
Solutions to Problem Set 4 for 18.101, Fall 2007

1 Exercise 1 Solution

Suppose that v is a vector field on R
N which is tangent to a closed submanifold M of

R
N . Let γ : (a, b) → M be an integral curve of v which intersects M , i.e. such that

γ(θ) ∈ M for some θ ∈ (a, b). We are supposing that (a, b) is the maximal interval
of existence of γ.

We define A := {t ∈ (a, b) such that γ(t) ∈ M}. Let us argue that A = (a, b).
We know that θ ∈ A so A is nonempty. (1)
Furthermore, we observe that A is open in (a, b). Suppose that t0 ∈ A. Then,

we find a coordinate neighborhood (U, x1, . . . , xn) of γ(t0) in M. We can then find
a diffeomorphism φ : U → V , where V ⊆ R

N is open. Then (φ)∗(v) is a C1 vector
field on V. Hence, this vector field is locally Lipschitz on V . By using the Existence
Part of the Existence and Uniqueness Theorem for ODEs, we can find ǫ > 0 and
σ : (t0 − ǫ, t0 + ǫ) → M such that:

σ′(t) = (φ∗v)(σ(t)), ∀t ∈ (t0 − ǫ, t0 + ǫ)

σ(t0) = φ ◦ γ(t0)

However, we also know that, since γ is an integral curve of v that φ ◦ γ is an
integral curve of φ∗v, namely:

φ ◦ γ′(t) = (φ∗v)(σ(t)), ∀t ∈ (t0 − ǫ, t0 + ǫ)

and
φ ◦ γ(t0) = σ(t0)

By using the Uniqueness Part of the Existence and Uniqueness Theorem for
ODEs, it follows that

φ ◦ γ(t) = σ(t) , ∀t ∈ (t0 − ǫ, t0 + ǫ)

Since σ(t) ∈ V , ∀t ∈ (t0−ǫ, t0 +ǫ), it follows that γ(t) ∈ φ−1(V ) = U ⊆ M , ∀t ∈
(t0 − ǫ, t0 + ǫ)

Hence (t0 − ǫ, t0 + ǫ) ⊆ A. Such an ǫ > 0 can be found for all t0 ∈ A, thus A is
open in (a,b). (2)

Finally, we observe that A is closed in (a, b). To see this, suppose that (tn) is a
sequence in A such that tn → t, for some t ∈ (a, b). By continuity of γ, we know
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that γ(tn) → γ(t). By construction of (tn), we know that γ(tn) ∈ M , ∀n. Using the
last two observations together with the assumption that M is closed, it follows that
γ(t) ∈ M. By definition of A, this implies that t ∈ A. Hence A is closed in (a,b).
(3)

Using (1),(2),(3) together with the connectedness of (a, b), it follows that A =
(a, b).

Consequently, γ is entirely contained in M, as was claimed.

2 Exercise 2 Solution

2.1 Part a)

We know that:

dH(vH) =
∑

i

(
∂H

∂qi

∂H

∂pi

−
∂H

∂pi

∂H

∂qi

) = 0

Hence H is a conserved quantity of vH .

2.2 Part b)

Suppose that F is smooth. Then:

LvH
F =

∑

i

(
∂H

∂qi

∂F

∂pi

−
∂H

∂pi

∂F

∂qi

)

LvF
H =

∑

i

(
∂F

∂qi

∂H

∂pi

−
∂F

∂pi

∂H

∂qi

)

From here, it immediately follows that

LvH
F = −LvF

H

2.3 Part c)

Suppose that F is a conserved quantity of vH . This means that, LvH
(F ) = 0. The

latter is equivalent to:

∑

i

(
∂H

∂qi

∂F

∂pi

−
∂H

∂pi

∂F

∂qi

) = 0 (∗)
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We know that:

vH =
∑

i

(
∂H

∂qi

∂

∂pi

−
∂H

∂pi

∂

∂qi

)

vF =
∑

j

(
∂F

∂qj

∂

∂pj

−
∂F

∂pj

∂

∂qj

)

