Solutions to Problem Set 4 for 18.101, Fall 2007

1 Exercise 1 Solution

Suppose that v is a vector field on \mathbb{R}^N which is tangent to a closed submanifold M of \mathbb{R}^N . Let $\gamma : (a, b) \to M$ be an integral curve of v which intersects M, i.e. such that $\gamma(\theta) \in M$ for some $\theta \in (a, b)$. We are supposing that (a, b) is the maximal interval of existence of γ .

We define $A := \{t \in (a, b) \text{ such that } \gamma(t) \in M\}$. Let us argue that A = (a, b). We know that $\theta \in A$ so **A** is nonempty. (1)

Furthermore, we observe that A is open in (a, b). Suppose that $t_0 \in A$. Then, we find a coordinate neighborhood (U, x_1, \ldots, x_n) of $\gamma(t_0)$ in M. We can then find a diffeomorphism $\phi : U \to V$, where $V \subseteq \mathbb{R}^N$ is open. Then $(\phi)_*(v)$ is a C^1 vector field on V. Hence, this vector field is locally Lipschitz on V. By using the Existence Part of the Existence and Uniqueness Theorem for ODEs, we can find $\epsilon > 0$ and $\sigma : (t_0 - \epsilon, t_0 + \epsilon) \to M$ such that:

$$\sigma'(t) = (\phi_* v)(\sigma(t)), \forall t \in (t_0 - \epsilon, t_0 + \epsilon)$$
$$\sigma(t_0) = \phi \circ \gamma(t_0)$$

However, we also know that, since γ is an integral curve of v that $\phi \circ \gamma$ is an integral curve of $\phi_* v$, namely:

$$\phi \circ \gamma'(t) = (\phi_* v)(\sigma(t)), \forall t \in (t_0 - \epsilon, t_0 + \epsilon)$$

and

$$\phi \circ \gamma(t_0) = \sigma(t_0)$$

By using the Uniqueness Part of the Existence and Uniqueness Theorem for ODEs, it follows that

$$\phi \circ \gamma(t) = \sigma(t) , \forall t \in (t_0 - \epsilon, t_0 + \epsilon)$$

Since $\sigma(t) \in V$, $\forall t \in (t_0 - \epsilon, t_0 + \epsilon)$, it follows that $\gamma(t) \in \phi^{-1}(V) = U \subseteq M$, $\forall t \in (t_0 - \epsilon, t_0 + \epsilon)$

Hence $(t_0 - \epsilon, t_0 + \epsilon) \subseteq A$. Such an $\epsilon > 0$ can be found for all $t_0 \in A$, thus **A** is open in (a,b). (2)

Finally, we observe that A is closed in (a, b). To see this, suppose that (t_n) is a sequence in A such that $t_n \to t$, for some $t \in (a, b)$. By continuity of γ , we know

that $\gamma(t_n) \to \gamma(t)$. By construction of (t_n) , we know that $\gamma(t_n) \in M$, $\forall n$. Using the last two observations together with the assumption that M is closed, it follows that $\gamma(t) \in M$. By definition of A, this implies that $t \in A$. Hence **A** is closed in (a,b). (3)

Using (1),(2),(3) together with the connectedness of (a, b), it follows that A = (a, b).

Consequently, γ is entirely contained in M, as was claimed.

2 Exercise 2 Solution

2.1 Part a)

We know that:

$$dH(v_H) = \sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i}\right) = 0$$

Hence H is a conserved quantity of v_H .

2.2 Part b)

Suppose that F is smooth. Then:

$$L_{v_H}F = \sum_{i} \left(\frac{\partial H}{\partial q_i}\frac{\partial F}{\partial p_i} - \frac{\partial H}{\partial p_i}\frac{\partial F}{\partial q_i}\right)$$
$$L_{v_F}H = \sum_{i} \left(\frac{\partial F}{\partial q_i}\frac{\partial H}{\partial p_i} - \frac{\partial F}{\partial p_i}\frac{\partial H}{\partial q_i}\right)$$

From here, it immediately follows that

$$L_{v_H}F = -L_{v_F}H$$

2.3 Part c)

Suppose that F is a conserved quantity of v_H . This means that, $L_{v_H}(F) = 0$. The latter is equivalent to:

$$\sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial F}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial F}{\partial q_i}\right) = 0 \ (*)$$

We know that:

$$v_{H} = \sum_{i} \left(\frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}} - \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}}\right)$$
$$v_{F} = \sum_{j} \left(\frac{\partial F}{\partial q_{j}} \frac{\partial}{\partial p_{j}} - \frac{\partial F}{\partial p_{j}} \frac{\partial}{\partial q_{j}}\right)$$

