Solutions to Problem Set 3 for 18.101, Fall 2007

1 Exercise 1 solution

We write $f=f(u, v)$ and $g=g(u, v)=\left(g_{1}(u, v), g_{2}(u, v)\right)$. Then $f \circ g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by: $(f \circ g)(u, v)=f\left(g_{1}(u, v), g_{2}(u, v)\right)$. By using the Chain Rule, it follows that:
$D_{2}(f \circ g)(u, v)=\left(D_{1} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{2} g_{1}\right)(u, v)+\left(D_{2} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{2} g_{2}\right)(u, v)$
Applying the Chain Rule again, we obtain:

$$
\begin{gathered}
D_{1} D_{2}(f \circ g)(u, v)= \\
\left(D_{1}^{2} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} g_{1}\right)(u, v) \cdot\left(D_{2} g_{1}\right)(u, v) \\
+\left(D_{2} D_{1} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} g_{2}\right)(u, v) \cdot\left(D_{2} g_{1}\right)(u, v) \\
+\left(D_{1} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} D_{2} g_{1}\right)(u, v) \\
+\left(D_{1} D_{2} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} g_{1}\right)(u, v) \cdot\left(D_{2} g_{2}\right)(u, v) \\
+\left(D_{2}^{2} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} g_{2}\right)(u, v) \cdot\left(D_{2} g_{2}\right)(u, v) \\
+\left(D_{2} f\right)\left(g_{1}(u, v), g_{2}(u, v)\right) \cdot\left(D_{1} D_{2} g_{2}\right)(u, v)
\end{gathered}
$$

From the preceding formula, we may conclude that, in order to find $D_{1} D_{2}(f \circ g)$ at a point $(u, v) \in \mathbb{R}^{2}$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a known function, it is not enough to know the values of the first partial derivatives of the components of $g=\left(g_{1}, g_{2}\right)$ at (u, v). As the above formula shows, we need to know $\left(D_{1} D_{2} g_{1}\right)(u, v)$ and $\left(D_{1} D_{2} g_{2}\right)(u, v)$ in order to find the quantity $D_{1} D_{2}(f \circ g)(u, v)$.

2 Exercise 2 solution

Throughout the rest of the problem set, we use the notation: $V(f):=d f(V)$, whenever V is a vector field and f is a function.

2.1 Part a)

We work in a coordinate chart $\left(U, x_{1}, \ldots, x_{n}\right)$ on M. Suppose that $f, g: M \rightarrow \mathbb{R}$ are smooth. We know that on U :

$$
\begin{gathered}
d(f g)=\sum_{i=1}^{n} \frac{\partial(f g)}{\partial x_{i}} d x_{i}= \\
=\{\text { by the Product Rule }\}= \\
=\sum_{i=1}^{n} f \frac{\partial g}{\partial x_{i}} d x_{i}+\sum_{i=1}^{n} g \frac{\partial f}{\partial x_{i}} d x_{i}= \\
=f d g+g d f
\end{gathered}
$$

Since this is a local property, the claim follows.

2.2 Part b)

Suppose now that M, N are manifolds and $f: M \rightarrow N$ and $g: N \rightarrow \mathbb{R}$ are smooth. Let v be a smooth vector field on M. We then have that:

$$
f^{*} d g(v)=d g \circ T f(v)=T f(v)(g)=v(g \circ f)=d(g \circ f)(v)
$$

Hence indeed:

$$
f^{*} d g=d(g \circ f)
$$

2.3 Part c)

Let M, f be as before. Let α be a 1 -form on N, and let $\lambda: N \rightarrow \mathbb{R}$ be smooth. Suppose $p \in M$, and $X \in T_{p} M$ are given. Then we have:

$$
\begin{gathered}
\left(f^{*}(\lambda \alpha)\right)_{p}(X)=(\lambda \alpha)_{f(p)}\left(T_{p} f(X)\right)= \\
=\lambda(f(p)) \cdot \alpha_{f(p)}\left(T_{p} f(X)\right)=((\lambda \circ f)(p)) \cdot\left(f^{*}(\alpha)\right)_{p}(X)
\end{gathered}
$$

Thus we indeed get:

$$
f^{*}(\lambda \alpha)=(\lambda \circ f) f^{*}(\alpha)
$$

2.4 Part d)

With f, α as in part c), let us suppose that v is a vector field on M. Then, for all $p \in M$, we have:

$$
\begin{gathered}
\left(\left(f^{*} \alpha(v)\right)(p)=\alpha_{f(p)}\left(T_{p} f(v(p))\right)=\right. \\
=\left(\alpha\left(f_{*} v\right)\right)(f(p))=\left(\left(\alpha\left(f_{*} v\right) \circ f\right)(p)\right.
\end{gathered}
$$

It follows that:

$$
\alpha\left(f_{*} v\right) \circ f=f^{*} \alpha(v)
$$

2.5 Part e)

Let $f: M \rightarrow N$ be a diffeomorphism. Suppose that v is a vector field on M and that $\lambda: M \rightarrow \mathbb{R}$ is smooth. Let $p \in N$ be given. Since f is a diffeomorphism, we can find $q \in M$ such that $f(p)=q$.

$$
\begin{gathered}
\left(f_{*}(\lambda v)\right)(p)=\left(f_{*}(\lambda v)(f(q))=T_{q} f((\lambda v)(q))=\right. \\
=\lambda(q) T_{q} f(v(q))=\lambda(q)\left(f_{*} v\right)(p)= \\
=\left(\left(\lambda \circ f^{-1}\right) f_{*} v\right)(p)
\end{gathered}
$$

Consequently, we get:

$$
f_{*}(\lambda v)=\left(\lambda \circ f^{-1}\right) f_{*} v
$$

3 Exercise 3 solution

Suppose that $f: M \rightarrow \mathbb{R}$ is as in the problem. By compactness of M, f achieves its minimum and maximum. Using the fact that M is not the empty set or a single point, it follows that we can find distinct points p_{1}, p_{2} in M which are either a local maximum or local minimum for f. We want to argue that $(d f)_{p_{i}}=0$ for $i=1,2$. Let $i \in\{1,2\}$. Then, we can find a coordinate system $\left(U, x_{1}, \ldots, x_{n}\right)$ around p_{i}. We know that $\frac{\partial f}{\partial x_{j}}\left(p_{i}\right)=0$ for all $j=1$,..n. Hence, we have:

$$
(d f)_{p_{i}}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(p_{i}\right) \cdot\left(d x_{j}\right)_{p_{i}}=0
$$

The claim now follows.

