## Solutions to Problem Set 4 for 18.101, Fall 2007

## 1 Exercise 1 Solution

Suppose that $v$ is a vector field on $\mathbb{R}^{N}$ which is tangent to a closed submanifold $M$ of $\mathbb{R}^{N}$. Let $\gamma:(a, b) \rightarrow M$ be an integral curve of $v$ which intersects $M$, i.e. such that $\gamma(\theta) \in M$ for some $\theta \in(a, b)$. We are supposing that $(a, b)$ is the maximal interval of existence of $\gamma$.

We define $A:=\{t \in(a, b)$ such that $\gamma(t) \in M\}$. Let us argue that $A=(a, b)$.
We know that $\theta \in A$ so $\mathbf{A}$ is nonempty. (1)
Furthermore, we observe that $A$ is open in $(a, b)$. Suppose that $t_{0} \in A$. Then, we find a coordinate neighborhood $\left(U, x_{1}, \ldots, x_{n}\right)$ of $\gamma\left(t_{0}\right)$ in $M$. We can then find a diffeomorphism $\phi: U \rightarrow V$, where $V \subseteq \mathbb{R}^{N}$ is open. Then $(\phi)_{*}(v)$ is a $C^{1}$ vector field on $V$. Hence, this vector field is locally Lipschitz on $V$. By using the Existence Part of the Existence and Uniqueness Theorem for ODEs, we can find $\epsilon>0$ and $\sigma:\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \rightarrow M$ such that:

$$
\begin{gathered}
\sigma^{\prime}(t)=\left(\phi_{*} v\right)(\sigma(t)), \forall t \in\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \\
\sigma\left(t_{0}\right)=\phi \circ \gamma\left(t_{0}\right)
\end{gathered}
$$

However, we also know that, since $\gamma$ is an integral curve of $v$ that $\phi \circ \gamma$ is an integral curve of $\phi_{*} v$, namely:

$$
\phi \circ \gamma^{\prime}(t)=\left(\phi_{*} v\right)(\sigma(t)), \forall t \in\left(t_{0}-\epsilon, t_{0}+\epsilon\right)
$$

and

$$
\phi \circ \gamma\left(t_{0}\right)=\sigma\left(t_{0}\right)
$$

By using the Uniqueness Part of the Existence and Uniqueness Theorem for ODEs, it follows that

$$
\phi \circ \gamma(t)=\sigma(t), \forall t \in\left(t_{0}-\epsilon, t_{0}+\epsilon\right)
$$

Since $\sigma(t) \in V, \forall t \in\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$, it follows that $\gamma(t) \in \phi^{-1}(V)=U \subseteq M, \forall t \in$ $\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$

Hence $\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \subseteq A$. Such an $\epsilon>0$ can be found for all $t_{0} \in A$, thus $\mathbf{A}$ is open in (a,b). (2)

Finally, we observe that $A$ is closed in $(a, b)$. To see this, suppose that $\left(t_{n}\right)$ is a sequence in $A$ such that $t_{n} \rightarrow t$, for some $t \in(a, b)$. By continuity of $\gamma$, we know
that $\gamma\left(t_{n}\right) \rightarrow \gamma(t)$. By construction of $\left(t_{n}\right)$, we know that $\gamma\left(t_{n}\right) \in M, \forall n$. Using the last two observations together with the assumption that $M$ is closed, it follows that $\gamma(t) \in M$. By definition of $A$, this implies that $t \in A$. Hence $\mathbf{A}$ is closed in (a,b). (3)

Using (1),(2),(3) together with the connectedness of $(a, b)$, it follows that $A=$ $(a, b)$.

Consequently, $\gamma$ is entirely contained in $M$, as was claimed.

## 2 Exercise 2 Solution

### 2.1 Part a)

We know that:

$$
d H\left(v_{H}\right)=\sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right)=0
$$

Hence $H$ is a conserved quantity of $v_{H}$.

