
1 Exercise 1 solution

1.1 Part (a)

We define the map F : R
4 → R

2 by:

F (x1, x2, x3, x4) := (x2
1 + x2

2 − x2
3 − x2

4, x
2
1 + x2

2 + x2
3 + x2

4 − 4)

Then, we have that the wanted set M is equal to F−1{0}. If we show that 0
is a regular value of F , it will follow that M is a submanifold of R

4 of dimension
4 − 2 = 2.

We know that at (x1, x2, x3, x4) the differential of F equals

[

2x1 2x2 −2x3 −2x4

2x1 2x2 2x3 2x4

]

If (x1, x2, x3, x4) ∈ F−1{0} then we can check that x1 and x2 can’t simultaneously
be 0. Similarly, both x3 and x4 can’t be 0. Hence, the above matrix has full rank.
Thus M is indeed a 2 dimensional submanifold of R

4.

1.2 Part (b)

We know that the tangent space to M at p = (1, 1,−1,−1) is 2 dimensional, and
given by the kernel of TpF . As computed above,

TpF =

[

2 2 2 2
2 2 −2 −2

]

The kernel of this, we can see is the span of the two vectors {(p, (1,−1, 0, 0)), (p, (0, 0, 1,−1))}.

1.3 Part (c)

Denote the span of the vectors {e2, e3} by V , and {e1, e4} by W . Note that R
4 =

V ⊕ W .

DF (p)|W =

[

2 2
2 −2

]

The determinant of this is 8, so DF (p)|W is invertible. F is also smooth, so we
can use the implicit function theorem to tell us that that there exists some smooth
function g : V −→ W so in a neighborhood of (x2, x3) = (1,−1),

F (g1(x2, x3), x2, x3, g2(x2, x3)) = 0
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Then the chain rule tells us that

DF (p)|WDg(1,−1) + DF (p)|V = 0

So

Dg(1 − 1) = −

[

2 2
2 −2

]

−1 [

2 2
2 −2

]

=

[

−1 0
0 −1

]

2 Exercise 2 solution

The question of whether TX is a manifold is local on TX, since we ask that there
exists some open set about each point (x, v). Thus for each x, we may replace X
by an open neighborhood U of x in X, for which there exists a diffeomorphism
φ : U −→ V , where V ⊂ R

n is open. We now answer the equivalent question for U .
We know that T (φ) : TU −→ TV ∼= V × R

n is then a smooth map. We know also
that T (φ−1) maps TV to TU and is smooth. We must check that these maps are
inverses to each other. This follows from the chain rule. Thus, TU is diffeomorphic
to TV ∼= V × R

n. This is an open subset of R
2n. Hence, it follows that TX is a

2n-dimensional manifold.

3 Exercise 3 solution

3.1 Part (a)

Let Sn denote the set of all n × n symmetric matrices. As suggested in the lecture
notes, Lecture 2, Example 3, we consider the map

f : Mn → Sn

A 7→ AT A − I,

which is a smooth map, as it is given in coordinates by polynomial expressions.
Then, O(n) = f−1(0). To see this note that

Ax · Ay = xT AT Ay

so A preserves the dot product if and only if AT A = I.
To apply Theorem 1 from the same lecture, we need to check that every element

A ∈ O(n) is a regular value for the map f . Since Mn
∼= R

n2

, we may identify the
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tangent space at every point A naturally with Mn itself. Thus, to compute Df(A),
we may consider paths of the form p(t) = A + tX, where X is an arbitrary element
of Mn.

In particular, we have that

f(A + tX) = (A + tX)T (A + tX) − Id = AT A + t(XT A + AtX) + t2XTX − Id

= t(XT A + AT X) + t2XTX.

We apply d
dt
|t=0, to get Df(A)(X) = XT A + AT X. We immediately get that the

above matrix lies in Sn. Now, given any A ∈ On, and Y ∈ T0Sn
∼= Sn, we let

X = AY/2. Then Df(A)(X) = Y/2TAT A + AT AY/2 = Y . Therefore, Df(A) is
surjective for all A ∈ On.

Using the fact that the space of all n × n symmetric matrices is a vector space
of dimension n(n+1)

2
, it follows that O(n) is a smooth n(n−1)

2
submanifold of R

n2

of

dimension n(n+1)
2

. Every element of 0(n) has orthonormal rows, so O(n) is a bounded
subset of the space of all n × n matrices. (In particular, each entry is bounded by
1.) Also, since the map A 7→ AAt − Id is continuous, the preimage of zero under
this map, which is precisely O(n) is closed. Consequently, O(n) is indeed compact.

3.2 Part (b)

Identifying TIMn with Mn as above, we have

TIO(n) = ker Df(I)

As computed above, Df(I)(X) = XT I + IT X = XT + X. We therefore have that

TIO(n) = Skew(n) = {A ∈ Mn|A
T + A = 0}

4 Exercise 4 solution

We reduce this to the Theorem 1 of Lecture 2, as follows.
First, the condition that X = f−1(Y ) is a manifold is local on both X and Y ,

which we see as follows. X is a submanifold if every point x ∈ X has some open
neighborhood V diffeomorphic to an open subset in R

s. Thus, for a fixed x, we can
replace X by an open neighborhood U of x, and V by U ∩V (and conversely, U ∩V
is open in X). Similarly, we can replace Y by a neighborhood of y = f(x).

By choosing a sufficiently small neighborhood of y, we may in fact take Y to be
the coordinate plane R

k ⊂ R
m. Consider the projection π : R

m → R
m/R

k ∼= R
m−k.
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Then, clearly, Y = π−1(0), and thus, f−1(Y ) = f−1(π−1(0)) = (π ◦ f)−1(0). The
condition that f was transversal to Y at x clearly implies that x is a regular point
of (π ◦ f), and we thus by Theorem 1 of the notes, we are done.
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