We then calculate that:

$$[v_H, v_F] =$$

$$= \sum_{j} \left(\left(\sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial^2 F}{\partial p_i \partial q_j} - \frac{\partial H}{\partial p_i} \frac{\partial^2 F}{\partial q_i \partial q_j} - \frac{\partial F}{\partial q_i} \frac{\partial^2 H}{\partial p_i \partial q_j} + \frac{\partial F}{\partial p_i} \frac{\partial^2 F}{\partial q_i \partial q_j} \right) \right) \frac{\partial}{\partial p_j} +$$

$$+ \left(\sum_{i} \left(-\frac{\partial H}{\partial q_i} \frac{\partial^2 H}{\partial p_i \partial p_j} + \frac{\partial H}{\partial p_i} \frac{\partial^2 H}{\partial q_i \partial p_j} + \frac{\partial F}{\partial q_i} \frac{\partial^2 H}{\partial p_i \partial p_j} - \frac{\partial F}{\partial p_i} \frac{\partial^2 H}{\partial q_i \partial p_j} \right) \right) \frac{\partial}{\partial q_j} \right)$$

We now want to argue that for all j:

$$\sum_{i} \left(\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} F}{\partial p_{i} \partial q_{j}} - \frac{\partial H}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}} - \frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial q_{j}} + \frac{\partial F}{\partial p_{i}} \frac{\partial^{2} F}{\partial q_{i} \partial q_{j}}\right) = 0 \quad (\mathbf{A})$$
$$\sum_{i} \left(-\frac{\partial H}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} + \frac{\partial H}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}} + \frac{\partial F}{\partial q_{i}} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} - \frac{\partial F}{\partial p_{i}} \frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}\right) = 0 \quad (\mathbf{B})$$

However, we observe that (A) follows from differentiating equality (*) with respect to q_j and that (B) follows from differentiating (*) with respect to p_j .

Hence $[v_H, v_F] = 0$ so v_H and v_F commute.

3 Exercise 3 Solution

Let M be a compact manifold and led v be a smooth vector field on M. Since M is compact, the flow Φ_{tv} of v is defined for all times t.

3.1 Part a)

Let h be a smooth function on M such that $(L_v)^N h = 0$ for N sufficiently large. We argue that for all times $t \in \mathbb{R}$

$$e^{tL_vh} := \sum_{n=0}^{\infty} \frac{t^n}{n!} (L_v)^n h = (\Phi_{tv})^* h$$

We will use the Existence and Uniqueness Theorem for ODEs. We fix p inM. We let $F(t) := e^{tL_v h}(p)$ and we let $G(t) := (\Phi_{tv})^* h(p)$. The assumption that $(L_v)^N h = 0$ for N sufficiently large implies that F(t) is well-defined, that it is a smooth function in t and that we can differentiate in t term by term. Hence $F'(t) = (\sum_{n=0}^{\infty} \frac{t^n}{n!} (L_v)^{n+1} h)(p) = L_v (\sum_{n=0}^{\infty} \frac{t^n}{n!} (L_v)^n h)(p) = v(F(t))$ We know that: $G'(t) = L_v ((\Phi_{tv})^* h)(p) = v(G(t))$ by Theorem 9 from the handout on the Flows of Vector Fields on Manifolds. Since F(0)=G(0)=h(p), the claim indeed follows from the Existence and Uniqueness Theorem for ODEs.

3.2 Part b)

Suppose now that w is a smooth vector field on M such that $(L_v)^N w = 0$ for all N sufficiently large.

Let us define $w_t := \sum_{n=0}^{\infty} \frac{t^n}{n!} (L_v)^n w$. Using the fact that the a priori infinite series terminates. Hence, arguing as in part a) we can differentiate term by term to obtain:

$$\frac{\partial}{\partial t}w_t = L_v w_t$$

Using Theorem 9 from the handout on the Flows of Vector Fields on Manifolds, we get that

$$w_t = \Phi_{tv}^* w.$$

Hence, we get:

$$e^{tL_v w} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (L_v)^n w = \Phi_{tv}^* w$$

as was claimed.

4 Exercise 4 solution

4.1 Part a)

Let $g \in G$ be given. We define $\phi_g : G \to G \times G$ to be $\phi_g(h) := (g, h)$. We have that then:

$$G \xrightarrow{\phi_g} G \times G \xrightarrow{m} G$$

and $m \circ \phi_g = l_g$. Hence, we get:

$$TG \xrightarrow{T\phi_g} TG \times TG \xrightarrow{Tm} TG$$

which by the Chain Rule and the previous observation is:

$$TG \xrightarrow{Tl_g} TG.$$

We observe that for $g \in G$ we have: $T\phi_g(I, v_0) = ((g, 0), (I, v_0))$ Hence, combining the previous facts, it follows that: given $v_0 \in T_I G$, we have:

$$(I, v_0) \xrightarrow{T_I \phi_g} ((g, 0), (I, v_0)) \xrightarrow{T_{(g,I)}m} (g, T_I l_g(v_0))$$

Now, the map

$$g \in G \mapsto ((g,0), (I,v_0))$$

is smooth in g. Furthermore $Tm: TG \to TG$ is smooth because m is smooth. Hence the map:

$$g \in G \mapsto (g, T_I l_q(v_0))$$

is a smooth map. Hence, if we define v by $v(g) := T_I l_g(v_0)$, then $v(g) \in T_I G$ by construction and by the previous observation v(g) will depend smoothly on g. Hence, v defines a smooth vector field on G.