We then calculate that:

[vH , vF ] =

=
∑

j

((
∑

i

(
∂H

∂qi

∂2F

∂pi∂qj

−
∂H

∂pi

∂2F

∂qi∂qj

−
∂F

∂qi

∂2H

∂pi∂qj

+
∂F

∂pi

∂2F

∂qi∂qj

))
∂

∂pj

+

+(
∑

i

(−
∂H

∂qi

∂2H

∂pi∂pj

+
∂H

∂pi

∂2H

∂qi∂pj

+
∂F

∂qi

∂2H

∂pi∂pj

−
∂F

∂pi

∂2H

∂qi∂pj

))
∂

∂qj

)

We now want to argue that for all j:

∑

i

(
∂H

∂qi

∂2F

∂pi∂qj

−
∂H

∂pi

∂2F

∂qi∂qj

−
∂F

∂qi

∂2H

∂pi∂qj

+
∂F

∂pi

∂2F

∂qi∂qj

) = 0 (A)

∑

i

(−
∂H

∂qi

∂2H

∂pi∂pj

+
∂H

∂pi

∂2H

∂qi∂pj

+
∂F

∂qi

∂2H

∂pi∂pj

−
∂F

∂pi

∂2H

∂qi∂pj

= 0 (B)

However, we observe that (A) follows from differentiating equality (∗) with re-
spect to qj and that (B) follows from differentiating (∗) with respect to pj.

Hence [vH , vF ] = 0 so vH and vF commute.

3 Exercise 3 Solution

Let M be a compact manifold and led v be a smooth vector field on M . Since M is
compact, the flow Φtv of v is defined for all times t.
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3.1 Part a)

Let h be a smooth function on M such that (Lv)
Nh = 0 for N sufficiently large. We

argue that for all times t ∈ R

etLvh :=

∞∑

n=0

tn

n!
(Lv)

nh = (Φtv)
∗h

We will use the Existence and Uniqueness Theorem for ODEs. We fix p inM . We
let F (t) := etLvh(p) and we let G(t) := (Φtv)

∗h(p).The assumption that (Lv)
Nh =

0 for N sufficiently large implies that F (t) is well-defined, that it is a smooth
function in t and that we can differentiate in t term by term. Hence F ′(t) =
(
∑

∞

n=0

tn

n!
(Lv)

n+1h)(p) = Lv(
∑

∞

n=0

tn

n!
(Lv)

nh)(p) = v(F (t)) We know that: G′(t) =
Lv((Φtv)

∗h)(p) = v(G(t)) by Theorem 9 from the handout on the Flows of Vec-
tor Fields on Manifolds. Since F(0)=G(0)=h(p), the claim indeed follows from the
Existence and Uniqueness Theorem for ODEs.

3.2 Part b)

Suppose now that w is a smooth vector field on M such that (Lv)
Nw = 0 for all N

sufficiently large.
Let us define wt :=

∑
∞

n=0

tn

n!
(Lv)

nw. Using the fact that the a priori infinite series
terminates. Hence, arguing as in part a) we can differentiate term by term to obtain:

∂

∂t
wt = Lvwt

Using Theorem 9 from the handout on the Flows of Vector Fields on Manifolds,
we get that

wt = Φ∗

tvw.

Hence, we get:

etLvw =

∞∑

n=0

tn

n!
(Lv)

nw = Φ∗

tvw

as was claimed.
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4 Exercise 4 solution

4.1 Part a)

Let g ∈ G be given. We define φg : G → G × G to be φg(h) := (g, h). We have that
then:

G
φg

→ G × G
m
→ G

and m ◦ φg = lg. Hence, we get:

TG
Tφg

→ TG × TG
Tm
→ TG

which by the Chain Rule and the previous observation is:

TG
T lg
→ TG.