4 Exercise 4 solution

In this problem, we again use the notation:

$$
V(f):=d f(V)
$$

when V is a vector field and f is a smooth function. Hence, for a smooth function f and smooth vector fields V and W, we define:

$$
[V, W](f):=V(W(f))-W(V(f))
$$

4.1 Part a)

Let V, W be vector fields on M.It suffices to check that $[V, W]$ locally defines a vector field. The fact that it is unique is immediate since we know how it acts on functions. Suppose that $\left(U, x_{1}, \ldots, x_{n}\right)$ is a coordinate system on M. In this coordinate system, we write $V=\sum_{i=1}^{n} V_{i} \frac{\partial}{\partial x_{i}}, W=\sum_{j=1}^{n} W_{j} \frac{\partial}{\partial x_{j}}$, for some smooth functions $V_{i}, W_{j} ; i, j=1, \ldots, n$ on U. Let $f: M \rightarrow \mathbb{R}$ be smooth. We know that then on U

$$
\begin{gathered}
{[V, W](f)=V(W(f))-W(V(f))=} \\
=\sum_{i=1}^{n} V_{i} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{n} W_{j} \frac{\partial f}{\partial x_{j}}\right)-\sum_{j=1}^{n} W_{j} \frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{n} V_{i} \frac{\partial f}{\partial x_{i}}\right)= \\
=\sum_{i, j=1}^{n}\left(V_{i} \frac{\partial W_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}+V_{i} W_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) \\
-\sum_{i, j=1}^{n}\left(W_{j} \frac{\partial V_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}+W_{j} V_{i} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)= \\
=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left(V_{i} \frac{\partial W_{j}}{\partial x_{i}}-W_{i} \frac{\partial V_{j}}{\partial x_{i}}\right) \frac{\partial f}{\partial x_{j}}\right)
\end{gathered}
$$

Hence, on U, we have:

$$
[V, W]=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left(V_{i} \frac{\partial W_{j}}{\partial x_{i}}-W_{i} \frac{\partial V_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}\right)
$$

It follows that $[V, W]$ is indeed a well-defined vector field.
Remark: The reason why we subtract the other term is because we want to cancel the term which involves "second derivatives" so that we get a vector field.

4.2 Part b)

We begin by observing the following fact about pushforwards:
$(*)$ Let $F: M \rightarrow N$ be a diffeomorphism between two manifolds. Let X, Y be smooth vector fields on M and N respectively. Then $Y=F_{*} X$ if and only if $X(f \circ F)=Y(f) \circ F$ for all $f: N \rightarrow \mathbb{R}$ which are smooth.

Proof of (*)
Let $p \in M$ be given. Suppose $f: N \rightarrow \mathbb{R}$ is smooth. Then $\left(\left(F_{*} X\right)(f)\right)(F(p))=$ $(X(F \circ f))(p)$ We know fromt the previous equality that $Y=F_{*} X$ if and only if for all f and p as above we have $Y(f)(F(p))=X(F \circ f)(p)$, which is equivalent to: $(Y(f) \circ F)(p)=X(F \circ f)(p)$. From here $(*)$ immediately follows.

We now use ($*$) to prove the claim.
Suppose that v, w are as in the problem. Suppose that $g: M \rightarrow \mathbb{R}$ is smooth. Then, we have:

$$
\begin{gathered}
v(w(g \circ f))=\{\text { by }(*)\}=v\left(f_{*} w(g) \circ f\right)= \\
=\{\text { by }(*)\}=f_{*} v\left(f_{*} w(g)\right) \circ f
\end{gathered}
$$

Analogously, we have:

$$
w(v(g \circ f))=f_{*} w\left(f_{*} v(g)\right) \circ f
$$

Subtracting the last two equalities, we get, for all smooth functions $g: M \rightarrow \mathbb{R}$:

$$
[v, w](g \circ f)=\left[f_{*} v, f_{*} w\right](g)
$$

Using (*) (the converse direction now), it follows that:

$$
f_{*}[v, w]=\left[f_{*} v, f_{*} w\right]
$$

This proves the claim.

4.3 Part c)

Let u, v, w be smooth vector fields.
Suppose that $f: m \rightarrow \mathbb{R}$ is smooth. We know that then:

$$
\begin{gathered}
{[u,[v, w]](f)=u([v, w](f))-[v, w](u(f))=} \\
=u(v(w(f)))-u(w(v(f)))-v(w(u(f)))+w(v(u(f)))
\end{gathered}
$$

By symmetry:

$$
\begin{aligned}
& {[v,[w, u]](f)=v(w(u(f)))-v(u(w(f)))-w(u(v(f)))+u(w(v(f)))} \\
& {[w,[u, v]](f)=w(u(v(f)))-w(v(u(f)))-u(v(w(f)))+v(u(w(f)))}
\end{aligned}
$$

Summing the last three equalities, we obtain the Jacobi Identity. Hence indeed:

$$
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0
$$

