Solutions to Problem Set 4 for 18.101, Fall 2007

1 Exercise 1 Solution

Suppose that v is a vector field on R which is tangent to a closed submanifold M of
RYN. Let 7y : (a,b) — M be an integral curve of v which intersects M, i.e. such that
~v(0) € M for some 0 € (a,b). We are supposing that (a,b) is the maximal interval
of existence of ~.

We define A := {t € (a,b) such that v(t) € M}. Let us argue that A = (a,b).

We know that § € A so A is nonempty. (1)

Furthermore, we observe that A is open in (a,b). Suppose that tq € A. Then,
we find a coordinate neighborhood (U, x1,...,x,) of v(ty) in M. We can then find
a diffeomorphism ¢ : U — V| where V' C R” is open. Then (¢).(v) is a C'' vector
field on V. Hence, this vector field is locally Lipschitz on V. By using the Existence
Part of the Existence and Uniqueness Theorem for ODEs, we can find ¢ > 0 and
o (to—€,to+€) — M such that:

a'(t) = (¢.v)(o(t)),Vt € (tg — €, o + €)
a(to) = ¢ o y(to)

However, we also know that, since v is an integral curve of v that ¢ o v is an
integral curve of ¢,v, namely:

por/(t) = (¢v)(0(t)),Vt € (to —€to +¢)
and
¢ o y(to) = a(to)

By using the Uniqueness Part of the Existence and Uniqueness Theorem for
ODEs, it follows that

por(t)=0(t) ,Vt € (ty — €, to + ¢€)

Since o(t) € V ,Vt € (tg—¢,to+e), it follows that y(t) € ¢~ (V) =U C M ,Vt €
(to — €,to + €)

Hence (to — €,tp + €) € A. Such an € > 0 can be found for all ¢y € A, thus A is
open in (a,b). (2)

Finally, we observe that A is closed in (a,b). To see this, suppose that (t,) is a
sequence in A such that t, — ¢, for some t € (a,b). By continuity of v, we know
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that ~v(t,) — ~(t). By construction of (¢,), we know that ~(¢,) € M ,¥n. Using the
last two observations together with the assumption that M is closed, it follows that
v(t) € M. By definition of A, this implies that t € A. Hence A is closed in (a,b).
(3)

Using (1),(2),(3) together with the connectedness of (a,b), it follows that A =
(a,b).

Consequently, v is entirely contained in M, as was claimed.

2 Exercise 2 Solution

2.1 Part a)
We know that:

OHOH 0HOH
dH (vy) = Z(aqi dpi O aqi) Y

7

Hence H is a conserved quantity of vy.

2.2 Part b)
Suppose that F'is smooth. Then:

OHOF OHOF
LUHF B Zi:(a%‘ 0—p, B Opi aqz')

Lo H = Z(ﬁFﬁH OF OH

9q; Op; - Opi aqi)
From here, it immediately follows that

Ly, F=—L,H

VF

2.3 Part c)

Suppose that F' is a conserved quantity of vg. This means that, L, (F) = 0. The
latter is equivalent to:

OHO0F O0HOF
2(8% Op; a Op; 8%) =0 <*)

i
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We know that:

OH 0 0H 0
o Z( dq; Op; - Op; Oq;
y (8F 0 oF 8)
B 0q; Op; ap] 0q;
We then calculate that:
[UH, UF] =
_Z Z@H 0*F 0H O*F _8F 0*H +8F 82F))i
0q; Op;0q;  Op; 0q;0q;  Oq; Opidg;  Op; Dgi0g;’’ Op;
Z 0H 0*°H 8H 0*H 8_F 0PH _8_F 0*H i
—~' Jq; Ipidp; " om 9q;0p; ~ 0q; Op;iOp;  Op; 0q;0p;~" g,
We now want to argue that for all j:
Z(8H O*F _8]—[ O*F _8F 0PH +8F O*F ) =0 (A)
; 9q; Opi0q;  Opi 9q;0q;  9q; Opidq; — Op; Dq;0q;
Z(_aﬂ 0*H 0H 0°H OF 0°H _8F 0PH _ 0 (B)
p Jq; 3172'8]93' Op; 3%8]9;' dq; apiapj Op; aQiapj

However, we observe that (A) follows from differentiating equality (x) with re-

spect to ¢; and that (B) follows from differentiating (x) with respect to p;.

Hence [vy,vr] = 0 so vy and vy commute.

3 Exercise 3 Solution

Let M be a compact manifold and led v be a smooth vector field on M. Since M is

compact, the flow ®;, of v is defined for all times ¢.