4.2 Part b)

Suppose that v is a vector field as constructed from $v_0 \in T_I M$ as in part a). Suppose that $g, h \in G$ are given. We have:

$$((l_h)_*)(g) = (T_{h^{-1}g}l_h)(v(h^{-1}g)) = T_{h^{-1}g}l_h \circ T_I l_{h^{-1}g}(v_0) =$$

= { by the Chain Rule } = $T_I(l_h \circ l_{h^{-1}q})(v_0) = \{$ by the construction of $v\} = v(g)$

Hence, v is left-invariant.

Conversely, suppose that v is a left-invariant vector field on G We then have that $\forall g \in G$:

$$v(g) = \{ \text{ by left-invariance } \} = ((l_g)_* v)(g) = T_I l_g(v(I))$$

So, v is obtained as in part a) if we set $v_0 := v(I)$.

Remark: Combining parts a) and b) it follows that every left invariant vector field is smooth.

4.3 Part c)

Suppose that v, w are left-invariant vector fields on G. We have that then for all $h \in G$:

 $(l_h)_*[v,w] = \{$ by using the result of Problem 4b) from last week's homework $\} =$

= $[(l_h)_*v, (l_h)_*w] = \{$ by left invariance of v and $w \} = [v, w]$

4.4 Part d)

Suppose that v is a left-invariant vector field on G. We argue that Φ_{tv} is defined for all time.

Suppose that $g \in G$ is given. We define $\gamma_g(t) := \Phi_{tv}(p)$. We want to show that γ_g is defined for all time. We show that it is defined for all positive times. The claim for all negative times follows by symmetry. We suppose that γ_p is defined on [0, a) for some a > 0. Let us now show that γ_p can be extended beyond time a.

Let $h := \gamma_g(\frac{a}{2})$. We define $\sigma : [0, a) \to G$ by:

$$\sigma(t) := (l_{hq^{-1}} \circ \gamma_q)(t)$$

Then, we know:

$$\sigma(0) = (l_{hg^{-1}} \circ \gamma_g)(0) = l_{hg^{-1}}(g) = h$$

and

$$\sigma'(t) = T_g l_{hg^{-1}}(\gamma'_g(t)) = \{ \text{ by the fact that } \gamma_g \text{ is an integral curve of } v \} = T_g l_{hg^{-1}}(v(\gamma_g(t))) = \{ (l_{hg^{-1}})_* v)((l_{hg^{-1}} \circ \gamma_g)(t))) = \{ \text{ by left-invariance of } v \} = 0 \}$$

$$= v((l_{hg^{-1}} \circ l_g)(t)) = v(\sigma(t))$$

We know that:

$$\gamma_g(\frac{a}{2}) = h \text{ and } \frac{d}{dt}(\gamma_g(t+\frac{a}{2})) = v(\gamma_g(t+\frac{a}{2}))$$

By the Existence and Uniqueness Theorem for ODEs, it follows that

$$\sigma(t) = \gamma_g(t + \frac{a}{2}) \; \forall t \in [\frac{a}{2}, a)$$

Hence, we can extend γ_g to $[0, \frac{3a}{2})$ by letting it equal $\sigma(t - \frac{a}{2})$ on $[a, \frac{3a}{2})$.

It follows that the flow Φ_{tv} is defined for all time.

Suppose v is a left-invariant vector field on G as above and suppose that $g \in G$ is given.

We now argue that:

$$\Phi_v(g) = m(g, \Phi_v(I))$$

We let $\gamma(t) := \gamma_I(t)$. By the previous observation, γ is defined for all $t \in \mathbb{R}$. Let $\sigma(t) := m(g, \gamma(t)) = g \cdot \gamma(t)$. The earlier calculation shows that σ is an integral curve of v with $\sigma(0) = g$. Hence we get $\sigma(t) = \Phi_{tv}(g)$.

We deduce that $\forall t \in \mathbb{R}$:

$$\Phi_{tv}(g) = m(g, \gamma(t)) = m(g, \Phi_{tv}(I))$$

We set t = 1 to deduce that:

$$\Phi_v(g) = m(g, \Phi_v(I))$$

Hence, flowing by a left-invariant vector field corresponds to multiplication on the right.