity {ψp, p ∈M}
We define:

g :=
∑
p∈M

ψpgp

Then g : M → R is smooth.
By using the fact that

∑
p∈M ψp = 1 and the fact that ψp ≥ 0 ∀p ∈M, we obtain:

|f − g| = |
∑
p∈M

(ψpf) −
∑
p∈M

(ψpgp)| ≤

≤ { By the Triangle Inequality} ≤
∑
p∈M

ψp|f − gp| ≤

≤ { Since by construction ψp|f − gp| < ψpǫ} <
∑
p∈M

ψpǫ = ǫ

This proves the claim.
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