1 Exercise 1 solution

1.1 Part (a)

We define the map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by:

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-4\right)
$$

Then, we have that the wanted set M is equal to $F^{-1}\{0\}$. If we show that 0 is a regular value of F, it will follow that M is a submanifold of \mathbb{R}^{4} of dimension $4-2=2$.

We know that at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ the differential of F equals

$$
\left[\begin{array}{cccc}
2 x_{1} & 2 x_{2} & -2 x_{3} & -2 x_{4} \\
2 x_{1} & 2 x_{2} & 2 x_{3} & 2 x_{4}
\end{array}\right]
$$

If $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in F^{-1}\{0\}$ then we can check that x_{1} and x_{2} can't simultaneously be 0 . Similarly, both x_{3} and x_{4} can't be 0 . Hence, the above matrix has full rank. Thus M is indeed a 2 dimensional submanifold of \mathbb{R}^{4}.

1.2 Part (b)

We know that the tangent space to M at $p=(1,1,-1,-1)$ is 2 dimensional, and given by the kernel of $T_{p} F$. As computed above,

$$
T_{p} F=\left[\begin{array}{cccc}
2 & 2 & 2 & 2 \\
2 & 2 & -2 & -2
\end{array}\right]
$$

The kernel of this, we can see is the span of the two vectors $\{(p,(1,-1,0,0)),(p,(0,0,1,-1))\}$.

1.3 Part (c)

Denote the span of the vectors $\left\{e_{2}, e_{3}\right\}$ by V, and $\left\{e_{1}, e_{4}\right\}$ by W. Note that $\mathbb{R}^{4}=$ $V \oplus W$.

$$
\left.D F(p)\right|_{W}=\left[\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right]
$$

The determinant of this is 8 , so $\left.D F(p)\right|_{W}$ is invertible. F is also smooth, so we can use the implicit function theorem to tell us that that there exists some smooth function $g: V \longrightarrow W$ so in a neighborhood of $\left(x_{2}, x_{3}\right)=(1,-1)$,

$$
F\left(g_{1}\left(x_{2}, x_{3}\right), x_{2}, x_{3}, g_{2}\left(x_{2}, x_{3}\right)\right)=0
$$

Then the chain rule tells us that

$$
\left.D F(p)\right|_{W} D g(1,-1)+\left.D F(p)\right|_{V}=0
$$

So

$$
D g(1-1)=-\left[\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right]^{-1}\left[\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

2 Exercise 2 solution

The question of whether $T X$ is a manifold is local on $T X$, since we ask that there exists some open set about each point (x, v). Thus for each x, we may replace X by an open neighborhood U of x in X, for which there exists a diffeomorphism $\phi: U \longrightarrow V$, where $V \subset \mathbb{R}^{n}$ is open. We now answer the equivalent question for U. We know that $T(\phi): T U \longrightarrow T V \cong V \times \mathbb{R}^{n}$ is then a smooth map. We know also that $T\left(\phi^{-1}\right)$ maps $T V$ to $T U$ and is smooth. We must check that these maps are inverses to each other. This follows from the chain rule. Thus, $T U$ is diffeomorphic to $T V \cong V \times \mathbb{R}^{n}$. This is an open subset of $\mathbb{R}^{2 n}$. Hence, it follows that $T X$ is a $2 n$-dimensional manifold.

3 Exercise 3 solution

3.1 Part (a)

Let S_{n} denote the set of all $n \times n$ symmetric matrices. As suggested in the lecture notes, Lecture 2, Example 3, we consider the map

$$
\begin{aligned}
f: M_{n} & \rightarrow S_{n} \\
A & \mapsto A^{T} A-I,
\end{aligned}
$$

which is a smooth map, as it is given in coordinates by polynomial expressions. Then, $O(n)=f^{-1}(0)$. To see this note that

$$
A x \cdot A y=x^{T} A^{T} A y
$$

so A preserves the dot product if and only if $A^{T} A=I$.
To apply Theorem 1 from the same lecture, we need to check that every element $A \in O(n)$ is a regular value for the map f. Since $M_{n} \cong \mathbb{R}^{n^{2}}$, we may identify the
tangent space at every point A naturally with M_{n} itself. Thus, to compute $D f(A)$, we may consider paths of the form $p(t)=A+t X$, where X is an arbitrary element of M_{n}.

In particular, we have that

$$
\begin{aligned}
f(A+t X) & =(A+t X)^{T}(A+t X)-I d=A^{T} A+t\left(X^{T} A+A^{t} X\right)+t^{2} X^{T} X-I d \\
& =t\left(X^{T} A+A^{T} X\right)+t^{2} X^{T} X
\end{aligned}
$$

We apply $\left.\frac{d}{d t}\right|_{t=0}$, to get $D f(A)(X)=X^{T} A+A^{T} X$. We immediately get that the above matrix lies in S_{n}. Now, given any $A \in O^{n}$, and $Y \in T_{0} S_{n} \cong S_{n}$, we let $X=A Y / 2$. Then $D f(A)(X)=Y / 2^{T} A^{T} A+A^{T} A Y / 2=Y$. Therefore, $D f(A)$ is surjective for all $A \in O^{n}$.

Using the fact that the space of all $n \times n$ symmetric matrices is a vector space of dimension $\frac{n(n+1)}{2}$, it follows that $O(n)$ is a smooth $\frac{n(n-1)}{2}$ submanifold of $\mathbb{R}^{n^{2}}$ of dimension $\frac{n(n+1)}{2}$. Every element of $0(n)$ has orthonormal rows, so $O(n)$ is a bounded subset of the space of all $n \times n$ matrices. (In particular, each entry is bounded by 1.) Also, since the map $A \mapsto A A^{t}-I d$ is continuous, the preimage of zero under this map, which is precisely $O(n)$ is closed. Consequently, $O(n)$ is indeed compact.

3.2 Part (b)

Identifying $T_{I} M_{n}$ with M_{n} as above, we have

$$
T_{I} O(n)=\operatorname{ker} D f(I)
$$

As computed above, $D f(I)(X)=X^{T} I+I^{T} X=X^{T}+X$. We therefore have that

$$
T_{I} O(n)=\operatorname{Skew}(n)=\left\{A \in M_{n} \mid A^{T}+A=0\right\}
$$

4 Exercise 4 solution

We reduce this to the Theorem 1 of Lecture 2, as follows.
First, the condition that $X=f^{-1}(Y)$ is a manifold is local on both X and Y, which we see as follows. X is a submanifold if every point $x \in X$ has some open neighborhood V diffeomorphic to an open subset in \mathbb{R}^{s}. Thus, for a fixed x, we can replace X by an open neighborhood U of x, and V by $U \cap V$ (and conversely, $U \cap V$ is open in X). Similarly, we can replace Y by a neighborhood of $y=f(x)$.

By choosing a sufficiently small neighborhood of y, we may in fact take Y to be the coordinate plane $\mathbb{R}^{k} \subset \mathbb{R}^{m}$. Consider the projection $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} / \mathbb{R}^{k} \cong \mathbb{R}^{m-k}$.

Then, clearly, $Y=\pi^{-1}(0)$, and thus, $f^{-1}(Y)=f^{-1}\left(\pi^{-1}(0)\right)=(\pi \circ f)^{-1}(0)$. The condition that f was transversal to Y at x clearly implies that x is a regular point of $(\pi \circ f)$, and we thus by Theorem 1 of the notes, we are done.