### 2.2 Part b)

Suppose that $F$ is smooth. Then:

$$
\begin{aligned}
L_{v_{H}} F & =\sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial F}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial F}{\partial q_{i}}\right) \\
L_{v_{F}} H & =\sum_{i}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right)
\end{aligned}
$$

From here, it immediately follows that

$$
L_{v_{H}} F=-L_{v_{F}} H
$$

### 2.3 Part c)

Suppose that $F$ is a conserved quantity of $v_{H}$. This means that, $L_{v_{H}}(F)=0$. The latter is equivalent to:

$$
\sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial F}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial F}{\partial q_{i}}\right)=0(*)
$$

We know that:

$$
\begin{aligned}
v_{H} & =\sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}}\right) \\
v_{F} & =\sum_{j}\left(\frac{\partial F}{\partial q_{j}} \frac{\partial}{\partial p_{j}}-\frac{\partial F}{\partial p_{j}} \frac{\partial}{\partial q_{j}}\right)
\end{aligned}
$$

We then calculate that:

$$
\begin{gathered}
{\left[v_{H}, v_{F}\right]=} \\
=\sum_{j}\left(\left(\sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} F}{\partial p_{i} \partial q_{j}}-\frac{\partial H}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}}-\frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial q_{j}}+\frac{\partial F}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}}\right)\right) \frac{\partial}{\partial p_{j}}+\right. \\
\left.+\left(\sum_{i}\left(-\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}+\frac{\partial H}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}+\frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}-\frac{\partial F}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}\right)\right) \frac{\partial}{\partial q_{j}}\right)
\end{gathered}
$$

We now want to argue that for all $j$ :

$$
\begin{align*}
& \sum_{i}\left(\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} F}{\partial p_{i} \partial q_{j}}-\frac{\partial H}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}}-\frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial q_{j}}+\frac{\partial F}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}}\right)=0  \tag{A}\\
& \sum_{i}\left(-\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}+\frac{\partial H}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}+\frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}-\frac{\partial F}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}=0\right. \tag{B}
\end{align*}
$$

However, we observe that (A) follows from differentiating equality $(*)$ with respect to $q_{j}$ and that ( $\mathbf{B}$ ) follows from differentiating $(*)$ with respect to $p_{j}$.

Hence $\left[v_{H}, v_{F}\right]=0$ so $v_{H}$ and $v_{F}$ commute.

## 3 Exercise 3 Solution

Let $M$ be a compact manifold and led $v$ be a smooth vector field on $M$. Since $M$ is compact, the flow $\Phi_{t v}$ of $v$ is defined for all times $t$.

### 3.1 Part a)

Let $h$ be a smooth function on $M$ such that $\left(L_{v}\right)^{N} h=0$ for $N$ sufficiently large. We argue that for all times $t \in \mathbb{R}$

$$
e^{t L_{v} h}:=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(L_{v}\right)^{n} h=\left(\Phi_{t v}\right)^{*} h
$$

We will use the Existence and Uniqueness Theorem for ODEs. We fix $p$ inM. We let $F(t):=e^{t L_{v} h}(p)$ and we let $G(t):=\left(\Phi_{t v}\right)^{*} h(p)$.The assumption that $\left(L_{v}\right)^{N} h=$ 0 for $N$ sufficiently large implies that $F(t)$ is well-defined, that it is a smooth function in $t$ and that we can differentiate in $t$ term by term. Hence $F^{\prime}(t)=$ $\left(\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(L_{v}\right)^{n+1} h\right)(p)=L_{v}\left(\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(L_{v}\right)^{n} h\right)(p)=v(F(t))$ We know that: $G^{\prime}(t)=$ $L_{v}\left(\left(\Phi_{t v}\right)^{*} h\right)(p)=v(G(t))$ by Theorem 9 from the handout on the Flows of Vector Fields on Manifolds. Since $\mathrm{F}(0)=\mathrm{G}(0)=\mathrm{h}(\mathrm{p})$, the claim indeed follows from the Existence and Uniqueness Theorem for ODEs.