We observe that for g ∈ G we have: Tφg(I, v0) = ((g, 0), (I, v0)) Hence, combining
the previous facts, it follows that: given v0 ∈ TIG, we have:

(I, v0)
TIφg

→ ((g, 0), (I, v0))
T(g,I)m

→ (g, TIlg(v0))

Now, the map
g ∈ G 7→ ((g, 0), (I, v0))

is smooth in g. Furthermore Tm : TG → TG is smooth because m is smooth. Hence
the map:

g ∈ G 7→ (g, TIlg(v0))

is a smooth map. Hence, if we define v by v(g) := TI lg(v0), then v(g) ∈ TIG by
construction and by the previous observation v(g) will depend smoothly on g. Hence,
v defines a smooth vector field on G.

4.2 Part b)

Suppose that v is a vector field as constructed from v0 ∈ TIM as in part a). Suppose
that g, h ∈ G are given. We have:

((lh)∗)(g) = (Th−1glh)(v(h−1g)) = Th−1glh ◦ TI lh−1g(v0) =

= { by the Chain Rule } = TI(lh ◦ lh−1g)(v0) = { by the construction of v} = v(g)
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Hence, v is left-invariant.
Conversely, suppose that v is a left-invariant vector field on G We then have that

∀g ∈ G :
v(g) = { by left-invariance } = ((lg)∗v)(g) = TI lg(v(I))

So, v is obtained as in part a) if we set v0 := v(I).
Remark: Combining parts a) and b) it follows that every left invariant vector

field is smooth.

4.3 Part c)

Suppose that v, w are left-invariant vector fields on G. We have that then for all
h ∈ G :

(lh)∗[v, w] = { by using the result of Problem 4b) from last week’s homework } =

= [(lh)∗v, (lh)∗w] = { by left invariance of v and w } = [v, w]

4.4 Part d)

Suppose that v is a left-invariant vector field on G. We argue that Φtv is defined for
all time.

Suppose that g ∈ G is given. We define γg(t) := Φtv(p). We want to show that γg

is defined for all time. We show that it is defined for all positive times. The claim
for all negative times follows by symmetry. We suppose that γp is defined on [0, a)
for some a > 0. Let us now show that γp can be extended beyond time a.

Let h := γg(
a
2
).

We define σ : [0, a) → G by:

σ(t) := (lhg−1 ◦ γg)(t)

Then, we know:

σ(0) = (lhg−1 ◦ γg)(0) = lhg−1(g) = h

and

σ′(t) = Tglhg−1(γ
′

g(t)) = { by the fact that γg is an integral curve of v } = Tglhg−1(v(γg(t)))

= ((lhg−1)∗v)((lhg−1 ◦ γg)(t))) = { by left-invariance of v} =
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= v((lhg−1 ◦ lg)(t)) = v(σ(t))

We know that:

γg(
a

2
) = h and

d

dt
(γg(t +

a

2
)) = v(γg(t +

a

2
))

By the Existence and Uniqueness Theorem for ODEs, it follows that

σ(t) = γg(t +
a

2
) ∀t ∈ [

a

2
, a)

Hence, we can extend γg to [0, 3a
2
) by letting it equal σ(t − a

2
) on [a, 3a

2
).

It follows that the flow Φtv is defined for all time.
Suppose v is a left-invariant vector field on G as above and suppose that g ∈ G

is given.
We now argue that:

Φv(g) = m(g, Φv(I))

We let γ(t) := γI(t). By the previous observation, γ is defined for all t ∈ R. Let
σ(t) := m(g, γ(t)) = g ·γ(t). The earlier calculation shows that σ is an integral curve
of v with σ(0) = g. Hence we get σ(t) = Φtv(g).

We deduce that ∀t ∈ R:

Φtv(g) = m(g, γ(t)) = m(g, Φtv(I))

We set t = 1 to deduce that:

Φv(g) = m(g, Φv(I))

Hence, flowing by a left-invariant vector field corresponds to multiplication on
the right.
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