3.1 Part a)

Let h be a smooth function on M such that (L,)¥h = 0 for N sufficiently large. We
argue that for all times t € R

[e.e]

tn
6tLvh — ZO E(Lv)nh _ (q)w)*h

We will use the Existence and Uniqueness Theorem for ODEs. We fix p inM. We
let F(t) := et"(p) and we let G(t) := (Py)*h(p). The assumption that (L,)Vh =
0 for N sufficiently large implies that F(¢) is well-defined, that it is a smooth
function in ¢ and that we can differentiate in ¢ term by term. Hence F'(t) =
(250 B (L™ ) (5) = Lo(3 B (L) h)(p) = v(F(£)) We know that: G/(f) —
L,((®w)*h)(p) = v(G(t)) by Theorem 9 from the handout on the Flows of Vec-
tor Fields on Manifolds. Since F(0)=G(0)=h(p), the claim indeed follows from the

Existence and Uniqueness Theorem for ODEs.

3.2 Part b)

Suppose now that w is a smooth vector field on M such that (L,)Yw = 0 for all N
sufficiently large.
Let us define w, := >_°° ¥ (L,)"w. Using the fact that the a priori infinite series

n=0 n!
terminates. Hence, arguing as in part a) we can differentiate term by term to obtain:
0
—w; = Lyw
at t t

Using Theorem 9 from the handout on the Flows of Vector Fields on Manifolds,
we get that
Wy = @:;}w

Hence, we get:

as was claimed.



4 Exercise 4 solution

4.1 Part a)

Let g € G be given. We define ¢, : G — G x G to be ¢,(h) := (g, h). We have that
then:
cBaxana

and m o ¢4 = [,. Hence, we get:

¢ ™ Ta x TG ™ TG

which by the Chain Rule and the previous observation is:

Tl,

TG — TG,

We observe that for g € G we have: T'¢,4(1,v9) = ((g,0), ({,v0)) Hence, combining
the previous facts, it follows that: given vy € T7G, we have:

Tr¢g Tig,nym

(L,vo) = ((9,0),(L,vo)) = (g, Tuly(v0))
Now, the map
g e G ((9,0)7 ([>'UO))

is smooth in g. Furthermore T'm : T'G — TG is smooth because m is smooth. Hence
the map:
g €< G— (gvTIlg(U0>>

is a smooth map. Hence, if we define v by v(g) := Til,(vg), then v(g) € TiG by
construction and by the previous observation v(g) will depend smoothly on g. Hence,
v defines a smooth vector field on G.

4.2 Part b)

Suppose that v is a vector field as constructed from vy € T; M as in part a). Suppose
that g, h € G are given. We have:

((12):)(9) = (Tn-14ln) (v(h™"g)) = Th-14ln © Trlp-14(v0) =

= { by the Chain Rule } = T(lj, o l-1,)(vo) = { by the construction of v} = v(g)



Hence, v is left-invariant.
Conversely, suppose that v is a left-invariant vector field on G We then have that
Vge G:
v(g) = { by left-invariance } = ((I4).v)(g) = T1l,(v(I))

So, v is obtained as in part a) if we set vy := v(I).
Remark: Combining parts a) and b) it follows that every left invariant vector
field is smooth.

4.3 Part c)

Suppose that v, w are left-invariant vector fields on GG. We have that then for all
heG:

(In)«[v, w] = { by using the result of Problem 4b) from last week’s homework } =

= [(lp)+v, (In)«w] = { by left invariance of v and w } = [v, w]

4.4 Part d)

Suppose that v is a left-invariant vector field on G. We argue that ®,, is defined for
all time.

Suppose that g € G is given. We define v,(t) := @, (p). We want to show that v,
is defined for all time. We show that it is defined for all positive times. The claim
for all negative times follows by symmetry. We suppose that -, is defined on [0, a)
for some a > 0. Let us now show that 7, can be extended beyond time a.

Let b := v,(5).
We define o : [0,a) — G by:
o (t) := (lng-1 ©79)(t)
Then, we know:
0(0) = (lng-1 ©79)(0) = lng-1(g) = h
and

o'(t) = Tglhgfl(%;(t)) = { by the fact that v, is an integral curve of v } = T l,-1(v(7,4(t)))

= ((lng-1)+v)((Ing-1 0 74)(t))) = { by left-invariance of v} =



= v((lpg-1 0 lg)(t)) = v(o(t))
We know that:

To(3) = hand & (¢ 4+ 9)) = vt + 3)

By the Existence and Uniqueness Theorem for ODEs, it follows that
ot) =t +3) Yt € [5.0)

) on [a, 37“)

a

Hence, we can extend 7, to [0,32) by letting it equal o(t — 4

It follows that the flow ®,, is defined for all time.

Suppose v is a left-invariant vector field on G as above and suppose that ¢ € G
is given.

We now argue that:

®,(g) = m(g, Pu(1))

We let () := ~;(t). By the previous observation, v is defined for all t € R. Let
o(t) :=m(g,v(t)) = g-v(t). The earlier calculation shows that ¢ is an integral curve
of v with ¢(0) = g. Hence we get o(t) = ®y(9g).

We deduce that Vt € R:

(I)tv(g) = m(gva(t)) = m(gu (I)tv(l>)
We set t = 1 to deduce that:

®,(g) = m(g, Pu(1))

Hence, flowing by a left-invariant vector field corresponds to multiplication on
the right.