### 3.2 Part b)

Suppose now that $w$ is a smooth vector field on $M$ such that $\left(L_{v}\right)^{N} w=0$ for all $N$ sufficiently large.

Let us define $w_{t}:=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(L_{v}\right)^{n} w$. Using the fact that the a priori infinite series terminates. Hence, arguing as in part a) we can differentiate term by term to obtain:

$$
\frac{\partial}{\partial t} w_{t}=L_{v} w_{t}
$$

Using Theorem 9 from the handout on the Flows of Vector Fields on Manifolds, we get that

$$
w_{t}=\Phi_{t v}^{*} w
$$

Hence, we get:

$$
e^{t L_{v} w}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(L_{v}\right)^{n} w=\Phi_{t v}^{*} w
$$

as was claimed.

## 4 Exercise 4 solution

### 4.1 Part a)

Let $g \in G$ be given. We define $\phi_{g}: G \rightarrow G \times G$ to be $\phi_{g}(h):=(g, h)$. We have that then:

$$
G \xrightarrow{\phi_{g}} G \times G \xrightarrow{m} G
$$

and $m \circ \phi_{g}=l_{g}$. Hence, we get:

$$
T G \xrightarrow{T \phi_{g}} T G \times T G \xrightarrow{T m} T G
$$

which by the Chain Rule and the previous observation is:

$$
T G \xrightarrow{T l_{g}} T G .
$$

We observe that for $g \in G$ we have: $T \phi_{g}\left(I, v_{0}\right)=\left((g, 0),\left(I, v_{0}\right)\right)$ Hence, combining the previous facts, it follows that: given $v_{0} \in T_{I} G$, we have:

$$
\left(I, v_{0}\right) \xrightarrow{T_{I} \phi_{g}}\left((g, 0),\left(I, v_{0}\right)\right) \xrightarrow{T_{(g, I)} m}\left(g, T_{I} l_{g}\left(v_{0}\right)\right)
$$

Now, the map

$$
g \in G \mapsto\left((g, 0),\left(I, v_{0}\right)\right)
$$

is smooth in $g$. Furthermore $T m: T G \rightarrow T G$ is smooth because $m$ is smooth. Hence the map:

$$
g \in G \mapsto\left(g, T_{I} l_{g}\left(v_{0}\right)\right)
$$

is a smooth map. Hence, if we define $v$ by $v(g):=T_{I} l_{g}\left(v_{0}\right)$, then $v(g) \in T_{I} G$ by construction and by the previous observation $v(g)$ will depend smoothly on $g$. Hence, $v$ defines a smooth vector field on $G$.

### 4.2 Part b)

Suppose that $v$ is a vector field as constructed from $v_{0} \in T_{I} M$ as in part a). Suppose that $g, h \in G$ are given. We have:

$$
\left(\left(l_{h}\right)_{*}\right)(g)=\left(T_{h^{-1} g} l_{h}\right)\left(v\left(h^{-1} g\right)\right)=T_{h^{-1} g} l_{h} \circ T_{I} l_{h^{-1} g}\left(v_{0}\right)=
$$

$=\{$ by the Chain Rule $\}=T_{I}\left(l_{h} \circ l_{h^{-1} g}\right)\left(v_{0}\right)=\{$ by the construction of $v\}=v(g)$

Hence, $v$ is left-invariant.
Conversely, suppose that $v$ is a left-invariant vector field on $G$ We then have that $\forall g \in G:$

$$
v(g)=\{\text { by left-invariance }\}=\left(\left(l_{g}\right)_{*} v\right)(g)=T_{I} l_{g}(v(I))
$$

So, $v$ is obtained as in part a) if we set $v_{0}:=v(I)$.
Remark: Combining parts a) and b) it follows that every left invariant vector field is smooth.

### 4.3 Part c)

Suppose that $v, w$ are left-invariant vector fields on $G$. We have that then for all $h \in G$ :
$\left(l_{h}\right)_{*}[v, w]=\{$ by using the result of Problem 4b) from last week's homework $\}=$ $=\left[\left(l_{h}\right)_{*} v,\left(l_{h}\right)_{*} w\right]=\{$ by left invariance of $v$ and $w\}=[v, w]$

### 4.4 Part d)

Suppose that $v$ is a left-invariant vector field on $G$. We argue that $\Phi_{t v}$ is defined for all time.

Suppose that $g \in G$ is given. We define $\gamma_{g}(t):=\Phi_{t v}(p)$. We want to show that $\gamma_{g}$ is defined for all time. We show that it is defined for all positive times. The claim for all negative times follows by symmetry. We suppose that $\gamma_{p}$ is defined on $[0, a)$ for some $a>0$. Let us now show that $\gamma_{p}$ can be extended beyond time $a$.

Let $h:=\gamma_{g}\left(\frac{a}{2}\right)$.
We define $\sigma:[0, a) \rightarrow G$ by:

$$
\sigma(t):=\left(l_{h g^{-1}} \circ \gamma_{g}\right)(t)
$$

Then, we know:

$$
\sigma(0)=\left(l_{h g^{-1}} \circ \gamma_{g}\right)(0)=l_{h g^{-1}}(g)=h
$$

and
$\sigma^{\prime}(t)=T_{g} l_{h g^{-1}}\left(\gamma_{g}^{\prime}(t)\right)=\left\{\right.$ by the fact that $\gamma_{g}$ is an integral curve of $\left.v\right\}=T_{g} l_{h g^{-1}}\left(v\left(\gamma_{g}(t)\right)\right)$
$\left.=\left(\left(l_{h g^{-1}}\right)_{*} v\right)\left(\left(l_{h g^{-1}} \circ \gamma_{g}\right)(t)\right)\right)=\{$ by left-invariance of $v\}=$

$$
=v\left(\left(l_{h g^{-1}} \circ l_{g}\right)(t)\right)=v(\sigma(t))
$$

We know that:

$$
\gamma_{g}\left(\frac{a}{2}\right)=h \text { and } \frac{d}{d t}\left(\gamma_{g}\left(t+\frac{a}{2}\right)\right)=v\left(\gamma_{g}\left(t+\frac{a}{2}\right)\right)
$$

By the Existence and Uniqueness Theorem for ODEs, it follows that

$$
\sigma(t)=\gamma_{g}\left(t+\frac{a}{2}\right) \forall t \in\left[\frac{a}{2}, a\right)
$$

Hence, we can extend $\gamma_{g}$ to $\left[0, \frac{3 a}{2}\right)$ by letting it equal $\sigma\left(t-\frac{a}{2}\right)$ on $\left[a, \frac{3 a}{2}\right)$.
It follows that the flow $\Phi_{t v}$ is defined for all time.
Suppose $v$ is a left-invariant vector field on $G$ as above and suppose that $g \in G$ is given.

We now argue that:

$$
\Phi_{v}(g)=m\left(g, \Phi_{v}(I)\right)
$$

We let $\gamma(t):=\gamma_{I}(t)$. By the previous observation, $\gamma$ is defined for all $t \in \mathbb{R}$. Let $\sigma(t):=m(g, \gamma(t))=g \cdot \gamma(t)$. The earlier calculation shows that $\sigma$ is an integral curve of $v$ with $\sigma(0)=g$. Hence we get $\sigma(t)=\Phi_{t v}(g)$.

We deduce that $\forall t \in \mathbb{R}$ :

$$
\Phi_{t v}(g)=m(g, \gamma(t))=m\left(g, \Phi_{t v}(I)\right)
$$

We set $t=1$ to deduce that:

$$
\Phi_{v}(g)=m\left(g, \Phi_{v}(I)\right)
$$

Hence, flowing by a left-invariant vector field corresponds to multiplication on the right.

